Tom Savage: What is Life Like aboard the Fairweather? August 17, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

 

 

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 17, 2018

Weather Data from the Bridge

Latitude  64   42.8 N
Longitude – 171  16.8  W
Air temperature: 6.2 C
Dry bulb   6.2 C
Wet bulb  6.1 C
Visibility: 0 Nautical Miles
Wind speed: 26 knots
Wind direction: east
Barometer: 1000.4  millibars
Cloud Height: 0 K feet
Waves: 4 feet

Sunrise: 6:33 am
Sunset: 11:45 pm

 

Personal Log

I was asked yesterday by one of my students what life is like aboard the NOAA Ship Fairweather?  So I thought I would dedicate this entry to address this and some of the other commonly asked questions from my students.

Life on board the ship is best described as a working village and everyone on board has many specific jobs to ensure the success of its mission; check my “Meet the Crew” blog.  The ship operates in a twenty four hour schedule with the officers rotating shifts and responsibilities. When the ship is collecting ocean floor data, the hydrographers will work rotating shifts 24 hours a day. With so much happening at once on a working research vessel, prevention of incidents is priority which leads to the ship’s success. A safety department head meeting is held daily by the XO (executive officer of the ship) to review any safety issues.

During times when the weather is not conducive for data collection, special training sessions are held. For instance, a few days ago, the officers conducted man over board drills.  Here, NOAA Officers practice navigating the ship and coordinating with deck hands to successfully rescue the victim; in this case it’s the ship’s mascot, “Oscar.”

(Fun fact:  at sea, ships use signal flags to communicate messages back and forth [obviously, this was more prevalent before the advent of radio].  For example:  the “A” or “Alpha” flag means divers are working under the surface; the “B” or “Bravo” flag means I am taking on dangerous cargo [i.e. fueling]; and the “O” flag means I have a man overboard.  The phonetic name for “O” is, you guessed it, “Oscar” … hence the name.  You can read about other messages here: https://en.wikipedia.org/wiki/International_maritime_signal_flags).

Precision and speed is the goal and it is not easy when the officer is maneuvering 1,591 tons of steel;  the best time was 6:24. This takes a lot skill, practice and the ability to communicate effectively to the many crew members on the bridge, stern (back of boat), and the breezeways on both port and starboard sides of the ship.  Navigating the ship becomes even more challenging when fog rolls in as the officers rely on their navigation instruments. Training can also come in the form of good entertainment. With expired rescue flares and smoke grenades, the whole crew practiced firing flares and activating the smoke canisters.  These devices are used to send distress signals in the event of a major ship emergency. I had the opportunity of firing one of the flares !

 

Flares

Practicing the release of emergency smoke canisters ~ photo by Tom Savage

 

What are the working conditions like on board? 

At sea, the working environment constantly changes due to the weather and the current state of the seas. Being flexible and adaptive is important and jobs and tasks for the day often change Yesterday, we experienced the first rough day at sea with wave heights close to ten feet.  Walking up a flight of stairs takes a bit more dexterity and getting used to.  At times the floor beneath will become not trustworthy, and the walls become your support in preventing accidents.

NavigatingFog

View from the Bridge in fog. ~ photo by Tom Savage

 

Where do you sleep? 

Each crew member is assigned a stateroom and some are shared quarters. Each stateroom has the comforts from home a bed, desk, head (bathroom & shower) sink and a port hole (window) in most cases. The most challenging component of sleeping is sunlight, it does not set until 11:30 pm. No worries, the “port holes” have a metal plate that can be lowered. It is definitely interesting looking through the window when the seas are rough and watching the waves spin by.  Seabirds will occasionally fly by late at night and I wonder why are they so far out to sea ?

Stateroom

My stateroom – photo by Tom

Generally, when sharing a stateroom,  roommates will have different working shifts.

Meals are served in the galley and it is amazing! It is prepared daily by our Chief Steward Tyrone; he worked for the Navy for 20 years and comes with a lot of skills and talents !  When asking the crew what they enjoy the most on board the ship, a lot of them mention the great food and not having to cook.

Fairweather's Galley

Fairweather’s Galley ~ photo by Tom

 

Are there any activities? 

Keeping in good physical shape aboard any vessel out at sea is important. The Fairweather has a gym that can be used 24 hours a day. The gym has treadmills, elliptical, weights and a stair climber.

