Kathy Schroeder: My Journey Ends, but will Never Be Forgotten, November 2, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15 – October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 11/2/19

Weather Data from Naples, FL

Latitude: 26.17
Longitude: 81.34
Temperature: 89° F
Wind Speeds: ESE 11 mph

Personal Log

Our last day on Oregon II together was filled with lots of hugs and new Facebook friends.  I left Pascagoula, MS and arrived back in Naples, FL around midnight.  It was nice to be back in my big bed but I really missed the rocking of the ship to put me to sleep. 

The next morning I was greeted at my classroom door at 7 am by my students who had a lot of questions.  They all had been following along on my blog and have seen a few pictures that were posted.  I made a PowerPoint of pictures from the ship so they could see what my living and working arrangements were like.  The funniest part was when I showed them my sleeping arrangements.  They thought it was great that I was on the top bunk, but surprised at how small the room was and how I didn’t have a TV.  (I think some thought it was more like a hotel room – boy were they wrong.)  The part they were shocked the most was the size of the shower and the toilet area.  I was able to organize my pictures into folders of the same species.  I was then able to show them all of the wonderful pictures that the crew, scientists, volunteers and I had taken during our excursion. 

The following week a reporter from the Naples Daily News and her photographer came to my classroom to interview me about my trip as well as what the students were learning in AICE Marine.  

I was able to bring back with me the one of the 12 foot monofilament line and hook that is attached to the longline.  I was able to explain to them how the lines are attached and the process for leaving the longline in the water for exactly an hour.  We also started a lesson on random sampling.  I discussed how the location for the longline deployment is chosen and why scientist make sure they are randomly chosen. 

My biggest surprise was a package I received from my Uncle Tom a few days after I returned home.  He is a fantastic artist that paints his own Christmas cards every year.  In the package I received he painted the sunset picture I had taken of Oregon II when we were docked in Galveston.  It is now hanging in my classroom.

NOAA Ship Oregon II
NOAA Ship Oregon II, September 16, 2019. Photo by Kathy Schroeder.
Kathy's uncle's painting
Painting by my Uncle Tom Eckert from the picture I took

In December I will be presenting about my experiences with NOAA.  Students, their families, and people from the Naples community will all be welcome to attend.  I will be working with fellow colleagues from other high schools in Naples that also teach marine to spread the word to their students.  My goal is to get as many students who are interested in a marine career to attend the presentation so that going forward I will be able to work with them in a small group setting to help with college preferences and contacts for marine careers. 

I can’t thank NOAA enough for choosing me to participate as the NOAA Teacher at Sea Alumnus.  The experiences I have received and the information I will be able to pass along to my students is priceless!


Science and Technology Log

My students have been able to see and touch some of the items I was able to bring home from Oregon II that I discussed.  I was able to answer so many questions and show them a lot of the pictures I took. We are anxiously awaiting the arrival of a sharp-nosed shark that is being sent to us from the lab in Pascagoula, MS.  For students that are interested I will be conducting a dissection after school to show the anatomy of the shark as well as let them touch and feel the shark. (An additional blog will be posted once the dissection is competed)

Kathy Schroeder: The Great Hammerhead / Setting the Longline, September 24, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 24, 2019

Weather Data from the Bridge

Latitude: 29.15258
Longitude: 93.02012
Temperature: 87°F
Wind Speeds: E 10 mph


Science and Technology Log

My last blog left off with a late night longline going in the water around 9:00pm on 9/23/19.  We were able to successfully tag a great hammerhead, a scalloped hammerhead, and a tiger shark.  We also caught a blacknose shark, three gafftopsail catfish (Bagre marinus), and three red snappers. 

female great hammerhead
Female great hammerhead caught on 9/23/19 aboard NOAA Ship Oregon II
male scalloped hammerhead
Male scalloped hammerhead caught on 9/23/19 aboard NOAA Ship Oregon II


Deploying the Longline

Today I’m going to explain to you the five jobs that we rotate through when we are deploying the longline.  When there are about 15-20 minutes before deployment we grab our sunglasses, personal floatation device (pfd) and rubber boats and head to the stern of the ship.  All scientists are responsible for helping to cut and bait all 100 gangions (hooks and line).  The hooks are 15/0mm circle hooks and the gangion length is 3.7m long.  The bait used for this is Atlantic mackerel cut into chunks to fit the hooks.  We are all responsible for cleaning the deck and the table and cutting boards that were used. 

baiting hooks
Kristin cutting bait and Taniya and Ryan baiting the 100 hooks

The first job on the deployment is setting up the laptop computer.  The scientist on computer is responsible for entering information when the high flyer, the three weights (entered after first high flyer, after gangion 50 and before final high flyer), and the 100 baited gangions entered into the water.  This gives the time and the latitude and longitude of each to keep track of for comparison data. 

The second job is the person actually putting the high flyer and buoy in the water.  Once the ship is in position and we receive the ok from the bridge it is released into the water.  The high flyer is 14ft from the weight at the bottom to the flashing light at the top. (see picture) 

high flyer
Kristin and Kathy getting ready to put the first high flyer in the water

The third job is the “slinger”.  The slinger takes each hook, one by one, off of the barrel, lowers the baited hook into the water,  and then holds the end clamp so that the fourth scientist can put a tag number on each one (1-100).  It is then handed to the deckhand who clamps it onto the mainline where it is lowered into the water off the stern. 

numbers on gangion
Placing the numbers on the gangion before being put on the mainline

The final job is the barrel cleaner.  Once all the lines are in the water the barrel cleaner takes a large brush with soap and scrubs down the inside and outside of the barrel.  The barrels are then taken to the well deck to get ready for the haul in.  The last weight and high flyer are put into the water to complete the longline set, which will remain in the water for one hour.  Everyone now helps out cleaning the stern deck and bringing any supplies to the dry lab.  At this time the CTD unit is put in the water (this will be described at a later time).   


Personal Log

Last night was so exciting, catching the three large sharks.  During this station I was responsible for the data so I was able to take a few pictures once I recorded the precaudal, fork, and total length measurements as well as take a very small fin sample and place it in a vial, and record the tagging numbers. 

Shout Out:    Today’s shout out goes to my wonderful 161 students, all my former students, fellow teachers, especially those in my hallway, my guest teachers and all the staff and administration at Palmetto Ridge High School.  I would also like to thank Mr. Bremseth and Michelle Joyce for my letters of recommendations! 

I couldn’t have been able to do this without all of your help and support.  I have sooo much to tell you about when I get back.  Go Bears!!

Ashley Cosme: Deploying a Longline – September 4, 2018

Remora

NOAA Teacher at Sea

Ashley Cosme

Aboard NOAA Ship Oregon II

August 31 – September 14, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date:  September 4th, 2018

Longline sites
Primary longline stations are indicated in purple. The red line represents the path the Oregon II.

Weather Data from the Bridge:

  • Latitude: 28 02.2N
  • Longitude: 96 23.8W
  • Wind speed: 13 Knots
  • Wind direction: 080 (from North)
  • Sky cover: Broken
  • Visibility: 10 miles
  • Barometric pressure:  1014.1atm
  • Sea wave height: 2 feet
  • Sea Water Temp: 30.6°C
  • Dry Bulb: 28.1°C
  • Wet Bulb: 25.3°C

 

Science and Technology Log:

After a long two day cruise to the southern tip of Texas, we finally started fishing.  I learned quickly that everyone has a job, and when you are done with your job, you help members of your team complete their tasks.  The coordinates of all of the survey locations are charted using a program called Novel Tec, and once the captain has determined that we have reached our designated location, the fun begins.  To deploy the longline there are many important responsibilities that are delegated by the Chief NOAA Scientist.

Baited hooks
Baited hooks

 

#1- All scientists work together to bait 100 hooks with mackerel (Scomber scombrus).

 

 

 

 

 

High Flyer
High-Flyer deployment

 

 

 

#2- High-Flyer Release – Once the long line has been attached to the high-flyer, it is released from the stern of the boat.  The high-flyer consists of a buoy to keep it above water, and a flashing light, so we know the exact location of the beginning of the longline.

 

 

 

 

 

Attaching a weight
Attaching a weight and TDR

 

#3 Weight Attachment – A NOAA fisherman is responsible for attaching the weight at the appropriate distance, based on the depth of that station to ensure the gear is on the sea floor.  This  also keeps the high-flyer from drifting.  Alongside the weight, a TDR is attached to the line, which records temperature and depth.

 

 

 

numbered hooks
Each baited hook is identified with a number.

 

 

 

#4 Numbering of baited hooks – After the first weight goes out, one by one the gangions are numbered and set over the edge of the ship, but not let go.  A gangion consists of a 12ft line, a baited hook, and hook number.

 

 

 

 

 

 

Attaching the Hooks
Attaching the Hooks

# 5 Hook Attachment – A NOAA fisherman will receive one gangion at a time, and attach it to the line.  Another weight is attached to the line after 50 hooks have been deployed, and once all 100 hooks are deployed the final weight is attached.  Then the line is cut, and the second high-flyer is attached and set free to mark the end of the survey area.  This process goes fairly quickly, as the longline is continuously being fed into the water.

 

Data Collection
Data Collection

 

#6 Data Collection – Each piece of equipment that enters the water is recorded in a database on the computer.  There should always be 2 high-flyers, 3 weights, and 100 gangions entered into the database.

 

 

 

 

 

Scrubbing buckets
Scrubbing buckets

 

 

 

#7 Bucket Clean-up – The buckets that were holding the baited hooks need to be scrubbed and prepared for when we haul the line back in.

 

 

 

 

 

 

Once all of the gear is in the water we wait for approximately one hour until we start to haul back each hook one by one.  The anticipation is exciting to see if a shark or other fish has hooked itself.

Longline Fishing infographic
This image illustrates what the longline, including all the gear, would look like once completely placed in the water. (Image courtesy of Stephan Kade, 2018 Teacher at Sea).

 

Personal Log

I would say that my body has fully adjusted to living at sea.  I took off my sea sickness patch and I feel great!  Currently, Tropical Storm Gordon is nearing to hit Mississippi this evening.  We are far enough out of the storm’s path that it will not affect our fishing track.  I am having the time of my life and learning so much about the Oregon II, sharks, and many other organisms that we’ve seen or caught.

Remora
This sharksucker (Echeneis nautratus) was sucking on a blacktip shark that we caught. He instantly attached to my arm to complete his duty as a cleaner fish.

Did you know?:

Engineers.jpg
William Osborn (1st Engineer) and Fred Abaka (3rd Engineer).

NOAA Ship Oregon II creates freshwater via reverse osmosis.  Sea water is pumped in and passed through a high pressure pump at 1,000psi.  The pump contains a membrane (filter), which salt is too big to pass through, so it is disposed overboard.  The clean freshwater is collected and can be used for showering, cooking, and drinking.  In addition to creating freshwater, the engineers are also responsible for the two engines and the generators.

 

 

 

Animals Seen:

Pantropical Spotted dolphins (Stenella attenuate)

Blacknose Shark (Carcharhinus acronotus)

Sharpnose Shark (Rhizoprionodon terraenovae)

Smoothhound Dogfish (Mustelus sinusmexicanus)

Blacktip Shark (Carcharhinus limbatus)

Red Snapper (Lutjanus campechanus)

Sharksucker (Echeneis nautratus)

Anne Krauss: All at Sea (But Learning Quickly), August 14, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 14, 2018

Weather Data from the Bridge

Conditions at 0030

Latitude: 25° 22.6’ N

Longitude: 84° 03.6’ W

Barometric Pressure: 1017.4 mb

Air Temperature: 28.8° C

Wind Speed: 9.1 knots

 

Science and Technology Log

For the first few days, we steamed, or traveled, to our first station. Each station is a research location where several activities will take place:

  1. Preparing and setting out the longline gear.
  2. Letting the line soak (fish on the bottom) for one hour while other tasks are performed.
  3. Deploying a CTD (Conductivity Temperature Salinity) to collect samples and information about the water.
  4. Hauling back the longline gear.
  5. Recording data from the longline set and haulback.
  6. Collecting measurements and samples from anything caught on the longline.
  7. Depending on what is caught: attaching tags and releasing the animal back into the water (sharks) or collecting requested samples for further study (bony fish).

This is a very simplified summary of the various activities, and I’ll explore some of the steps in further detail in other posts.

During these operations and in between tasks, scientists and crew are very busy. As I watched and participated, the highly organized, well-coordinated flurry of activity on deck was an incredible demonstration of verbs (action words): clean, rinse, prepare, gather, tie, hook, set, haul, calibrate, operate, hoist, deploy, retrieve, cut, measure, weigh, tag, count, record, release, communicate

Last night, I witnessed and participated in my first longline station. I baited 100 hooks with mackerel. I recorded set and haulback data on the computer as the gear was deployed (set) and hauled back in (haulback). I attached 100 numbered tags to the longline gangions (attached to the hooks). I recorded measurements and other data about SHARKS!

We caught, measured, sampled, tagged, and released four sharks last night: a silky, smooth-hound, sandbar, and tiger shark! I’ve never seen any of these species, or types, in person. Seeing the first shark burst onto the deck was a moment I’ll remember for the rest of my life!

A sandbar shark being measured with a measuring tape in a rope sling.
A sandbar shark being measured on the cradle or sling used for measuring larger, heavier sharks.

Sometimes, we didn’t catch any fish, but we did bring up a small piece of coral, brittle sea stars, and a crinoid. All three are marine animals, so I was excited to see them in person.

In between stations, there was some downtime to prepare for the next one. One of my favorite moments was watching the GoPro camera footage from the CTD. A camera is attached to the device as it sinks down through the depths to the bottom and back up to the surface again. The camera allowed me to visually ‘dive along’ as it collected water samples and data about the water temperature, salinity, pressure, and other information. Even though I watch ocean documentaries frequently and am used to seeing underwater footage on a screen, this was extremely exciting because the intriguing ecosystem on the screen was just below my feet!

Personal Log

Perhaps it is sea lore and superstition, but so far, the journey has been peppered with fortuitous omens. One of my ocean-loving former students and her Disney-bound family just happened to be on my flight to Orlando. Yes, it’s a small world after all. Her work samples were featured in our published case study, reminding me of the importance and impact of ocean literacy education. Very early the next morning, NASA’s promising Parker Solar Probe thunderously left the Sunshine State, hurtling toward the sun. New York’s state motto: Excelsior. Later that morning, a rainbow appeared shortly before the Oregon II left Port Canaveral. Although an old weather proverb states: “rainbow in the morning gives you fair warning,” we’ve had very pleasant weather, and I chose to interpret it as a reassuring sign. Sailing on the Oregon II as a Teacher at Sea is certainly my pot of gold at the end of the rainbow.

 

According to seafaring superstition, women on board, whistling, and bananas are supposed to be bad luck on a boat. On the Oregon II, folks do not seem to put much stock into these old beliefs since I’ve encountered all three aboard the ship and still feel very lucky to be here.

A fruit basket and a bunch of bananas
The rest of the fruit seems to think that bananas are bad luck…the crew doesn’t!

In another small-world coincidence, two of the volunteers on the Second Leg of the Shark/Red Snapper Longline Survey recently graduated from SUNY Potsdam, my undergrad alma mater. What drew us from the North Country of New York to Southern waters? A collective love of sharks.

These small-world coincidences seemed indicate that I was on the right path. Out on the ocean, however, the watery world seems anything but small. The blue vastness and unseen depths fill me with excitement and curiosity, and I cannot wait to learn more. For the next two weeks, the Oregon II will be my floating classroom. Instead of teaching, I am here to learn.

