Roy Moffitt: Life on a LEGO, August 14-15, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 14-15, 2018

 

Current location/conditions:

Evening August 15 – North- Northwest of Wainwright, Alaska

Air temp 35F, sea depth  47m , surface sea water temp 32.2F

 

Life on a LEGO

The LEGO is a nickname given to the large green plastic pallet-like mooring. Their retrieval from the sea floor is pictured here.  This equipment was retrieved after being deployed for a year on the sea floor in about 40 meters of water.  The mooring is called a DAFT (Direction Acoustic Fish Tracker).  On the DAFT there are instruments that measure ocean temperature, salinity, and pressure.  The primary instrument is an echo sounder that records any schools of fish that may pass overhead.

Lego Retrieval
Retrieval of the “Lego,” a large plastic mooring that has spent the past year collecting data at the ocean bottom

What the DAFT was not designed to do, but does well, is catch sea life. The fiberglass pallet has 1 1/2″ square holes in it that allow water to pass through on retrieval and it also catches sea life as if it were a net. Yesterday we pulled two of these “Legos” from the sea and they were covered with marine life. The most remarkable sight were the large blue king crabs, (around half dozen on one pallet). Here I am holding one of the bigger ones– such awesome looking creatures!

Roy and crab
TAS Roy Moffitt holding a blue king crab

On the smaller size, we found a hermit crab (shown here hiding in a shell).

Hermit Crab
Hermit Crab

Also on board were many sea stars. Most were the Brittle Stars. This is the picture of the sea star with the small legs. I think they are called the Brittle Stars because when I tried to gently remove them from the mooring, sadly their legs kept breaking off. There were dozens of these on the mooring.

Sun Star
Sun Star

There was another sea star with nine legs. It was very pretty and looks like a drawing of the sun. Not surprising, I found out this one is called the “Sun Star.”

Some not-so-pretty items on the moorings I like to call “mooring acne” are called tunicates. These are filter feeders and come in many different forms.

The one on my hand looks like a giant pimple and when you try to take it off the mooring it squirts you in the face. Not surprisingly this tunicate is called the “Sea Squirt.”

 

Think about it…

All of the life on the Lego mooring was sent back to the sea to hopefully find a new home.  The Lego pallet mooring mentioned above is not large, about 4 ft by 6ft.  The mooring in this story was only in the ocean one year and became the home of the above mentioned marine animals – crabs, sea stars, tunicates, and also thousands of barnacles!  One tiny piece of the sea floor contained all this life! Imagine how rich in life the entire unseen ecosystem is in the Chukchi Sea!

 

Today’s Wildlife Sightings

For the last two days, I saw several walruses. Pictured below is one that popped up by a piece of ice.   Teaser – look for a future blog focusing on walrus and their habitat.

Walrus by ice
A walrus pops its head up above water near a piece of ice

 

Now and Looking forward

We are now seeing small bands of pack ice and individual pieces of ice called “growlers”.   Sea ice has not interrupted science operations, as of today. There is plenty of open water so far. We should see ice of different concentrations for the rest of the trip as we continue to head north.  Look for future pictures and some of the science on sea ice coming soon. For now here are a couple pictures from August 15.

Growlers in fog
“Growlers” – the view looking from the deck of USCGC Healy down into the fog
Walrus broken ice
Another view of the walrus, swimming near broken up ice

 

Terry Maxwell: Time is Not On Our Side, June 14, 2017

NOAA Teacher at Sea

Terry Maxwell

Aboard R/V Hugh R. Sharp

June 6–21, 2017

Mission: Sea Scallop Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: June 14, 2017

Weather Data from the Bridge
Latitude: 41 31.54 N
Longitude: 70 40.49 W
Wind Speed 10 Knots (11.5 mph)
Air Temp 20.2 C (68.4 Fahrenheit)

Science and Technology Log

Contrary to the popular Rolling Stones song “Time is on my Side,” time is not on our side while we are taking survey of the scallop population in the Northeast Atlantic Ocean. This survey has been meticulously planned for months leading up to the actually event. There is no time budgeted to sit at a dredge station longer than you have to.

track
The Nobeltec Cruise Track for the 2nd and 3rd legs of the 2017 Scallop Survey.  You can see this survey has covered 1000’s of nautical miles, and stopped at over 100 dredge stations.

For seven days our noon to midnight science crew has been working at a blistering pace to dredge the ocean floor or take pictures with the underwater camera, HabCam.  We are on a tight schedule, and in a twelve hour period we are able to work through 10 dredge stations.  There has been little down time, and because some of the dredge stations are so close together, there is no time to be unproductive while we are at a station.  Because of this, there are often stations where we simply are not able to individually count all the organisms we collect.  There are many situations where our crew must use the method of subsampling.

For you in the Midwest, imagine you wanted to know how many dandelions were in your yard.  Now if you are anything like me, you have way too many to count.  If you went to count them all individually, it would literally take you all day if not more.  It is just not time efficient to do such a thing.  But if we took a population sample of some random areas in the yard, we could come up with an answer of how many dandelions were in the yard, and get a very close answer to actually counting them individually.

A similar example I can give you is with a recent dredge catch that was full of sand dollars.  In one of our massive dredge catches composed of about 99.5% sand dollars, I completed an estimate sand dollars in a similar manner.  I filled 2 liter pail full of sand dollars.  My count for that pail was 188 sand dollars per 2 liters.  In this catch we had 46 baskets each with a volume of 46 liters.  So at 94 sand dollars per liter with there being 2,116 liters total, you can estimate there are about 198,904 sand dollars in that dredge catch.

sand dollars
A dredge catch that was almost 100% sand dollars.  These sand dollars are dripping with a green algae and cover our buckets and wet gear in a green coating.