ExerciseRoom

The exercise room – photo by Tom

 

There is the lounge where movies are shown in the evening. Interestingly, the seats glide with the motions of the waves. Meetings are also held here daily, mostly safety briefings.

The lounge

The lounge

 

What are the working hours like?

During any cruise with NOAA, there is always things that come up that were not planned, staff and schedules are adjusted accordingly. On this leg of the trip during our transit back to Kodiak Island, we stopped by Nome, Alaska, to pick up a scientist from NOAA’s Pacific Marine Environmental Lab PMEL office.  One of their research buoys separated from its mooring and went adrift in the Bering Sea (it drifted over 100 miles before we were able to catch up to it.  The Fairweather was dispatched to collect and store the buoy aboard, after which it will eventually be returned to PMEL’s lab in Seattle Washington.

 

Buoy Retrieval

Retrieval of NOAA’s PMEL (Pacific Marine Environmental Lab) buoy. photo by NOAA

 

The place with the most noise is definitely the engine room.  Here, two sixteen piston engines built by General Motors powers the ship;  the same engine power in one train engine ! It is extremely difficult to navigate in the engine room as there is so many valves, pipes, pumps, switches and wires.  Did I mention that it is very warm in the room; according to the chief engineer, Tommy, to maintain a healthy engine is to ensure that the engine is constantly warm even during times when the ship is docked.

Tom in Engine Room

Navigating the engine room …… I did not push any buttons, promise! Photo by Kyle

 

Until next time,  happy sailing !

~ Tom

Roy Moffitt: Moorings All Day, August 12, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 12, 2018

 

Current location/conditions: mid day August 12  Northwest of Icy Point Alaska

Air temp 34F, sea depth 43 m , surface sea water temp 43F

 

Moorings all day

Moorings are essentially anything left tied to an anchor at sea. In this case, moorings hold many different types of scientific instruments that have been anchored at sea for a year. We are only here in the Arctic for a couple weeks. In order to monitor the ocean when people are not here, many different kinds of underwater instruments that have been designed to record ocean conditions are left under the ocean attached to moorings.  To service these moorings they must be retrieved. This is one of the main tasks of this trip.  When we arrive at a mooring station, one would not know it as the mooring is underneath the ocean, hidden from sight.  A audio signal is sent to the underwater release and a buoy (a large yellow float) is deployed. Then, the Coast Guard steps into action.  This picture below shows a Coast Guard crew fishing for a buoy in a not-so-calm sea.  When they hook the buoy they will tie it to a rope that is hooked into the Healy‘s on board winch.  The winch will pull in the buoy as the rope is wrapped around a turning spool.

Moffitt_Mooring Retrieval_small

The Coast Guard crew fish for a buoy in a not-so-calm sea

When the buoys and attached instruments come out of the ocean they can be covered with sea life, such as barnacles which you may be able to see as small white shell looking creatures in the picture below. The buoy in the picture is mostly covered in bryozoans.  Although it looks like seaweed, bryozoans are not plants, but tiny sea filtering animals chained together.  Either way it has got to go.  This was my job today.  I washed all the buoys and cleaned the instruments.  For the sensitive parts on the instruments, this meant using a sponge and toothbrush. For the rest of the instrument, I used a power washer.

Mooring retrieved from the ocean

A mooring retrieved from the ocean, covered in marine life – mainly bryozoans.

 

cleaned instrument

A close-up of the mooring instrument, post-cleaning

Once this instrument is in the science lab, the sound recorder (as mentioned in the August 8th blog post) was taken apart and thoroughly cleaned.  It will be reused at another station during this trip if all is functioning well.  In the next picture, this equipment is now shown cleaned and sitting in the lab. Much of the cleaning was done with toothbrushes and a wire brush.  So another important role for a scientist is spending a lot of time cleaning equipment! Not exactly glorious!

 

The Mustang Suit

In my life, I have power washed many things, but aboard the Healy in the Arctic, for safety reasons, I have to wear a Mustang suit.  Essentially the Mustang is an oversized orange snowsuit designed to save a life if anyone falls overboard into the near freezing Arctic waters.  It has a light beacon and a whistle attached for rescuers to find you and it is designed to keep body heat in for a longer amount of time than plain clothes.  This is to try to keep anyone from immediately getting hypothermia and hopefully provide the additional few minutes it would take to rescue a man overboard.  I prefer to call the Mustang a big fluffy orange sweat suit– even though it was 34 degrees out I was sweating in it!

NH dudes

Teacher at Sea Roy Moffitt (left) and UNH researcher Anthony Lyons (right) wearing Mustang Suits

Here I am, in this picture, looking like an orange Pillsbury doughboy with fellow New Hampshire resident Anthony Lyons.  Anthony is from the University of New Hampshire (UNH) and is a Research Professor at the Center for Coastal and Ocean Mapping, School of Marine Science and Ocean Engineering. Anthony is retrieving and deploying moorings with passive acoustic devices that record animal sounds and rain from under the ice. The instruments also measure the density of plankton and fish in the water, both food sources for marine animals.  With data over time, changes in density of these populations with changes of ice cover can be found.

 

Today’s Wildlife Sightings

Sometimes life clings on to the moorings.  These basking starfish were attached to a mooring we pulled in yesterday.  Then, the next picture is an Anemone curled up in a ball that was also attached to another mooring.

  

Now and Looking Forward

Air temperature has dropped to 34 degrees F, and although the surface sea temperature is 43, lower in the water column the temperatures are actually near or below freezing. It looks like we may see some pieces of ice as soon as next mooring stations tomorrow.  Those changing conditions will have to be monitored for mooring retrieval, as a buoy cannot pop up through ice!

Samantha Adams: Day 8 – My, What a Fabulous Smell You’ve Discovered, July 31, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Monday, 31 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o45’N, 157o45’ oW. Ship speed: 0.8 knots. Air temperature: 27.9oC. Sea temperature: 27.3oC. Humidity: 72%.Wind speed: 11.2 knots. Wind direction: 93 degrees. Sky cover: Few.

Science and Technology Log:

blog.5.Day8.image1

The WHOTS-13 buoy after a year at sea. These three red-footed boobies will lose their perch soon!

It’s deja vu all over again! The WHOTS-14 buoy is stable and transmitting data, and all the in situ measurements necessary to verify the accuracy of that data have been taken. Now it’s time to go get the WHOTS-13 buoy, and bring it home.

WHOTS-13 Buoy Diagram

Diagram of the WHOTS-13 mooring. Image courtesy of the University of Hawaii.

The process of retrieving the WHOTS-13 buoy is essentially the same as deploying the WHOTS-14 buoy — except in reverse, and a lot more slimy. Take a look at the diagram of the WHOTS-13 buoy (to the left), and you’ll notice that it looks almost identical to the WHOTS-14 buoy. Aside from a few minor changes from year to year, the configuration of the buoys remains essentially the same… so the three and a half miles of stuff that went into the ocean on Thursday? The same amount has all got to come back up.

At 6:38AM HAST, a signal was sent from the ship to the acoustic releases on the WHOTS-13 buoy’s anchor. After a year under three miles of water, the mooring line is on its way back to the surface!

 

 

This slideshow requires JavaScript.

From the time the signal was sent to the acoustic releases on the anchor to last instrument coming back on board, recovering the WHOTS-13 buoy took 9 hours and 53 minutes.

Personal Log:

Now that I have witnessed (and participated in, however briefly) both a buoy deployment and retrieval, one of the things that impressed me the most was how well coordinated everything was, and how smoothly everything went. Both deployment and retrieval were reviewed multiple times, from short overviews at daily briefings (an afternoon meeting involving the ship’s officers, crew and the science team) to extensive hour long “walk throughs” the day before the main event. Consequently, everyone knew exactly what they were supposed to be doing, and where and when they were supposed to be doing it — which lead to minimal discussion, confusion and (I assume) stress. Each operation ran like a well choreographed dance; even when something unexpected happened (like the glass ball exploding on deck during deployment of the WHOTS-14 buoy), since everybody knew what the next step was supposed to be, there was always space to pause and work through the problem. Communication is most definitely key!

The other thing that really made an impression was how much emphasis was placed on taking breaks and drinking enough water. It was hot, humid and sunny during both deployment and recovery, and since Hi’ialakai had to be pointed directly into the wind during the operations, there was virtually no wind on the working deck at all. I’ve always thought as the ocean as a place you go to cool off, but, at least for these few days, it’s been anything but! With apologies to Coleridge: “Water, water, everywhere, nor any place to swim!”

Did You Know?

blog.5.Day8.image17

A tangled mess of anything can be called a wuzzle. For example: “I don’t know how my headphones got into such a wuzzle.” The mess of glass balls on the deck is most definitely a wuzzle.

Samantha Adams: Day 6 – Testing… 1 – 2 – 3, July 29, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Saturday, 29 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o 45’N, 157o 56’W. Ship speed: 1.3 knots. Air temperature: 27.8oC. Sea temperature: 27.0oC. Humidity: 72%.Wind speed: 14 knots. Wind direction: 107 degrees. Sky cover: Few.

Science and Technology Log:

The most difficult part of Thursday’s buoy deployment was making sure the anchor was dropped on target. Throughout the day, shifting winds and currents kept pushing the ship away from the anchor’s target location. There was constant communication between the ship’s crew and the science team, correcting for this, but while everyone thought we were close when the anchor was dropped, nobody knew for sure until the anchor’s actual location had been surveyed.

blog.4.Day6.image1

Triangulation of the WHOTS-14 buoy’s anchor location. Look at how close the ‘Anchor at Depth’ location is to the ‘Target’ location — only 177.7 meters apart! Also notice that all three circles intersect at one point, meaning that the triangulated location of the anchor is quite accurate.

To survey the anchor site, the ship “pinged” (sent a signal to) the acoustic releases on the buoy’s mooring line from three separate locations around the area where the anchor was dropped. This determines the distance from the ship to the anchor — or, more accurately, the distance from the ship to the acoustic releases. When all three distances are plotted (see the map above), the exact location of the buoy’s anchor can be determined. Success! The buoy’s anchor is 177.7 meters away from the target location — closer to the intended target than any other WHOTS deployment has gotten.


After deployment on Thursday, and all day Friday, the Hi’ialakai stayed “on station” about a quarter of a nautical mile downwind of the WHOTS-14 buoy, in order to verify that the instruments on the buoy were making accurate measurements. Because both meteorological and oceanographic measurements are being made, the buoy’s data must be verified by two different methods.

Weather data from the buoy (air temperature, relative humidity, wind speed, etc.) is verified using measurements from the Hi’ialakai’s own weather station and a separate set of instruments from NOAA’s Environmental Sciences Research Laboratory. This process is relatively simple, only requiring a few quick mouse clicks (to download the data), a flashdrive (to transfer the data), and a “please” and “thank you”.

blog.4.Day6.image2

July 28, 2017, 5:58PM HAST. Preparing the rosette for a CDT cast. Notice that the grey sampling bottles are open. If you look closely, you can see clear plastic “wire” running from the top of the sampling bottles to the center of the rosette. The wires are fastened on hooks which, when triggered by the computer in the lab, flip up, releasing the wire and closing the sampling bottle.

Salinity, temperature and depth measurements (from the MicroCats on the mooring line), on the other hand, are much more difficult to verify. In order to get the necessary “in situ” oceanographic data (from measurements made close to the buoy), the water must be sampled directly. This is done buy doing something called a CTD cast — in this case, a specific type called a yo-yo. 

The contraption in the picture to the left is called a rosette. It consists of a PCV pipe frame, several grey sampling bottles around the outside of the frame, and multiple sets of instruments in the center (one primary and one backup) for each measurement being made.

blog.4.Day6.image3

July 28, 2017, 6:21PM HAST. On station at WHOTS-14, about halfway through a CDT cast (which typically take an hour). The cable that raises and lowers the rosette is running through the pulley in the upper right hand corner of the photo. The buoy is just visible in the distance, under the yellow arm.

The rosette is hooked to a stainless steel cable, hoisted over the side of the ship, and lowered into the water. Cable is cast (run out) until the rosette reaches a certain depth — which can be anything, really, depending on what measurements need to be made. For most of the verification measurements, this depth has been 250 meters. Then, the rosette is hauled up to the surface. And lowered back down. And raised up to the surface. And lowered back down. It’s easy to see why it’s called a yo-yo! (CDT casts that go deeper — thousands of meters instead of hundreds — only go down and up once.)

For the verification process, the rosette is raised and lowered five times, with the instruments continuously measuring temperature, salinity and depth. On the final trip back to the surface, the sampling bottles are closed remotely, one at a time, at specific depths, by a computer in the ship’s lab. (The sampling depths are determined during the cast, by identifying points of interest in the data. Typically, water is sampled at the lowest point of the cast and five meters below the surface, as well as where the salinity and oxygen content of the water is at its lowest.) Then, the rosette is hauled back on board, and water from the sampling bottles is emptied into smaller glass bottles, to be taken back to shore and more closely analyzed.

