Debra Brice, November 20, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 20, 2003

Data from the Bridge
1.  201600Z Nov 03
2.  Position: LAT: 19-46.2’S, LONG: 085-32.5’W
3.  Course: On Station
4.  Speed: 0 Kts
5.  Distance: 0 NM
6.  Steaming Time:  0H 00M
7.  Station Time:  24H 00M
8.  Fuel: 1477 GAL
9.  Sky: OvrCst
10. Wind: 140-T, 12 Kts
11. Sea: 140-T, 2-3 Ft
12. Swell: 160-T, 3-5 Ft
13. Barometer: 1018.1 mb
14. Temperature: Air: 21.3 C, Sea 19.7 C
15. Equipment Status: NORMAL
16. Comments: On station in vicinity of WHOI buoy.

Science and Technology Log

We are still in the vicinity of the WHOI buoy and will stay here for 24 hours to check and compare the sensors on the Stratus 4, Stratus 3 and the ship.  We will then leave for the area of deployment of the Tsunami buoy.  We will do 2 CTD casts before leaving.

During our cruise we have been deploying radiosonde weather balloons and the ETL group has been collecting cloud data. I am going to give a brief description of the ETL Cloud Radar and Radiometer Package that they brought with them and are using to collect their data. Clouds play vitally important roles in climate and and water resources by virtue of their ability to transform radiant energy and water phase in the atmosphere.  NOAA?ETL uses microwave and infrared radiometers for ground based cloud observations. ETL designed and is using the Millimeter-wave Cloud Radar (MMCR).  These radars are intended to operate in remote locations and for field experiments.  The radar is joined in a sea container by a dual- channel microwave radiometer (MWR) and a narrow-band infrared radiometer IRR).  Simultaneous data from these instruments provide the input for retrieving microphysical features of the overlying tropospheric clouds.

Instrument Package Characteristics:

Cloud Radar: Ultra high sensitivity, doppler
Primary uses: vertical profiles of clouds. drizzle, snow and very light rain

Microwave Radiometer:
Primary uses: Monitoring vertical water vapor path and liquid water path.

IR Radiometer:
Primary uses: Sensing presense of cloud overhead, estimating base temp. of optically thick clouds.

Collectively, the instruments are called the MMCR Package. Each observes the senith and does not scan, hence, the system is a vertical profiler. This is the second time that ETL has come out with the Stratus Project and it is hoped that through additional funding it will become a permanent partner in this long term study.  ETL is doing these measurements and calibrations not only to verify some of the meteorological data collected from the sensors on the WHOI buoy, but also to do profiles on the cloud structures of the stratus clouds in this area to campare the data to the mathematical models.  They are also using the data to compare and calibrate the mean and the flux calculations used in the Stratus project.  ETL came out during the second year of the Stratus project to do a similar survey.

Personal Log

The WHOI science group are doing their calibrations and measurements all day and the ETL group continues to collect data.  PMEL/NOAA is waiting to deply their buoy at the next site.  The weather is beautiful, warm, sunny, some clouds (stratus!) I am doing a lot of reading and talking with different science groups and crew members to prepare for interviews.  Tonight we will be interviewing the ETL group about their cloud studies. E-mail will be sporadic from now on as we will be on heading that will not allow us satellite communication.  We will turn for 30 minutes once a day to send out and receive e-mail. Tomorrow and the day after will be travel days to the Tsunami deployment site.We still have a couple of boobies following us….obviously hopeful that we will toss out another floating cafeteria for them.  Learning a great deal about how these large oceanographic research vessels run.  They are all owned by different facilities but they are assigned by one entity that schedules all of the science cruises for best efficiency of the vessels.  The scheduling entity is UNOLS.  So a Scripps scientist could be schedules to go out on a Woods Hole vessel one year and a NOAA vessel the next based on the science needs for size, equipment and location.  This means that for example the REVELLE came into its home port of San Diego in September and picked up a science group; did their leg, dropped them off in Manta, Equador, where we met them and loaded equipment for our project and left.  We will arrive in Arica, disembark, ship the equipment back to its various labs and the new science party will board and leave for their project.  This will continue until sometime in April until REVELLE briefly returns to San Diego, where it will pick up another science party and go out again.  It may only come into San Diego two or three times a year.  These ships are almost constantly out working and the crews fly in and out of various ports to meet the ships and change crews.

Hasta Luego

 

Leave a Reply

Discover more from NOAA Teacher at Sea Blog

Subscribe now to keep reading and get access to the full archive.

Continue reading