NOAA Teacher at Sea
Diane Stanitski
Aboard NOAA Ship Ka’imimoana
August 16-30, 2002
Day 9: August 19, 2002
We enjoyed mostly cloudy skies today as we headed southeast toward the 125°W longitudinal line.
Our location and the weather observations at 1300 today were:
Latitude: 16°22.1’N
Longitude: 149°09.5’W
Visibility: 12 nautical miles (nm)
Wind direction: 050 (on a 0-360° scale) which means NE
Wind speed: 22 kts
Sea wave height: 6-8′
Swell wave height: 6-8′
Sea Water Temperature: 26.8°C
Sea level pressure: 1011.5 mb
Dry bulb temperature: 25°C
Wet bulb temperature: 23°C
Today’s quote:
“How far high failure overleaps the bounds of low success.” – Lewis Morris
John Kermond and I sat down this morning after breakfast to sketch out the webcast that we hope to produce during the next two weeks. We discovered that we can probably create 10 live videos that will be sent to the general public, Shippensburg University, and possibly the BBC and a local television station near Shippensburg, PA. Be sure to look for these videos on the web site as I will interview our chief scientists and crewmembers, and will also teach my undergraduate and graduate classes from the ship.
Don Shea and Kirby Worthington, our NASA scientists on board, offered to provide an overview of their iron limitation study. It is felt that an iron deficiency in the mid-Pacific Ocean might be the limiting factor with regard to phytoplankton (e.g., algae) development. Iron in the water tends to absorb carbon, which in turn provides what is necessary for plant growth. The Atlantic Ocean doesn’t seem to experience this same situation as iron found in conjunction with sand blowing west off the African continent, seems to provide the ocean with an ample amount of iron. This study tests the effect of iron, nitrates, phosphates, and ammonium against a controlled sample collected from the Pacific Ocean water. They use a Fast Repetition Rate flourometer to measure the flourescence of each water sample. Surface seawater is drawn from the ship’s continuous flow through system of clean seawater. As I learn more about the study I’ll provide an update.
I discovered that the KA’s call signal is WTEU (Whiskey, Tango, Echo, Uniform) and it is displayed when going into each port. Every ship has its own signal that it reveals via flags exposed on the ship. There are other single letter signals exhibited when there is an emergency or used as a warning sign. Some of these include the (A)lpha flag meaning diver down, the (B)ravo flag representing dangerous cargo, and the (H)otel signal showing that there is a pilot on board.
I also learned to use The Nautical Almanac for 2002 to calculate sunrise tomorrow morning based on how far we will travel overnight and the latitude and longitude of our final destination. Since the boat is moving, it becomes more challenging to calculate solar angle and sunrise. I am planning to meet Rachel Martin on the bridge at 6:00 AM tomorrow morning to learn more about celestial navigation, provided the clouds have cleared and stars are visible. We need to remember to move our clocks forward by one hour since we’re moving into a new time zone as we travel toward 125°W longitude.
Steve Kroening, the FOO (Field Operations Officer), showed us a PowerPoint slide show presentation featuring the Ka’imimoana and crew along with many of the scientific experiments conducted on board. It was very uplifting because everyone obviously works efficiently together. I was amazed at the sheer number of people who have been involved in the research.
I discussed lesson plans related to El Niño with Paul Freitag, Chief Scientist. He will access some current data that my students at Shippensburg University can use for a lab. Another great day on board! More travel news tomorrow!
All the best to you all!
Diane