On this research cruise, the yo-yos are being done by scientists and student researchers from the University of Hawaii, who routinely work at the ALOHA site (where the WHOTS buoys are anchored). The yoyos are done at regular intervals throughout the day, with the first cast beginning at about 6AM HAST and the final one wrapping up at about midnight.

blog.4.Day6.image4

July 29, 2017, 9:43AM HAST. On station at WHOTS-13. One CDT cast has already been completed; another is scheduled to begin in about 15 minutes.

After the final yo-yo was complete at the WHOTS-14 buoy early Saturday morning, the Hi’ialakai traveled to the WHOTS-13 buoy. Today and tomorrow (Sunday), more in situ meteorological and oceanographic verification measurements will be made at the WHOTS-13 site. All of this — the meteorological measurements, the yo-yos, the days rocking back and forth on the ocean swell — must happen in order to make sure that the data being recorded is consistent from one buoy to the next. If this is the case, then it’s a good bet that any trends or changes in the data are real — caused by the environmental conditions — rather than differences in the instruments themselves.

Personal Log:

blog.4.Day6.image5

The Hi’ialakai’s dry lab. Everyone is wearing either a sweatshirt or a jacket… are we sure this is Hawaii?

Most of the science team’s time is divided between the Hi’ialakai’s deck and the labs (there are two; one wet, and one dry).  The wet lab contains stainless steel sinks, countertops, and an industrial freezer; on research cruises that focus on marine biology, samples can be stored there. Since the only samples being collected on this cruise are water, which don’t need to be frozen, the freezer was turned off before we left port, and turned into additional storage space.  The dry lab (shown in the picture above) is essentially open office space, in use nearly 24 hours a day. The labs, like most living areas on the ship, are quite well air conditioned. It may be hot and humid outside, but inside, hoodies and hot coffee are both at a premium!

Did You Know?

The acronym “CTD” stands for conductivity, temperature and depth. But the MicroCats on the buoy mooring lines and the CTD casts are supposed to measure salinity, temperature and depth… so where does conductivity come in? It turns out that the salinity of the water can’t be measured directly — but conductivity of the water can.

When salt is dissolved into water, it breaks into ions, which have positive and negative charges. In order to determine salinity, an instrument measuring conductivity will pass a small electrical current between two electrodes (conductors), and the voltage on either side of the electrodes is measured. Ions facilitate the flow of the electrical current through the water. Therefore conductivity, with the temperature of the water taken into account, can be used to determine the salinity.

Samantha Adams: Day 1 – Things You Never Think About, July 24, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Monday 24 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 21o22’N, 157o57’ W. Ship speed: 0 knots. Air temperature: 82oF. Humidity: 74%.Wind speed: 8 knots. Wind direction: East-South-East. Sky cover: Broken.

Science and Technology Log:

One of the first things you learn to do as a teacher is to plan for things to go wrong. When you put a lesson together, you try to identify potential problem areas, and then try to figure out how you could address those problems when they do arise, or try to avoid them altogether. One of the next things that you learn is that the biggest problem is invariably going to be something you never anticipated being a problem at all. Deploying a research buoy, it turns out, works essentially the same way.

Bird Wire

WHOTS stations are massive, self-contained buoys, designed to stay at sea for up to eighteen months, collecting data the entire time. There are redundant systems on top of redundant systems. Multiple meteorological instruments, measuring exactly the same thing, sprout from the buoy’s tower like misshapen mushrooms. If one instrument fails, there is always another — to ensure that, no matter what, the data is collected. And surrounding it all, like the spines of a porcupine, is the bird wire.

Anything that floats on the ocean winds can be a perch for birds, and the WHOTS buoys are no exception. I’ve been told that after a year at sea, the buoy is absolutely disgusting. I’ve seen some of the mess New York City pigeons can create, and I’m willing to bet that what I’m imagining cannot even come close. I’ll find out for myself later this week, when we retrieve the WHOTS buoy that was deployed last year! 

Ick factor aside, birds (and their waste products) pose a real danger to the instruments on the buoy’s tower. If something is pecked or perched on or — use your imagination — otherwise damaged, the instruments may record corrupted data, or no data at all. Which is why there are redundant systems, and why Monday morning was spent making the buoy look like a porcupine. But wait! There’s more! It turns out all bird wire is not created equal. All of the spikes are made of stainless steel, but the spikes can be mounted on different things. Bird wire with a stainless steel base is more effective at repelling birds (because the spikes are closer together)… but the spikes have to be welded into the base, which magnetizes the bird wire. And if this wire is placed the instruments, it can affect their internal compasses and, in turn affect the data the bird wire is intended to protect! Bird wire with a plastic base is less effective (because the spikes are further apart), but much safer for the buoy’s instruments.

This slideshow requires JavaScript.

Cayenne Pepper, Copper and Things Covered in Tape

The tower of the WHOTS buoy isn’t the only thing that is absolutely disgusting after spending a year at sea. Everything that spends the year below the surface of the ocean (which will be described in a post later this week) comes back absolutely disgusting, too. And it’s not as though it can all just be thrown away. Of particular importance are the instruments attached under the buoy and about every 10 meters (down to 150 meters) along the buoy’s mooring line. All of these instruments must be returned to the manufacturer for calibration (to make sure they were working properly). But there’s a catch — they must be returned clean! Which means that everything that has been growing on them while they’ve been under water must be scrubbed, scraped or peeled off. To make the job easier, the search is always on for ways to keep things from growing on the instruments in the first place. This is called antifouling.

One antifouling method is painting. There are specialized antifouling paints available, but they can be toxic. So the paint that covers the exterior of the buoy contains cayenne pepper (!), which has proven to be as effective as specialized paint, but is much safer. Another antifouling method used on many of the instruments under the buoy involves replacing some stainless steel components with specially made copper ones, as copper also naturally impedes growth. And a third method that’s very popular is simply to cover the instruments with a layer of electrical tape, which can just be peeled off — no scrubbing or scraping involved!

blog.2.Day1.image4

MicroCats covered in black electrical tape. Notice the bracket on the top of each instrument — they are custom-made, out of copper, to make the cleaning process that much easier when the buoy is retrieved next summer.

blog.2.Day1.image5

Instruments on the bottom of the buoy. Once deployed, these instruments will be approximately three feet under water, which is why so much copper is used.

Personal Log:

blog.2.Day1.image3

“You’re lucky you weren’t here when we had to load for three months!”

Throughout the day, refrigerated trucks pulled up on the dock next to the Hi’ialakai. They were not full of delicate scientific instrumentation, but something just as vitally important to the cruise — food! The same crane that had been used to hoist instruments on board was also used to carry pallets of food from the dock to the deck of the ship. Then it was passed from hand to hand (by members of the ship’s crew, the science team, the ship’s officers, and the Teacher at Sea) all the way down to the galley’s refrigerators and freezers. The ice cream was handled with particular care — no surprise there!

 

 

Did You Know?

Woods Hole Oceanographic Institution’s acronym — WHOI — has a pronunciation! You can say it like “hooey”. Or “whoo-ey!” It means the same thing either way!

DJ Kast, Pre-Cruise, May 18, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 18, 2015 (Pre-cruise)

Personal Log

Chris Melrose picked me up from the hotel and really helped me get a grasp of life aboard a research vessel. I learned all about Narragansett Bay and the lab here in Rhode Island.

I then met Jerry Prezioso, the Chief Scientist for the voyage, who gave me a great tour of the Narragansett Bay Lab. I learned what an XBT (expendable bathythermograph) was and how it measures temperature at various depths.

XBT  Photo by: DJ Kast

XBT
Photo by: DJ Kast

 

I learned how a Niskin bottle works and how many Niskin bottles lined up in a circle to make a piece of equipment called a rosette. The Niskin bottle is like a hollow tube with a mechanism that closes the tube at a specific depth that will then bring a water sample indicative of that depth. They apparently cost $400 each.  I am already making plans on how to make a DYI one for the classroom.

Niskin Bottle Photo by: DJ Kast

Niskin Bottle
Photo by: DJ Kast

This is a Rosette with 12 niskin bottles. Photo by: DJ Kast

This is a Rosette with 12 niskin bottles. Photo by: DJ Kast

With Jerry, I also met Ruth Briggs who works for the Narragansett Bay Apex Predators division and she showed me the shark tags that she has citizen scientists put onto sharks on the base of their dorsal (top) fin that they catch. When the sharks are caught again, the information she requests is sent back to her and includes species, size, sex, location to shore, and weight. She even let me borrow a decommissioned tag to show to my students in California.

Decommissioned shark tag from the Narragansett Bay Apex Predators Division Photo by: DJ Kast

Decommissioned shark tag from the Narragansett Bay Apex Predators Division
Photo by: DJ Kast

 

I saw a drifter buoy that I will be decorating with all of my programs (USC, JEP, YSP and NAI) logos.

Jerry also sent me the map of all the stations that we will be visiting on our ship and at each station we are projected to measure salinity, depth, temperature, nutrients and plankton! I am so excited! We are expected to go as far south as North Carolina and as far north as the Bay of Fundy in Canada (International Waters!!!).

TAS and the NOAA Ship Arrival

My stateroom is amazing! My roommate and I even have our own head (bathroom) in our room with sink, shower and all. There are two beds in a bunk bed format, and since I showed up about 6 hours before the other scientists I chose the bottom bunk and the cabinet I wanted for my stuff. I unpacked (and gladly didn’t over pack) and managed to fit it all in the closet that was given to us. I feel so fortunate to have such amazing accommodations like this.

Important People who Keep the Ship Afloat and on Course

Today I met the Operations Officer, Laura, who showed me the ropes and introduced me to people on the ship at dinner at the bowling alley on the naval base here in Newport, RI. She also showed me the buoy yard filled with lots of different buoys that indicate different paths of travel and safe/unsafe waters for ships coming into port.

I entered a yard of buoys on the Newport Naval Base and here I am for a size comparison. They are HUGE!

I entered a yard of buoys on the Newport Naval Base and here I am for a size comparison. They are HUGE!

Here is a look at what happens when  a buoy is freshly painted and when its being fouled by marine organisms and algae (RUST!) Photo by: DJ Kast

Here is a look at what happens when a buoy is freshly painted and when its being fouled by marine organisms and algae (RUST!) Photo by: DJ Kast

 

Important Ship Personnel
CO: Commanding Officer
XO: Executive Officer
CME: Chief Marine Officer
OO or Ops: Operations Officer= Laura
NO: Navigational Officer or Nav= Eric
CB: Chief Boson or Deck Boss= Adrian
AB: Able Seaman or a Deckhand = Roger

Meal Schedule
I also learned about food times (Very important).
7AM- 8 AM or 0700-0800 hours= Breakfast
11- 12 PM or 1100-1200 hours= Lunch
5- 6 PM or 1700-1800 hours = Dinner

Roommate in Stateroom 2-22

 

DJ Kast on the Gateway Photo by: DJ Kast

DJ Kast on the Gangway
Photo by: DJ Kast

Here I am boarding the NOAA Henry B. Bigelow Photo by: DJ Kast

Here I am boarding the NOAA Henry B. Bigelow
Photo by: DJ Kast

 

I met my amazing roommate Megan and she is a master’s student at the University of Maine. We will sadly have opposite schedules for most of the trip because I will be on the 12 PM- 12 AM shift and she will be on the 12 AM- 12 PM shift. We have a lot of things in common including our love of the ocean, geology and Harry Potter. She will be looking at dissolved nutrients in the water and she will be monitoring the instruments that measure conductivity, temperature and depth or (CTD) and requesting water samples while at various stations.

Sue Zupko, Getting Ready: Is it a Go? September 4, 2014

NOAA Teacher at Sea
Sue Zupko
(soon to be) Aboard NOAA Ship Henry Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Survey Leg I
Geographical area of cruise:  Cape May, NJ to Cape Hatteras, NC
Date: September 4, 2014

Personal Log

I am a teacher of the Gifted and Talented at Weatherly Heights Elementary School in Huntsville, AL.  I am so very humbled by the opportunity I have been given to conduct research aboard the Henry B. Bigelow with NOAA scientists.  This is my second NOAA cruise.  I studied deep-water corals aboard the Pisces in 2011 and thought it was my only chance to do something like that.  They told me if I did all my homework, and did all my projects well, that good things would come my way.  I say that to my students and this is an example of why one should do one’s homework and try hard.   You’d better believe that I did my best.  I love to learn so a NOAA research cruise and projects with my students are a perfect fit.

Sue in sweatshirt looking up from microscope. Diego in the background.

Me on the Pisces, It was cold in this lab.

In preparing for my first entry I asked my students for advice on what to include.  They insisted that I include a “shout out” to them and tell how fabulous our school is.

Here are a few highlights.  Weatherly has been recycling aluminum cans to help pay for our outdoor classroom since 1998 when I helped write a grant to get a trailer to collect cans and take them to the recycling center.  We have made thousands of dollars through the years and have an Alabama Certified Outdoor Classroom now.  Students, parents, faculty, and community volunteers help with it and enjoy learning there.  We have raised Monarch butterfly larvae, viewed Ladybug larvae under a microscope from the Tulip Poplar tree, grown melons, touched plants in the sensory garden, and myriad other activities.