We are faced with similar tasks while sorting through the dredge.  When we face those situations, we turn to the method of sampling, and we take a representative sample of our catch.  At most stations we are taking count of sea stars, crabs, waved whelks, all fish, and scallops.  When we collect the dredge, most of the time it would not be time efficient to totally count up all the sea stars, so we turn to subsampling.

Here’s how subsampling works.  Once we have sorted our dredge catch into various pails, we count up our specimens.  For sea stars however we always take a subsample.  To do that our watch-chief takes a scoop full of whatever is in our discard pails, and she does this randomly.  She puts the random sample in a 4.5 liter pail.  From here, she can begin to estimate the number of sea stars in our dredge catch.  For example, if she goes through the 4.5 liter pail and finds six sea stars, and she knows there are four 46 liter pails of discard from the dredge, with a little math work she can figure out how many stars are in the dredge.  If there are four 46 liter pails of discard, then there is a total of 186 liters of discard.  She knows from her random sample that there are 6 sea stars per 4.5 liters which would come out to 1.3 sea stars per liter.  By multiplying that number by 186, you can determine that an expanded estimate for the sea stars in the dredge collection would be 242 sea stars.

Bucket
An example of our discard baskets from our dredge catches.  This catch was sea star heavy, and this shows it would have taken too much time to count each sea star individually.  Since many sea stars are predators of scallops, a count needs to be recorded.

We also use this method when we have a large catch of scallops.  When we have an overly large scallop catch on the dredge, we are not able to count and measure every single scallop from the catch.  In these cases we use a representative amount.  In one case we caught 24 baskets of scallops, each basket able to hold 46 liters.  If we were to measure all of those scallops we would be at that station far too long to move onto the next dredge.  When we caught enough scallops to fill 24 baskets, we used 3 baskets of scallops as a representative amount.  All of the scallops in the 3 baskets were measured for their shell height.  We would then take a mean average from these scallops to represent the 21 other baskets.  We are also able to estimate the number of scallops in the 24 baskets the same way I estimated the number of sand dollars in a dredge catch.

scallop baskets
A large catch of scallops from one of our dredge stations.  In this case a representative sample of shell heights was taken.

 

Representative samples and population estimations through sampling are valuable tools that scientists use to collect a lot of data in a more efficient amount of time.  From this data, mathematical models and predictions are developed.  By implementing these methods, we are able to get more data from more locations.

Personal Log

It has been 9 days since I arrived in Woods Hole, Massachusetts to be a part of this journey.  As I shared in my last blog, it is hard to be away from home, but many of the people here are gone more than 100 days per year.  There is one thing that makes that time away easier….eating!  Here on the Hugh R. Sharp, I would imagine I’ve put on some extra pounds.  Most days I feel like a cow grazing.  There are so many snacks on board, that it is so easy just to walk by the galley and grab a mini candy bar, chips, pop, or ice cream.  I have discovered there is no better candy bar than a Baby Ruth.  On top of the snacks and sweets, the cook, Paul, cooks up some mean dinners.   Though I miss my wife’s home cooking, Paul’s cooking is a good substitute.

paul and candy
Lots of candy and snacks and some good dinners is probably leading to some extra poundage!  There are two drawers always full of candy, and a freezer always full of ice cream.  Pictured on the left is the ship’s cook, Paul.

Outside of eating, there is not much recreational time on the ship.  I do try to get up a couple hours before our shift begins to just enjoy being out on the ocean.  I haven’t been able to make myself get up yet for sunrise at 5:05 AM.  After working a twelve hour shift sorting dredge catches, there’s not much you want to do but sleep.  Sleeping on the boat has been good.  Probably some of the deepest sleep I’ve had since our kids were born.  I’ve gotten used to the motion of the boat, the sound of waves hitting the bow, and the boat stabilizers which sound like a giant snoring.  I’m a sleep walker, so that was a concern coming in that I would find myself on deck, sleep walking.  But I’m sleeping so sound, I don’t think it’s possible.  However I did warn my roommates to stop me if they saw me up in the middle of the night.
Part B of the survey has started, and with that most of my crew got off the ship, and I will have a new crew starting today.  It was a great group of people to work with.

crew
Part A of the survey the day crew from left to right: Crew chief Nicole, myself, Dylan, Sue, and Nancy.  Then the night crew of Lauren, John, Jill, Han, and crew chief Mike.

 

Did You Know?

Living in Illinois, there are not many times where knowing your parts of a ship come in handy.  However, as I have been living on the Hugh R. Sharp for over a week now I have picked up some terms.  I did not know many of these coming on, so this is a “Did you know?” moment for me.

Front of the ship: bow
Back of the ship: stern
Moving to the front of the ship: forward
Moving to the back of the ship: aft

bow
The left of this picture is port, and the right is starboard.  It took me awhile to figure out what our turn would be like if we were making a turn to starboard.

If you were on the bow, your left would be the: port
If you were on the bow, your right would be the: starboard
Fathom: 6 feet
A heading of zero: North, a heading of 90: East, a heading of 180: South, a heading of 270: West
Heading to a location quickly: steam
Kitchen (where I constantly graze in between dredge stations): galley
Location of the ship’s navigational equipment is: bridge
Bathrooms: the head

Not much use for these terms in the Midwest!

 

Cecelia Carroll: A Busy Day Off the Coast of New Hampshire and Massachusetts, May 11, 2017

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 13, 2017  

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 11, 2017

Latitude: 42.45.719 N
Longitude: 282.18.6 W

Science and Technology

As soon as the day group’s shift started at noon we were right into sorting the catch and doing the work-up of weighing, measuring and taking samples.