As a fourth generation teacher, education is in my blood. One great-grandmother taught in a one-room schoolhouse in 1894. My other great-grandmother was also a teacher and a Potsdam alumna (Class of 1892). As we traverse the Atlantic Ocean, I wonder what my academic ancestors would think of their great-granddaughter following in their footsteps…whilst studying sharks and snapper at sea. Salt water equally runs through my veins.

 

This slideshow requires JavaScript.

As we steamed, or traveled, to our first station (research location), I wondered about the unfamiliar waters and equipment around me. Before I could indulge my questions about marine life, however, I first needed to focus on the mundane: daily life at sea. In many ways, I was reminded of the first day at a new school. It was junior high all over again, minus the braces and bad bangs. At first, those long-forgotten new school worries resurfaced: What if I get lost? Where is my locker (or, in this case, my stateroom)? What if I forget my schedule? What if I have to sit by myself at lunch? To combat these thoughts, I draw upon a variety of previous travel and life experiences: studying abroad, backpacking, camping, meeting new friends, volunteering, working with a marine science colleague, and sailing on other vessels. Combined, those experiences provided me with the skills to successfully navigate this one.

The Atlantic Ocean and a high flyer buoy
The Atlantic Ocean and a high flyer buoy

I’ve spent the first few days getting acquainted with the layout, personnel, safety rules, and routines of the Oregon II. My students wondered about some of the same aspects of life at sea.

Where do I sleep on the ship?

The staterooms remind me of a floating college dorm, only much quieter. I’m sharing a small stateroom with Kristin Hannan, a scientist. We are on opposite work shifts, so one of us is sleeping while the other is working. I am assigned to the day shift (noon to midnight) while she is assigned to the night shift (midnight to noon). Inside the stateroom, we have berths (similar to bunk beds), a sink, and large metal storage cabinets that are used like a closet or dresser. Space is limited on the ship, so it must be used efficiently and sometimes creatively.

A view of water, a pier, and a pulley
The view as we leave Port Canaveral.

Do you know anyone else on the ship?

No, but I’m meeting lots of new people. They have been welcoming, offering interesting information and helpful reminders and pointers. Those first-day-of-school jitters are fading quickly. I didn’t get lost, but I got a bit turned around at first, trying to figure out which deck I needed for the galley (like the ship’s cafeteria), where we eat our meals. And I only had to eat lunch by myself once. On the first day at sea, I made a PB & J sandwich. Eating that, I felt like a kid again (only without my lunchbox), but it was nice to be at a point in my life where I’m confident enough to be all by myself and feel a bit out of place. That’s how you learn and grow. Everything is new to me right now, but with time, it’ll start to make sense. Pretty soon, the equipment and unfamiliar routines will start to feel more familiar. Hopefully, the sharks will like me.

Did You Know?

The Gulf of Mexico is home to approximately 200 orcas (scientific name: Orcinus orca, also known as killer whales).

Recommended Reading 

As an introduction to biographies in grades 4 and up, I recommend Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman. Ruth and her stuffed shark explore a maritime history museum, learning about the important roles women have held at sea. Inspired by female sea captains, explorers, and naturalists, Ruth imagines herself in the photographs and paintings, part of an actual exhibit in the Mystic Seaport Museum in Mystic, Connecticut. For more information about the intrepid women featured in the book, brief biographical information is provided at the end. Ruth would no doubt be impressed with the seafaring women (and men) aboard NOAA Ship Oregon II.

A children's book about women at sea
Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman; published by Mystic Seaport (2004)

Susan Brown: And Just Like That, It’s Over, September 19, 2017

NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 3 – 15, 2017

 

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 19, 2017

Latitude: 35.190807
Longitude: -111.65127
Sea wave height: NA
Wind Speed: 7 Mph
Wind Direction: W
Humidity: 21%
Air Temperature: 20 degrees C (68 degrees Fahrenheit)
Barometric Pressure: 29.81″ Steady
Sky:  scattered clouds

IMG_6843
panoramic view from the stern heading home

Personal Log

And just like that, it’s over.  I am back in Flagstaff and have finally stopped feeling the boat rocking while on solid ground.  Students have been working on a shark project in my absence and we are finishing it up this week.  My first day back was a day of show and tell. The students were excited and full of questions about my trip. As I presented to my students, I realized how much I learned and how much more I still want to know! Here are some pictures from Monday.

 

 

 

 

As I reflect back on my adventure, I have many thoughts and wonder how the fourth and final leg is going.  I think back to last year when I first learned I was selected to be on this adventure and how impossible it was to imagine that I was actually going to work with sharks.  Then, as the date loomed closer, trying to best prepare for something that was a big unknown to me.  And then I was at the dock looking at the Oregon II tied up for the weekend. I recall when I first reached the dock in the evening looking at the ship and thinking wow, pinch me, this is really happening.  I remember being awed and out of my element those first few days just learning to navigate the ship. And then the first haul in!  Now that was a rush as we pulled in not only small sharpnose sharks but larger sandbar sharks that needed to be cradled.  It was unbelievable watching as the team worked and I was thrust into being a viable team member.  After a week, it was a game I had to see if I could bait the hooks as fast as the veteran scientists. I automatically logged the fin clips and helped enter the data we had collected.  Working on the ship became the new normal — knowing what to to do at each station’s deployment of the line and the haul back.  I was feeling competent in my role. Even pulling in some sharks became routine…routine!  Wow, had I come a long way.  And then, just like that, I was on my last haul back and heading back into port.

 

Here are some of my favorite videos and photos from the adventure.

Below a time lapse of what a haul back at night looks like

 

IMG_6686
Eye See you (Smooth-Hound shark)

 

Measuring a sandshark

 

 

And a video of my favorite shark- the great hammerhead being released out of the cradle.

 

And a baby hammy

 

So here I am, back in Flagstaff, reflecting back on my adventure. Did it really happen?  I have pictures to prove it and stories I am sharing but it does seem like a lifetime ago that I was touching a shark and looking into the doe eyes of a ten foot hammerhead shark.  The more I talk about what I have done, the more I realize how much I learned and how much more I still don’t know.  The two weeks flew by but I am grateful for it. So for those of you out there reading this blog, make time for adventures, get out there and do it, follow your passion and immerse yourself. You might be surprised at what you can do!

 

IMG_6040
Teacher at Sea Susan Brown

 

 

Susan Brown: Adventure Awaits, August 24, 2017

NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 2 – 15, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: August 24, 2017

 

Weather Data from the Bridge

I’m currently at home in Flagstaff, Arizona. It’s a typical, monsoon season morning coming in at 11.6 degrees C (53 degrees F) at 7:12 am with humidity at 92%. I’m about 1,700 miles away from Pascagoula, Mississippi, where I will be joining the team on our ship, NOAA Ship Oregon II, in just a few days!

NOAA Ship Oregon II Sunset_NOAA Photo
NOAA Ship Oregon II. Photo credit: NOAA

NOAA Ship Oregon II Photo Credit: NOAA

Weather Data from my desk at school:

Latitude: 35.190807
Longitude: -111.65127
Sea wave height: NA
Wind Speed: 2 Mph
Wind Direction: NW
Visibility:
Air Temperature: 11. 6 degrees C
Barometric Pressure: 29.84” falling Rapdily
Sky:  scattered clouds

 

Science and Technology Log

Once on board, I will be assisting the science crew with the third leg of the Shark/Red Snapper Longline Survey and will be fishing from Brownsville, TX to Galveston, TX. The mission of this survey is to monitor interannual variability of shark populations of the Atlantic coast and the Gulf of Mexico.

longline_sampling_area
Map of the survey area: the Atlantic coast and the Gulf of Mexico.

My understanding is that we will be working a 12-hour shift using longline gear to capture specimens and measure the length, weight and sex of the animal. The longline is baited with Atlantic Mackerel and will sit in the water for one hour. Here is what longline gear looks like:

 

 

longline_gear_illustration
Illustration of longline gear. Credit: NOAA

 

The larger animals will require landing slings! I can’t even imagine. The science crew will also be tagging the animals as well as retaining a few for research. Finclips, like taking a nail clipping, will be gathered for DNA analysis. I am most excited to get up and close with these wonderful creatures tagging them to monitor their movement and health.

 

shark_measure2_small
Measuring a tiger shark. Photo credit: SEFSC

 

shark_measure1
Measuring a shark. Photo Credit: SEFSC

 

As part of the survey we will be gathering CTD (Conductivity Temperature Depth) data that provides a surface to bottom profile of temperature, salinity, dissolved oxygen, chlorophyll, turbidity and depth. As a class, we will be learning about these in depth in the classroom when we reach our unit on water quality in relation to our local watershed.

Personal Log

I am getting excited for this adventure and happy to have you along for the journey. I look forward to your questions and can’t wait to learn about these beautiful creatures while working with scientists. Please makes sure to check out the “Question of the Day” and other activities that will be posted on this blog. Your current research on sharks will come in handy while I am out here and will be crucial to learning about ocean food webs and current threats. Remember to check in daily for new posts while you are working on your projects.

 

Did You Know?

That I have never been to the Gulf of Mexico!

 

Question of the day

What species of shark live in the Gulf of Mexico?

Karen Grady: Sometimes You Find A Little Something Extra, April 16, 2017

NOAA Teacher at Sea

Karen Grady

Aboard NOAA Ship Oregon II

April 5 – April 20, 2017

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 16, 2017

 Weather Data

Latitude 2848.37 N
Longitude 09247.66 W
76 degrees
Sunny
No precipitation
Winds at 11 KTS
Waves at 2-4 FT

Science and Technology Log

Sometimes when a shark or fish is brought on board it has a “hitchhiker’ attached. We caught a blacknose shark that had a common remora, often referred to as a sucker fish, or shark sucker, attached to it. Scientist Kevin Rademacher placed this sharksucker (Echeneis naucrates) on my arm. I couldn’t really feel it but he was stuck there until I peeled him off. It was like peeling a piece of tape off. You can see from the photo how he is designed to attach to host species. Their head is actually a modified dorsal fin that has an oval shaped sucking disk with slat-like structures that open and close to create suction and take a firm hold against the skin of its host animal such as a shark, turtle, whale, or ray. By sliding backward, the remora can increase its suction, or it can release itself by swimming forward. They can be small like the one attached to my arm or they can grow to over two feet in length. The remora can move around on the host, removing parasites while at the same time gaining protection provided by the host. This relationship is often looked at as one of commensalism where both the host and the remora benefit.

Photos of the remora that was attached to a black-nosed shark.

When one hears that this is an experimental long-line survey of sharks and reef fish, all you think of is catching these creatures and collecting data. However, scientists are collecting data about the environment as well. It is very useful to obtain information about the water where they catch large numbers of a species and areas where they may not catch anything. One way they can do this is by using a Conductivity Temperature Depth Profiler (CTD).

The CTD gives scientists a profile of the water column where we just put out our line. The CTD has sensors that collects information on oxygen levels, temperature, water clarity, chlorophyll concentration, and salinity. The CTD is placed in the water and allowed to sit for three minutes to let the oxygen sensors soak and adjust from being on the deck and lowered into the water. The crew lowers it to a depth that is decided based upon the depth to the ocean floor. They like to take it as close to the bottom as possible in order for the information they gather to be as complete as possible. It is allowed to settle, run its scans and then is brought back up to the surface and the sensors are flushed with fresh water. The data is automatically loaded into the database. This information is collected at each station. It takes a joint effort of the deck, science and bridge crews to place the CTD in the water. Walkie talkies are utilized for communicating between all the crew involved in the operation.

Personal Log

Being at sea with Easter approaching had its moments when I thought of family and friends. We have our Easter traditions and I would be missing them this year. The Easter Bunny (Field Party Chief, Kristin Hannan) decided we needed an early visit this year. I think she was right. The surprise and the treats perked all the science staff up.

TAS Karen Grady 4-16-17 Easter basket

FPC Kristin Hannan asks me often if I have any questions about what they are doing or anything in general. I will be honest… I have gotten so caught up in what we are doing, trying to do my best at whatever job I am working on, and being in awe that I am actually out here that I forget to ask questions about the details. I love the anticipation of what might be on the next hook, I am mesmerized by the sleek lines of the sharks when we have them on board.

TAS Karen Grady 4-16-17 shark liver
Shark liver

When we had one come onboard that was dead due to low oxygen levels in the water where we caught it, we did a dissection on the deck while we waited to put out another line. The animal science nerd in me came to life!   I had no idea the liver was the largest organ inside a shark. Think about it …these creatures have no body fat and they store their energy in the liver. Then we looked at the intestines. There is not a lot of room in there so the shark we looked at the intestines are rolled up like you would roll a piece of paper. This gives them maximum absorption area but takes up a limited space.

 

 

 

One thing I think of as we are catching these species is that very few people stop and think about the actual research scientists do to help understand what is needed to maintain healthy populations. It is necessary to do these surveys, catch the species, tag some, draw blood, take fin clips, keep whole specimens, and dissect some. On our cruise we were lucky enough to ultrasound a few pregnant sharks and see the pups inside.

TAS Karen Grady 4-16-17 shark ultrasound
Baby sharks visible on ultrasound

Now stop and think about all those things I just listed that we do at times. When a hook comes up and there is a fish or shark on it is handed off to one of the science crew.  It is noted in the computer that there was a something caught. The science crew member will take measurements and weight of the fish or shark. If it is a shark, the sex will be noted and some species may be tagged, have a fin clip taken and blood drawn. While all of these activities are taking place, the next hooks keep being brought up. The deck can get pretty crazy if there are several hooks in a row with something on them. The data collector has to keep tag numbers, species, measurements, samples and weights all written in the correct spot while having two or three people calling them out for different fish and or sharks. I had experience working cattle which would mean filling syringes, writing down tag numbers, filling taggers, etc. But this is even crazier than that could get at times. And everything stops if someone calls “hardhats” because that means we have one big enough for the cradle. Working back writing down data or taking measurements you can’t see what is on the next line so you sneak up for a peak when they say it’s a big one then you get out of the way.   One of the best experiences so far was almost getting a big tiger shark in the cradle. I was lucky enough to get a video of her, so stay tuned! Unfortunately, when the big shark brushed against the cradle she snapped the line and was gone with a huge spray of water.

This second leg of the experimental long-line survey is winding down. There have been long days but they are filled with laughter, giggles, anticipation, excitement, teachable moments (I can finally get the circle hooks out by myself…sometimes) , and the dreaded words “snapper.” I mean nothing against the Red Snapper, they are a bright colorful and tasty fish, but when you are hoping for a shark to be on the hook…. let’s just say the sets where we get 12 snapper and two sharks are not our favorites.

Photos: “Shark!” or “Fish on!” means a busy deck.

TAS Karen Grady 4-16-17 hammerhead cradle
Scalloped hammerhead shark

When the guys at the rail grab the hard hats it means it is time for the cradle and we get to see things like this gorgeous scalloped hammerhead. Things move very quickly when one is in the cradle. Safety for those on deck comes first and everyone is focused on getting measurements, fin clip and a tag on the shark and getting it safely back in the water as quickly as possible.

TAS Karen Grady 4-16-17 baby tiger shark
Baby tiger shark

Baby tiger shark in the cradle. They warned me that they were cute and they were so right. Yes, a shark can be “cute” when your referring to baby tiger sharks and baby hammerheads!

Did You Know

Sharks store energy in their liver. It is the largest organ in their body. The heart on the other hand is extremely small in comparison to the size of the shark.