We piloted a recycling program for our district.  Every classroom has a bin to collect clean paper and plastic.  It is collected weekly and tons of items have been recycled as a result.

We participate in a plastic bottle cap recycling program.  This is an annual contest city-wide and Weatherly counts and recycles thousands of caps to be made into paint buckets rather than taking up room in the landfill.  For many years we recycled phone books and were one of the top three recyclers.

In addition to helping the environment, we are a No Place for Hate school.  We also study about the ocean.  A lot.  I am the faculty advisor for our morning announcements.  Our quotes of the week this year are about the ocean and we highlight an ocean literacy principle  every day.  We now know that marine biologist Sylvia Earle pointed out that “With every drop of water you drink, every breath you take, you’re connected to the sea. No matter where on Earth you live. Most of the oxygen in the atmosphere is generated by the sea.”

On my upcoming voyage with NOAA, I will launch two drifters.  In order to be selected for this drifter project, a teacher must have an international partner to share lessons with to learn about the ocean.  After an extensive search I found the perfect match.  Sarah Hills at the TED Istanbul College teaches English.  Her students will be studying map reading starting in September when they return to school.  We have already decided that our students will plot the course of the drifters and hypothesize where they will be at specific times based on the ocean currents and winds which will carry them.

This slideshow requires JavaScript.

 

These drifters measure ocean salinity, surface water temperature, velocities (speeds) of the current, and air pressure and are important for understanding more about our weather and the ocean.  I can’t wait to get our students communicating.  Weatherly’s school theme is “A Village of Learners and Leaders.”  Outside my classroom on the bulletin board are some wonderful items from Turkey provided by Mrs. Hills and it says, “A Global Village of Learners and Leaders.”  In preparation for tracking our drifters, we are currently tracking former hurricanes and researching how the ocean changes our planet.  On their exit ticket today, my 5th graders commented that they liked tracking the hurricanes since they will use the same technique to track my journey and the drifters.

I am so excited.  I have spoken with the Chief Scientist, John Galbraith, and understand that I will be working side-by-side with scientists on this fisheries cruise.  We will drop a trawl net behind our 209 foot long ship and catch marine creatures.  Our job will be to sort the fish (and other marine animals) and learn more about them using measurements and other means such as dissection.  Computers play a role in our study and my first assignment will be to collect data in the computer.  Wonder what program I will use, and is it similar to Excel which we use a lot?

I asked my fourth graders if they thought I might see a whale.  They all responded yes in that group.  What do you think?

Teachers at Sea need to be flexible, have fortitude, and follow orders.  Let me explain.  Right now I am waiting to see if my ship will even sail.  The engineers have found a problem and are working to make the ship seaworthy for our voyage.  Already our cruise date has changed twice.  I must be flexible and be ready to leave on a moment’s notice.  There are always some changes, it seems, when dealing with the ocean.  On my last cruise a tropical depression (storm) formed over us and we couldn’t begin our research for an extra day.

Sailing is not for the faint of heart.  I must be able to work long hours in uncomfortable conditions (they say this is having fortitude).  They do supply my “foul weather” gear.  Wonder if I will smell like fish at the end of my shift.

One handy piece of equipment I will take is ear plugs.  The engines are loud and that helps when it is time to sleep.  My shift will be either from midnight to noon or noon to midnight.  That’s a long time to work.  If we have a good catch, we will be working a lot.  That is good for weight loss, as long as I don’t overdo with the fabulous food prepared by the stewards (cooks) in the galley (kitchen).

I was in the U.S. Army years ago and learned to follow orders, the third of the 3Fs.  There are NOAA officers whose orders I must follow for my safety and the safety of the other scientists.  I also must follow the orders of the NOAA Teacher at Sea directors and my chief scientist.  Add to that my principal and superintendent in my district.  That’s a lot of bosses giving orders.

Lastly, my students requested that I tell everyone our school motto.  “We are Weatherly Heights and we…GO THE EXTRA MILE.”  Well, pretty soon I can say, “We are the crew and scientists aboard the NOAA Ship Henry B. Bigelow and we…GO THE EXTRA NAUTICAL MILE.”  Can’t wait to see what treasures we will uncover in the ocean.