NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012
Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: August 1, 2012
Weather Data from the Bridge
Latitude: 24 deg 29 min N
Longitude: 83 deg 07 min W
Wind Speed: 1.4 kts
Surface Water Temperature: 28.38 C
Air Temperature: 29.3 C
Relative Humidity: 76%
Science and Technology Log
Cycles are patterns that repeat over and over again and science is full of examples of them: rock cycle, carbon cycle and life cycle just for starters. I am sure you can probably even name a few more. Tonight will be the last night of a full moon, another cycle, and with it Mutton Snapper spawning will end for the time. When the Mutton Snapper, scientific name (Lutjanus analis), gather in a large group marine scientists call an aggregation.

This means that the male and female fish swim to a particular location in the ocean increasing their numbers and the chance that many more eggs will be fertilized to produce the next generation of fish. The trick for the scientists is finding where on the ocean floor these aggregations will occur. Using the Remotely Controlled Vehicle (ROV), diver sightings of good habitat and even knowledge of where fishermen have made great catches, scientists can zero in on where to observe an aggregation.
However, there is one more technology tool that can help locate fish AND map the ocean floor at the same time. This is multibeam charting technology create the colorful maps of the hidden world below the water.

You may have seen one of these beautiful images which use different colors to indicate changes in depth. I have always wondered how these charts were made. In fact, NOAA Ship Nancy Foster has crew members charting the ocean floor 24 hours a day while we are underway even when we are sleeping! Multiple sonar signals are directed from the ship toward the ocean floor when they bounce back the ship receives the signal on the computers. This signal shows on the computer screen as a small dot. When enough dots are arranged together at the depth they represent a picture of the ocean floor begins to emerge. The trained eyes of the survey technicians are needed to create an accurate two dimensional image of what lies beneath the water. The charts they create allow ships to remain safe and avoid running aground. When ships and boats stay in the proper depth of water they do not harm fragile coral reef areas which are easily damaged by these destructive collisions. In addition to recording safe passageways and creating depth charts that mariners use as they navigate, this technology can also spot fish within the water column locating the fish aggregations the marine scientists are studying. Many NOAA ships are equipped with this same technology and explore other parts of the ocean gathering similar data.
Technology helps the research team compensate for changing conditions such as visibility, currents, and ocean depth. Each tool has strength and weakness. For example, this morning our boat deployed a Seaviewer drop camera which is tethered by the cord and carried down by a weight. We were at a location called Riley’s Hump where the current is fast!
ROV technology would not work in this situation because it would be too difficult to maneuver in this current. It takes teamwork to handle the positioning of the boat while one scientist observes the computer screen for video and another pair manage the descent of the camera and weighted rope. However, the drop camera can only “look” one direction so once the fish swim past, the camera cannot follow them unlike the ROV in calm water. When used together, these technology tools allow scientists to develop an understanding of the habitat and the organisms that live on the ocean floor but they also have limitations.

The marine scientists plan their data gathering with these variables in mind. On this trip they returned to the VR2 sites where they have been collecting data since 2008 but they are always looking for other areas of the habitat to study. While they dive to retrieve VR2s or use the ROV and drop camera they are identifying future research sites wondering which fish might prefer that spot.

Their path is determined by questions: Do the Mutton Snapper live near their aggregation site or do they swim to this location from elsewhere? Do different groups of Mutton Snapper aggregate each full moon or is it the same group returning to Riley’s Hump? How often do these aggregations happen? All the technology available cannot answer these questions so when the time is right the scientists dive to make a direct observation of what organisms are living in the study area. On this cruise we learned that some areas did not have many fish on the day we visited yet other sites were rich with organisms.
The VR2 data will tell more of the story. The scientists will revise their plan and add more data in the fall. In time they will learn the answer to these questions and then perhaps identify related or new questions to pursue. This is a cycle of research. You may have heard it called scientific method. It is a process of asking questions and trying to answer them through investigation and observations. It is a process I watched unfold for this marine science team. It was unforgettable!
Personal Log:
Every discipline has its own specialized vocabulary. Tackling new science words with my students breaking down their meaning to understand and remember them is something I do regularly. Living aboard NOAA Ship Nancy Foster for the last week has put me in role of learner again. My teachers are the marine scientists and mariners. I am learning the names of organisms that we encounter and details about their behaviors. Some of this information I remember from my college classes but much of it is new. The mariners even have their own vocabulary! In fact, the Executive Officer, Donn Pratt, provided me with a list of seafarer vocabulary. I thought it was interesting and that you might enjoy reading it too:

Seafarers Nomenclature!!
Showers and toilets referred to on ships as “heads!”
Hallways are called “passageways.”
Windows are called “portholes.”
Bunk is called a “rack.”
Floors are called “decks.”
Ceilings are “overheads.”
Lastly…to report to a designated location is to “muster!”
More of a challenge for me is living at sea. I am still adjusting to the rocking motion of the ship. Thank goodness the water has been calm and my plan to prevent seasickness is effective. Today tested this hypothesis by performing a little science experiment. I skipped the seasickness medicine and took off the wrist bands. Within two hours my stomach was feeling queasy so I popped the wrist bands back on and now feel fine. One of the scientists pointed out that it is effective because you believe it will work. That may be the case but I got the result I hoped for so I am a believer in sea bands.

My former students know that I love the dictionary and we refer to it often in my classroom. As I see it, the dictionary is a critical tool to both understand another person’s thinking as well as to communicate our meaning clearly. Unfortunately, I didn’t pack a dictionary and early in the cruise it became clear I needed one. I had worn out “Cool!” “Amazing” and “Interesting” to comment on what I was seeing and living each day on this adventure. I looked up the definition of “superlative” when our course pointed away from the “Dead Zone” but the list of synonyms didn’t help much. Perhaps the best way to describe my experience as a NOAA Teacher at Sea on NOAA Ship Nancy Foster is just this: I am in AWE!
Superlative: adjective. 1) of the highest quality or degree. 2) expressing the highest or a very high degree of a quality (e.g. bravest, most fiercely).
Awe:noun. a feeling of reverential respect mixed with fear or wonder.