TAS Karen Grady 4-16-17 hammerhead dissection
Dissected scalloped hammerhead with liver visible

Look at the liver of this scalloped hammerhead. It is amazing how big it is in relation to the body of the shark. This is just one way these amazing creatures are designed to be efficient and survive in their underwater world.

Sharks have a nictitating membrane that they can close over their eye for protection. When a shark is brought on deck you can touch near the eye and the membrane will automatically move to close.

TAS Karen Grady 4-16-17 nictitating membrane
Nictitating membrane partially closed on the eye of a scalloped hammerhead

Karen Grady: One Fish Two Fish Red Fish …… Weird Fish, April 10, 2017

NOAA Teacher at Sea

Karen Grady

Aboard NOAA Ship Oregon II

April 5 – April 20, 2017

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 10, 2017

Weather Data

Latitude 2827.10
Longitude 09148.6
75 degrees
Sunny
No precipitation
Winds at 10 KTS
Waves at 2-4 FT

Science and Technology Log

We have continued to move between deep stations setting the baited line and hoping to catch deep water fish and sharks. These deep sets require longer soaking time to allow the hooks to reach the bottom.   The downside is that we have been retrieving one set of gear and putting out one set of gear in a 12 hour period of time. Some sets have a few fish and some we get a big goose egg.   There is always anticipation though as the 100 hooks are brought up. Everyone stands in their spots waiting to hear either “fish on,” “shark” or everyone’s favorite, “hard hats!” which means there is a big shark and it’s time for the sling. Below you will see the awesome Great Hammerhead (Sphyrna lewini) we caught.

TAS Karen Grady 4-13-17 great hammerhead
Great Hammerhead Shark

The first few days we have been fishing deep in the Mississippi Canyon. The Mississippi Canyon is a geological formation in the Gulf of Mexico. It is located in an area which is part of the territorial waters of the United States. We put out some deep lines with the deepest at 1900 feet. These lines soaked four hours once fully deployed.  They soak longer because they have so far to sink to get to the depth the scientists want to fish at. When we deploy a line the first thing in the water is the High Flyer, which stands like a beacon and bobs in the water marking the start of our fishing line. The next thing over the side of the ship is a weight that helps carry the line to the desired depth. Halfway through, another weight is deployed, and after the 100th hook, the third weight goes in.   The last thing over is another High Flyer to mark the end of the line. If it is dark outside, the High Flyers have lights attached on top that flash so that they can be seen.

TAS Karen Grady launching high flyer
“High Flyers” mark the beginning and the end of the long line set.

At our last deep station we caught a Mexican Grenadier, Coryphaenoides mexicanus. This fish is very unusual in color and appearance. If you feel the scales on the fish you find that they are very unique. Each scale has tiny sharp, thin spinules. As you run your hand over the fish you can feel these scale modifications. The eyes are bulged due to the pressure change of coming up from such deep depths. The scientists determined the sex of the Grenadier and then it was frozen for future study.

TAS Karen Grady 4-13-17 grenadier
Mexican Grenadier

We also caught two Cutthroat Eels, from the family Synaphobranchidae, that were both females. Synaphobranch means unified gill… the two gill slits join together making it look like a cut throat. They are bottom-dwelling fish, found in deep waters. The eels were weighed, measured, and the scientists determined the sex and maturity of each eel. It is important that they make accurate identification of specimens and collect data. The scientists work together using personal knowledge and books when necessary. There are times on deck when the scientists will stop to examine a species and will take multiple pictures of certain identifying parts so that they can look at them closely later.

 

Personal Log

One of the great things during a watch is being able to talk with the scientists. I am an avid listener and observer. This is what they do year in and year out and they love what they do. I am a quiet observer a lot of the time. I listen and then ask questions later. It’s not exactly easy to carry around paper and pencil to take notes. But during the transit portions or soak times I ask more questions and gather information to share in my blog posts or for the lesson plan I will be writing when I get home.

The food has been great here on the ship. Our stewards have fresh salads, and menus that include two main course options, a daily soup, dessert and multiple side choices.   There are snacks available 24/7 so you are never hungry. Because the meals are so great you see most people trying to fit in a workout during the day. I have been introduced to the Jacob’s ladder for workouts. I never liked hills and now I can say I don’t like climbing ladder rungs either. That machine is evil!! However, I will continue to do cardio on it as the food is excellent and keeping food in your stomach helps prevent sea sickness. I will happily eat more than I usually do if it means I don’t get seasick. An example of a typical lunch would be today when we had choices of salad, reuben, tuna melt, french fries, sweet potato fries, cookies and several other sides.

Today started with us catching two Cutthroat Eels and a Mexican Grenadier. You can see from the pictures I have posted that they look very different from most fish that you see. They really are that color. It was a shock after the sleek sharks and the bright orange Red Snapper I had seen on previous sets. I was busy watching the scientists using their books and personal knowledge to identify each species accurately.   After we finished the work up on the fish we caught we headed for the next station. Now we are back to shallower fishing and expect to catch sharks, red snapper, and a variety of other fish.

TAS Karen Grady 4-13-17 grenadier and eels
Two cutthroat eels (top) and Mexican grenadier (bottom)

I can honestly say that the 12 hour shifts start wearing you down, and sleeping is not an issue once you climb under the covers. The waves will wake you up now and then. And some mornings I wake up and can smell them cooking breakfast but sleep overrides the smell of food because I know how long it will be till I get to bed again. Walking out on deck each morning to views like this does lead to a smile on your face, that and the music that is playing loudly on the deck. Yesterday it was Hair Nation…. taking me back to the 80’s.

TAS Karen Grady 4-13-17 blue water
View from the deck of NOAA Ship Oregon II

Did You Know?

The Gulf of Mexico is roughly 995 miles along its longer, east-west axis. It has a surface area of about 600,000 square miles.

A wide variety of physical adaptations allow sharks to thrive in the Gulf of Mexico. They have powerful smell receptors. The sensory organs lining their prominent snouts, called ampullae of Lorenzini, can detect movement of potential prey even if the sharks cannot see it. These sensory organs assist in trailing injured marine animals from great distances. They help sharks locate all sort of other things, too– shrimp boats, other sharks, birds, turtles (tiger sharks a big turtle eaters!), even boats that are dumping trash.

The skin on a shark is smooth if you run your hand head to tail and rough like sandpaper if you run your hand from tail to head. At one time, sharks skin was used as a form of sandpaper. The dermal denticles, or skin teeth, can be different from species to species and can sometimes be used as a character to look at when trying to identify one species from another.

Emily Sprowls: Gulpers of the Gulf, March 31, 2017

 

NOAA Teacher at Sea

Emily Sprowls

Aboard NOAA Ship Oregon II

March 20 – April 3, 2017

 

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: March 31, 2017

 

Weather Data from the Bridge

12:00 hours

29°36.7’ N, 87°43.7’ W

Visibility 10 nm,

Wind 6 kts 350°N

Sea wave height 2-3 ft.

Seawater temp 22.9°C

 

Science and Technology Log

GulperEye
Gulper shark from 800 meters under the sea!

On the deep longlines we sampled many gulper sharks (Centrophorus spp.). Gulper sharks have cool anatomical adaptations, including their huge reflective eyes, buccal folds for gulping their food, and the ability to excrete huge amounts of slime from their skin. Gulpers also have very large eggs, which is of particular interest to my crewmate Lydia Crawford, a scientist from Tulane University that is studying shark reproduction and evolution.

LydiaDissects
Lydia dissects a shark specimen to study its eggs.

Lydia is collecting eggs from as many different kinds of sharks as she can in order to understand more about how sharks evolved a variety of reproductive strategies. Oviparous sharks and skates lay egg cases, also knows as “mermaids purses.” Oviviparous sharks let their eggs hatch internally and the babies are born swimming. Some embryos eat other eggs or even their siblings as they develop in their mother! Placental viviparous sharks are also born alive, but the embryos are fed via umbilical cords, similar to us humans.

Lydia will examine the microscopic structures of the shark ovaries she collected when she gets back to her lab. She hypothesizes that certain features of the ovaries have allowed sharks to evolve the ability to give birth to large babies, ready to act like the apex predators they are!

 

Personal Log

Last night we caught a blacktip shark (Carcharhinus limbatus) that my data sheet says measured 1.4 meters, but my memory says it was MUCH BIGGER because he lunged and snapped at us! Most of the sharks we have collected have been rather stunned by their brief trip out of the ocean onto the deck, but this guy acted like a shark still in the water! He and his biting jaws were clear reminders of what incredible predators sharks are. He put a healthy dose of fear back in me, along with a lot of respect for the science team who managed to measure him despite his aggressive activity!

 

Kids’ Questions

  • Why don’t sharks have swim bladders?

Sharks maintain neutral buoyancy by having very large, oily livers. We confirmed this by throwing the dissected lobes of the liver overboard and they floated!

  • Is there a shark that glows in the dark?

The eyes of some of the deep sea sharks that what we caught appear to be glowing because they are so big and have very reflective layers (called tapeta lucida) that shines back the boat lights. However some sharks, including the lantern shark, have special organs called photophores that glow!

Lydia Tilefish
Marine biologist Lydia with tilefish (Lopholatilus chamaeleonticeps)

  • How would you recommend reversing the sense of fear people associate with sharks?

Lydia’s response:

As a scientist, you shouldn’t try to reverse people’s fears because you can’t rationalize away a feeling. Also, we should have a respectful fear of sharks. They are amazing predators! Instead we should convince people why sharks are important in the ocean ecosystem as keystone species.

Emily Sprowls: Shark Bait, March 28, 2017

NOAA Teacher at Sea

Emily Sprowls

Aboard NOAA Ship Oregon II

March 20 – April 3, 2017

 

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: March 28, 2017

 

Weather Data from the Bridge

RedSnapper
Red snapper (Lutjanus campechanus)

13:00 hours

29°09.3’ N 88°35.2’W

Visibility 10 nm, Scattered clouds

Wind 8 kts 170°E

Sea wave height <1 ft.

Seawater temp 22.9°C

 

Science and Technology Log

In addition to experimenting by sampling deeper, we are varying the fishing gear and using different kinds of bait. We have switched to hooks on a steel leader so that even a strong, big shark cannot bite through the line. We are rotating through squid and mackerel as bait in order to see which species are more attracted to different bait. In addition to many species of sharks, we have also caught and measured eels, large fish and rays.

Nick hooks
Nick prepares hooks for longline gangions.

One of the scientists on board specializes in fishing gear, and helps keep maintain all our gear after it gets twisted by eels or looped up on itself. He also works on turtle exclusion devices for trawling gear.

 

Personal Log

Last night the line pulled in a huge tangle of “ghost gear.” This was fishing line and hooks that had been lost and sunk. It would have been much easier to just cut the line and let the mess sink back to where it came from, but everybody worked together to haul it out so it won’t sit at the bottom tangling up other animals.

Ghost gear
Lost or “ghost” gear that tangled in our lines.

This is just one example of the dedication the scientists and crew have to ocean stewardship. I have been so impressed by the care and speed with which everybody handles the sharks in order to get them back in the water safely.

 

Kids’ Questions

  • Is there any bycatch of dolphins?

Deep seastar
A few seastars come up with uneaten bait as bycatch.

Today we saw dolphins for the first time! They were only a few of them pretty far from the boat, so they did not affect our sampling. Had they decided to come play by riding in our wake, we would have postponed our sampling to avoid any interactions between the dolphins and the gear. One of the reasons that we only deploy the fishing gear for one hour is in case an air-breathing turtle or mammal gets tangled (they can hold their breath for over an hour). However, since dolphins hunt live fish, they don’t try to eat the dead bait we are using.

  • Can sharks use echolocation? How do they find their food?

Sharks do not use echolocation like marine mammals, but they do have an “extra” sense to help them find their food. They can detect electrical current using special sense organs called ampullae of Lorenzini.

  • What are the chances of getting hurt? Why don’t they bite?

While there is a chance of the sharks accidentally biting us as we handle them, we are very careful to hold them on the backs of their heads and not to put our fingers near their mouths! “Shark burn” is a more likely injury, which occurs when a shark wiggles and their rough skin scrapes the person handling them. Sharks do not have scales, but are covered in tiny, abrasive denticles that feel like sandpaper.

 

 

 

Emily Sprowls: The pressure is on! March 23, 2017

 

NOAA Teacher at Sea

Emily Sprowls

Aboard Oregon II

March 20 – April 3,2017

Mission: Experimental Longline Survey

Oregon2
NOAA Ship Oregon II

Geographic Area of Cruise: Gulf of Mexico

Date: March 23, 2017

Weather Data from the Bridge

13:00 hours

28°03.9’ N 89°08.3’W

Visibility 10 nm, Haze

Wind 3kts 100°E

Sea wave height <1 ft.

Seawater temp 25.1°C

 Science and Technology Log

The past two days have been devoted to setting extremely deep longlines. Each of these sampling lines take many hours, as we have to slowly reel out over 3 miles of line, give it time to sink, soak, and then reel it back in.   The line that we put out today is even a bit longer than usual, because I got to be in charge of “slinging” the hooks onto the line and I was not very fast at getting the four different sizes of hooks ready

Grenadier fish Kevin.jpg
A Mexican grenadier fish

. Have I mentioned how patient everyone is with the “Teach” aboard?

This morning we pulled up 97 empty hooks from 1250 meters before we caught the amazing grenadier fish! It suffered barotrauma, which is a nicer way of saying that its eyes and swim bladder inflated like balloons from the inside as it was hauled up from the high pressure depths.

One of the scientists onboard studies ocean food chains by examining the contents of fish stomachs. The stomach of the Mexican grenadier fish contained a fully intact armored shrimp!

Personal Log

Today I took advantage of the calm, calm seas to try the workout equipment onboard. They have all kinds of gear to help folks stay active and work off the delicious food in the galley. There is a rowing machine, stationary bike, weight bench, Jacob’s ladder, and elliptical. I used the elliptical machine because it was way too hot on the upper decks to use the exercise bike. Even with the very calm seas, there is a little bit of rolling, which made it an extra challenge for me keep it going!

Kids’ Questions of the Day

These questions about the Oregon II are from Harmony elementary students:

  • How big is the boat?       How tall? How long?

The boat is 175 feet long and 80 feet tall.

  • How much does the boat weigh?      

The boat weight is 800 tons. This is not how much the boat would weigh if you put it on a scale, but how

survival suit.jpg
TAS Emily Sprowls dons a survival suit

much weight the boat can carry if it were loaded full of cargo. We are not carrying nearly that much weight because a lot of the space on the boat is for equipment and for scientists and crew to live aboard.

  • How fast can it go?

Typically, the boat can go about 10 nautical miles per hour using both engines. She can go a little faster if the wind and current conditions are just right.

  • What is the boat made of?

The boat is made of steel and aluminum.

  • What are the white balloon things on top of the boat?

The white domes cover satellite dishes for the internet and phone.

  • What are the poles on the boat for? Are there sails?

The two yellow poles on either side of the boat are the outriggers used to

CTD sensor.jpg
This array houses the Conductivity, Temperature, and Depth probe.

pull a wide trawling net, much like a shrimp boat. Scientists trawl the bottom to study benthic organisms, including shrimp, but also sponges, crabs and bottom-dwelling sharks.

  • What new technologies does the boat have?