It’s with a good bit of anticipation waiting to see what the net will reveal when its contents are emptied! There were some new fish for me to see today of which I was able to get some nice photos.  I was asked today if I had a favorite fish.  I enjoy seeing the variety of star fish that come down the conveyor belt as we sort through the catch even though they are not part of the survey.  The Atlantic Mackerel (Scomber scombrus) are beautiful with their blue and black bands on their upper bodies and their shimmering scales.  They are a schooling fish and today one catch consisted primarily of this species. I’m fascinated with the unusual looking fish such as the goosefish, the Atlantic wolffish (Anarchichas lupus) with its sharp protruding teeth, and some of the different crabs we have caught in the net.  Another catch today, closer to land where the seafloor was more sandy, was full of Atlantic Scallops. Their shells consisted of a variety of interesting colors and patterns.

Today I also had a chance to have a conversation with the Commanding Officer of the Henry B. Bigelow, Commander Jeffrey Taylor.  After serving as a medic in the air force, and with a degree in Biology with a concentration in marine zoology from the University of South Florida.  What he enjoys about his job is teaching the younger NOAA officers in the operation of the ship.  He is proud of his state-of-the-art ship with its advanced technology and engineering and its mission to protect, restore, and manage the marine, coastal and ocean resources.  Some things that were touched upon in our conversation about the ship included the winch system for trawling.  It is an advanced system that monitors the cable tension and adjusts to keep the net with its sensors open to specific measurements and to keep it on the bottom of the seafloor. This system also is more time efficient. The Hydrographic Winch System deploys the CTD’s before each trawl.  CO Taylor also related how the quiet hull and the advanced SONAR systems help in their missions.  What we discussed that I am most familiar with since I boarded the Henry B. Bigelow is the Wet Lab, which was especially engineered for the Henry B. Bigelow and its survey missions. This is where I spend a good bit of time during the survey.  The ergonomically designed work stations interface with the computer system to record and store the data collected from the fish samples 100% digitally. I was pleased to hear what thought, skill and fine tuning had gone into designing this room as I had earlier on the trip mentally noted some of the interesting aspects of the layout of the room. Commanding Officer Taylor also had high praise for his dedicated NOAA Corps staff and the crew, engineers and scientists that work together as a team.

 

Sea stars

 

Atlantic mackerel

 

TAS Cecelia Carroll holds a wolffish

 

Crab and sea star

 

Atlantic sea scallops

Carmen Andrews: A Fishing Expedition in the Atlantic, Continued, July 13, 2012

NOAA Teacher at Sea
Carmen Andrews
Aboard R/V Savannah
July 7 – 18, 2012

Mission: SEFIS Reef Fish Survey
Location: Atlantic Ocean, off the coast of Daytona Beach, Florida
Date: July 13, 2012

Latitude:      29 ° 19.10   N
Longitude:   80
° 24.31’  W       

Weather Data:
Air Temperature: 28.3° C (82.94°F)
Wind Speed: 12 knots
Wind Direction: from Southeast
Surface Water Temperature: 27.48 °C (81.46°F)

Weather conditions: Sunny and Fair

Science and Technology Log

Catching bottom fish at the reef

As the fish trap lies at the bottom of the ocean at the reef site, fish can enter and exit freely through the opening.

Red snapper swimming near a fish trap
Red snapper swimming near a sunken fish trap
 

At the end of approximately 90 minutes, the R/V Savannah returns to the drop site and begins the process of raising the trap with whatever fish remain inside. The six traps are pulled up in the order in which they were dropped.

Scientists and crew waiting to arrive at a trap location
Scientists and crew waiting to arrive at a trap location

The crew member on watch in the wheelhouse will maneuver the boat toward the paired poly ball buoys at a speed of about 5 knots. The boat draws alongside each pair on the starboard side.

R/V Savannah approaching poly ball buoys on the starboard side
R/V Savannah approaching poly ball buoys on the starboard side

One of the scientists throws a grappling hook toward the line that links the  poly balls.

Throwing the grappling hook to secure buoys
Throwing the grappling hook to secure buoys

The line is hauled in and passed to a waiting scientists, who pull the poly balls on deck. There is substantial hazard associated with this step. Undersea currents can be very powerful near the bottom where traps are set. As scientists are pulling in the cable by hand, unexpected current force can yank the trap cable, rope and buoys out of their hands and off the deck in an instant. If personnel on deck aren’t mindful and quick to react, the speeding rope can cause serious rope burn injury.

Nate is pulling poly balls and rigging onto the deck, as Adam P. gets ready to take the line
Nate is pulling poly balls and rigging onto the deck, as Adam P. gets ready to take the line

The cable connecting the fish trap and the poly balls is pulled in and threaded through the pulley system of a pot hauler. The pot hauler is an automated lifting tool that is operated by the second crew member on watch. At this time the first crew member on watch has left the wheel house and is piloting the boat from a small cab on deck above the pot hauler, so he can monitor the action below.

Pot hauler hoisting the fish trap to the boat
Pot hauler hoisting the fish trap to the boat

The pot hauler makes a distinctive clicking sound as it draws the trap toward the surface at an angle. It can take one to five minutes to raise the trap to the deck, depending on the depth of the water.

Tight cable raising submerged fish trap
Tight cable raising submerged fish trap

As the fish trap becomes visible, shimmering rapidly changing shapes can be seen as  fishes’ bodies catch and reflect sunlight.

Fish trap breaking the surface of the water
Fish trap breaking the surface of the water

The trap clears the water and gets pulled aboard.

Grabbing the fish trap
Grabbing the fish trap and pulling it aboard

Very quickly, and with two scientists holding each side, the trap is upended onto its nose and suspended above the deck. A third scientist opens the trap door at the bottom and the fish are shaken into a plastic bin.

Orienting the fish traps to ready them for dumping into bins
Orienting a fish trap to ready it for dumping the catch into a bin
Freshly caught red snapper and black sea bass
Freshly caught red snapper and black sea bass
 

Ice pellets are shoveled onto the fish and a cover is snapped on the bin. If the catch is small, fish may be placed in a bucket or tub and cover with ice.

