Susan Kaiser: Technology, Tool of the Marine Scientist, August 1, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: August 1, 2012

Weather Data from the Bridge
Latitude:  24 deg 29 min N
Longitude:  83 deg 07 min W
Wind Speed:   1.4 kts
Surface Water Temperature:  28.38 C
Air Temperature:  29.3 C
Relative Humidity: 76%

Science and Technology Log

Cycles are patterns that repeat over and over again and science is full of examples of them: rock cycle, carbon cycle and life cycle just for starters. I am sure you can probably even name a few more. Tonight will be the last night of a full moon, another cycle, and with it Mutton Snapper  spawning will end for the time. When the Mutton Snapper, scientific name  (Lutjanus analis), gather in a large group marine scientists call an aggregation.

Mutton Snapper aggregation
Mutton Snapper aggregation

This means that the male and female fish swim to a particular location in the ocean increasing their numbers and the chance that many more eggs will be fertilized to produce the next generation of fish. The trick for the scientists is finding where on the ocean floor these aggregations will occur. Using the Remotely Controlled Vehicle (ROV), diver sightings of good habitat and even knowledge of where fishermen have made great catches, scientists can zero in on where to observe an aggregation.

However, there is one more technology tool that can help locate fish AND map the ocean floor at the same time. This is multibeam charting technology create the colorful maps of the hidden world below the water.

Bathymetry image showing depth of Lake Tahoe
Bathymetry image showing depth of Lake Tahoe made using multibeam charting technology.

You may have seen one of these beautiful images which use different colors to indicate changes in depth. I have always wondered how these charts were made. In fact, NOAA Ship Nancy Foster has crew members charting the ocean floor 24 hours a day while we are underway even when we are sleeping! Multiple sonar signals are directed from the ship toward  the ocean floor  when they bounce back the ship receives the signal on the computers. This signal shows on the computer screen as a small dot. When enough dots are arranged together at the depth they represent a picture of the ocean floor begins to emerge.  The trained eyes of the survey technicians are needed to create an accurate two dimensional image of what lies beneath the water. The charts they create allow ships to remain safe and avoid running aground. When ships and boats stay in the proper depth of water they do not harm fragile coral reef areas which are easily damaged by these destructive collisions. In addition to recording safe passageways and creating depth charts that mariners use as they navigate, this technology can also spot fish within the water column locating the fish aggregations the marine scientists are studying. Many NOAA ships are equipped with this same technology and explore other parts of the ocean gathering similar data.

Technology helps the research team compensate for changing conditions such as visibility, currents, and ocean depth. Each tool has strength and weakness. For example, this morning our boat deployed a Seaviewer drop camera which is tethered by the cord and carried down by a weight. We were at a location called Riley’s Hump where the current is fast!

ROV  technology would not work in this situation because it would be too difficult to maneuver in this current. It takes teamwork to handle the positioning of the boat while one scientist observes the computer screen for video and another pair manage the descent of the camera and weighted rope. However, the drop camera can only “look” one direction so once the fish swim past, the camera cannot follow them unlike the ROV in calm water. When used together, these technology tools allow scientists to develop an understanding of the habitat and the organisms that live on the ocean floor but they also have limitations.

Ben Binder deploys the Seaviewer drop camera over Riley's Hump location.
Ben Binder deploys the Seaviewer drop camera over Riley’s Hump location.

The marine scientists plan their data gathering with these variables in mind. On this trip they returned to the VR2 sites where they have been collecting data since 2008 but they are always looking for other areas of the habitat to study. While they dive to retrieve VR2s or use the ROV and drop camera they are identifying future research sites wondering which fish might prefer that spot.

Computer screen image as we pass over an aggregation site.
Computer screen image as we pass over an aggregation site. The baseline shows the ocean floor in profile. The mass of dots represent fish!

Their path is determined by questions: Do the Mutton Snapper live near their aggregation site or do they swim to this location from elsewhere? Do different groups of Mutton Snapper aggregate each full moon or is it the same group returning to Riley’s Hump? How often do these aggregations happen? All the technology available cannot answer these questions so when the time is right the scientists dive to make a direct observation of what organisms are living in the study area. On this cruise we learned that some areas did not have many fish on the day we visited yet other sites were rich with organisms.

The VR2 data will tell more of the story.  The scientists will revise their plan and add more data in the fall. In time they will learn the answer to these questions and then perhaps identify related or new questions to pursue. This is a cycle of research. You may have heard it called scientific method. It is a process of asking questions and trying to answer them through investigation and observations. It is a process I watched unfold for this marine science team. It was unforgettable!