The Oregon II turns 50 years old this year!   It has been sailing the Atlantic Ocean since before I was born, but the crew is constantly fixing and replacing equipment on the boat. Even though she is old, she is very safe and reliable. Nevertheless, we still have to prepare for emergencies, including the possibility of needing to abandon ship while wearing the goofy-looking, but life-saving survival suits.

 

StyrofoamCup
Styrofoam Cup Test!

Scientists have brought new technology on board, including plenty of computers to collect, sort, store and analyze all the data we collect. One of the computers is connected to a device called the “CTD” with a set of sensors for Conductivity, Temperature, Depth and Dissolved Oxygen. Today the CTD went all the way to about 1100 meters (3700 ft.), and we tethered some styrofoam cups to the outside to subject them to the extreme pressure at that depth.

 

Emily Sprowls: It’s a shark eat shark world down there! March 22, 2017

NOAA Teacher at Sea

Emily Sprowls

Aboard Oregon II

March 20 – April 3, 2017

 

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: March 22, 2017

Science and Technology Log

This first leg of the Oregon II’s research for the season is an experimental longline survey. This is an exciting cruise for everybody, as we are all anxious to see what comes in on each line, and we hope to find some rare and little-studied species.

longline.jpg
               Reeling in a shark caught on one of the longline hooks 

A longline is a type of fishing gear that deploys one very long and very thick fishing line with many hooks attached. A fisheries survey is a systematic sampling of the ocean to assess fish populations. This mission is experimental because we are testing the longline at extreme depths and we are using different kinds of hooks in order to catch as wide a variety of species as possible.

Things have been busy onboard from the very first day, as we have been setting out and hauling longlines around the clock. We are headed deeper and deeper into the Mississippi canyon of the Gulf of Mexico with each station, starting at 100m and have worked our way down to 750 m, where we currently have a line “soaking” before we haul it up to record what we caught.

Personal Log

Life on the ship is divided into night and day watch. I’m “on days,” which means I work noon to midnight. I am so lucky to be a cruise with a lot of seasoned marine scientists and a great, hard-working crew. Shark scientist Kristin Hannan is the Field Party Chief and has taken me under her wing to get me settled and teach me as much as she can (without making me feel like the newbie that I am)!

oilrigs.jpg
Oil rigs on the horizon

The seas have been calm and the water is the most beautiful color of blue! We are pretty far out to sea, and I have been amazed to see so many oil rigs off in the distance. They glow like small cities at night, and I think they look like strange robots walking on the horizon during the day.

 

Kids’ Questions of the Day

These questions are from the 1st-2nd grade and multi-age classes at Harmony School.

  •  How do you catch the sharks?

We catch the sharks by setting out 100 baited hooks at a time on a very long fishing line. A winch reels in the 3 miles of line after a couple of hours, and we record what is on every single hook.

  • How do you find the sharks?

We rely on the sharks finding our baited hooks. We put weights on the line so that it will sink all the way down to the bottom. We are fishing so deep that it takes almost an hour just for the line to sink! The sharks find the bait using their incredible sense of smell.

  •  What do sharks eat? Fish? Squid? Cookies? Other sharks?

We are baiting the hooks with pieces of squid. The process of baiting hundreds of hooks has left my clothes covered with squid ink!

sharkbait.jpg
Hooks baited with pieces of squid

Sometimes they catch sharks with fish (mackerel), but squid bait stays better on the hooks, and deep-sea sharks clearly like squid, which also live in deep water. While this mission is experimental, the scientists onboard do not think we will have much luck baiting a hook with a cookie – it will just dissolve in the sea (besides the cookies in the galley are so delicious that there are no leftovers)! One type of deep-sea shark makes their own cookies… cookie-cutter sharks (Isistius) bite “cookies” out of other fish with their amazing jaws. Maybe we’ll catch one!?!

Last night we hauled in one hook with only a shark head on it…. What do you think happened to the rest of the shark?

 

Denise Harrington: A Shark A Day, September 29, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Thursday, September 29, 2016

Science Log

The cruise is coming to a close. Looking back at my three experiences with NOAA, hydrography (mapping the ocean), fisheries lab work, or shark and snapper surveys,  I couldn’t decide which was my favorite.  Like the facets of a diamond, each experience gave me another perspective on our one world ocean.

Just like different geographic locations and work, each shark species give me a lens through which I can appreciate the mysteries of the ocean.  Every day, I held, measured, kissed, or released a different species of shark. In the Gulf of Mexico, there are 44 shark species frequently caught.  Fortunately, I saw quite a few, and will share some, in the order in which I met them.

Our first night fishing, we caught many Atlantic sharpnose sharks (Rhizoprionodon terraenovae).  They are named for their long flat snout and sharp nose. It seemed whenever we caught one, a bunch more followed. They were abundant and kept us busy.

p1080163
Paul Felts, Fisheries Biologist, records measurements while Kevin Rademacher, Fisheries Biologist, wrestles and measures the shark. Matt Ellis, NOAA Science Writer, took amazing pictures throughout the cruise.

Day two, we caught a deep water Cuban dogfish (Squalus cubensis).  

 

p1090143
The Cuban dogfish’s huge iridescent eyes were entrancing.

On September 2o, we almost caught a bull shark (Carcharhinus leucas).  We brought the cradle down, but the shark thrashed its way off, refusing to be studied. The bull shark, along with the tiger shark, are “one of the top three sharks implicated in unprovoked fatal attacks around the world.”

Within a couple days of catching the Cuban dogfish, we caught another shark with iridescent eyes. It turns out this similar looking shark was not a Cuban dogfish, but a rare roughskin spiny dogfish (Cirrhigaleus asper).  

p1080318
Dr. Trey Driggers, Field Party Chief, and prolific shark researcher, surprised us all when he reported this was the first roughskin spiny dogfish he had ever caught!

The beautifully mottled, sleek, immature tiger shark (Galeocerdo cuvier) caught on September 23 had remarkable skin patterns that apparently fade as the shark ages. Adult sharks can get as large as 18 feet and 2,000 pounds.  Along with the bull shark, it is one of the top three species implicated in unprovoked, fatal attacks worldwide.

September 24 we caught a fascinating scalloped hammerhead (Sphyrna lewini).  The flat extended head of this hammerhead is wavy, giving it the “scalloped” part of its name.  Its populations in the Gulf have drastically decreased since 1981, making it a species of concern.

 

img_0430
Here, Kevin measures one of several scalloped hammerhead sharks we caught on Leg IV of the survey.

We also caught a silky shark (Carcharhinus falciformis). Like other Carcharhinus sharks, the silky shark has a sharp “Carchar,” nose “hinus” (Greek derivation), but also has a silky appearance due to its closely spaced dermal denticles.

img_2294
I instantly felt the silky was the most beautiful shark I’d seen. Photo: Matt Ellis/NOAA Fisheries

 

We  saw two of the three smoothhound species present in the Gulf.  On September 25, we caught a Gulf smoothhound, (Mustelus sinusmexicanus), a species named less than 20 years ago. Much is left to learn about the ecology and biology of this recently discovered shark.

img_2575
Getting ready to weigh the gulf smoothhound, Kevin Rademacher, Fisheries Biologist, stops for a photo.                                                      Photo: Matt Ellis/NOAA Fisheries

Then, I watched the night crew catch, measure and tag a dusky shark (Carcharhinus obscurus).

OLYMPUS DIGITAL CAMERA
Photo: NOAA Fisheries

On September 26, we caught a sandbar shark (Carcharhinus plumbeus).  Despite its size,  the sandbar shark poses little threat to man.

img_2889
The sandbar shark’s large fin to body ratio and size make them a prime target for commercial fisheries. Photo: Matt Ellis/NOAA Fisheries

Due to over-fishing, sandbar shark populations are said to have dropped by as much as 2/3 between the 1970’s and the 1990’s. They are now making a comeback, whether it be from fishing regulations, or the decreased populations of larger sharks feeding on juvenile sandbar sharks.

img_3128
This sandbar shark attacked a blacknose shark that had taken our bait. Photo: Matt Ellis/NOAA Fisheries

We tagged many sharks during my two weeks on the Oregon II.  If you never catch one of those sharks again, the tag doesn’t mean anything.  But this week, we also caught a previously tagged sandbar shark!  Recapturing a wild marine animal is phenomenal.  You can learn about its migration patterns, statistically estimate population sizes, and learn much more. The many years of NOAA’s work with this species in particular demonstrates that thoughtful, long term management of a species works.

 

On September 27, we almost caught a nurse shark (Ginglymostoma cirratum). The barbels coming from its mouth reminded me of a catfish or exotic man with a mustache.

Today, September 29, was our last day of fishing, a bittersweet day for me.  That nurse shark that got away, or more likely, another one like it, came up in our cradle.

Every day we caught sharks, including a few other species not mentioned here.  Only once our line came back without a fish.  The diverse characteristics and adaptations that allow each of these species to survive in a challenging marine environment inspire biologists as they try to categorize and understand the species they research.   While catching so many different species of sharks gives me hope, many members of the crew reminisce about times gone by when fish were more abundant than they are now.

Personal Log

I am the kind of person who always struggles to return from an adventure.  I have learned so much, I don’t want to leave.  Yet I know my class at South Prairie is waiting patiently for my return. I hope to share these many marine species  with my class so that we all may view every moment with curiosity and amazement.

 

 

 

 

Denise Harrington: First Day Jitters, September 21, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Wednesday, September 21, 2016

My first day on the longline cruise seems so long ago with three days of work under my belt. The night before my first shift, just like when school starts, I couldn’t sleep. Trying to prepare was futile. I was lost, lost in the wet lab, lost in my stateroom, lost in the mess. I needed to get some gloves on and get to work, learning the best way I know how: by doing.

At noon, I stepped out the fantail, life vest, gloves, hard hat, and sunscreen on, nervous, but ready to work. The Gulf of Mexico horizon was dotted with oil rigs, like a prairie full of farmhouses. Heat waves rose from the black deck.

Fifteen minutes before arriving at our first station, our science team, Field Party Chief Dr. Trey Driggers, Field Biologist Paul Felts, Research Biologist Kevin Rademacher, NOAA Science Writer Matt Ellis, and I began to prepare for our first station by baiting the hooks with mackerel (Scomber scombrus). I learned quickly that boots and grubby clothes are ideal for this task.

p1080831
Once all the hooks were baited, Chief Boatswain Tim Martin and Paul release a high flyer, a large pole with a buoy at the bottom and a reflective metal flag on top.

The buoy, connected to the boat by the longline, bobbed off toward the horizon.

p1080429

Tim attached the first of three weights to anchor the line to the sea floor.

p1080443

As the longline stretched across the sea, Kevin attached a numbered tag to the baited hook held by Paul.

p1080326

Paul passed the baited, tagged hook to Tim, who attached 100 hooks, evenly spaced, to the one mile longline.

p1080838
On another station, Paul attached numbers to the gangion (clip, short line, and baited hook) held by Trey.  Each station we change roles, which I appreciate.

Setting the longline is rather predictable, so with Rush and Van Halen salting the air, we talked about our kids, dogs, riots in the news, and science, of course. The tags will help us track the fish we catch. After a fish is released or processed, the data is entered in the computer and shared with the scientific community. Maybe one of these tagged fish will end up in one of the many scientific papers Trey publishes on sharks each year.

The line soaked for an hour waiting for snapper, tilefish, eels, sharks, and other fish to bite. While the line soaked, Mike Conway, skilled fisherman, and I lowered the CTD, a piece of equipment that measures conductivity (salinity), temperature, and depth, into the water.  Once the biologists know how salty, cold, and deep the water is, they can make better predictions about the species of fish we will find.

We attached a bag holding a few Styrofoam cups to see how the weight of the water above it would affect the cup.  Just imagine the adaptations creatures of the deep must have developed to respond to this pressure!

The ship circled back to hook #1 to give each hook equal time in the water. After an hour, we all walked up to the well deck, toward the bow or front of the ship. We pulled in the first highflyer and weight.  We pulled in the hooks, some with bait, and some without.  After 50 hooks, the middle weight came up. We still didn’t have a fish.  I began to wonder if we’d catch anything at all.  No data is still data, I thought. “Fish on eighty three!” I heard someone yell.   I wake from my reverie, and get my gloves on.

p1080432

It was a blacknose shark (Carcharhinus acronotus), “pound for pound, the meanest shark in the water,” says Trey. He would know, he’s the shark expert. It came up fighting, but was no match for Kevin who carefully managed to get length, weight, and sex data before releasing it back into sea.

With one shark to process, the three scientists were able to analyze the sexual maturity of the male blacknose together. I learned that an adult male shark’s claspers are hard and rotate 180˚, allowing them to penetrate a female shark. An immature shark’s claspers are soft and do not rotate. For each male shark, we need to collect this data about its sex stage.

p1080172
Here, you can see Trey rotating the clasper 180 degrees.

Later, Paul talked about moments like these, where the field biologists work side by side with research biologists from all different units in the lab.  Some research biologists, he notes, never get into the field.  But Kevin, Trey, and others like them have a much more well-rounded understanding of the data collected and how it is done because of the time they spend in the field.

Fortunately, the transition from inexperienced to novice was gradual. The second line was just as easy as the first, we only brought in two fish, one shark and one red snapper (Lutjanus campechanus).

For the red snapper, we removed the otoliths, which people often call ear bones, to determine age, and gonads to determine reproductive status.  I say “we” but really the scientists accomplished this difficult feat. I just learned how to process the samples they collected and record the data as they dissected the fish.

We set the longline a third time. The highflyer bobbed toward the orange sun, low on the horizon. The ship turned around, and after an hour of soaking, we went to the well deck toward the front of the ship to pull in the longline.  The sky was dark, the stars spread out above us.

“One!” “Three!” “Seven!” “Nine!”  The numbers of tags with fish on the line were being called out faster than we could manage.  It seemed like every other hook had a shark on it.  Two hours later we had collected twenty-eight Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and had one snapper to process. Too busy working to take pictures, I have nothing to document my transition from inexperienced to novice except this data sheet.  Guess who took all this data? Me!

p1080265

Personal Log

NOAA Ship Oregon II is small, every bunk is filled.  I share a stateroom with the second in command, Executive Officer (XO) Lecia Salerno, and am thankful she is such a flexible roommate, making a place for me where space is hard to come by.

Last night, as I lay in my bunk above XO Salerno and her office, I felt like Garth on Wayne’s World, the thought that “I’m not worthy” entering my head.  All members of the crew are talented, experienced, and hard-working, from the bridge, to the galley, to the engine room, and out on the deck where we work. I’ve made a few mistakes.   I took the nasty thought and threw it overboard, like the slimy king snake eels (Ophichthus rex) we pull from the deep.

o-rex
King Snake Eel (Ophichthus rex)

In the morning I grabbed a cup of coffee, facing the risk of being the least experienced, slowest crew member to learn, with curiosity and perseverance.  First day jitters gone, I’m learning by doing.

Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish
Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper
Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass
Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper
Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda
TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark
Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead
Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Barney Peterson:Welcome to OREGON II, August 14, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: August 14, 2016

Weather Data from the Bridge:

Latitude: 25 23.297 N

Longitude: 083 40 .794 W

Air temperature: 87.6 F

Pressure: 1017.04 Mb

Sea Surface Temperature: 30.6 C

Wind Speed: 16.6 Kt    East 86.74 degrees

Science Log:

We will set clocks tonight SHIP WIDE.  At 0100 it will become 0000.  Please plan accordingly.

What this translates to is that when we moved into the Gulf of Mexico we went to the Central Time Zone.  That means only a 2-hour difference between the ship and my home in the Pacific Northwest.  That also means I, who am on the noon-to-midnight shift, got one more hour to sleep (or whatever) Sunday night.

