Geoff Goodenow, May 9, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
May 9, 2004

Time: 1600

Lat: 18 39 N
Long: 158 17 W
Sky: A few more cumulus clouds around today (40% cover) but they didn’t seem to get in the way of the sun too often. Some thin stratus and cirrus around too.
Air temp: 26 C
Barometer: 1011.5
Wind: 120 degrees at 3.5 Knots
Relative humidity: 56 %
Sea temp: 27.1 C
Depth: 959.3 m

The sea was very,very smooth throughout the day.

Science and Technology Log

The line last night was put out at Swordfish Seamount (500 meters deep), about 35 miles south of Cross. It was a bit longer than usual. Longline retrieval began 0800 and was not complete until 1130. Both the length and our better fortune accounted for the longer effort. We brought in 7 on the line today including 4 sharks. Species included the following: 1 snakefish (Gempylus serpens – 104 cm long and about 7 cm wide with a big eye, pointy snout and lined with very sharp teeth– dead), oceanic white tipped shark (Carcharhinus longimanus) alive, 157 cm and nasty; a blue shark (Prionace glauca), alive, 132 cm and 32.5 kg, rather docile onboard, very pretty coloration — grayish belly softly blending to a blue dorsally; a big eye thresher shark (Alopias superciliosus — love that name) a bit of life in him but not much, 136 cm + tailfin, 51 kg, its curved tail fin nearly the length of his body; a silky shark (   ?   ) alive; an ono or wahoo, a dolphinfish and an escolar. I took some samples of blue shark and thresher shark teeth. A pretty exciting and busy morning. For most of these fish their fate in our hands was the same as usual.   But the real excitement was bringing on the live sharks. As they are drawn near the ship, netting held in place on a 3 foot by 6 foot rectangular metal frame is lower to the water by a winch. The fish is brought onto it and hoisted aboard. There are a few seconds of near terror as this thrashing animal hits the deck wielding danger at both ends of its body. A mattress like cover is thrown over each end and weighted down by human bodies (mine was not one of them today, but I’ll take my turn eventually; how many people do you know who have ridden a shark?).

The oceanic white and the silky were tagged with the pop ups. To do this a hole is drilled through the base of the dorsal fin. Line looped through that hole attaches the pop up to the animal. Fin clips and blood samples (if possible) are taken as are any remoras attached to the sharks. Then another moment of fear — restraints are withdrawn and animal is sent overboard as quickly as possible. Description of the satellite pop up tags: Each is about 12 inches tall. At the base is a light sensor, above that a cylindrical housing about 1 inch diameter, next a swollen area about 1.75 inch diameter (the pressure sensor) above which is an antenna about 6 inches long.   Each costs about $4000.00 including about $300 satellite time to upload data. Since a signal cannot be sent through seawater to the satellite, the units acquire and store data until a preset pop up date (8 months is about max given battery power of the unit). Then they are released automatically, pop to the surface, find a satellite and dump info to it. The system allows us to track fishes vertical movements (by pressure changes) and horizontal movements by measuring ambient light levels. The latter tells us daylength which can be used to estimate latitude to perhaps within a degree and time of dusk and dawn, which when compared to Greenwich can indicate longitude.

But what if the animal dies before the 8 months are passed? If the animal is headed to the depths, at 1200 meters pressure causes release of the pop up. If no vertical change is detected over 4 days (animal has died in shallow water), they release. Other things can happen that disable the pop ups. They might get broken or eaten by other animals. Only about i in 3 tagged swordfish and big eye thresher sharks are heard from if tagged. Those animals go surface to 600 meters often and rapidly subjecting tags to quick temperature and pressure changes that might disrupt operation of the device. In spite of the obstacles, data is gathered from about 60% of the pop up tags deployed. An alternative is small archival tags that get implanted right onto the animal. These cost only $800 and have much greater storage capacity than pop ups so can provide much more data. However, these must be recovered — the fish have to be recaught in order to get the info from the tag. That’s a tough order in this big ocean and recovery rate is indeed low. Setting longline again tonight in same area. At 2042 we are at lat 18 16 N and long 158 27 W.

Personal Log

Last night was spectacular. Brilliant stars horizon to horizon — a star show above, including the Southern Cross, that was equaled in beauty and wonder by the light show in the water. Bioluminescent organisms were ablaze off stern. It looked like the Milky Way in the water but with the stars turning on and off and swirling about in a frenzy. Some were mere points of light, sometimes things flashed as a light bulb going quickly on and off, and once in a while a ghostly basketball sized sphere tumbled through the view. It was hard to know whether to look up or down for fear of missing the next dazzling event.

And yes, there was a small crowd at the bow to admire the moonrise at about 2345. The ship as always held its position near the longline set. As such we are sort of at the mercy of the sea, just rocking and rolling as it moves beneath us. It is to me a very pleasant motion, one that just rocks you gently to sleep. I have never been on a cruise ship, but friends who have tell me there is no (or little) sense of motion to the ship. Perhaps this is comforting to some, but I like the total experience (within reasonable limits, of course) and these last two nights have been perfect in all respects. I am handing off my duties as brake and bait man to others this evening so that I might digest and organize some of the info passed to me by Kerstin and others in the last couple days.


Here are a couple relating to ocean currents. Look at a chart that shows ocean currents along the US east coast (southern and mid-Atlantic states) and for the US west coast (Washington to California). What is the general direction of the flow along each coast? Along which coast, especially in summer, would you expect ocean water to be warmer? Why?

I have given you daily temperature readings for the sea water here at about 18 degrees north. The Galapagos Islands straddle the equator far to the east of here off the west coast of South America. You would most likely expect the water there to be warmer on average than around the Hawaiian Islands. Is it? If not, what accounts for the difference?

Happy Mother’s Day,


Leave a Reply

%d bloggers like this: