Debra Brice, November 25, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Debra Brice TAS 2003 on RV Roger Revelle
San Diego teacher Debra Brice on RV Roger Revelle

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 25, 2003

Data from the Bridge
1. 251500Z Nov 03
2. Position: LAT: 20-00.0’S, LONG: 073-36.0’W
3. Course: 090-T
4. Speed: 12.0 Kts
5. Distance: 83.7 NM
6. Steaming Time: 7H 00M
7. Station Time: 16H 00M
8. Fuel: 1661 GAL
9. Sky: OvrCst
10. Wind: 220-T, 6 Kts
11. Sea: 220-T, 1-3 Ft
12. Swell: 190-T, 4-6 Ft
13. Barometer: 1014.2 mb
14. Temperature: Air: 22.0 C, Sea 20.4 C
15. Equipment Status: NORMAL
16. Comments: Advanced clocks 1 hour @ 0500Z to conform with +3 time zone.
ETA Arica, Chile 261100Z Nov 03.

Science and Technology Log

“Oceanography is Fun.”

So Roger Revelle thought, and as I spend my last night on the ship that bears this remarkable man’s name I pause to reflect on my voyage of discovery. I have learned a great deal while I have been at sea; from the duties of a chief scientist and how to deploy a buoy to how aerosols are involved in precipitation in the atmosphere, and so much more. The experience of being hundreds of miles from shore with thousands of meters of water beneath you is indescribable. In my last log I wanted to talk about my impressions of oceanography and a little about the history of the vessel I am traveling on and what makes it so special.

The Research Vessel ROGER REVELLE is named after one of the most respected Oceanographers in the field. He was also a graduate of Scripps Institution of Oceanography and eventually, the director. I want to share a little bit of Roger Revelle the man and also the ship.

“The ocean holds me in an enduring spell. Part of the spell comes from mystery – the fourfold mystery of the shoreline, the surface, the horizon and the timeless motion of the sea. At the horizon, where my line of sight touches the edge of the great globe itself, I watch ships slowly disappear, first the hulls, then the tall masts bound on voyages to unknown ports 10,000 miles away. From beyond the horizon come the waves that break rhythmically on the beach, sounding now loud, now soft, as they did long before I was born and as they will far in the future. The restless, ever-changing ocean is timeless on a scale of life, and this also is a mystery.

Being an oceanographer is not quite the same as being a professional sailor. Oceanographers have the best of two worlds – both the sea and the land. Yet many of them find it extraordinarily satisfying to be far from the nearest coast on one of the small, oily and uncomfortable ships of their trade (the RV REVELLE is none of these things!), even in the midst of a vicious storm, let alone on those wonderful days in the tropics when the sea and the air are smiling and calm. I think the chief reason is that on shipboard both the past and the future disappear. Little can be done to remedy the mistakes of yesterday; no planning for tomorrow can reckon with the unpredictability of ships and the sea. To live in the present is the essence of being a seaman.

The work of an oceanographer, however, is inextricably related to time. To understand the present ocean he must reconstruct its history and to test and use his understanding he needs to be able to predict – both what he will find by new observations and future events in the sea.”

From “The Ocean” by Roger Revelle, Sept 1969, Scientific American

Revelle was considered as the director who took the institution to sea. He supported and encouraged and personally participated in many oceanographic voyages and deeply believed in the value of personally collected data. An oceanographer had to spend time in the ocean he studied. Even today with our satellite data and computers the data that is being collected at sea by oceanographers is absolutely irreplaceable. Oceanography is one of the few fields where you can still experience the adventure of exploration and discovery. There is still so much we do not know and for a young person is is an exciting and challenging field. With our new technology we can probe and explore more deeply and with greater accuracy than ever before, but still we need to go to sea to collect our data.

I hope that in the interviews with the scientists and crew of the REVELLE I have been able to share a little bit of the excitement and enthusiasm that these people have for what they do. Everyone I spoke with shared with me that they really enjoy the idea that their jobs, either the actual science itself or the support of the science makes them feel that they are part of a real contribution to our future knowledge. The spirit of Roger Revelle lives on in the ship that bears his name and in the scientists, like Dr. Robert Weller, who follow his dream. There is still so much left for the young oceanographers to come and I look forward to sharing this spirit of exploration and discovery with my students.

Thanks for joining me.

Debra Brice

Debra Brice, November 22, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 22, 2003

Data from the Bridge
1.  221600Z Nov 03
2.  Position: LAT: 20-00.0’S, LONG: 083-44.8’W
3.  Course: 090-T
4.  Speed: 12.6 Kts
5.  Distance: 102.7 NM
6.  Steaming Time:  8H 06M
7.  Station Time:  15H 54M
8.  Fuel: 2583 GAL
9.  Sky: OvrCst
10. Wind: 140-T, 14 Kts
11. Sea: 140-T, 2-3 Ft
12. Swell: 130-T, 3-4 Ft
13. Barometer: 1015.9 mb
14. Temperature: Air: 20.0 C, Sea 19.4 C
15. Equipment Status: NORMAL
16. Comments: Deployment of surface drifter array #4 in progress.

Science and Technology Log

NOAA Climate Studies of Stratocumulus Clouds and the Air-Sea Interaction in Subtropical Cloud Belts. Today we are still underway and I am going to talk about another science group that is onboard and how their research is related to the Stratus Project. We are presently located along the coast of Northern Chile and I just finished interviewing scientist Chris Fairall with NOAA’s Environmental Technology Laboratory in Boulder, Colorado.  A group of 4 ETL scientists are participating in a study of oceanography and meteorology in a region of the ocean that is known for its persistent stratus clouds.

The Woods Hole Oceanographic Institution (WHOI) has maintained a climate monitoring buoy at this location for the last 3 years.  Each year they come out to take out the old buoy and replace it with a brand new one with fresh batteries and new sensors.  A year in the marine environment takes a toll on the toughest instruments.  This is a special buoy which is festooned with atmospheric sensors to measure air-sea fluxes and with a long chain of subsurface instruments to measure ocean currents, temperature and salinity.  If you go to the WHOI website ( http://uop.whoi.edu/stratus) you can read about this project and see the data from the buoy.  The data are transmitted via satellite everyday.  WHOI removed the old buoy on Nov 17 and put in a new one on Nov 19.

Why are these clouds so important?  Because the earth’s climate is driven by energy from the sun and clouds dominate how much solar energy reaches the surface.  On average, almost 40% of the sun’s energy is reflected back into space and half of that is reflected by clouds.  In the cloudy regions more than 60% of the sun’s energy can be reflected by clouds.  The surface temperature of the ocean is a result in a near balance between solar heating and cooling by evaporation and cooling by infrared (IR) radiation from the water surface into the sky.  The global circulation of the atmosphere and ocean are driven by region differences in this net heat input, so clouds have a direct effect on the winds and currents. Cloud effects on the ocean surface energy balance are very tricky because clouds affect both the solar flux (i.e., by reflecting energy back into space) and the IR flux.  It might surprise you, but the sky is ‘warmer’ when there are low clouds present than when the sky is clear.  Think about those cold clear nights in the winter and note the ‘cold’ often appears with ‘clear’. More specifically, the IR radiation coming down from the sky is higher when clouds are present than when skies are clear.  In the tropics and sub-tropics, the solar reflection cooling effect of the clouds is much stronger than their compensating IR warming effect.  Thus, these stratus clouds play an important role in keeping the subtropical oceans cool.

The region we are studying is one of 5 stratus regions around the globe (west coast of U.S.. west coast of S. America, west coast of S. Africa, west coast of N. Africa/Europe, and the west coast of Australia) that occupy vast expanses of ocean.  Both of the pictures I attached to this log show the stratocumulus clouds in this region.  Each of these cloud types has about the same area-average liquid water content but, because of the horizontal distribution, vastly different radiative properties.  The physical processes that lead to these different forms are one of the objective of the ETL studies.

Clouds are formed through various related mechanisms; most involve cooling air to below its dew point temperature so droplets condense ( i.e., clouds are suspensions of liquid water drops with typical sizes of about 10 micrometers radius).  Convective clouds are associated with cooling in strong updrafts; fog and many mid-atmospheric clouds form when an atmospheric layer cools by IR radiation.  The stratus clouds we are studying are quite different.  The key elements are a strong atmospheric cap that traps ocean moisture in a fairly thin ( about 1 km high) boundary layer over the surface.  The stratus clouds occupy the top of the trapped layer from just below the cap to down the altitude ( cloud base height) where temperature and dew point just meet.  Below that, the relative humidity is less than 100%.  The ‘cap’ on the atmosphere boundary layer is warm/dry air descending in subtropical regions, particularly on the western boundaries of continents.  This descending air is actually driven by deep convection in the tropics.  To meteo- nerds this is an amusing paradox – cool stratus clouds off Chile and California are essentially caused by thunderstorms near the Equator.

Clouds are a pain to study because they are so inaccessible.  To get into clouds with sensors you need a really tall tower, a tall building or an aircraft.  Most of these are hard to come by 500 miles from land. Thus, most climate studies of clouds rely on remote sensing methods using satellites and surface based sensors.

ETL has deployed a suite of remote sensors on the R/V Revelle to study clouds from the bottom. The showcase sensors are a special high frequency cloud radar and a 2-frequency microwave radiometer system (this system is the attached picture of the large, white van).  This is the 6th time such sensors have ever been deployed from ships and only the second time to a stratocumulus region.  The first time was to this same spot in 2001; see the web site: http://www.etl.noaa.gov/programs/2001/epic for information on that cruise.

The radar has a wavelength of 8mm, which is so small that it is sensitive enough to receive  detectable signals from scattering cloud droplets.  With this device the ETL group can determine profiles of cloud properties ( such as size of the droplets) through the entire cloud.  The microwave radiometer uses the emissions from the atmosphere at 2 frequencies ( 21 and 31 GHz, or wavelengths of 14 and 9mm) to determine cloud base height and, most importantly, we also measure IR and solar radiative energy reaching the surface.  Instead of just looking at the cloud, they collect megabytes of data every minute.  The beauty of this set up is that they can simultaneously measure the effect the clouds have on the surface energy budget of the ocean and the cloud properties ( liquid water content, thickness, soiled versus broken, number of cloud droplets per unit volume) that go with the radiative effects.  The ETL group are only out here a few weeks each year, but their detailed measurements provide vital information to interpret long-term continuous time series measured by the buoy or inferred from satellite overpasses.

Personal Log

We are surveying for a location for the PMEL Tsunami buoy and the weather is beautiful.  Due to our heading we have lost internet connections periodically.  The food on the REVELLE  is really amazing; last night we had steak and King crab for dinner and a group of the crew and science party met in the lounge to watch a movie.  Card games and cribbage are popular in the dining room and some of us just sit outside and enjoy the sunsets.  I’m going to sleep early as I have the late watch.

Cheers

Debra Brice, November 21, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 21, 2003

Data from the Bridge
1.  211600Z Nov 03
2.  Position: LAT: 20-00.0’S, LONG: 083-44.8’W
3.  Course: 090-T
4.  Speed: 12.6 Kts
5.  Distance: 102.7 NM
6.  Steaming Time:  8H 06M
7.  Station Time:  15H 54M
8.  Fuel: 2583 GAL
9.  Sky: OvrCst
10. Wind: 140-T, 14 Kts
11. Sea: 140-T, 2-3 Ft
12. Swell: 130-T, 3-4 Ft
13. Barometer: 1015.9 mb
14. Temperature: Air: 20.0 C, Sea 19.4 C
15. Equipment Status: NORMAL
16. Comments: Deployment of surface drifter array #4 in progress.

Science and Technology Log

Today we are underway to the next location which is the area of deployment for the PMEL Tsunami buoy.  I want to talk a little bit about what a Cruise Plan is and why you need one.  I have attached a picture of our latest cruise plan from Dr. Weller.  He had a very nice one ready to go well before we even boarded the ship and everyone in the science party (yes, including me) was given a copy.  Consider this the “game plan.” It can and does change  due to weather or other unforeseen factors and it is very important that the Chief Scientist makes sure that it gets revised as it is necessary to make sure we will have enough time for all of the different deployments and data collections that are planned or to modify as needed.  These cruises are very expensive; from the cost of the ship itself, to the equipment and science party, to the value of the data collected.  For the Stratus Project,  (http://uop.whoi.edu/stratus) this is the big event of the year, everything leads to this moment when the buoy and instruments are recovered and the new buoy is deployed.  Any mistakes made now could potentially result in the loss of data for a whole year.  This brings to mind the importance of really good planning for an expedition of this magnitude.  The Chief scientist has to know how much time he/she need to accomplish their project, build in a few days extra in case of weather or delays, know how much equipment to bring for the project including spare parts (just in case Murphy’s Law kicks in…which it does more often than not!).  Redundancy of equipment is essential from the project itself to the ship which has to be able to repair while on the move with extra parts it has with it or to make a part as needed (yes, they can do that!).  There are no stores out here, if you forget it or run out, you’re out of luck!  That means a year’s work and a big grant could be in danger!

Prior planning is not just a good idea, it is essential and a good Chief scientist has foreseen almost any extenuating circumstance.  There is also the importance of remaining calm and being able to come up with creative solutions to problems in the middle of an important project.  Everyone is watching the Chief scientist and takes their cues on behavior from him/her.  If something happens, they watch to see how he reacts.

The technicians and research associates in a science party need to work well together as they may be at sea for long periods of time (could be a month to several months) .  When you are at sea, 8 hour days doesn’t mean much.  You work whenever there is work to do, deployments or data collection can and do happen around the clock.  The time out here is expensive and data collection is sensitive to many different parameters.  You work seven days a week, but everyone is doing the same and it builds a sense of comradeship to be sharing the work.  Scrabble and Cribbage tournaments in off time are a big event.  Even though they work really hard out here, they all realize the value of what they do and they are here because this is what they wanted to do in life: science.  It is pretty exciting too, you never know what you might see and no matter how long you have been going to sea or how many cruises you do a year, it is still exciting to see whales or dolphins, and beautiful sunset still makes you pause.

Sometimes, as in this cruise, there may be more than one project and multiple scientists.  However, there has to be a Chief scientist to determine priorities and the scheduling concerns so that everyone gets their data, specimens or deploys their equipment.  To be a chief scientist you need to be detail oriented and having workaholic tendencies (at least during a cruise) doesn’t hurt!

This does not mean they don’t have fun after all the hard work is done.  Dr. Weller plans a few days at the beginning and end of a cruise after all the work is done (his group have been working everyday for a month!) to see some of the sights and enjoy the culture of the ports they visit.  Sometimes these days get used for unforeseen circumstances, like extra time for loading, unloading and shipping. Actually that’s why they are put in there.  But if everything gets done in a timely manner, there is a little bit of down time.  He even organizes the tours and had guide books for each of the ports we visited (it’s that detail oriented thing I mentioned!).  He understands the value of appreciating the quality of work your group produces.

Many times the group will consist of one or more grad students under the Chief scientist and this is how they learn to be a chief scientist. It is not a class they take as part of their Ph.D. program, it comes from observation and personal experience.  So mentoring is another important component of the job description.  Seeing the bigger picture is also part of the equation; Dr. Weller really wanted a Teacher at Sea as part of this cruise to help share this experience with younger students and hopefully give a small peek at real scientific research to both k-12 teachers and students.  Many scientists today see the value of this and NOAA has been doing this for 13 years.  Woods Hole Oceanographic Institution has some outstanding education outreach programs such as “Dive and Discover” (check out that WHOI web site!)  Scripps Oceanographic Institution has additional resources at the SIO web site. Please check out the attached picture of the latest cruise plan, as well as a picture of one of the cups that the science party sent down to 4000m on the CTD.  I think the sentiment on the cup is a good reflection of the esteem in which they hold Dr. Weller and I wholeheartedly agree!

Hasta manana

Debra Brice, November 20, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 20, 2003

Data from the Bridge
1.  201600Z Nov 03
2.  Position: LAT: 19-46.2’S, LONG: 085-32.5’W
3.  Course: On Station
4.  Speed: 0 Kts
5.  Distance: 0 NM
6.  Steaming Time:  0H 00M
7.  Station Time:  24H 00M
8.  Fuel: 1477 GAL
9.  Sky: OvrCst
10. Wind: 140-T, 12 Kts
11. Sea: 140-T, 2-3 Ft
12. Swell: 160-T, 3-5 Ft
13. Barometer: 1018.1 mb
14. Temperature: Air: 21.3 C, Sea 19.7 C
15. Equipment Status: NORMAL
16. Comments: On station in vicinity of WHOI buoy.

Science and Technology Log

We are still in the vicinity of the WHOI buoy and will stay here for 24 hours to check and compare the sensors on the Stratus 4, Stratus 3 and the ship.  We will then leave for the area of deployment of the Tsunami buoy.  We will do 2 CTD casts before leaving.

During our cruise we have been deploying radiosonde weather balloons and the ETL group has been collecting cloud data. I am going to give a brief description of the ETL Cloud Radar and Radiometer Package that they brought with them and are using to collect their data. Clouds play vitally important roles in climate and and water resources by virtue of their ability to transform radiant energy and water phase in the atmosphere.  NOAA?ETL uses microwave and infrared radiometers for ground based cloud observations. ETL designed and is using the Millimeter-wave Cloud Radar (MMCR).  These radars are intended to operate in remote locations and for field experiments.  The radar is joined in a sea container by a dual- channel microwave radiometer (MWR) and a narrow-band infrared radiometer IRR).  Simultaneous data from these instruments provide the input for retrieving microphysical features of the overlying tropospheric clouds.

Instrument Package Characteristics:

Cloud Radar: Ultra high sensitivity, doppler
Primary uses: vertical profiles of clouds. drizzle, snow and very light rain

Microwave Radiometer:
Primary uses: Monitoring vertical water vapor path and liquid water path.

IR Radiometer:
Primary uses: Sensing presense of cloud overhead, estimating base temp. of optically thick clouds.

Collectively, the instruments are called the MMCR Package. Each observes the senith and does not scan, hence, the system is a vertical profiler. This is the second time that ETL has come out with the Stratus Project and it is hoped that through additional funding it will become a permanent partner in this long term study.  ETL is doing these measurements and calibrations not only to verify some of the meteorological data collected from the sensors on the WHOI buoy, but also to do profiles on the cloud structures of the stratus clouds in this area to campare the data to the mathematical models.  They are also using the data to compare and calibrate the mean and the flux calculations used in the Stratus project.  ETL came out during the second year of the Stratus project to do a similar survey.

Personal Log

The WHOI science group are doing their calibrations and measurements all day and the ETL group continues to collect data.  PMEL/NOAA is waiting to deply their buoy at the next site.  The weather is beautiful, warm, sunny, some clouds (stratus!) I am doing a lot of reading and talking with different science groups and crew members to prepare for interviews.  Tonight we will be interviewing the ETL group about their cloud studies. E-mail will be sporadic from now on as we will be on heading that will not allow us satellite communication.  We will turn for 30 minutes once a day to send out and receive e-mail. Tomorrow and the day after will be travel days to the Tsunami deployment site.We still have a couple of boobies following us….obviously hopeful that we will toss out another floating cafeteria for them.  Learning a great deal about how these large oceanographic research vessels run.  They are all owned by different facilities but they are assigned by one entity that schedules all of the science cruises for best efficiency of the vessels.  The scheduling entity is UNOLS.  So a Scripps scientist could be schedules to go out on a Woods Hole vessel one year and a NOAA vessel the next based on the science needs for size, equipment and location.  This means that for example the REVELLE came into its home port of San Diego in September and picked up a science group; did their leg, dropped them off in Manta, Equador, where we met them and loaded equipment for our project and left.  We will arrive in Arica, disembark, ship the equipment back to its various labs and the new science party will board and leave for their project.  This will continue until sometime in April until REVELLE briefly returns to San Diego, where it will pick up another science party and go out again.  It may only come into San Diego two or three times a year.  These ships are almost constantly out working and the crews fly in and out of various ports to meet the ships and change crews.

Hasta Luego

 

Debra Brice, November 18, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 18, 2003

Data from the Bridge
1.  181700Z Nov 03
2.  Position: LAT: 19-43.5’S, LONG: 085-15.0’W
3.  Course: 000-T
4.  Speed: 12.5 Kts
5.  Distance: 38.8 NM
6.  Steaming Time:  3H 06M
7.  Station Time:  20H 54M
8.  Fuel: 1565 GAL
9.  Sky: Ptly Cldy
10. Wind: 130-T, 11 Kts
11. Sea: 130-T, 2-3 Ft
12. Swell: 150-T, 3-5 Ft
13. Barometer: 1018.5 mb
14. Temperature: Air: 21.3 C, Sea 19.2 C
15. Equipment Status: NORMAL
16. Comments: Survey in progress.

Science and Technology Log

Today the REVELLE spent the day surveying an area for deployment of the STRATUS 4 buoy.  We traveled 50 miles from the STRATUS 3 site with the hopes of getting out of the GPS mapped area of the fishing boats to prevent the fouling of the instruments with fishing line.  Fishing boats target buoys as they become areas of fish aggregation in the open ocean.  The ship took a zigzag pattern most of the day surveying the bottom topography ( see photo of survey and course). Dr Weller explained that he needed to find a relatively long, flat area on the bottom as we will be underway during the deployment of the instrumentation and we need to travel is a straight line to lay out the instruments.  Due to the wind direction we will not be exactly following the straight line of the flat bottom area, but coming in at a slight angle. Jeff Lord and Jason Smith of Woods Hole Oceanographic Institution, Upper Ocean Processes group spent the day preparing the cables, laying out the instrumentation  and spraying various parts with de-fouling paint.  It was a very detailed all day procedure.  Moving the buoy and other heavy instrumentation requires good skills in rigging and crane operations.  The Upper Ocean Processes Group of which Dr. Weller is the head, are highly trained and make this complicated and potentially dangerous work look so easy.  This is part of the job as an oceanographer that you don’t learn in the classroom, but are taught by watching and doing with another professional. The STRATUS 4 buoy will have a slightly different instrumentation than the STRATUS 3.  The Seacat current meters with the rotating fan blades that were fouled with the fishing line will be moved deeper on the mooring and acoustical current meters will be moved to a more shallow spot.  Unfortunately the Seacats are more accurate than the acoustical current meters, but they can’t collect data if they are fouled.  The acoustical meters have no moving parts to foul.  Dr. Weller will also be comparing and calibrating some of the radiation sensors with Dr. Chris Fairall of the ELT group using they cloud radar data.  Deployment will begin after breakfast (approx. 7:45 am) tomorrow morning.

Personal Log

I didn’t help very much with the science activities today other than to stand watch and take hourly temperature readings.  Dr. Kermond and I spent the day filming several interviews.  We toured the extremely impressive engine room on the R/V REVELLE with the Chief Engineer Paul Mauricio.  Please check out our tour on the web.  We also resumed our “Fantail Interviews”  with Jason Tomlinson, Meteorologist from Texas A&M who is doing aerosol research out here with us.  I will spend an entire log in the next couple of days on Jason’s aerosol research.  Tonight on the Fantail we will be interviewing Dr. Chris Fairall of NOAA Environmental Technology Laboratories and NOAA/PMEL Tsunami buoy deployment group, Mike Strick and Scott Stalin.  be sure to tune in:)I need to work on my survey of good sunscreens and/or stronger aloe vera lotions!  The boobies from the STRATUS 3 buoy are following us wanting to know when their new “cafeteria” will be installed.  Much to do tomorrow, it will be another long day doing the deployment and I am very interested as to how they are going to get that 9000 lb anchor in the water!

hasta la vista

Debra Brice, November 17, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 17, 2003

Data from the Bridge

1.  171700Z Nov 03
2.  Position: LAT: 20-10.8’S, LONG: 085-05.1’W
3.  Course: Hove to
4.  Speed: 0 Kts
5.  Distance: 0 NM
6.  Steaming Time:  0H 00M
7.  Station Time:  24H 00M
8.  Fuel: 1845 GAL
9.  Sky: Cldy
10. Wind: 110-T, 18 Kts
11. Sea: 110-T, 2-3 Ft
12. Swell: 140-T, 3-5 Ft
13. Barometer: 1020.0 mb
14. Temperature: Air: 21.5 C, Sea 18.0 C
15. Equipment Status: NORMAL
16. Comments: WHOI buoy recovery in progress.

 

Science and Technology Log

The R/V REVELLE was positioned roughly 100 meters upwind from the anchor position.  The acoustic release was fired and it took approximately 40 minutes for the glass balls to come to the surface.  Once the glass balls were sighted the small a line was attached and they were pulled to the stern of the ship.  The line was threaded through the A frame, the winch hauled the glass balls over the stern of the boat.  Once all the glassfuls were onboard the process of uncoupling them to the mooring began, they were then loaded in groups of 4 into the shipping container to be sent back to WHOI.

Once the fantail was cleared, hauling began.  The polypropylene line was then spooled off using a winding cart and 7 empty wooden spools. (see photos) The line on the winch was off loaded into a wired basket which was then wound onto the wooden spools and then stored.  This process was repeated for several hours until all of the 2800 meters of line was recovered and the first instrument was brought aboard about 2pm.  Then we began to bring each instrument aboard and label it by depth and place it on the deck in the order it was recovered for labeling and photographing.  It is very important to document the exact condition of the instruments as they are recovered as it will help in the data analysis later.  For example if there are some strange readings in the data or the data suddenly stopped at some point during the year looking at the photograph could tell you that this instrument was covered in barnacles or tangled with fishing line that clogged or blocked the sensors. (see photos)

With 38 different sensors on the mooring it was a very long day just recovering all of them.  Once most of the sensors were all onboard and labeled they began the recovery of the buoy and the last 12 sensors.  The small boat was deployed and a line attached to the buoy. The ship’s knuckle crane was used in this part of the operation and the buoy was lifted and secured onto the port side of the ship (see photos).  Once the buoy was secured the retrieval of the last instruments began.  Again, labeling and photographically documenting the condition of the instruments was essential.  In the photos you can see the increase in bio-fouling as the instruments get closer to the surface.  The current meters nearest the surface were heavily clogged with fishing lines and although their temperature sensors were still functioning, the portion that measures the current direction and speed was completely jammed with the fishing line.

Although acoustic current meters are also used on the mooring, there has been some issues with the quality of their data and the mechanical current meters are still the most accurate, but they have the problems of being more susceptible to bio-fouling and  interference with fishing gear.  This emphasizes the need for redundant instruments for data collection and comparison.  Each year the sensors are evaluated and some changes in instrumentation and slight changes in buoy location might be made.  For example this year the buoy will be moved a little farther away from last years mooring to hopefully decrease the likelihood of being tangled by fishing lines. After all of the instruments were secured onboard and labeled and photographed, the cleaning began (see photographs).  Everyone participated in this phase with scrapers and , finally the power washer.  All of the instruments needed to be cleaned and many stored in the main lab for data analysis tomorrow.  All day tomorrow Nan, Lara, Jeff, Jason and Dr. Weller will be downloading and loading at the data from the sensors as well as preparing the new equipment for deployment on Wednesday.

Personal Log

An incredibly long day which began with my watch at 4am and ended sometime after 9pm.  It was great and I was fascinated by the differences in the instruments as they were recovered from different depths.  It was brought home to me yet again the importance of keeping meticulous and very detailed records of each stage of a operation and the condition of the environment and effect on the equipment.  Any of these variables have to be considered when analyzing the data and can only be collected immediately upon retrieval or deployment.  It is also essential to have a very detailed plan of operation and to work together well as a team.  I think we were also out there testing several brands of sunscreen….mine failed and and I have the racoon-eyes to prove it…ahh well, it was a wonderful day and loved it.  Tomorrow and preparing for the deployment will be equally interesting. Oh, and one of the benefits of bringing in the buoy was that all the fish who were living under the buoy were now around the ship and the crew and some of the science staff caught some very nice tuna…hmmm dinner is looking promising tomorrow too:)

Cheers

Debra Brice, November 16, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 16, 2003

Data from the Bridge
1.  161700Z Nov 03
2.  Position: LAT: 20-10.6’S, LONG: 085-08.0’W
3.  Course: Hove to
4.  Speed: 0 Kts
5.  Distance: 20.8 NM
6.  Steaming Time:  1H 48M
7.  Station Time:  22H 12M
8.  Fuel: 2215 GAL
9.  Sky: Ptly Cldy
10. Wind: 120-T, 14 Kts
11. Sea: 120-T, 2-3 Ft
12. Swell: 150-T, 3-5 Ft
13. Barometer: 1019.7 mb
14. Temperature: Air: 20.3 C, Sea 19.5 C
15. Equipment Status: NORMAL
16. Comments: On station in vicinity of WHOI buoy.

Science and Technology Log

We are at the STRATUS buoy from last year and are preparing to trigger the acoustical releases so that the glass ball floats will bring up the instruments, almost 50 of them!  it will take about 40 minutes from triggering the release until they surface and they the retrieval will begin in earnest.  We will spend the day bring them all aboard, recording the depth, serial number and condition of each of them before Dr. Weller’s group will begin downloading the data.  Then we will clean them and begin to pack them for the return to WHOI. A little background on the project first:  The purpose of the cruise was to recover and then deploy a well-instrumented surface mooring under the stratocumulus clouds found off Chile and Peru in the vicinity of 20’S and 85’W.  The mooring has been deployed for  for 3 years as a component  of the Enhanced Monitoring element of the Eastern Pacific Investigation of Climate ( EPIC) programs.  Cruises for recovery and redeployment have occurred each October or November.  The science objectives of the Stratus Project are to observe the surface meteorology and air-sea exchanges of heat, freshwater, and momentum, to observe the temporal evolution of the vertical structure of the upper 500m of the ocean.  This year the Stratus project was joined by the ETL/NOAA group out of Boulder, Colorado.  The Environmental Technology Laboratory people are meteorologists who are looking at the formation of the stratocumulus clouds that are formed off the coast of Chile and Peru.  They brought and are using cloud radar and radiosondes to look at these phenomena. The Stratus moorings carry two redundant sets of meteorological sensors and the mooring line also carries a set of oceanographic instruments.  Although Acoustic rain gauges were deployed on the last 3 moorings, this year there will not be one on the buoy and there will be several more current meters and temperature gauges.  The Chlorophyll sensors will not be on the new one either.

Types of measurements taken by Stratus moorings:

  • Surface measurements
  • Subsurface measurements
  • Wind speed
  • Water temperature
  • Wind direction
  • Conductivity
  • Air temperature
  • Current speed
  • Sea Surface temp
  • Salinitybarometric pressure
  • Current direction
  • Relative humidity
  • Incoming short-wave radiation
  • Incoming long wave radiation
  • Precipitation

Most of the equipment , including the new buoy, was loaded on the R/V REVELLE in San Diego with some of the equipment being shipped to Guayaqil, Ecuador and loaded onboard in Manta, Ecuador.  The science party flew into Manta to meet the ship and we will fly out of Arica to return to the U.S. On November 15, we stopped to lower and test the acoustic releases to be used in the mooring.  They were lowered to  500,  and 1500m depths.  Jason Smith (WHOI) communicated with the releases at each depth.  After the release test two CTD casts were made to 4000m.  When we arrived at the buoy mooring ship and buoy data comparisons began.  This is a check to see whether the sensors on the mooring are still calibrated. At 7:20 the release of the glass balls was triggered and they should surface about 45 minutes later.  The small boat will go out to put a line on the mooring and bring it back to the ship.  The line will be secured on deck the the recovery will begin.  As the instruments are brought onboard they will be laid out in the order they are hung on the mooring up the starboard side of the ship and photographed and labeled by depth and type of instrument.  This is to document the condition of each instrument before cleaning begins.  Most of the instruments are covered by barnacles and a host of other organisms, this is termed Bio-fouling.  The bio-fouling is dominated by goose-neck barnacles.  These are quite thick on the buoy hull and down to 30m; some goosenecks were even found down to 135m last year.  These can be quite a problem for the data collection, for example: last year the floating SST on the buoy hull was stuck in the down position by the barnacles.  This is why it is important to document the condition of the instruments with photographs so that when you are looking at your data and it suddenly changes or stops you might get some clue as to why the flow on the current meters changes significantly in one of the sensors ( bio-fouling for example).  We will finish recovery of the instruments today and tomorrow will recover the buoy late today.

Personal Log

Went out on the zodiac in the morning to look over the buoy.  Sunny, beautiful, water was 20’C and 30 to 35′ visibility.  There were 3′ swells and it was a wonderful view of the REVELLE, see the attached photos.  Many fish around the buoy and there will be many around the back of the boat today when we bring up the mooring.  We are 800 miles off the coast of Chile and the ship is in water  of about 4400m depth.  Nothing but blue ocean all around and it is breathtaking, reminds you why oceanographers go to sea.  You are surrounded by a mysterious blue liquid and it becomes a lifelong fascination to learn what lies beneath.  We began our “Fantail Interviews” last night with the chief engineer, Paul Mauricio, Nan Galbraith, WHOI Information systems associate and Paquita Zuidema a scientist with NOAA Environmental Technology Laboratory.  We talked about their research, jobs and experiences working at sea.  Our first videos should be online today.  We will be touring the ship and video taping interviews with other science party and crew members all week as well as filming the work onboard. There is something special about being part of science as the observations are made.  Jason was checking his aerosol readings last night and sharing his graphs.  He was seeing some things he expected and some he didn’t.  Many things he was seeing had as much to do with visual observations of the changing cloud shapes and precipitation as the sensor readings.  This kind of on-site observation is irreplaceable in science and definitely what makes science exciting.  Chris Fairwell of ETL was talking about the stratocumulus formations and how the behavior of the clouds was not necessarily what was expected, but then observations in this area had never really been done before and this was really exciting.  For me as a teacher it is interesting because these are things that my students can share by logging onto the internet and seeing on various NOAA , WHOI and SIO web sites as well as many other good science web sites and no text book can hope to compare with this.  We can also e-mail these scientists to ask questions about what they are seeing and a possible explanation.  Well they just call the acoustical release and may watch is almost over which just means the real work begins:)

Cheers


Debra Brice, November 15, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 15, 2003

Data from the Bridge
1.  151700Z Nov 03
2.  Position: LAT: 19-50.1’S, LONG: 085-03.3’W
3.  Course: 189-T
4.  Speed: 12.3 Kts
5.  Distance: 295.6 NM
6.  Steaming Time: 24H 00M
7.  Station Time:  00H 00M
8.  Fuel: 4233 GAL
9.  Sky: OvrCst
10. Wind: 110-T, 09 Kts
11. Sea: 110-T, 2-3 Ft
12. Swell: 200-T, 3-5 Ft
13. Barometer: 1018.9 mb
14. Temperature: Air: 23.5 C, Sea 19.0 C
15. Equipment Status: NORMAL
16. Comments: None.

Science and Technology Log

We arrived at the Stratus Buoy at 1:30pm.  We had some problems putting out the zodiac and will have to go and do a survey of the buoy up close tomorrow.  Dr. Weller’s group will be calibrating the instruments on the buoy all day tomorrow and the following day they will be taking it out of the water in preparation to store it and ship it home.  The new Stratus Buoy will be deployed in a couple of days.  We continued to release radiosondes at 6 hour intervals.  We are finished drooping surface drifters for awhile as well as ARGO floats. Dr. Weller did 2 CTD casts tonight to 4000m and we attached our styrofoam cups to the CTDs.  I have attached some photos of our cups and my wig head after their trip into the abyss.  We filmed a video of the cast that should be up in a couple of days.

A CTD stands for Conductivity, Temperature and Density.  Sea water conducts electricity as a function of the amount of dissolved salts, in other words it will be a better conductor of an electrical current if it has a higher amount of salts dissolved in it.  The density is calculated based on the salinity and the temperature.  The salinity is calculated using the conductivity and temperature. Warm water is less dense than cold water and water with a higher salinity is more dense than water with a lower salinity.  Evaporation removes water but leaves behind the salts and creates more dense water at the surface.  The densest (heaviest) water sinks and the less dense water rises and you get stratification or layering of different water masses.  The wind does cause mixing of the surface layer but this varies with wind speed and can vary in depth between 1 meter to 1500 meters in some areas.  The CTD that we just took shows a very shallow mixed layer and we will be analyzing it a bit more closely later today.  I have included a picture of the temperature/salinity/density plot from the CTD cast.   The green line represents density, which is increasing from the surface down.  The red line is salinity which is decreasing from the surface down but you can see some variations which show different water masses and some mixing.  The brown is conductivity and the blue is temperature. We sent down the styrofoam cups and the wig heads as a demonstration of  the effects of pressure.  All of the air piled on top of us from the surface of the earth up into the stratosphere equals one atmosphere, but water is much more dense so if you go down 33 feet you are under 2 atmospheres of pressure and another atmosphere for every 33 feet.  So how many atmospheres were our cups under?  E-mail me (Debra.Brice@noaa.gov)and let me know your answer?

Personal Log

Long day punctuated by being on watch.  Food is wonderful, the cooks are really creative and we have enjoyed all the meals.  After dinner a lot of people will go into the lounge and watch DVDs or play board games.  Most of us read or check e-mail.  There is always something to do or sea and sometimes it is just nice to go outside and watch the sunset or the cloud shapes.  At the CTD cast we had a spotlight on the water where the CTD went in and it attracted quite a group of large squid up to the surface.  They were over 3 feet long and quite fast.  The buoy has a group of 4 boobies that live on or near it feeding on the fish that gather around it.  They will be most unhappy when we take it out but they will have a nice new one soon.  Well, my watch is almost over and I am fading fast and this will be a busy day coming up…rumor has it that those styrofoam “cup of soup” cups shrink really well, hmmmm we need to do some more experiments on pressure……can we carve some pieces of packing styrofoam…..getting a bit carried away here:)

Cheers

Debra Brice, November 14, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 14, 2003

Data from the Bridge

1.  141700Z Nov 03
2.  Position: LAT: 14-54.6’S, LONG: 084-55.0’W
3.  Course: 180-T
4.  Speed: 12.2 Kts
5.  Distance: 293.6 NM
6.  Steaming Time: 24H 00M
7.  Station Time:  00H 00M
8.  Fuel: 4245 GAL
9.  Sky: OvrCst
10. Wind: 120-T, 17 Kts
11. Sea: 120-T, 2-3 Ft
12. Swell: 140-T, 3-5 Ft
13. Barometer: 1016.2 mb
14. Temperature: Air: 21.5 C, Sea 19.0 C
15. Equipment Status: NORMAL
16. Comments: None.

Science and Technology Log

We are still underway, about 800 miles off the coast of Peru.  We will arrive at the Woods Hole Stratus Buoy tomorrow at about noon.  We will be taking out a small boat ( zodiac or the RHIB) to look it over before we try to bring it in.  It is heavily instrumented and will be covered in many animals.  They will have to be cleaned off and I will enjoy preserving and identifying some of them.  I found a copy of my old invertebrate zoology book onboard so this should be worth several hours of entertainment for me.  Dr. Weller’s group will be removing the instruments in preparation for taking the buoy out of the water and loading it onboard.  Then we will spend another day deploying the new Stratus Buoy.  The old one will be shipped back to Woods Hole Oceanographic Institution for Arica, Chile.

Most of the day we were deploying sea surface drifters and several radiosondes for the ETL group.  Tomorrow Jason Tomlinson, from Texas A&M will be taking some aerosol samples for his research.  I will be interviewing the Chief Engineer, Paul Maurice and touring the engine room of the REVELLE. Radiosondes are used to collect data on atmospheric temperature, humidity, pressure and uses onboard GPS for wind direction and windspeed from the surface up to the lowest part of the Stratusphere.  I have put up some pictures of the radiosondes.  My e-mails and internet access are being made possible by the ROADnet system that is installed here on the R/V REVELLE.  We have “live” cameras off the fantail of the boat and in the main lab as well as telphone and internet capabilities due to ROADnet.  The Visualization Center at Scripps Institution of Oceanography, located at the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics ( IGPP),houses the state of the art system  that allows scientists to take enormous data sets, such as earthquake activity east of San Diego, the morphology of the global seafloor, or the topography of Mars and illustrate them on a large screen in 3 dimensions.  One new project taking advantage of the Visualization’s data management capabilities is termed ROADnet ( Real time Observatories, Applications, and Data Management Network). ROADnet sensors, located throughout the world and on Scripp’s largest ship, the Roger Revelle, deliver real-time data to the center for nearly instantaneous review by scientists on campus.  I will be using ROADnet to do a broadcast to a geography class next week at San Marcos HIgh School in San Marcos, California.  The class of teacher Larry Osen will be able to see me and the scientists on the Revelle as we deploy a CTD as it is happening and ask questions of the scientists.  This system is presently being installed on Scripps other large ship the R/V MELVILLE.  This is an exciting example of how technological innovations help advance scientific understanding of the oceans.

Personal Log

I’m a little disoriented on my times as I am doing the 12am to 4am watch.  I get up a little later that I normally would, about 10:30am.  Tomorrow we will come up on the buoy so I need to be up earlier enough to participate.  We will be filming and doing interviews during the recovery.  Besides if I get up earlier enough they might let me go out in the zodiac!  I will ride on any boat that floats, so this is too good an opportunity to miss.  Since the buoy has been out at sea for a year it will be covered in animals and surrounded by fish.  Anything that floats in the open ocean becomes a little miniature ecosystem,  So there will be some fishing and lots to see.  We will also being doing our first CTD cast tomorrow and I will have some pictures and descriptions of what a CTD is and why we are deploying it ( actually some of us are deploying it just to shrink our decorated styrofoam cups!)  I will be explaining that tomorrow too.  What oceanographers do for entertainment on long voyages.  So tune in tomorrow for some fun at sea!

Cheers

Debra Brice, November 13, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 13, 2003

Data from the Bridge
1. 131700Z Nov 03
2. Position: LAT: 10-01.0S, LONG: 084-55.0W
3. Course: 180-T
4. Speed: 12.5 Kts
5. Distance: 299.5 NM
6. Steaming Time: 24H 00M
7. Station Time: 00H 00M
8. Fuel: 4238 GAL
9. Sky: OvrCst
10. Wind: 130-T, 21 Kts
11. Sea: 130-T, 2-3 Ft
12. Swell: 140-T, 3-5 Ft
13. Barometer: 1013.8 mb
14. Temperature: Air: 22.4 C, Sea 19.0 C
15. Equipment Status: NORMAL
16. Comments: Drifter array deployment in progress.

Science and Technology

We are still underway towards the Stratus buoy. We spent the day deploying Surface drifters and 2 radiosondes. Surface drifters are small instruments attached to a “drogue” or sock that is about 40 feet long. The are thrown off the back of the ship while it is still moving. They will float on the surface and the drogue will float about about 15 meters below the suface taking sea surface temperatures and sending the data back to a satellite that is operated by the French ARGOS System. The data is downloaded at Wallops Island in Virginia and processed at various laboratories. We deployed 10 surface drifters today and will send off another group tomorrow. We are deploying them for the Atlantic Oceanographic and Meteorological Laboratory in Miami, Florida. This is a NOAA research facility. A noted drifter researcher is being done by Dr. Pieter Niiler at the Scripps Institution of Oceanography in La Jolla, Ca.

The purpose of the drifters is to measure sea surface temperature and check the accuracy ( calibrate) satellite data on sea surface temperature. Infra-red satellite data is sometimes blocked by stratus clouds and volcano eruptions. This brings to the light the question of why we need to go to sea in ships to study oceanography when we can supposedly get all the information we need from satellites. I will be interviewing Dr. Weller on one of my webcasts and he will address this question. Since I needed some additional enlightenment on why ships and shipboard research are still so essential to the study of climatology, atmospheric science and, of course, oceanography and Dr. Weller was busy today, I went to Scripps Institution of Oceanography ( via e-mail….those satellites are quite useful) and asked Dr. Robert Knox to help me out. Dr. Knox is the Associate Director of Ship Operations and Marine Technical Support and has helped me many times in the past with education outreach. The following is his wonderful explanation of why ships are still an essential tool for scientists in our exploration of the oceans and atmosphere.

Dr. Robert Weller’s research is an excellent example of why this type of data collection is so important and cannot be replaced by satellite data. It absolutely depends on using ships to handle his systems and is vital to gain a quantitative understanding of what the satellite sensors are seeing. In the absence of programs like Dr. Weller’s we could be seriously misled as to what the satellite data are telling us about the properties we actually care about, like sea surface temperature, heat flux between air and sea, etc. No satellite ever has measured or ever will measure sea surface temperature (SST). Yet we often see “satellite maps” of “sea surface temperature.” How? The satellite measures some component of electromagnetic radiation coming upward from the sea surface. That in turn can be related to the temperature of the sea surface, but only by way of a number of assumptions and calibrations having to do with basic physics of the radiation, the interactions of that radiation with whatever is in the atmosphere between the sea and the satellite, and on and on. In order to construct the formulas or recipes used to convert the radiation numbers to temperature numbers, real temperature measurements at the sea surface will always be needed to some extent, and with some distribution around the globe and over time. This is particularly true for long-term climate purposes, where slow changes in, for example, the atmospheric properties could lead to slow, subtle and unrecognized shifts in the correct recipes/formulas, and thus to unrecognized shifts in the deduced temperature results that were not real. Temperature is just one parameter. There are others, most of them harder to do via satellites.

The list goes on. Ships are needed for any number of laboratory-style experiments and measurements that simply cannot be done by remote sensors, but require samples of water, organisms or seafloor to be acquired and dealt with at sea. Questions in biology, chemistry and geology figure prominently here. New remote sensors, whether destined for satellites or unmanned vehicles in the ocean, in most cases require lengthy periods of development, testing and comparison against existing (shipboard) techniques before they can really be trusted to deliver the data desired – and even then (as in the case of SST above) there may well be an open-ended need for some level of ship-based, high-quality measurements to serve as a calibration standard in space and time. There are a host of chemical and biological parameters for which no remote sensor exists or is even imagined, yet shipboard/manned techniques do exist and can be used to answer important research questions. Take for example the identification and quantification of species or species assemblages in water samples (plankton, etc) and how these change over time, perhaps as a result of climate variations. If we waited until a remote sensor existed we might wait ad infinitum, yet we can do this identification and quantification now, using people and samples. The accumulation of those observations over time (more than 50 years thus far in the case of the CalCOFI program) sheds considerable light on the actual ecological changes taking place in the ocean and will continue to do so; we should most certainly not stop doing these measurements just because we cannot do them remotely. Or consider the business of measuring trace metals, notably iron, in seawater. This has gone from a curiosity to an important set of research programs in just the last couple of decades. It depends on exquisitely sensitive shipborne lab-style analyses of seawater samples for minute concentrations of these metals. Yet the tiny amount of iron in seawater may be a key limiting nutrient for phytoplankton under some circumstances. So iron trace concentrations get connected to important policy and economic questions such as whether deliberate iron fertilization could be a viable technique to enhance phytoplankton growth, thereby drawing down atmospheric CO2 via photosynthesis, and thus ameliorating greenhouse warming. Both the scientific and policy answers are far from clear at this juncture, but you can readily see the basic importance of the shipboard effort underlying the whole issue.

Finally, the advent of various remote sensors, on satellites and on unmanned vehicles, creates a whole new possibility for joint ship/other device campaigns that can do a much better job of focussed observation than has been possible in the ship-alone mode characteristic of nearly all history to date. The ship can serve as home base/deployment platform/data integration and analysis center/command post for adaptive, real-time control of a fleet of these devices, for ingesting streams of satellite data from overhead, and for deploying its own specialty ship-deployed instruments. Sort of a vision of the ship as the AWACS centerpiece of a flotilla or network of tools aimed at some common experimental objectives. Oceanography historically has been bedeviled by the inability to measure with coverage in both space and time matched to the problems of interest. A single ship can never be “here” and “there” simultaneously, nor can it cover the distance between “here” and “there” fast enough for some purposes. But operating as the mother ship/control center, many of these gaps can be closed. It’s going to be fascinating to see how some of these potentials are used in the coming decades.

Personal Log

As a teacher at sea one of the things I have learned in the short time I have been on the ship is that many times observing the conditions under which the data are collected can be as essential as the actual data itself in enabling a scientist to analyse it and put the data in the proper perspective. For example: when we retrieved the Equadorial Buoy and brought up all the instruments that were hanging on the mooring it was absolutely amazing to see the vast numbers of animals that had made these instruments their home ( see my pictures). Could these animals have effected the instruments and their data collections by blocking water flow or changing environment around the instruments? Yes. Is it important to note this and take this into consideration when analysing the data? Very possibly. The ship I am travelling on is named for a very famous and well respected oceanographer, Dr Roger Revelle, who understood how important it is for scientists to actively participate in the collection of their data by going to sea in order to get a more accurate perspective on what the data they collect is telling them about the oceans. As a teacher I hope I can share this with my students, I know that in my classroom, no amount of lecture or reading can replace the experience of doing a laboratory and collecting and analysing your own data. My watch is almost over and I have 2 more surface temperature readings to take before I sleep……the old fashioned way, drop the bucket with the thermometer over the side, fill it with water and read the thermometer. We are just checking those computerised sensors to make sure everything is working:)

Hasta manana

Debra Brice, November 12, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 12, 2003

Data from the Bridge
1. 111700Z Nov 03
2. Position: LAT: 01-55.6S, LONG: 083-46.1W
3. Course: 251-T
4. Speed: 13.9 Kts
5. Distance: 193.6 NM
6. Steaming Time: 13H 54M
7. Station Time: 00H 00M
8. Fuel: 2951 GAL
9. Sky: OvrCst
10. Wind: 200-T, 11 Kts
11. Sea: 200-T, 2-3 Ft
12. Swell: 200-T, 3-5 Ft
13. Barometer: 1011.2 mb
14. Temperature: Air: 24.2 C, Sea 23.3 C
15. Equipment Status: NORMAL
16. Comments: Enroute to Stratus buoy site.

Science and Technology Log

Today is a travel day and we are on route to the site of the Stratus Buoy maintained by Woods Hole Oceanographic Institution. The Chief Scientist for this cruise is Dr. Robert Weller, a Physical Oceanographer from Woods Hole and this is the 4th year of the Stratus Project. The science objectives of the Stratus Project are to observe the surface meteorology and air-sea exchanges of heat, fresh water, and momentum ( friction between the air and sea surface: currents), to observe the temporal evolution of the vertical structure of the upper 500 meters of the ocean, and to document and quantify the local coupling of the atmosphere in this region. Air-sea coupling under the stratus clouds is not well understood and numerical models show broad scale sensitivity over the Pacific to how the clouds and the air-sea interaction in this region are parameterized. The first three deployments of the Stratus moorings are part of EPIC.

EPIC is the Climate Variability study (CLIVAR) with the goal of investigating links between sea surface variability in the eastern tropical Pacific and the climate over the American continents. Important to that goal is an understanding of the role of clouds in the eastern Pacific in modulating the atmosphere-ocean coupling. Previous to this study we really didn’t understand how the stratus clouds were formed off this coast and off the coast of California which has a similar climate and currents. The effect of the ocean temperature and suspended particles (aerosols) on the climate are very important and in these regions are not well understood. Prior to this numerical computer models were used to predict climate changes in these regions but no real studies or observations had been made. These studies will help in the predicition of long term effects of global warming. The Stratus moorings carry two redundant sets of meteorological sensors and the mooring also carries a set of oceanographic instruments. Including Acoustic rain gauges. Acoustic rain gauges are located 50 meters below the buoy on the mooring line. The accoustical rain gauge uses the frequency of the sound of the rain drops hitting the sea surface , the sound varies with amount of rainfall rate. This is more accurate than traditional rain gauges as it averages rainfall over a given area and is not effected by wind. The WHOI Stratus buoys are the most highly instrumented bouys in use today with 31 instruments. Today we deployed two ARGO floats, for more information on ARGO floats please go to the website at: www.argo.ucsd.edu. ARGO floats are a global array of three thousand free drifting profiling floats measuring temp and salinity of the upper 2000m of the ocean. Our watch went well and we deployed our float without breaking it and falling overboard (always a plus:)

Personal Log

Went to sleep last night after my watch at 4am and awoke at 10am. Met with Dr. Kermond and Viviana, the chilean teacher, to go over the science activities for the day. We took some still pictures and worked on the computers. Tomorrow we will begin some interviews with the scientists and crew. Weather was warm and humid, calm sea, some clouds and overall very pleasant. The REVELLE is a beautiful ship that has a very smooth ride, very little rolling motion. It was built in 1996 by the Navy for Scripps Institution of Oceanography. It was named after the former director of Scripps, Dr. Roger Randall Revelle. Revelle believed that the only way to truly study oceanography was to go to sea and he made it a goal while director to increase the number of ships owned by Scripps as well as make sure most if not all oceanographers at Scripps went to sea for some of their research. The REVELLE is 273′ long and 52′ 5″ wide at it’s widest point. Cruising speed of 12 knots, range is 13,000 nautical miles at 10 knots, crew of 22, with a scientific party of 37. It operates approximately 340 days a year worldwide, but mainly in the Pacific. For more information look at the Scripps home page at: www.scripps.ucsd.edu Being on the ship is like being a part of oceanographic history.

Hasta Luego

Debra Brice, November 11, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 11, 2003

Latitude: S01’59.7754
Longitude: W084’00.4949
Visibility: 10 nautical miles ( nm)

Science and Technology Log

We started the day already underway toward the Equadorian Meteorological Buoy that we were to retrieve for the Equadorian Navy. We estimated that our time of arrival at the buoy’s location would be approximately 1:00pm.  Our first order of the day was a meeting to set up the Underway Watch schedule and train us in our duties during the watch. All of the watches for the scientific teams would be in the main lab. The responsibilities include being in the lab to respond to calls from the bridge, to record events in the log, to be available for other activities as needed. Take a record of hourly sea surface temperatures using a bucket thermometer. (A bucket thermometer is just what it sounds like, a thermometer with a small plastic bucket at the bottom with a line attached that you throw over the side to fill it with seawater and then read the temperature and record in the log). Deploy Argo floats as scheduled from the stern of the ship. I will describe the Argo Floats in more detail tomorrow as well as add a link to the website. You can see the Argo floats and the bucket thermometer on my pictures. Deploy surface drifters (Drogue floats). Assist in launching radiosondes. To work on the deck we need to wear safety vests at all times, hard hats, steel toed boots, strobe lights at night, and we must always work in pairs. We are to inform bridge when we are to deploy the floats. For the ARGO floats the ship comes to a stop, for the Drogue drifters we just throw them overboard while we are still underway.

We arrived at the location of the Equadorian Buoy at 1:15 pm to find that it was about 2 miles off its original location and had been damaged. The small zodiac was deployed from the ship with several crew members and an Equadorian Naval Officer who accompanied us, to help with the retrieval. An Equadorian naval ship met us at the buoy site. The buoy was towed over to the stern of the ship and hauled aboard using the “A” frame. It was secured and re-attached to the crane so that it could be lifted overboard after the instruments from the mooring were removed and returned to the Equadorian ship. The instruments were retrieved and the buoy and instruments were transferred to the Equadorian Naval vessel. Large numbers of strikingly beautiful barnacles and several species of tubeworms, crabs and various amphipods were attached to the bottom of the buoy and all the instruments that were submersed. A large number of fish were observed near the buoy and the crew caught several species of tuna, including yellowfin and bonita from the ship. We removed several samples of the barnacles, worms and amphipods, put them in a bucket and froze them for preservation and study in Arica. We are underway again and will be deploying 2 ARGO floats before tomorrow morning. My watch begins at 00:00 until 04:00 and I will probably be assisting in at least one deployment.

Personal Log

We did life boat, fire and man overboard drills today and I spent most of the afternoon answering e-mails and working on the computer. Finally got my software loaded and was able to tranfer some of my digtal pictures of the trip so far. I spent some time talking to the various scientific groups onboard and learnng about their projects that I will be describing later in our video broadcasts. On this cruise we have scientists from Woods Hole Oceanographic Institution, NOAA Pacific Marine Environmental Labs, INOCAR (Equadorian Oceanographic Institute), Texas A&M meteorologist, NOAA ETL (meteorologists) and the Chilean Navy. We did a broadcast at sunset from the bow of the ship and I am working on lesson plans for the next few hours until my watch begins. Hasta Luego…..