Fish are covered in ice before the bin cover is snapped on
Fish are covered in ice before the bin cover is snapped on

A numbered tag is removed from the trap and tied onto the bin to identify specimens from each catch. The containers holding the day’s catch are set aside for later processing.

Every so often, unexpected sea life is brought up in the traps. The catch has included sea stars, sea urchins, several kinds of tropical fish and many moray eels.

Moray eel slithering on the deck.
Moray eel slithering on the deck. A moray’s bite can be very severe.

Video cameras are also removed from the top of the trap. Their data cards will be downloaded. Fish behavior and surrounding habitat videos will be analyzed, along with anatomical specimens and size data taken from the fish themselves in the wet lab.

Personal Log

Every day brings more wildlife encounters and sightings. I am dazzled by the many fascinating organisms I’ve been able to see up close. Sometimes I am quick enough to grab my camera and put the animal into my view finder, focusing clearly enough to catch a great image. Here are a few of those images (including some new friends from the cruise):

Adam P. holding a barracuda
Adam P. holding a barracuda
Daniel with a wahoo
Daniel with a wahoo
Trolling with a hooked dolphinfish
Trolling with a hooked dolphinfish
Sea stars
Sea stars
A sheerwater -- bird found in open water
A sheerwater — bird found in open water
Sheerwaters dive beneathe the surface to catch fish.
Sheerwaters dive beneath the surface of the water to catch fish. This bird is consuming a fish with its wings open to balance itself on the water.

Other times I have to capture a memory. Last night I tried reef fishing. I have no experience fishing. At all. Adam P. handed me his own rod and reel. The hook was baited and the line was already lowered to the bottom, down at around 40 meters (more than 120 feet).

Shortly after I took it, the tip of the rod began to bend downward and pull. I asked Adam if that meant something had been hooked.  He said, “Go ahead. Reel it in.” That’s when I discovered that even recreational fishing is tough work – particularly this unfamiliar technique of holding the rod with the right hand and reeling in with the left. Neophyte to fishing is me.

When the fish got to the surface, Adam took the big, beautiful black sea bass off the hook for me. On the deck it splayed out the spines of its dorsal, caudal and pectoral fins defensively. I was concerned because the fish’s air bladder was hanging out of its mouth from its rapid ascent to the surface. Adam punctured the air bladder to deflate it. He threw the fish back into the sea at my request, and assured me that the fish will go on with its life.  I’m optimistic it will.

Janet Nelson: Steaming for Home, June 25, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Monday, June 25, 2012

Weather Data from the Bridge:
Latitude: 41 24.21 North
Longitude: 069 54.98 West
Wind Speed: 13.7 kt
Air Temperature: 17 C                    

Final Log:

We are steaming for home. Woods Hole, MA that is. In the past ten days we have conducted 71 scallop dredge tows and processed 15, 979 scallops. We also took over 4 million images with the HabCam in 691 nautical miles of this leg. We have been a little busy.

A tow of scallops

This morning (0600 hrs.) we mustered in the dry lab and began our assignments, ranging from swabbing the decks to vacuuming our state rooms. Tonight I will be in Boston and then on my way back to Minnesota. I am ready to go home, but I know I will think back fondly on a few things. The rocking of the boat when I’m going to sleep.  Meals prepared for me. The sound of waves and water. The hum of the engines. Seeing what comes up in the scallop dredge. Being on deck and on the bridge. A hap chance at seeing whales or dolphins. New friends and fun banter. Even though this journey began with an unpleasant introduction, it is ending with fond feelings.

Me and a barndoor skate!
Me and a barn door skate!

Being on this boat has been interesting for several reasons. I have learned new things about ocean life that I can take back to my classroom as well as a few souvenirs. I can honestly say I have never seen more scallops in my life, not to mention sand dollars and sea stars! I am looking forward to sharing this experience with my family, students, and friends. As I write this last blog, I am thinking of what a privilege it has been to be a member of this team of researchers. I am honored to learn from them. To my team: Jon, Nicole, Mike, Jess, Alexis, Ted, Nick (TG), and TR, thank you!! This experience would not have been the same without you! I will remember you fondly for many, many days to come.

Cheers!

L to R, TR, Ted, Mike, Jess, Jon, Nicole…my crew

Janet Nelson: Sand Dollars and Sea Stars! June 20, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Wednesday, June 20, 2012 

Weather Data from the Bridge:
Latitude: 41.03.21 North
Longitude: 071 32.79 West
Air temp: 21 C
Wind Speed: 15.6 kt
Depth: 135.2 feet

Science and Technology Log:

I came on shift yesterday at noon with three back to back dredge tows (we have done 30 dredges thus far on Leg II). We are off the coast of Long Island. Most of the dredges around here have been filled with sand dollars and sea stars. In total, we have processed and counted on this leg of the survey 5, 366 scallops, 453 skates, and 58 Goosefish, a very interesting fish that  buries itself in the sand and uses a filamentous lure to attract prey and engulf them. In addition, we have counted 132, 056 sea stars (wow!) and 590 crabs. The HabCam had some glitches yesterday but we began running the vehicle on our shift at approximately 1245 hrs. It made a run for approximately three hours and 57 minutes, with approximately 22.387 nautical miles of pictures before we dredged again.

While looking at the images of the HabCam, it astounds me at seeing prior dredge track marks from commercial scallopers and clamers. By looking at the side scan sonar, some of the dredges are very deep and very invasive. It reminds me of strip mining and clear cutting in terrestrial ecosystems. It is also evident, by observing the images, that little is left in those areas but shell hash. With that said, there are still some interesting species that get photographed, such as jelly fish and sea stars in patterns you would think they orchestrated.

We are working our way toward Georges Bank and will be there, from what I’m told, sometime late this afternoon or evening. All equipment is running well and what time we lost with the late departure has mostly been made up. It’s amazing what technology can do!