I am busy learning about schedules on the ship. The science group is split into 2 shifts.  We work days: noon to midnight; or nights: midnight to noon.  These hours rule our lives. Meals are served at 0630, 1100, and 1700.  You eat your first meal before you go on shift and your last at shift’s end.  During the 12 hours you are off shift your stateroom is yours and your roommate is expected to stay away and let you sleep.  The opposite is true for your time on: take everything you may need with you when you leave.  Showers, laundry and personal business are fit into your 12 hours off.  Shipboard courtesy requires that we keep voices low in the passageways and be careful not to let doors slam.  Somebody is always trying to sleep.  There is always a quiet spot somewhere to relax for a moment if you get the time: on the flying bridge, at the table on the stern, in the lounge or at a galley table.

Sunday, at 1230 hours, we had safety drills, required for all personnel within 24 hours of departure and once a week thereafter on every cruise.  Reporting stations for 3 different types of drills are posted in staterooms and throughout the ship.  Nobody is exempt from participation.

The signal sounds: a 10 second ringing of the bell: FIRE!  The PA announces a drill: “All hands report to assigned stations.”  Members of the science team quickly make their way to the stern.  By the galley stands a crew member with a sign reading: Fire ahead – detour.  After we arrive at our station, get checked off and, when all crew have been accounted for, return to our staterooms.

Next – 7 short and one long ring on the bell: ABANDON SHIP!  Announcement: “Drill.  All hands report to the bow with PFD’s and survival suits.”  We grab our life jackets and “Gumby suits” and head to the bow where we are checked off as we arrive.  We are required to don our “Gumbies” in 2 minutes or less – not impossible, but not simple either.  I’ve done it before.  The hardest part is getting the hood on and zipping up with your hands jammed into the lobster-claw gloves and your shoes and hat crammed into the suit with you…that’s when you discover just how much too long the arms and legs are.  It isn’t pretty, but if we actually end up in the water, those neoprene suits will be our best protection against the deadly, energy-sapping effects of hypothermia!

Just after we have stripped out of the “Gumby” suits, rolled them up and stowed them and our life jackets back in staterooms, we get the next signal.

3 long bells: “MAN OVERBOARD!” This drill is important too, but feels almost like an anti-climax.  It could mean the difference between life and death to a fellow crew member who falls into the water when the ship is moving.  Science team reports again to the stern and, in a real emergency, would receive instructions for participating in spotting or assisting in a rescue.  This time we stay and listen to a safety talk about our work with long lines, hooks, bait, and our possible catch which could include all kinds of fish and sharks.  There are very definite rules and procedures to ensure crew are safe and our catch is handled with care and respect.  If all goes well…our first lines will be set Monday night!

Personal Log:

Sitting on the flying bridge about 1900 Sunday evening, 3 of us spotted a small boat about ½ mile away that seemed to be drifting aimlessly.  There were two enormous cruise ships coming up behind us and they went around it on either side after cutting their engines to reduce their wake.  A crew member from the bridge watched from our deck as somebody on the boat fired a flare.  We were informed that radio contact was established: the boat was adrift, out of fuel, and we would stand by until the Coast Guard arrived. The OREGON II cut speed and circled back to stay closer to the small boat.  One of the cruise ships was also standing by while the other went on its way.  After about 20 minutes the white and red Coast Guard ship appeared and, when it reached the small boat, we were released to go on our way.

Seeing this response to another vessel in need of help put emphasis upon the importance of participating fully in our drills and understanding the measures in place to keep us safe and aid other ships sharing this big ocean.

Did You Know?  What is the largest shark found in the Gulf of Mexico?

going aboard
Teacher at Sea Barney Peterson about to board NOAA ship OREGON II

Jeff Miller: Getting Ready to Sail, August 19, 2015

NOAA Teacher at Sea
Jeff Miller
(Almost) Aboard NOAA Ship Oregon II
August 31 – September 14, 2015

Mission: Shark Longline Survey
Geographical Area: Gulf of Mexico
Date: August 19, 2015

Personal Log

Hello from Phoenix, Arizona.  My name is Jeff Miller and I teach biology at Estrella Mountain Community College (EMCC) in Avondale, AZ.  EMCC is one of ten community colleges in the Maricopa Community College District, which is one of the largest college districts in the United States, serving more than 128,000 students each year.  I have been teaching at EMCC for eight years.  I currently teach two sections of a general biology course for non-majors (that is students who are majoring in subjects other than biology) and one section of a human anatomy and physiology course primarily taken by students entering healthcare-related fields.

Jeff Miller
A photo of me at Tuolomne Meadow in Yosemite National Park

EMCC is an outstanding place to teach because of all the truly wonderful students.  EMCC serves a diverse set of students from recent high school graduates to adults seeking a new career. EMCC students are also ethnically diverse. Thus, students bring a wide range of knowledge, ideas, and talents to our classrooms. Despite this diversity, one thing most students lack is real world experiences with marine organisms and environments. We are, after all, located in the heart of the Sonoran Desert.  Arizona does, however, possess many unique and amazing environments and when I’m not in the classroom, hiking and exploring nature with my family is one of my favorite things to do.

Cathedral Rock
Cathedral Rock in Sedona, AZ

Great Horned Owl
A Great Horned Owl perches on a log in the desert near Tucson, AZ

Saguaro
A saguaro cactus in the Sonoran desert near Tucson, AZ

White Mountains
Arizona is home to the largest unbroken Ponderosa Pine forest in the world. My wife (Weiru), daughter (Julia), and dog (Maya) in the White Mountains of Arizona

I applied to the Teacher at Sea program to deepen my knowledge of marine systems as part of my sabbatical.  A sabbatical is a period of time granted to teachers to study, travel, acquire new skills, and/or fulfill a personal dream. I have always loved the ocean and even worked with sea urchin embryos in graduate school.  However, my knowledge and experience of marine organisms and ecosystems is  limited.  Therefore, participation in the Teacher at Sea program will give me the opportunity to learn how marine biologists and oceanographers collect and analyze data and how their investigations can inform us about human impacts on marine ecosystems. I plan to use the knowledge and experiences I gain to develop curriculum materials for a marine biology course at EMCC that to helps my students gain fundamental knowledge of and appreciation for our world’s oceans. I hope to foster greater curiosity and excitement about marine science and the scientists who explore our oceans and help students see why it is so important to protect and conserve the oceans resources for future generations.

To help fulfill my dream of learning more about the oceans, I have the opportunity of a lifetime – to sail on the NOAA Ship Oregon II.  I will be working with the crew and scientists aboard the Oregon II to perform part of an annual longline shark survey.  The goal of the mission is to gather data about shark populations in the Gulf of Mexico and along the Atlantic coast.  Some of the data collected includes length, weight, and sex of each individual, collection of tissues samples for DNA analysis, and collection of environmental data.  Please visit the main mission page or the Oregon II Facebook page for more detailed information and images, videos, and stories from recent cruises.  Also check out a recent article from the Washington Post featuring Kristin Hannan, a fisheries biologist for the National Marine Fisheries Services describing the shark research being conducted aboard the Oregon II.

Longline Shark Survey Map
Map showing the region of the Gulf of Mexico where I will participate in the longline shark survey aboard the NOAA Ship Oregon II

Needless to say, I am extremely excited, though a bit nervous, about my upcoming cruise.  I have little experience sailing on the open ocean and have never been up close to a shark let alone actually handled one in person.  All that will change soon and I know that I will treasure the knowledge and experiences I gain aboard the Oregon II.  I am currently packing up my gear and preparing myself for the experience of a lifetime.

The next time you hear from me I will be in the Gulf of Mexico on my mission to learn more about sharks.

Kathleen Gibson, Wild Weather, August 2, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Photo taken from the highest point on the ship.
A Nurse Shark in the cradle
Photo taken from the highest point on the ship.

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date: Aug 2, 2015

Coordinates:
LAT   3428.300 N
LONG  07705.870 W 

Weather Data from the Bridge:
Wind speed (knots): 11.2
Sea Temp (deg C): 29.1
Air Temp (deg C):  25.7

Science and Technology Log: Shark Reproductive Strategies

Rough Seas and bad weather have delayed our sampling.  I’m getting use to walking sideways.

Bringing in gangions in the rain.
Bringing in gangions in the rain.

Today we reached the northernmost sampling station of our cruise, just off the North Carolina coast. The latest stations have been further off shore than those previous and we’ve caught fewer sharks. However, the sharks we have caught have been much larger. Our catch included Sandbar Sharks, Scalloped Hammerhead, Spinner, Nurse and Black Nose.

Sharks have a number of reproductive strategies ranging from egg laying to placental formation. Oviparous sharks produce and release egg cases made of a collagen (protein). The case surrounds the developing embryo and a large yolk with the vital nutrients required for shark development. This is called lecithotrophic (all nutrients from yolk). Oviparous sharks can take to 2 years to develop within the egg case.

Cat shark adult (Image courtesy of Ian Davenport)
Adult cat shark
(Image courtesy of Ian Davenport)

Cat Shark egg case. Photo Courtesy of Ian Davenport
Cat shark egg case. Photo Courtesy of Ian Davenport

Sharks that give birth to live young are considered Viviparous. Within this category there are two major types. Those that produce eggs with large yolks with all required nutrients, but remain in the uterus for gestation, are called yolk-sac vivipores (ovoviviparous, or aplacental viviparity). In some cases, offspring will consume other eggs (oophagy) in the uterus to gain additional nutrients. An advantage to this type of reproduction is that the young sharks are larger when they are born and have a higher survival rate.

Yolk-sac embryos (Image courtesy of Ian Davenport, Ph.D.)
Yolk-sac embryos (Image courtesy of Ian Davenport, Ph.D.) 

The last group, considered to be the most advanced, is the Placental Group. As with the other types, a yolk is produced that can initially provide some nutrients to the developing pup. However, in the uterus the yolk sac after it is depleted is modified into a placenta through which nutrients can pass from parent to offspring. While fewer offspring are produced at one time, they are typically more robust and have a higher survival rate. Most of the sharks we have caught on this cruise are placental vivipores.    

Placental Shark (Image courtesy of Ian Davenport)
Placental Shark
(Image courtesy of Ian Davenport)

Career Spotlight: Dr. Ian Davenport, Ph.D., Research Scientist

Dr. Ian Davenport, Ph.D., is a Developmental Biologist at Xavier University, New Orleans, and has been a volunteer on this cruise for 7 years.

Dr. Ian Davenport dissecting a female Sharpnose shark.
Dr. Ian Davenport dissecting a female Sharpnose shark.

Ian hails from Manchester, England, and his path to becoming a scientist was quite unusual. Similar to others on board, he always had an interest in Marine Science, and sharks in particular, but school was not a priority early on. He spent time travelling and learned a trade as well. He finally decided to return to school, but being accepted was a challenge. Fortunately Ian’s academic ability was recognized and he was accepted to the University of Newcastle upon Tyne where he studied Marine Biology, but a course in Developmental Biology particularly resonated. He went on to earn his Ph.D. in shark developmental biology at Clemson University.

Ian’s research focus is in evolution of “live bearing.”  As noted above, shark species employ a number of reproductive strategies. Placentals are considered to be the most advanced. Ian is studying the eggs of placental sharks and the structure of the cells that surround the egg. His research has revealed some interesting cell features that may aid in nutrient delivery to the developing embryo. If a female shark is caught during the cruise and does not survive, Ian collects the eggs for later study.

Career Spotlight: Chuck Godwin, Deck Crew and Environmental Compliance officer

Chuck has a B.A. in History and has also studied Wildlife Management. Chuck spent 10 years in the Coast Guard and left in 2000, but he was recalled to active service on two occasions – after 9/11 and after Hurricane Katrina. In addition to his work as part of the deck crew, where he is involved in all deck operations, Chuck is also the Environmental Compliance Officer. As such, he manages hazardous waste compliance.

Chuck Godwin hauling in the Longline.
Chuck Godwin hauling in the Longline.

It’s apparent that Chuck enjoys his work. He is all business when he needs to be, but has a knack for adding a note of levity when appropriate. He keeps me laughing, even when the fish aren’t biting. Chuck notes that as a member of the Coast Guard, part of his job was to enforce U.S. fisheries laws. With NOAA he plays an important role in establishing those regulations and this makes the work that much more rewarding.

Personal Log

The weather has been poor since yesterday. Lightning caused a five-hour delay in setting the longline in the night; the ship traversed back and forth over the sampling area waiting for the worst of the storm to pass. Sleeping was a challenge – I think some of us were airborne a few times. Thank goodness for the patch and a few saltine crackers. I took the video below in my bunk as I was nodding off to sleep.

Today’s rough seas and high winds prevented us from using the cradle to bring sharks up to deck height. Ken’s dual laser device, mentioned in my last blog post, was put to good use to estimate the size of the large sharks before they were released.

I need to give shout out to the ship’s cook Walter Coghlan and the second cook O.C. (Otha) Hill. The food has been great and plentiful. ( Homemade Mac n’ Cheese – need I say more?)  Walter takes special care to set aside a plate for us if we are on duty during mealtime. The ice cream sandwiches are much appreciated too.

In the kitchen with Walter.
In the kitchen with Walter.

New species seen since last posting: Sharksucker (a type of Remora, Echeneis naucrates), Blacktip (Carcharhinus limbatus) 

Trying to get a Remora to stick to my arm. What a strange feeling. (Photo: Kristin Hannan)
Trying to get a Remora to stick to my arm. What a strange feeling. (Photo: Kristin Hanna

The view from the Bridge
The view from the bridge.

  

Still working on the hooks. (Photo: Ken Wilkinson)
Still working on the hooks. (Photo: Ken Wilkinson)

Check out these interesting shark facts.

Kathleen Gibson, Sailing Away, July 27, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark/Red Snapper Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coasts
Date: July 27, 2015
Coordinates:  25o   30.755 N
                       O79o   55.736W

Weather Data from the Bridge:
Wind speed (knots): 9
Sea Temp (deg C): 31.3
Air Temp (deg C):  31.2

View from the Bow - Gulf of Mexico
View from the bow – Gulf of Mexico

Just before we left Pascagoula last Saturday, we learned that the V-Sat system was not operational and that in all likelihood we wouldn’t have internet access during the trip.  So far this prediction has been accurate.  I’ll continue to write these blogs as we go and post them all after we get to port if it doesn’t get fixed.

In my first post I wrote a bit about the area we would be surveying. I’ve since learned that during this cruise we will only be working in the Atlantic Ocean. Another change is that our final destination will be Cape Canaveral, FL rather than Jacksonville, FL.

Motoring through the Florida Keys
Motoring through the Florida Keys

Since we aren’t doing any fishing in the Gulf, we are currently following a straight track from Pascagoula to the Florida Keys. We’ve been sailing for two days and are currently off the coast of Key Biscayne, FL.  There has been one rain event that went by quickly, and otherwise it has been fair weather. While land isn’t visible, there are a good number of recreational motorboats, so land must not be too far off.

 

Science and Technology

This cruise is the first of four legs of a long-term (longitudinal) study of the distribution and abundance of shark and red snapper populations. The study began in 1995 and the research area includes U.S. waters of the Atlantic Ocean and Gulf of Mexico. The Atlantic Ocean sampling stations on this first leg are positioned at various distances offshore from Miami, FL to Cape Hatteras, NC and at different depths. Later legs will complete the survey in the Gulf of Mexico.  While this type of study can be resource and labor intensive and also time consuming, a well-designed longitudinal study can provide valuable data that tracks trends and patterns over an extended period of time. As with any investigation, numerous potential variables must be controlled, including time of year sampling occurs, sampling equipment (line and hooks) and sampling locations.

We’ve prepared three barrels of gangions (50 hooks in each). When we start fishing we will bait the hooks with mackerel and hook them on the long line.

Kristin Hannan ( left) and science volunteers preparing gangions. These will be baited and attached to the main line.
Kristin Hannan ( left) and science volunteers preparing gangions.
These will be baited and attached to the main line.

The circular hooks are designed to minimize harm.
The circular hooks are designed to minimize harm.

NOAA Careers

A successful cruise requires a significant amount of preparation as well as committed participants. Those aboard include NOAA scientists, NOAA Corps Officers, an experienced deck crew, engineers, stewards, and science team volunteers. From the moment I arrived on board it has been apparent that everyone is fully invested in this project.  They’ve been willing to share their stories of how they made their way on to this cruise of the Oregon II;  I’ll share some of their stories with you in this and future blog entries.

Career Spotlight: Kristin Hannan – Field Party Chief, NOAA Shark Unit

As Field Party Chief, Kristin is responsible for all of the scientific work done during the cruise.  She is also the watch leader for the day shift.  While Kristin was fascinated with marine science at an early age, she followed some sage academic advice for her undergraduate program: “focus on being a scientist first, include rigorous coursework, and then do marine work.”  She graduated from Virginia Tech with a degree in Biology and a minor in Chemistry and she remains a loyal Hokie fan.

Kristin Hannan taking measurements
Kristin Hannan taking measurements

She has been involved in a number of challenging marine-related projects all around the United States and has been open to unusual opportunities when they arose. One such opportunity, over 10 years ago,  was to be a volunteer with NOAA Fisheries in Pascagoula, MS.  She joined the Shark Longline cruise as a volunteer one summer, and returned in subsequent summers to participate. Kristin eventually joined NOAA permanently as a Field Biologist with the Shark Unit, and is now the Chief Scientist/Field Party Chief for this cruise–the very same one she volunteered for some years ago.

In addition to her work with NOAA, Kristin is pursuing a Master’s Degree from the University of South Alabama, where she is studying chimeras and methods used to determine their age.

Kristin’s advice to students looking to work in Marine Sciences –or any field- is to:

  1. Be open to unusual opportunities
  2. Try to make a good impression every day
  3. Work hard

Personal Log

Flying Fish Photo Credit: NOAA
Flying Fish
Photo Credit: NOAA

We’re still sailing to the sampling area, so there is plenty of free time to meet others on board, read and walk around the deck.  This will definitely change when sampling begins. Today I went out to the bow and saw flying fish for the first time and dolphins were swimming off the bow.

The science team is made up of 4 NOAA scientists and 7 volunteers with a variety of experience. Our volunteers include 2 university professors, one graduate student, three undergraduate students, and one Teacher at Sea!  The group is split into two 12-hour shifts.  I’m on the day shift which begins at noon each day and ends at midnight.  It’s likely that we will begin fishing tomorrow morning, and the night crew has begun adjusting their sleep pattern to be prepared.  I’m going to have to work at sleeping in.

Survival Suit - Perfect Fit  Photo Credit: Lecia Salerno
Survival Suit – Perfect Fit  Photo Credit: Lecia Salerno

 

The Executive Officer (XO) LT Lecia Salerno, has graciously allowed me to share her quarters, which includes her office. The cabin is on an upper level so I definitely get rocked to sleep.

A fire drill and abandon-ship drill were called on the first full day at sea.  Lecia helped me get into my survival suit and, more importantly, out of it as well.

Questions of the day for my students:

What additional variables do you think should be considered and kept constant in this study?

What is a nautical mile and how many nautical miles is it from Pascagoula, MS, to Miami, FL?

How do chimeras differ from sharks?

Tomorrow we fish!
Tomorrow we fish!

Up next… Time to Fish.

 

Steven Frantz: Loose Ends at Sea, August 7, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 7, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.4
Wind Speed (knots): 8.62
Wind Direction (degree): 183
Relative Humidity (percent): 080
Barometric Pressure (millibars): 1015.41
Water Depth (meters): 43.4
Salinity (PSU): 35.660

Location Data:
Latitude: 3040.46N
Longitude: 08011.74W

Loose Ends at Sea

We are getting close to wrapping up this first leg of a four-leg survey. Speaking of wrapping things up, one very important skill you must know when on a ship is how to tie a knot. Not just any knot, but the right knot for the job, or things might not turn out. Got it?

There are three knots, which we used every day. The Blood Knot (sometimes called the Surgeon’s Knot), the Double Overhand Loop (sometimes called a Surgeon’s End Loop), and the Locking Half-Hitch on a Cleat.

The blood knot is used to tie two ropes together. When we return a longline, it has to be tied back on to the main spool. Watch Tim and Chris demonstrate how to tie this knot.

Blood Knot courtesy Google Images
Blood Knot courtesy Google Images

Blood Knot courtesy Google Images
Blood Knot courtesy Google Images

The double overhand loop is used, as the name implies, to put a loop on the end of a line. It is used at each end of the longline to secure the highflier.

Double Overhand Loop courtesy Google Images
Double Overhand Loop courtesy Google Images

Double Overhand Loop
Double Overhand Loop

The locking half hitch knot is tied on to a ship’s cleat in order to secure the mainline after it has been sent out. This gives us the opportunity to tie a double overhand loop on to the end in order to clip on the highflier.

Locking Half Hitch on a Cleat
Locking Half Hitch on a Cleat

Releasing the Highflier
Releasing the Highflier

We have also been seeing some more different animals during the past couple of days. We saw a green sea turtle surface twice. The first time was right in front of us on the starboard side of the ship. The second time was several minutes later at the stern. Just when I thought I would not get a picture of a dolphin, a trio of Atlantic spotted dolphins followed along the Oregon II as we let out the longline. Dolphins and all sea turtles are protected.

Atlantic Spotted Dolphin
Atlantic Spotted Dolphin

We have also been catching more sharks. Again, the most common species caught has been the sharpnose shark. We finally caught a silky shark, Carcharhinus falciformes on our shift. The ridge that runs along their back and the smooth, silky look to their skin can be used to identify them.

Taking the hook out of a Silky Shark
Taking the hook out of a Silky Shark

Silky Shark's ridge on its back
Silky Shark’s ridge on its back

Silky Shark
Silky Shark

A 93.6 kilogram nurse shark, Ginglymostoma cirratum was caught and brought up using the cradle. These are bottom-feeding sharks and have an unusual texture to their skin. It feels like a basketball!

Nurse Shark on the line
Nurse Shark on the line

Nurse Shark in the cradle
Nurse Shark in the cradle

Getting a fin clip from the Nurse Shark for DNA studies
Getting a fin clip from the Nurse Shark for DNA studies

All data collected, tagged, and ready for release
All data collected, tagged, and ready for release

It is always nice when you witness the rare or unusual. Such was the case with the next shark we caught. Many photographs were taken in order to document this rare occurrence. After releasing the shark, it was identified as a Caribbean reef shark, Carcharhinus perezi. Mark Grace, who started this survey 18 years ago, believes this is only the third Caribbean reef shark ever caught on the longline survey! Rare indeed! Unbelievable–the very next longline we caught a second Caribbean reef shark!

Carribbean Reef Shark: Measuring Length
Caribbean Reef Shark: Measuring Length

Caribbean Reef Shark: Notice salt water hose to keep oxygen to the gills.
Caribbean Reef Shark: Notice salt water hose to keep oxygen to the gills.

Caribbean Reef Shark
Caribbean Reef Shark

Carribbean Reef Shark
Caribbean Reef Shark

Another first for the first leg of the 300th mission was a dusky shark, Carcharhinus obscurus. This is another rare shark to be found. This one was even bigger than the nurse shark weighing in at 107.3 kilograms! We keep the larger sharks in the cradle while data is collected before releasing them.

Dusky Shark
Dusky Shark

Dusky Shark
Dusky Shark

While cleaning up, this little remora was found on the deck. It is easy to see the suction disc on the top of its head. This is used to hold onto a larger fish and tag along for the ride, cleaning up bits of food missing the mouth of the host fish.

Remora
Remora

This amazing journey is winding down and coming to an end. I would be remiss not to thank the crew and scientists of the Oregon II. Their hospitality, professionalism, friendly dispositions, and patience (LOTS of patience) have made me feel more than welcome. They have made me feel as though, for a brief moment, I was a part of the team. Thank you and may the next 300 missions be as safe and successful as the first 300.

Dinner
Dinner

Steven Frantz: Training at Sea, July 30, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the east coast of  Florida
Date: July 29, 2012

 

TRAINING AT SEA

In my last blog I mentioned we would be at sea three days to get to where we will begin the longline survey. I thought I would take a little time to share some of the training before we ever start a longline survey. Everybody pitches in to make sure we have a safe, successful journey.

First we learned the different parts to the longline. The line starts with a high-flier buoy and a weight. Gangions (also known as a branch line or leader) are snapped to the line. Another weight is placed midway, with more gangions, then finally another high-flier buoy at the end. There are 100 gangions used for the NFMS Bottom Longline Survey. While there are several variations when using longline gear, the NFMS Bottom Longline Survey has used this standardized set-up in order to minimize variables.  By using the same gear year after year they are able to compare fish catch data, minimizing any bias attributed to changing gear that may fish differently.

This just isn’t your average fishing trip! The longline itself is one nautical mile long! How long is this on land? In addition, each end is also calculated into the total length. This will vary depending on how deep the ocean floor is where we are fishing. The longline is left for one hour then retrieved.

Longline Diagram
Longline Diagram, courtesy Dr. Trey Driggers

Before we begin, everything needs to be ready and in place. Each gangion has to be placed in a barrel so they do not get tangled taking them out. A tangled bunch of gangions is a big problem. First, the AK snap of the gangion goes into the bucket. Next, let the line go into the bucket. Finally, place the hook in the notch in the bucket, making sure it points in toward the bucket. We certainly do not want anyone passing by caught by a hook.

Parts
From top to bottom: clips, hooks, AK snaps 

Hooks on Bucket
How to place gangions in the bucket

Numbered Tags
Numbered Tags

There are many data scientists use in their research. We need to make sure we collect accurate data; consistent with the 18 years this study has been going on. First we learned how to measure the length (in millimeters) of a shark. We used an Atlantic Mackerel as a measurement example. There are three length measurements to be taken: Total Length (from tip or nose to tip of tail), Fork Length (from tip of nose to notch in tail), and Standard Length (from tip of nose to where body ends and tail begins). The shark is placed on a two meter long measuring board. If the shark is longer than two meters, a measuring tape is used to measure length. The three lengths are recorded.

measuring board
Measuring Board

In addition to the three length measurements, we must also identify the species of shark, measure weight, condition when caught, sex, maturity (for males), hook number, and any tag information if the shark had been tagged before. For some species, if the shark isn’t tagged, we will tag it. We also need to record which vessel we are on, which survey, which station, and the date. Data is also being collected on many aspects of the water. Other samples may be taken that will determine the age of the shark (vertebrae).

Data Sheet
Data Sheet

The last thing we learned was how to bait a hook. These hooks are big! Atlantic Mackerel are used for bait. We must be careful to double hook the bait or it will fall off.

Cutting Bait
Cutting Bait

Baited Hooks
Baited Hooks

There you have it. Tomorrow I will begin working the longline actually fishing for sharks!

After three days in the Gulf of Mexico we see land! We passed near enough to be able to see the coastline of Miami. It all seems so peaceful here aboard the Oregon II when looking out into what I know is the hustle and bustle of Miami, Florida.

Miami
Miami

Maureen Anderson: Status of Sharks, August 3, 2011 (Post #5)

NOAA Teacher at Sea
Maureen Anderson
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
July 25 — August 9, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 3, 2011

Weather Data from the Bridge
Latitude: 32.50 N
Longitude: -079.22 W
Wind Speed: 17.75 kts
Surface Water Temperature: 28.60 C
Air Temperature: 29.90 C
Relative Humidity: 71%
Barometric Pressure: 1009.06 mb

Science and Technology Log
One reason the shark longline survey exists is because the populations of many types of sharks are in decline. There are several reasons for this – finning is one reason. “Finning” is the process where the shark’s fin is removed from the rest of its body. Since usually only the fin is desired, the rest of the body is discarded. Shark fins are used for things like shark fin soup – a delicacy in Asian cultures. When the fin is cut off and the rest of the body stays in the water, the shark can not swim upright and eventually dies. While some regulations have been passed to prevent this, shark finning still occurs. Sharks are also overfished for their meat. As a result many shark species have become vulnerable, threatened or endangered. Large sharks can take longer to reproduce. Therefore, they are more likely to be threatened or decline in their numbers.

endangered species chart
There are different categories of extinction risk, from "least concern" to "extinct" (photo courtesy of IUCN)

marine food chain
Sharks are at the top of the food chain. They are apex predators. (photo courtesy of Encyclopaedia Britannica)

Sharks are at the top of the food chain. They keep prey populations in control, without which the marine ecosystem would be unstable.

This is why the mission of the shark longline survey is important. The identification tags and roto tags used during this survey along with the data collected will help scientists assess the abundance of species in this area. They can then provide recommendations for shark management.  On average, we are collecting data on 10 sharks per line (or 10%), although our catch rates are between 0% and around 50%.  With 50 stations in all, that would be data on approximately 500 sharks (on average).

There are more than 360 species of known sharks. Below is a list of some that we have seen and measured during our survey. The IUCN red list (International Union for Conservation of Nature and Natural Resources) classify these sharks with a status:

Atlantic Sharpnose Shark – Least Concern
Blacknose Shark – Near Threatened
Silky Shark – Near Threatened
Tiger Shark – Near Threatened
Lemon Shark – Near Threatened
Dusky Shark – Vulnerable
Sandbar Shark – Vulnerable
Scalloped Hammerhead – Endangered

During my shift, we sometimes catch things we do not intend to catch.  We might reel in fish or other sea creatures that get caught on the hooks. This is called “bycatch”. While everything is done to try to catch only the things we are interested in studying, bycatch occasionally happens. The fish are only on our line for 1 hour, so their survival rates are pretty good. Our bycatch data is a very important element and also contributes to management plans for a number of species like snappers and groupers.

longline gear
Our longline gear includes two high flyer buoys, and hooks that are weighted down so they reach the bottom.

Just the other day, we caught a remora (a suckerfish that attaches itself to a shark’s side). Remoras and sharks have a commensalism relationship – the remora gets leftover food bits after the shark eats, but the shark gets no benefit from the remora. We quickly took down its measurements in order to get it back into the water quickly. Other bycatch included an eel, and black sea bass.

sharksucker
This sharksucker is an example of bycatch.

moray eel
This moray eel accidentally found its way onto a hook.

black sea bass
Bycatch - a black sea bass.

otoliths
This otolith (tiny white bone in center) helps this red snapper with its sense of balance.

We also caught a red snapper. Our chief scientist, Mark, showed me the two small, tiny ear bones called “otoliths” in the snapper’s head. These bones provide the fish with a sense of balance – kind of like the way our inner ear provides us with information on where we are in space (am I upside down, right side up, left, right?). You can tell the age of a snapper by counting the annual growth rings on the otoliths just like counting growth rings on a tree.