Personal Log:

Every discipline has its own specialized vocabulary. Tackling new science words with my students breaking down their meaning to understand and remember them is something I do regularly. Living aboard NOAA Ship Nancy Foster for the last week has put me in role of learner again. My teachers are the marine scientists and mariners.  I am learning the names of organisms that we encounter and details about their behaviors. Some of this information I remember from my college classes but much of it is new. The mariners even have their own vocabulary! In fact, the Executive Officer, Donn Pratt, provided me with a list of seafarer vocabulary. I thought it was interesting and that you might enjoy reading it too:

Safety sign marking the spot to report or "muster"
Safety sign marking the spot to report or “muster”

Seafarers Nomenclature!!
Showers and toilets referred to on ships as “heads!”
Hallways are called “passageways.”
Windows are called “portholes.”
Bunk is called a “rack.”
Floors are called “decks.”
Ceilings are “overheads.”
Lastly…to report to a designated location is to “muster!”

More of a challenge for me is living at sea. I am still adjusting to the rocking motion of the ship. Thank goodness the water has been calm and my plan to prevent seasickness is effective. Today tested this hypothesis by performing a little science experiment. I skipped the seasickness medicine and took off the wrist bands. Within two hours my stomach was  feeling queasy so I popped the wrist bands back on and now feel fine. One of the scientists pointed out that it is effective because you believe it will work. That may be the case but I got the result I hoped for so I am a believer in sea bands.

Mrs. Kaiser on the bridge deck at the last full moon.
Mrs. Kaiser on the bridge deck at the last full moon

My former students know that I love the dictionary and we refer to it often in my classroom.  As I see it, the dictionary is a critical tool to both understand another person’s thinking as well as to communicate our meaning clearly. Unfortunately, I didn’t pack a dictionary and early in the cruise it became clear I needed one. I had worn out “Cool!” “Amazing” and  “Interesting” to comment on what I was seeing and living each day on this adventure.  I looked up the definition of “superlative” when our course pointed away from the “Dead Zone” but the list of synonyms didn’t help much. Perhaps the best way to describe my experience as a NOAA Teacher at Sea on NOAA Ship Nancy Foster is just this: I am in AWE!

Superlative: adjective. 1) of the highest quality or degree. 2) expressing the highest or a very high degree of a quality (e.g. bravest, most fiercely).

Awe:noun. a feeling of reverential respect mixed with fear or wonder.

Marine science team with Mrs. Kaiser after deploying the ROV.
Marine science team with Mrs. Kaiser after deploying the ROV
NOAA Ship Nancy Foster compass.
NOAA Ship Nancy Foster compass.

Kathleen Harrison: …and Ending the Adventure, July 22, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
  July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date:  July 22, 2011

Weather Data from the Bridge
True Wind Speed:  15.33 knots, True Wind Direction:  214.98°
Sea Temperature:  8.3° C, Air Temperature:  8.8° C
Air Pressure:  1014.59 mb
Overcast, 5 foot seas
Latitude:  55.54° N, Longitude:  155.57° W
Ship heading:  119°, Ship speed:  10.5 knots

Personal Log:  The time has come for me to pack my bright orange suitcase (thanks, Mom) and leave the NOAA ship Oscar Dyson.

my orange suitcase
Ok, so it is orange, at least I can find it in the luggage carousel at the airport.

The past 3 weeks have been an incredible adventure, and I am now making the journey home to Virginia Beach.  Almost everything I have seen and experienced has been new for me — especially identifying the animal species here in the Gulf of Alaska.  I am extremely grateful to the Teacher at Sea Program for allowing me to participate — I now have a better understanding of how real science is conducted, and am very excited to share this experience with my students, colleagues, family, and friends.

The title of this log entry might be Ending the Adventure, but I hope it is not the end of my relationship with NOAA.  I would like to be active in the Teacher at Sea Alumni group, and participate in other teacher activities that NOAA sponsors, such as Teacher in the Field, and Teacher in the Lab.  And, every time that I tell someone about this adventure, I will be reliving it all over again.

sunrise in Shelikof Strait
Sunrise in Shelikof Strait, 5:30 am.

In reflecting over the time that I have spent on board the ship, I have come to some conclusions about science, and life at sea:  1) Science is not easy, glamorous, or neat most of the time.  2) Science is messy, time-consuming, and frustrating most of the time.  3) Scientists must talk to each other, discussing ideas and problem solving.  4) Scientists on a team must at least get along with each other, and it is helpful if they actually like each other. 5) Scientists set very high goals, and then spend their time trying to make equipment work, manage millions of data points, and praying for good weather.  6)  The work that marine scientists do is vital to our understanding of the seas.  7)  Every science teacher should participate in real world research.  8) Alaska is a beautiful place.  9)  One can get used to the smell of fish.  10) I wonder what it will be like to walk on a non-moving surface again?

rain gear, the height of fashion
Rain gear pants, used to keep the fish slime off.
Mountains of the Alaskan peninsula
Snow covered peaks of the Alaskan Peninsula.

Thank you for reading this log, I hope that you have been informed and found it interesting.  The next time that you eat seafood, or see fish in an aquarium, think of the countless scientists, ship’s crew, and whales who have contributed their knowledge and skills to the conservation and use of the world’s oceans.

And thank you to my husband and daughters for letting me be away for 3 weeks.