Personal Log:

As of yesterday, I have been away from home with little to no contact for six days, so when I was told yesterday morning prior to coming on shift that we had cell phone signal, I immediately went up on deck and called my husband! Although I only got an answering machine, it was good, and familiar, to hear his voice.

We then had a fire drill at noon and after that, set to work. It was nice to be outside working for the next 4 hours. I think I finally have my sea legs. However, the seas have also been cooperating with only 1-3 foot swells, at best. When they are higher, I sometimes feel like the Scarecrow in “The Wizard of Oz”. It’s a good thing I can laugh at myself when I look completely ridiculous while tripping through a door or, with no warning whatsoever, bump into a wall!  From what I understand, this ship has a flatter bottom than most so every wave and swell catches it and tosses it in whatever direction that wave is going, despite having just gone in the opposite direction! I am hoping the sea remains calm when we get to Georges Bank.

I am learning a great deal about the critters that live in the ocean around here. It is so strange to have at times hundreds upon hundreds of sand dollars being pulled up in the dredge at one location and then to have mostly sea stars pulled up at another location. My favorite, however, are the hermit crabs! They are so cool! They will begin to crawl out of their shells, see you coming to pick them up and immediately crawl way back inside and stare at you. I actually think I saw one blink at me. Not really, but my imagination does run away at times.

Those are also the times someone, usually me or the watch chief (chief scientist is guilty of this too!), bursts into song or starts quoting a movie line, and then half the crew is joining in. I have gotten more proficient at using the technology equipment on board that does the recording of the measurements of the specimens, and also at cutting/shucking the scallops. Never thought I would know how to do that! I have a feeling there are a few things I never thought I would do before this cruise is over. I have five more days at sea. Anything is possible!

Side note: Today is beautiful for being at sea! Clear sky, moderate winds, and sea legs that are working!!

Cheers!

This slideshow requires JavaScript.

Anne Byford, June 15, 2010

NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010

Mission: Sea Scallop Survey
Geographic Location:  off the coast of New England
June 15, 2010

Aboard: R/V Hugh R. Sharp

Weather Data at 1:30pm

EDT: Clear and sunny, 14.5˚C

Location at 1:30pm

EDT: Lat: 41 23.78 N

Long: 66 56.64 W

Water Depth: 68.2 m

8th Day at Sea

What kinds of things are you going to catch? Part 2 – non-fish along with a few new fishes

 There are many more species in the areas than I have listed here; these are simply the ones that I found most interesting. There are several different types of bivalves, sea weeds, etc. Material about the species on this page came from several sources, including the Bigelow and Schroeder’s book referenced in the previous posting. Also, Kenneth Gosner’s A Field Guide to the Atlantic Seashore published by Houghton Mifflin Company in Boston, Ma, 1978. I also used Norman Mein-Koth’s Field Guide to North American Seashore Creatures published by Alfred A. Knopf in New York in 1990.

Sea Stars (aka starfish) – Every third dredge, the contents of the dredge are sampled and the sea stars are separated by species and counted. Most sea stars can regenerate a lost arm, but a few can regenerate an entire organism from the lost arm as well. All sea stars are predators; many species do eat scallops.

Hippasteria phygiana – a cushion star with a much wider central disk and shorter arms than the other types of sea stars.

H. phygiana dorsal

Northern Sea Star (Asterias vulgaris) – is one of the more common sea stars found. It can have a radius of up to 20 cm.

Northern Sea star dorsal

Blood Star (Henricia sanguinolenta) – is a thin armed sea star that ranges in color from bright red to orange. This particular blood star shows some aberant regeneration occurring on one arm.

Blood Star

Leptasterias tenera – smaller sea stars than the others. They are usually whitish-tan. Some have purple centers and arm bands.

L. tenera

Sclerasteras tanneri – are spinier than the other sea stars seen. They are bright red with thin arms.

S. tanneri

Spiny Sun star (Crossaster papposus) – is the only sea star that I’ve seen here with more than 5 arms. It has concentric rings of color radiating from the central disk of the sea star.

Sun Star

Green Sea Urchin (Strongylocentrotus droebachiensis) – can grow up to 8.3 cm wide and 3.8 cm high. The shell (test) is usually a greenish color and the spines are all approximately the same length.

Green Sea Urchin

Sand Dollar (Echinarachnius parma) – the common sand dollar. This species does not have openings in the test like the Keyhole type that is commonly found off the coast of the Carolina’s, but does have the flower-like markings on the dorsal side. A great many of these (hundreds of thousands) are found in the dredge on some tows.

Sand Dollar

Hermit Crabs (various species) – move from shell to shell as they grow.

Hermit Crabs

Northern Lobster (Homarus americanus) – can grow up to 90 cm in length. Lobsters are scavengers and can be cannibalistic. Claws and tail are highly prized for meat.

Lobster with eggs

Winter flounder (Pseudopleuronectes americanus) – are darker than the other flounder. Like summer flounder, they can change color to match the underlying ocean floor. Winter flounder can live up to 15 years. They can reach a maximum size of 64 cm and 3.6 kg, with the average being 31-38 cm and 0.7-0.9 kg. Winter flounder eat mostly small invertebrates, like polychaetes and shrimp and some small fishes. They are preyed upon by cod, skates, goosefish, and spiny dogfish. Winter flounder are the thickest of the flatfish, but are considered over-exploited.

Winter Flounder Dorsal

Haddock (Melanogrammus aeglefinus) – a silvery fish that is dark grey on the dorsal side with a dark patch behind the gills. The largest recorded haddock was 111.8 cm long and 16.8 kg. The average haddock is 35-58 cm long and 0.5-2 kg. Small haddock eat crustaceans, polychaetes, and small fish, while larger haddock eat more echinoderms, but will eat most anything. Predators include spiny dogfish, skates, cod, other haddock, hakes, goosefish, and seals. Haddock aquaculture was begun in 1995. The biomass of haddock was considered below maintenance levels in the late 1990s.