Personal Log

My experience aboard the Oregon II has given me a better understanding of the vulnerability of some shark species. While many of us may think that sharks can be threatening to humans, it is more accurate the other way around. Sharks are more threatened by humans than humans are threatened by sharks. This is due to our human behaviors (mentioned above).

Today I saw dolphins following our boat off the bow.  There were about 6  or 7 of them all swimming together in a synchronized pattern (popping up for air all at the same time).  It was really quite a treat to watch.

I’m also amazed by the amount of stars in the sky.  With the lights off on the bow, you can really see a lot of stars.  I was also able to see the milky way.  There have been many storms off the horizon which are really cool to watch at night.  The whole sky lights up with lightning  in the distance, so I sat and watched for a while.  With tropical storm Emily coming upon us, we may have to return to port earlier than planned, but nothing is set in stone just yet.  I hope we don’t have to end the survey early.

Species Seen :

Tiger Shark
Atlantic Sharpnose
Nurse Shark
Barracuda
Remora
Black Sea Bass
Snowy Grouper
Atlantic Spotted Dolphins
Loggerhead Turtle
Homo Sapiens

Jennifer Goldner: Ready to Sail, August 2, 2011

 NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II

August 11 — 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 2, 2011

If you asked me 35 years ago, “Who is your hero?”  My reply would’ve been, “Wonder Woman.”  If you asked me the same question today, my answer would be “lifelong learners.”  It is due to these people that solutions are being found for clean water, that animals are being saved, and that people are being educated at just how fragile our earth is right now.  NOAA (National Oceanic and Atmospheric Administration) is full of such people (Jennifer Hammond, Liz McMahon, Rob Ostheimer, Elizabeth Bullock, for starters).  I have been in contact with each of these individuals.  They have one thing in common: a passion about learning.  To this end, NOAA has a Teacher at Sea program. This season over 30 were chosen out of the United States.  Each of us will be on a different voyage. This is where I come in because I am a 2011 Teacher at Sea.  So, who am I?

Jennifer Goldner, NOAA Teacher at Sea
Jennifer Goldner, NOAA Teacher at Sea

My name is Jennifer Goldner.  I teach 5th grade science in Room 8 in Jay Upper Elementary School in Jay, Oklahoma.  Our town is small in size, but we have big ideas.  If we don’t have resources, we find a way to get a project done.  Here are just a few of the things we have done: our class has been featured in Popular Science and on Channel 6 News; we’ve worked with U.S. Satellite and Laboratory and NASA; and we’ve designed and built a tree house.  We recently took a trip to Space Camp where we took home top honors of having the highest accuracy in completing our missions. 

Speaking of mission, let’s get down to business: my NOAA Teacher at Sea assignment.  Though I have been to the ocean, I have never sailed on a ship. 

Take the poll to tell me if you have traveled on the ocean. I will be traveling aboard the Oregon II in the Gulf of Mexico, August 11-24th.

Oregon II
NOAA Ship Oregon II

There are 3 main types of ships:   1. fisheries research ship, 2. hydrographic survey ship, and 3. oceanic and atmospheric ship.  I am on the most physically challenging of all the cruises: the fisheries cruise.  I, along with the crew, will be doing 12 hour work shifts.  We will be doing a shark and snapper longline survey.  I am privileged to be studying with Chief Scientist Mark Grace.  His work precedes him.  I have already been told he is top notch.  He is the Shark Unit Leader.  I cannot wait to learn from him!  The crew consists of about 30 people, including officers, fishermen, deck crew, engineers, electronics crew, cooks, scientists, and 1 teacher (that would be me). NOAA Ship Oregon II, also referred to as “O2”, is headed by Commanding Officer, Master Dave Nelson.  Again, I have heard rave reviews about him.  I am anxious to meet him in person!

As for my travel plans, I will fly in to Jacksonville, Florida.  I will then spend the night on my new “home away from home,” NOAA Ship Oregon II, in Mayport, Florida.  We will depart on August 11th and sail around the entire coast of Florida. O2 will travel to Pascagoula, Mississippi, arriving on August 24th.  You can follow us on the Ship Tracker.

Current Cruise (8-2-11) for Oregon II on The Ship Tracker
Current Cruise (8-2-11) for NOAA Ship  Oregon II on The Ship Tracker

While at sea I will be posting 2-3 blogs a week.  Please join in on our polls, read along about our voyage, and post comments and questions.  Let’s show NOAA that we are lifelong learners who value the importance of oceanic research.  Besides, if you have read this entire blog entry, that makes you my hero.

Maureen Anderson: Out To Sea, July 26, 2011 (Post #2)

NOAA Teacher at Sea
Maureen Anderson
Aboard NOAA Ship Oregon II (NOAA Ship Tracker)
July 25 — August 9, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: Tuesday, July 26, 2011

Weather Data from the Bridge
Latitude: 27.90 N
Longitude: -086.42 W
Speed: 11.50 kts
Course: 140.00
Wind Speed: 9.10 kts
Wind Direction: 272.65
Surface Water Temperature: 30.10 C
Surface Water Salinity: 26.89 PSU
Air Temperature: 30.10 C
Relative Humidity: 64%
Barometric Pressure: 1011.94 mb

Science and Technology Log

We set off from Pascagoula, Mississippi yesterday at 3PM. We had a short delay in leaving due to some maintenance that had to be handled, but it wasn’t too long until we were underway. It turns out we will be motoring around the southern coast of Florida and up the Atlantic to reach our stations. This project’s mission is to monitor the variability in shark populations off the Atlantic coast and Gulf of Mexico. We should begin setting line with baited hooks on Thursday. Each shark caught will be measured for length, mass, and sex. Some sharks will also be tagged in order to collect more data after their release.

Map of our course
This is our course map. It may or may not change.

The Oregon II has 30 people aboard, including crew, scientists and volunteers. The crew includes officers, fishermen, cooks, an electronics technician, engineers, and other NOAA personnel. In addition to the mission of the NOAA survey, there are volunteers who are performing their own research, such as studying the stress levels of sharks, shark reproduction, and identifying plankton species. The boat itself is a 170-foot vessel.

The Oregon II
Here is the Oregon II before leaving port.

Personal Log

I’m having a great time on the ship and the people aboard are wonderful. Everyone has been very welcoming and willing to answer my (many) questions about nearly everything. I will be working the day shift when we reach our first station (noon to 12AM), which is great because I can sleep at night normally. I settled into my room which has bunk beds, a sink, and a shared bathroom/shower with the room next door. One of the officers, Sarah, gave us a tour of the boat, including three exercise rooms! I have yet to try them out, but I’m thinking it will be the ultimate test of balance to run on a treadmill while the boat is in motion. Since we have a few days (three) before reaching our first station, many of us have been watching movies (there is a big screen TV in the lounge), reading, and relaxing. I’m sure the work will pick up soon enough, so it’s nice to take it easy for a while. But I am eager to get started. I had a hard time eating dinner last night. For some reason, I lost my appetite. I don’t think it had to do with sea-sickness, but perhaps adjusting to the rocking motion of the boat. The seasickness patch I’m using is working out well so far.

My room
Here is my room. Good 'ole bunk beds!

Today we practiced a fire and emergency drill (abandon ship). During an abandon ship drill, we put on our survival suits. They are big, orange, and take some practice getting into! The suits will keep you warm and buoyant in water. Each one has a strobe light and whistle. When I finally got into mine (with some helpful tips from others) I looked like a big orange Gumby. That is why the survival suits are also called “Gumby” suits.

Survival suit
Here I am in my survival suit. It is my best outfit ever - I am ready for anything!

Something to Think About

A ship out to sea has to be self-sustaining. We are like our own floating city. How do we get fresh drinking water? Where does our waste go? How do you feed 30 people 3 times a day for 16 days? These are questions you may or may not have wondered about…well I’m going to tell you anyway! The boat makes its own fresh water through a process known as reverse osmosis. This removes salt and other molecules from water to make it usable. It gives us drinking water, and water to wash with (for showers, laundry, dishes, etc.) The heads (or toilets) are flushed using salt water. This makes sense because we have an unlimited supply! We have a marine decomposing system that adds bacteria to break down human waste before releasing it to sea. Food scraps? Also sent out to sea to decompose or be eaten. Garbage? Well…we have to hang on to that for the entire trip. This really makes you think about trying to reduce the amount of garbage you produce.

Beth Spear, August 4, 2010

NOAA Teacher at Sea: Beth A Spear
NOAA Ship: Delaware II

Mission: Shark – Red Snapper Bottom Long Line Survey
Geographical area of cruise: Gulf of Mexico to North Atlantic
Date: Wednesday, August 4, 2010

Night Watch

Weather Data from the Bridge
Time: 0200 (2:00 am)
Position: Latitude 29 degrees 28’N, Longitude 080 degrees 21’W
Present Weather: Partly Cloudy
Visibility: 10 nautical miles
Wind Speed: 8 knots
Wave Height: 1 foot
Sea Water Temp: 30.2 degrees C
Air Temperature: Dry bulb = 28.2 degrees C; Wet bulb = 26.0 degrees C
Barometric Pressure: 1016.8 mb

View off the stern off the NOAA Delaware II
View off the stern off the NOAA Delaware II

Science and Technology Log
This NOAA cruise was conducted for Red Snapper and sharks. Sampling is conducted along the continental shelf with a bottom longline. The longline consists of a mainline that is about 1 nautical mile or 6000 feet. Gangions are clamped to the main line approximately every 60 feet. The gangions have a clamp at one end and a hook baited with Atlantic Mackerel at the other end. The mainline is weighted at both ends and in the middle to keep it near the bottom. The line is set at depths ranging from 5 – 30 fathoms or 30 – 100 fathoms. The long term objective of the study is to estimate abundance of certain fish species. (mention annual survey, temporal patterns) Some short term objectives include sampling for genetic studies and tagging to study movement, age, and growth. Species studied usually include red snapper, tile fish, grouper, and various sharks.

The longline being sent out.
The longline being sent out.

Personal Log
Yesterday I began my night watch duties. Getting up at midnight is pretty tough especially when my normal bedtime is around 11:00 PM. One benefit however is the cooler early morning hours. We have about 4 -5 hot sunny hours before the night watch ends at noon. There is some down time while steaming to the next line. But when we are busy it can get crazy, especially working around animals with teeth that like to flip around. NOAA is very safety conscious and we all wear personal flotation devices (PFDs), safety glasses, and hard hats. The first night we had the mainline snap while hauling in the catch. No one was hurt, but that’s what the safety gear is for. It’ll be a good reminder for my students to wear their safety gear during labs.
Animals Seen So Far
Blue fish
Brittle star (see photo below)
Mahi Mahi
Flying fish
Scalloped hammerhead shark
Atlantic sharpnose shark
Blacknose shark
Eel
Sandbar shark
Bat?

Brittle star
Brittle star

Kimberly Lewis, July 5, 2010

NOAA Teacher at Sea Kimberly Lewis
NOAA Ship: Oregon II
July 1 -July  16 2010

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, July 5, 2010

Weather Data from the Bridge 
Time: 1000 hours (10:00am)
Position: Latitude = 27.58.38 N; Longitude = 096.17.53 W
Present Weather: partly cloudy, haze on the horizon
Visibility: 8-10 nautical miles
Wind Speed: 17 knots
Wave Height: 2-4 feet
Sea Water Temp: 28.6 C
Air Temperature: Dry bulb = 29.2 degrees Celsius; Wet bulb = 26.1 C
Barometric Pressure: 1011.1 mb

Science and Technology Log

The purpose of the SEAMAP Summer Groundfish Survey is to collect data for managing commercial fisheries in the Gulf of Mexico. SEAMAP stands for Southeast Area Monitoring and Assessment Program.

Right now we’re working along the Gulf Coast of Texas, far from the BP Deepwater Horizon oil spill, so we’re not seeing any effects of oil here. However, part of our mission is to collect fish for testing to make sure that oil spill has not impacted the marine life in this area and that the fish and shrimp from Texas are safe to eat. We’re also collecting water samples from this area to use as baseline data for the long-term monitoring of the impact of the oil spill in Gulf.

There are four main ways the Oregon II is gathering SEAMAP data on this cruise, and we’ve already learned how to use all of them. The main way we collect data is by trawling, and this is where we do most of our work on the Oregon II. In trawling, we drag a 42’ net along the bottom for 30 minutes, haul it up, and weigh the catch. We then sort the haul which involves pulling out all of the shrimp and red snapper, which are the most commercially important species, and taking random samples of the rest. Then we count each species in the sample and record weights and measurements in a computer database called FSCS (Fisheries Scientific Computer System).

Here on the Texas coast, where we’re working now, the SEAMAP data is used to protect the shrimp population and make sure that it’s sustained into the future. Since 1959, Texas has been closing the shrimp fishery seasonally to allow the population to reproduce and grow. The SEAMAP data allows Texas to determine the length of the season and size limits for each species. Judging by our trawls, the Texas shrimp population is healthy.

Here I am flushing out the CTD to prepare for the next use.

Another method of data collection is the CTD, which stands for Conductivity, Temperature, and Depth. The CTD takes measurements from the surface to the bottom, creating a CTD profile of the water column at our trawling locations. These data are important to assess the extent of the hypoxic “dead zone” in the Gulf of Mexico, and to relate the characteristics of our trawling hauls to DO levels. SEAMAP data collected since the early 1980s show that the zone of hypoxia in the Gulf has been spreading, causing populations to decline in hypoxic areas.

We also use Bongos and Neustons to gather data on larval fish, especially Bluefin Tuna, Mackerel, Gray Triggerfish, and Red Snapper. The Neuston is a rectangular net that we drag along the surface for ten minutes to collect surface-dwelling larval fish that inhabit Sargassum, a type of seaweed that floats at the surface and provides critical habitat for small fish and other organisms. We drag the Bongos below the surface to collect ichthyoplankton, which are the tiny larvae of fish just after they hatch. The Neuston and Bongo data on fish larvae are used for long-term planning to maintain these important food species and keep fish stocks healthy.

In this photo I am untying the knots at the bottom of the Neuston to gather the ‘catch’. You can see a lot of Sargassum in this haul.
In this photo I am untying the knots at the bottom of the Neuston to gather the ‘catch’. You can see a lot of Sargassum in this haul.

Personal Log

Day 1: docked
Day 2: we left the port in Galveston (July 2). My shift started immediately but by the time we actually left port and reached the first station my shift was over 1200 noon. So far so good!

Day 3: 2400 hrs or Day 4: 00:00 hrs.
– the sea sickness is getting me a little now. The rough seas are most likely the main culprit, however, I have not been out to sea for this period of time before. Once the seas calm down I should have a better idea. I do know this, my shift leader Alonzo and the chief scientist Andre have both been very understanding of my adjustment to sea life. The entire staff on board for that matter are very understanding and concerned for everyone’s well being.
– This was my first full shift. We are BUSY aboard the Oregon II ! A catch will come in for processing, which I will explain processing on my next blog, and we sometimes are still processing the last batch or we are up front taking CTD samples and bringing in our bongos/neustrons. I have learned a lot of things in a short period of time.

July 4, 2010 – Lots of stations (places where we deploy our nets) tonight. We actually got a little backed up. There are five people on my shift and it takes all 5 of us working non-stop to get the job done.

July 5, 2010 – I am feeling better today, so much that I uploaded my blog! I keep waking up at 5pm and unable to go back to sleep, but I am going to try now to catch a couple more hours as my shifts starts again in 3 hours.