Haddock Large

Fawn Cusk-eel (Lepophidium profundorum) – are greenish with light green or tan spots down the sides and, unlike true eels, have pectoral fins. They average about 26 cm in length. They eat sea mice, shrimp, and echinoderms. Larger fawn cusk-eels eat flatfish as well. They are eaten by skates, spiny dogfish, hakes, flounders, and sea ravens.

Fawn Cusk eel dorsal

Winter Skate (Leucoraja ocellata) – large, heart-shaped skate. Like the barndoor skate, winter skates can be quite large, up to 150 cm long. They eat bivalves, shrimp, crabs, echinoderms, and many types of fishes. They are eaten by sharks, other skates, and grey seals. They are considered to be commercially important.

Winter Skate Female Dorsal

Personal Log

I have to admit, when I first went up to the bridge of the ship, with its wrap-around windows, the first words that came to mind were the lines from Rhyme of the Ancient Mariner (which I may have not remembered entirely correctly)

Water, water everywhere

And not a drop to drink
Water, water everywhere
And all the boards did shrink

At the time that I was there, no land and no other ships were within sight; there was nothing but water and wavelets as far as I could see. We’ve see several ships on the horizon, and two container ships close enough to get a good look at. One of those passed quite close as we had a dredge down.

Julianne Mueller-Northcott, May 15, 2010

NOAA Teacher at Sea
Julianne Mueller-Northcott
Onboard R/V Hugh R. Sharp
May 11 – 22, 2010

NOAA Teacher at Sea: Julianne Mueller-Northcott
University of Delaware R/V Hugh R. Sharp
Mission:  Sea Scallop Survey: Leg III
Port of Departure: Lewes, Delaware
Location:  Off the coast of Maryland
Date: May 15, 2010

Weather Data from the Bridge
Air temp: 16.6⁰C, clear skies, 10% cloud cover

Water conditions
SST: 13.16⁰C, Salinity: 31.7ppt

Science and Technology Log
Got sea stars?
We have pulled up some impressive loads of scallops so far on this trip!  Our largest load included 2,083 scallops (which is about 750 lbs).  When they come up in the dredge you can hear them coming.  They clatter in the net as they get hauled out and dumped out onto the deck.  But even when we are so tired of counting the scallops and lifting the heavy baskets, the scientists and crew members have said, “Just wait!  You haven’t seen anything yet!” referencing the fact that there were many more scallops to come.

But today, in a location where in years past have been home to a large numbers of scallops, we didn’t find many.  In fact at our last station, there were only five.  Instead, the net bulges with the sea star, Astropectin. “Where are all the scallops?” is a question that the scientists keep asking themselves because this data is so surprising to them.  Today we passed many fishing boats, in fact at one point there were at least five on the horizon surrounding us.  I had thought that was an important clue that meant we were bound to find lots shellfish, but that hasn’t been the case.  Because this data is surprising, it has the scientists asking another question “Is there a problem with the collection gear?”  Fortunately, there are many systems set in place to guarantee that everything is working properly.

During experiments at school, we try to make sure that students know to standardize the procedure and limit variables so that they can be sure the results they attain are based on the one variable they isolated and not due to some other environmental factor.  That principle couldn’t be more true on this scallop survey.  It is of the utmost importance that all the data that is collected, is collected the same way at each location, and as it was collected in previous years.  For this reason, all the specifications about the dredge (the size of the dredge, the size of the rings that let small organisms out, but trap the larger organisms) are kept the same throughout each leg of the survey and each year. In addition to this, they also measure the angle of the dredge with an inclinometer. This way they can make sure that the dredge is always in the same position as it moves along the seafloor.  The tow is always for the same length of time, going at the same speed, and going in a straight line.  You can see that if a tow was down for a longer amount of time that would change the amount of organisms being caught. To double check all of these procedures, we mounted a camera on to the dredge.  This camera had a timer on it as well.  It was really fun to watch the video; the dredge fell through the water column and then settled on the sea floor in a puff of mud.  The dredge sped along the substrate and we could see little sea stars falling back into the net. Watching the footage, the scientists were able to double check that the angle on the dredge and the amount of time it spent on the bottom was consistent with the measurements they were getting from the inclinometer.  Since this data is helping to manage such a valuable economic resource, the scientists need to be extremely confident in the data collection methods.  Using this data, decisions will be made about the fishing regulations in the area which ultimately impacts people’s jobs and income.

Because these scientists have carefully and deliberately eliminated so many variables they can be sure that their equipment is working properly and that they can trust their data.  But that still leaves the question, where are they scallops?  Have all of the scallop fishing boats that we can see in the distance totally wiped this area clean?  Or is it to do with the incredible numbers of sea stars that we have seen, gorging themselves on their favorite delicacy? Hopefully, this particular region is isolated and we will have been luck finding scallops tomorrow.

Jack C’s question was, “Did you catch any sharks?” And yes we have!  We have caught a bunch of a small type of shark called a chain dogfish.  They have a very cool pattern on their skin that looks like a chain link fence and they are usually around a foot or so long.  We also caught a shark that was a little bigger called a smooth dogfish.  What is great about these guys is that they are a little more resilient that some of the other fish that we catch.  They make it back to the water without a problem and we watch them swim away.

My patrol of the bow of the boat certainly paid off today.  I saw so many dolphins!  The past couple of days I have been in awe of the handful of dolphins we have seen and by the sunfish.  But, honestly, I was a little surprised that we hadn’t seen more mammals. Well, the dolphins found us today! On and off today, dolphins would stop by the boat for a few minutes to play in the wake or up near the bow.  They would leap and splash a couple of times and then be on their way.  It was a different species than the dolphins that had visited us at night—these were grey on the top, then a tan color on the sides and white underneath. This afternoon a couple were near the back of the boat when we had a break between hauls.  Knowing that the dolphins especially like to play near the bow of the boat, I went to see if maybe some of their friends were up front.  Sure enough, surging through the water, weaving between each other were at least a dozen dolphins.  Then I happened to look up—and there coming towards the boat were even more dolphins.  They were porpoising through the water coming from ahead of the boat.  You could see them coming from at least a ½ mile away by the repetitive, white splash of the water.  It was like a dolphin convention was happening at the Sharp!  They would meet each other at the bow and enjoy being pulled along by the drag in the water created by the ship.  Probably the most amazing part was not only watching them but listening to them as well.  Because they were so close, just about 12 feet below me as I stood on the deck of the ship, I could hear their clicks and high-pitched whistles.   Watching their fun dance in the water, I noticed that many of the dolphins would swim for a few seconds together, belly to belly.  Then they would speed off and find a new dance partner; I thought it was very sweet and adorable.  It took me a minute to figure it out, but then I realized that they were doing a little more than just “dancing” together.  Oh….They were truly enjoying themselves!

Personal Log
I didn’t realize how long it had been since I had watched the sun set.  Not just the casual, driving in your car and you notice the daylight fade, but when you sit down with the intention of taking in a real sunset.  When you watch from the first signs of an orange sky until the last smidge of brilliant red slips gently down over the horizon.  I had the chance to watch one of those sunsets today, start to finish.  It reminded me of summers out at the Shoals Marine Lab when we would actually stop teaching class just to sit out on the porch and admire something that happens every day, but is nevertheless spectacular.   I am always surprised how quickly it happens.  All day long, it is impossible to notice our movement relative to the sun, but it only takes a few minutes to transition from day to night.  And the real highlight is not the exact moment that the sun disappears, but minutes after the sun has set, when the entire sky glows red. Tonight was the first moon that I have seen on the trip, and it was curved into a smile hanging in the sky.  It grinned next to a bright star (or maybe a planet?) on the pink backdrop, above the midnight water with a large tanker drifting by in the distance.

One of my favorite parts of this adventure so far is just being able to spend all day outside.  I wake up in the morning—usually around 9:00 (I haven’t slept in so late since before Madelyn was born—but it is because my night shift ends at midnight—and maybe because the gentle rocking of the ship helps me sleep so fitfully!).  I hurry to get dressed and then head right for the bow of the boat.  There I search for dolphins and sunfish for about an hour or so before it is time to get ready for work.  The past two days have been so beautiful, that I haven’t wanted to be inside the boat at all during the day—for fear that I might miss something spectacular!  Because of this, I haven’t had the chance to do as much writing as I would like.  I tried using the laptop outside—but the glare is too great. It just doesn’t work!  After a long and draining winter/spring, it feels so good to get recharged by the solar energy!

Julianne Mueller-Northcott, May 12, 2010

NOAA Teacher at Sea
Julianne Mueller-Northcott
Onboard R/V Hugh R. Sharp
May 11 – 22, 2010

NOAA Teacher at Sea: Julianne Mueller-Northcott
University of Delaware R/V Hugh R. Sharp
Mission:  Sea Scallop Survey: Leg III
Port of Departure: Lewes, Delaware
Location: Off the coast of Virginia
Date: May 12, 2010

Weather Data from the Bridge

Air temp: 13.72⁰C, 85% humidity, overcast

Science and Technology Log
When the dredge gets pulled up the ramp of the ship, I always strain to try to see past the chain and netting to see what amazing creatures might have gotten caught in the dredge.  I can see the pale-as–a-ghost face on the underside of skates and flounders.  The sea stars fall to the table in a big mound and you can see the crabs trying to climb the net.  And of course the scallops!  They get dumped out onto the table in a wave.  The pile of creatures undulates as organisms try to right themselves and seek cover.  Each dredge so far has been different.  Some are chock full of sea stars such as Asterias forbesii and Asterias vulgaris which we have at home, but by far the most abundant sea star species is Astropectin sp.   There was one dredge that was all sand dollars and they tumbled out onto to the deck, like hundreds of poker chips, hockey pucks and small frisbees.  I noticed that all of the fish in the dredge were green and then everything else started turning green. Apparently, sand dollars turn everything green! No one was quite sure why—this will be something to investigate once I get home.

So you can imagine how exciting it is to see hundreds (in some cases maybe thousands) of your sea friends, dumped out in front of you to examine!  I think about all the hours toiling at Odiorne Point with my students searching under rocks and peeling back algae in the intertidal zone looking for a hidden gem.  Here on the sorting table at the back of the boat there are so many species, so many things waiting to be discovered.  I think about my marine biologists at home and how excited they would be to have some of these critters for our tank!  (And while the thought has crossed my mind to try to kidnap some, that might be a difficult situation to explain going through security at the airport—a cooler full of crabs, sand dollars, sea stars and scallops!) The object here is not to study all the cool creatures for hours under a microscope which is what I would love to do (there isn’t even a microscope on the ship!) but instead, to sort.  My job, with 5 other people, is put out all the scallops and fish.  Those get measured and counted and everything else goes back into the water.  It all happens very quickly.  Because the goal is to do so many dredges in a relatively short amount of time, the faster you process everything the faster we can move on to our next sampling location, which means the more data that can be collected.  Also time is money on this high tech ship we are on.  For the scientists to use the R/V Hugh R. Sharp it costs $12,000 a day.  So it is imperative to work quickly to get the job done. But I am learning some tricks so that I can spend a little more time with the creatures I really want to check out.  I usually sneak a couple of neat things to photograph off to the side and after we are finished with the work at hand take a few minutes to study them.  And the scientists have figured out that when they have an organism that we haven’t seen yet, they have to show it to me before it gets tossed back overboard!

We were just pulling up a dredge last night when Ben pointed to the starboard side of the ship.  There in the starlight were about eight dolphins riding in the wake of the boat.  They were porpoising in and out of the water.  They were gray, with speckled black dots—we don’t have a mammal field guide on board—so I am not sure which species it was.  It was the first night that we could see stars, other than the sea star variety. I thought of Kat S. who was the first person who got me excited about the prospect of seeing stars at night from the boat.  Between the starlight and the spotlights on the ship, the sea below sparkled.  Even in the dark water you could see the water shimmer and change to a light green color, letting you know where the dolphins were just before they surfaced.  I have a list of top wildlife encounters in my life (swimming with whale sharks and eagle rays, saving stranded pilot whales in the keys, viewing humpbacks breech in a storm in the Bay of Fundy, nesting sea turtles Mexico, watching baby orcas play in the San Juan Islands, etc) but even with this list, watching the dolphins at night beneath the stars was pretty magical!

Captain Bill nonchalantly mentioned that he had seen an ocean sunfish (Mola mola) yesterday morning.  “What?!” I guess I hadn’t made it clear that I wanted to witness any such animal encounters.  I had told my students that the ocean sunfish was the one species I was really looking forward to seeing on this trip.  I had seen them in various aquariums but never in the wild. The ocean sunfish has always seemed to me a freak of natural selection.  How could something so big, clumsy and awkward looking have survived evolution?  Something about the way it lazes around without a care in the world has always appealed to me.  This morning, I took my usual watch on the bow of the boat (as I do every morning before my watch begins at 12:00). There, about 50 ft from the boat, I saw two large fins, flopping this way and that without an apparent purpose.  It was Mola mola! We didn’t get very close and our boat was traveling fast but through my binos I at least got a glimpse of its round, disc body.  And a couple of hours later, I saw another—this one a little further away.  So I know there are lots out there—now the goal is to get an up-close view and hopefully a photo!

Personal Log
It is pretty awesome now that the weather is brightening and we are seeing some beautiful species!  I love being on the top decks watching the sunlight dance on the water.  I love that everywhere I look all I see is ocean.  Yesterday we saw many other ships on the water—but today it is really just us steaming along. At first it was a little hard to get used to seeing lots of dead fish in the dredge and lots of animals that don’t survive the sampling.  There is a lot more by catch than I would have expected. It is going to take a little more time for me to process my thoughts about it all, but I am starting to understand that for now this is the best way for the data to be collected.  While it might not be the best thing for individual organisms, these sampling techniques are important for protecting the fisheries and ultimately the ecosystem.

Tiffany Risch, August 2, 2008

NOAA Teacher at Sea
Tiffany Risch
Onboard NOAA Ship Delaware II 
July 28 – August 8, 2008

Mission: Clam and Quahog Survey
Geographical Area: South of Long Island, NY
Date: August 2, 2008

Weather Data from the Bridge 

  • Mostly cloudy with isolated showers
  • Surface winds: 5 to 10 knots
  • Waves: Swells 2-4 feet
  • Water temperature:  23o Celsius
  • Visibility:  7 nautical miles
The dredge being brought back up onto the ship after being deployed
The dredge being brought back up onto the ship after being deployed

Science and Technology Log 

As I began my shift, I noticed on the map hanging in the dry lab that we are working our way towards an area southeast of Nantucket called Georges Bank.  Georges Bank is a shallow rise underwater where a variety of sea life can be found. Before long, we were called to the deck for our first station of the morning.  We set the dredge, hauled it back, sorted the catch, measured and recorded data, and moved on to the next station. Recording data and sorting are two of my favorite things to do, especially when it involves shucking the clams for the meat to be measured!  My watch seemed to be on a record pace, as we managed to complete seven hauls all before breakfast at 5:00am.  This process happens around the clock on the DELAWARE II, maximizing the amount of data we collect while at sea for two weeks.  

Later in the day, the winch that is used to haul the dredge back from the water suffered a power problem.  I and the person controlling the dredge noticed this right away, as one of my jobs is to switch the power on to the pump that the dredge uses.  I alerted my watch chief, and also the chief scientist for this cruise who quickly began to assess the situation.  Over the next hour or so, things became very busy on the back deck as the captain, engineers, and scientists tried to solve the problem.  They did manage to get the power back to the winch again, which enabled the dredge to be brought back onboard the ship. The amount of talent exhibited by so many people on this ship continues to amaze me.  They always have answers for everything, and Plan B for any situation is always on their minds!

Collecting and sorting the variety of marine life that we find. Here, TAS Risch holds up some sea stars.
Collecting and sorting the variety of marine life that we find. Here, TAS Risch holds up some sea stars.

Personal Log 

Today was a really exciting day of sorting, as my watch found a variety of different organisms.  I actually saw a live scallop clapping in the bucket after it was hauled up!  Other interesting creatures included a Little Skate (Raja erinacea), which is a fish made of cartilage and is closely related to rays and sharks, a sea robin, sea squirts, hermit crabs, some sea stars, and even a few flounders. One of the more unusual characters that we encountered onboard was called a Yellow boring sponge, otherwise known as a Sulfur sponge or “Monkey Dung”. We take measurements of all of these things and quickly return them to their home in the ocean. Very early this morning, around 1:00am I visited the bridge, or the area where the captain controls and steers the ship from, to see what everything looks like at night. Crew member Claire Surrey was on the bridge tonight, making sure the ship stayed on its course.  The area was very quiet and dimly lit by the various monitors that broadcast

information back to the officer in charge.  The ocean was pitch black, and I could only see faint lights of a few other ships bobbing up and down in the waves very far away.  What a cool experience to see the ocean at night, with a starry sky, and know that all types of instruments are guiding my voyage through the sea!

New Words/Terms Learned 

Min-logs:  sense temperature, depth, and pressure underwater on the dredge, and are brought back to the surface and recorded via computer.

Starboard: the right side of a ship

Port: the left side of the ship