Alex Eilers, August 31, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 31, 2008

Alex putting glow sticks on branch line.
Alex putting glow sticks on branch line.

August 29 – Longline fishing for swordfish

Today’s major objective was to catch swordfish for tagging using a fishing method called longlining. Longline fishing uses one main line held just below the water’s surface with several buoys.  Attached to the main line are several smaller branch lines with hooks and bait.  The branch lines extent 42 feet or 7 fathoms into the ocean.

Preparing to launch the longline is quite a sight and it requires a number of individuals, each working in unison. There is a person who baits the hooks on the branch line then hooks it to the main line, another person attaches a glow stick (used to attract the swordfish), and a third person attaches the buoy to the main line.  There are also a number of people working behind the scenes sorting lines and working the winch. After all the branch lines are hooked to the main line, the line soaks in the water for several hours – in hopes that a swordfish will take the bait.

Crew setting gear
Crew setting gear

Reeling in the line took about two hours because the line was 4 miles long and held over 200 hooks.  I thought this was an extremely long line but was told that commercial fishing vessels use between 40 to 60 miles of line with thousands of branch lines. Wow!

Unfortunately, we were unable to tag any swordfish but hope to try again on Labor Day. What an incredible experience today has been.

August 30 and 31 – Rock’n and Roll’n

Whoa, Whoa… is about all you heard me say over the past two days.  We’re going through a rough patch today – high winds and swells up to 5 or 7 meters – between 15 and 20 feet.  We sure were glad the scientific equipment was secured during the first few days – because everything that wasn’t tied down went flying – including chairs, drinks and the crew.  The closest thing I could come to describing this experience would be like riding a non-stop Disney ride.  The inclinometer reading (an instrument that is use to detect the degrees a boat rolls) recorded a maximum tilt of about 36 degrees.   To put thing into perspective, I am now typing with one hand and holding the table with the other.  Unfortunately, many of the science projects were cancelled due to high seas.  We hope to be in the calmer waters of Monterey Bay area tomorrow.

Elizabeth Eubanks, July 31, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 31, 2007

Weather Data from the Bridge 
Visibility: 10 miles
Air temperature: 16.0 degrees C
Sea Temperature at 700m: 5 degrees C
Sea Temperature at surface: 19.2 degrees C
Wind Direction: 300 W
Wind Speed:  15 kts
Cloud cover: Clear –stratus
Sea Level Pressure: 1013.9 MB
Sea Wave Height: 4-5 ft
Swell Wave Height: 2 ft

Science and Technology Log 

Salt, Sodium, NaCl, Salinity. How much salt is in the ocean? How much salt is in me and you? Is there a difference between the amount of salt in from the Pacific to the Atlantic ocean? How much salt is in a fish or shark? Lots of questions about salt. I spent some time again with Dr. Jeff Graham and he showed me some nice diagrams to help me understand.

Percent of average salt content – salinity. ***The top of the box marks only 10%   scale subject to revision (due to lack of resources on board ship)
Percent of average salt content – salinity. The top of the box marks only 10% scale subject to revision (due to lack of resources on board ship)

Personal Log 

Yeah I added a new species to my list and yesterday I was able to get a photo of the Black Footed Albatross. While we were hauling our line he kept circling. He seemed to be very interested in the line. Some of the scientists were tossing bait to him from the hooks they were debating, but he didn’t seem that interested our old Mackerel.  Albatross are beautiful birds. They are the largest of seabirds and spend most of their time on the water. They have long, narrow wings as you can see from the photo below. One of the scientists on board was telling me that she read studies, indicating that they can travel 3,000 miles across the ocean, before they need to touch land.  Rarely does a person have the opportunity to view them from shore unless you are on some remote island when they are breading and nesting.

Black-footed albatross, tagged.
Black-footed albatross, tagged.

Look at the photo I took. You will notice a yellow band on left leg and a white one oh his right. I am told that to band these birds, you go to a remote island and just band them. They aren’t really afraid of people. – I would love to do that…. When is that cruise?  Nobody likes it when this happens, especially the sea lions. This is the only we caught this trip. They put up a huge fight and this one actually got off of the line. Hopefully, he will be fine. It is such a treat to see them out here. During this set we had a lot of half eaten bait, so we believe he was having a feast!

Steller sea lion hooked in the mouth
Steller sea lion hooked in the mouth

Question of the Day 

Salt is essential for all life. However too much salt can be toxic. Animals have special ways of regulating the salt in their bodies. How does the shark regulate its salt? Define these terms associated with salinity and adaptations an animal makes to an environment: Isosmotic,  Hypoosmotic, and  Hyperosmotic.

Question of the trip: Which hook, the J or Circle, will catch more sharks?

Please make a hypothesis. Utilize resources to justify your hypothesis. ———Yes, you get extra credit for this.  

Elizabeth Eubanks, July 30, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 30, 2007

Weather Data from the Bridge  
Visibility: 10 miles
Air temperature: 20.0 degrees C
Sea Temperature at 1,000m: -No CTD test tonight
Sea Temperature at surface: 19.8 degrees C
Wind Direction: 270 W
Wind Speed:  11 kts
Cloud cover: Clear –very cloudy, stratus, cumulus
Sea Level Pressure: 1011.9 MB
Sea Wave Height: 2 ft
Swell Wave Height: <1 ft

Science and Technology Log 

Today as my early shift which means I was up and on deck by 5:45 am. The morning was beautiful. I got to clip the gangion with line, hook and bait onto the long line. This has the potential to be a very stressful job, if it is really windy or there are large waves. I have avoided this job, for fear I would get tangled and go over board or miss the long line and drop the baited line, miss the space to clip my gangion or get the alternating Circles and J’s messed up.  Lots to remember. But when Dr. Kohin asked me to do it, of course I said “sure”. And guess what nothing bad really happened. I didn’t wreck the whole survey or anything! The long line has little bolt like things on it with a space between where you are supposed to clip the gangion. It can be tricky to clip them on, because the long line is moving out past you to the sea. I did miss two, but it wasn’t a huge disaster. The circles got a little knotted in the basket so there was nothing that could be done about keeping those in order, it was more important to get bait on the hooks, but later we added a few extra circles to keep the data on target and even.

Gangion clip attached to 20 foot line with hook (Circle or J) and Pacific Mackerel bait.
Gangion clip attached to 20 foot line with hook (Circle or J) and Pacific Mackerel bait.

Funny, I actually found it to be my favorite job. It was exciting and challenging and keeps your attention. Of course it was a calm day so it wasn’t as stressful as it could’ve been. The hardest thing about clipping this morning was to resist running to get my camera. The sun magnificently peaked through the clouds as a bright pinkish red ball at 6:30 am . The ocean was alive with visible life as sea gulls circled, and dolphins and seals splashed in the water. I worked on de-meating shark jaws for a while, which is tedious but fun. Their teeth are so plentiful and sharp. Fours hours later we hauled the line and had four Mako Sharks. Not the best set, but not the worst either!

Heather Marshall, grad student from U Mass. of Dartmouth on the phone with her mother. Too bad she couldn’t talk to her boyfriend, but he had just boarded a research vessel studying northern shrimp out of Maine for Massachusetts.
Heather Marshall, grad student from U Mass. of Dartmouth on the phone with her mother. Too bad she couldn’t talk to her boyfriend, but he had just boarded a research vessel studying northern shrimp out of Maine

Personal Log 

We arrived near Avalon, which is on Santa Catalina Island, California at 3:30pm. As soon as we got close to it people started to pull out their cell phones. I have to admit that as wonderful and adorable that Avalon was the best part was talking to Rob, my mom, Jim, Bob and Sue.  Telephones are not a luxury that we have on this ship. I am sure I wasn’t the only one that felt this way, because every time I turned around either on the ship or on Avalon, people were on their phones. In fact even down to the last minute while the ship was pulling away from civilization, people were still making one last call to their loved ones.

“26 miles across the sea, Santa Catalina is a waiting for me” – old tune from the 50’s – Who is the artist? 

Santa Catalina Island is about 25 miles long and 26 miles off of the west coast of California. To get there from the mainland you take a Ferry from Long Beach, which is south west of Los Angeles. You need special permission to bring a car.  We were in a town called Avalon, it is located in the south eastern part of the island. The Wrigley’s, as in Wrigley’s gum family use to own a lot of the Island, but some years ago donated most of it to the state, the Nature Conservancy and to the University of Southern California. Many organizations such as the Boy Scouts use some of the areas and are allowed to continue providing they take care of it. Avalon was very popular back in the day. During the big band swing era in the 50’s musicians like Glenn Miller, Benny Goodman and Tommy Dorsey would come place at the Casino which is really a Ballroom. It is a quaint little town with electric cars, buses and golf carts driving all about. Rarely do you see a typical car. There are lots of shops and cute places to eat.

Harbor at Avalon, Santa Catalina Island, California. The former Wrigley house is the one that sits highest on the mountain in the photo.
Harbor at Avalon, Santa Catalina Island, California. The former Wrigley house is the one that sits highest on the mountain in the photo.

We were brought over to the island on Zodiacs, a small rubber watercraft and stayed for 2 or so hours. A group of us wandered around, while some swam and others ate. It was such an unexpected bonus and so nice to be in a town. About an hour or so after we arrived I was interviewing Charlie with my camcorder and as I looked at the screen I noticed I was rocking – okay so I felt like I was rocking! I didn’t expect this. When I told Ann Coleman who was an experienced scientist at sea, she said it was common and said the strangest would be when I get home and take a shower, especially when I close my eyes and when I go to bed.  I will see how that goes.

Question of the Day 

Why do you think it is important to throw the fish and the line overboard before you clip the gangion onto the long line?

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Elizabeth Eubanks, July 28, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 28, 2007

Weather Data from the Bridge   
Visibility: 10 miles
Air temperature: 19.0 degrees C
Sea Temperature at 5000m: 6 degrees C; Sea Temperature at surface: 20.3 degrees C
Wind Direction: 270 W
Wind Speed:  16 kts
Cloud cover: clear –some cumulus, cirrus
Sea Level Pressure: 1013.7 mb
Sea Wave Height: 1-2 ft
Swell Wave Height: 2 ft

Blue Shark with an evertted stomach.
Blue Shark with an evertted stomach.

Science and Technology Log 

The mortality (death) rate has spiked a little – very sad. We brought in a Blue shark last night that had evertted (thrown up) its stomach. Sometimes sharks do this when they eat something bad, like a hook. Most times they just suck it back up. It isn’t a common thing to happen and obviously it is a last extreme measure to feel better. It is probably dangerous to throw up your stomach when you have all of those teeth it needs to get passed to leave your mouth. When the scientists first saw the shark, they said it would be okay. We were all hopeful, but by the time it got on the ship it had died. Of course as always when there is a mortality, paper work is filled out and researchers use so much of the shark, so that is the good part.

Bedrooms on board the DAVID STARR JORDAN -mine is the bottom bunk
Bedrooms on board the DAVID STARR JORDAN -mine is the bottom bunk

Personal Log 

Simplify, Simplify. -Henry David Thoreau 

One “simplify” would have sufficed. Ralph Waldo Emerson, in response 

Life on this ship is simple. I have not looked in full length mirror since I boarded. Actually I haven’t seen myself too much below my chest even. Well, a couple of times in a photograph I saw my full body. Makeup, jewelry, matching clothing, high fashion, hats, they just aren’t important out here. In fact I did boycott the hats for a few days, because ever since I shaved my head I felt like I looked funny in a hat – like a boy. Oh well, too bad. It is so sunny out here so I need to wear my floppy hat to protect my skin. I need to wear Rob’s knit hat, because it gets equally as cold. My shirt sleeves smell fishy some of the time. But instead of washing the whole shirt, I was the sleeves. Quite often I sleep in the clothes – hat and all I wore all day if they aren’t dirty, because for some reason it is so chilly in my room. I live in the same clothes day after day if they don’t smell fishy. We eat what we are fed and get called to eat by an extremely loud bell. We sleep in small, simple bed. I washed a batch of clothes yesterday – sheets included. It all went in one load and took me about 5 minutes to put away.

We work at certain hours and relax or help out, read or wander about the ship, watching the ocean for creatures. We aren’t at the grocery store choosing what food to buy or shopping at a mall. We aren’t talking on the phone or watching a whole lot of TV, we do have to pick movies sometimes though (500 choices – now that is complicated).  Dovi, one of the Doctoral students did not take a shower or change his clothes until yesterday (mid trip). I didn’t get too close to him, but didn’t notice him smelling from a distance. Simple life. I imagine the most extravagant thing about living on this ship is the fancy food we get to eat and the huge choice of movies—and the no-brainer—being in contact with sharks. Of course I am definitely putting some time into my hobby – photography and boy have I got thousands of interesting shots. I like it. I can easily see how people make this life style a permanent one. The hardest thing about it is missing your family and I do miss Rob and Hooch! Now my goal is to bring parts of this life style with me when I return to land, that will be the challenge and goal!  How is your life simple and how is complicated?

Question of the Day 

Make a list of things that complicate your life. Make a list of things that simplify your life.

Question of the trip: Which hook, the J or Circle, will catch more sharks? 

Please make a hypothesis. Utilize resources to justify your hypothesis.  ———Yes, you get extra credit for this. 

Elizabeth Eubanks, July 27, 2007

NOAA Teacher at Sea
Elizabeth Eubanks
Onboard NOAA Ship David Starr Jordan
July 22 – August 3, 2007

Mission: Relative Shark Abundance Survey and J vs. Circle Hook Comparison
Geographical Area: Pacific Ocean, West of San Diego
Date: July 27, 2007

Weather Data from the Bridge  
Visibility: 8-10 miles
Air temperature: 17.0 degrees C
Sea Temperature at 350m: 7 degrees C
Sea Temperature at surface: 19.0 degrees C
Wind Direction: 290 W Wind Speed:  18 kts
Cloud cover: clear –some cumulus, cirrus
Sea Level Pressure: 1013.2 mb
Sea Wave Height: 2-3 ft
Swell Wave Height: 2-3 ft

Science and Technology Log 

“First, do no harm.” –Michael J. Zoghby RPT 

Today was so exciting. We caught a Mola mola, Ocean Sunfish, and 22 sharks.  Many of them were baby Blue sharks and although this team tries very hard to keep all of the sharks alive, some of them are so badly thrashed by the hook and/or line that they don’t make it. Yesterday was the first day that we had our first mortality (dead shark).  It was a baby Blue and the gills were just ripped out by the hook.  Sad, no one likes to see a dead shark. Everyone is out here to preserve them and keep them safe.

We caught many average size sharks and a few really large ones.  Watching the scientist work on the large animals has got to be one of the most thrilling things to see, especially when they have the extra challenge of wave swells coming across the platform, soaking them and giving the shark a chance to do what it does best… swim. As one of the grad students put it, the pictures and videos we have taken during these events are not ones you would want your mom to see, the mix of slippery platform, scalpel in hand, swell water pouring in and of course a HUGE SHARK, could be a deadly mixture. But safety comes first. They probably had the shark on the platform for a good 3-5 minutes. The Blue was using every bit of what it had to get off of the platform. It was so exciting that I had to video and take still shots. This shark would’ve been a great choice for the satellite tag because of its size, but they didn’t get a chance to that. They removed what they could of the hook, identified him as a male and struggled to hold him down. The Blue shark was estimated at 220cm. We never did get an actual measurement, because for one thing it appeared to be longer than the platform measuring tape and for another Dr. Kohin made a decision to “just let it go” and that is a direct quote. Safety comes first for shark and for people.