Allan Phipps: Let the Fishing Begin! July 28, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

Mission: Alaskan Pollock Survey
Geographical Area: Bering Sea
Date: July 28, 2012

Location Data
Latitude: 61°24’39″N
Longitude: 177°07’68″W
Ship speed: 3.8 knots (4.4 mph) currently fishing

Weather Data from the Bridge
Wind Speed: 6.9 knots (7.9 mph)
Wind Direction: 30°T
Wave Height: 2ft with 2-4ft swells
Surface Water Temperature: 8.7°C ( 47.7°F)
Air Temperature: 7.9°C ( 46.2°F)
Barometric pressure: 1005.8 millibar (0.99 atm)

The NOAA Research Vessel Oscar Dyson at port in Dutch Harbor, Alaska.

Science and Technology Log:

Since the main goal of this voyage is the acoustic-trawl survey of the mid-water portion of the Alaskan pollock population, I thought I would start by telling you how we go fishing to catch pollock!  This isn’t the type of fishing I’m used to… Alaskan pollock is a semi-demersal species, which means it inhabits from the middle of the water column (mid-water) downward to the seafloor.  This mid-water survey is typically carried out once every two years.  Another NOAA Fisheries survey, the bottom trawl survey, surveys the bottom-dwelling or demersal portion of the pollock population every year.  I will begin by describing how we are fishing for pollock on this acoustic-trawl survey.

The Oscar Dyson carries two different types of trawling nets for capturing fish as part of the mid-water survey, the AWT (Aleutian Wing Trawl which is a mid-water trawl net) and the 83-112 (a bottom-trawl net that is named for the length of its 83 foot long head rope that is at the top of the mouth of the net and the 112 foot long weighted foot rope at the bottom of the mouth of the net).  One of the research projects on board the Oscar Dyson is a feasibility study that involves a comparison of the AWT and using the 83-112 bottom-trawl net as if it were a mid-water net.  The 83-112 is much smaller than the AWT, so there is concern with the fish avoiding this net and thus causing a reduction in catch.  While the bottom trawl survey acquires good information on the bottom-dwelling pollock using the 83-112 bottom trawl, if they also used this net to sample in mid-water they could help “fill in” estimates of mid-water dwelling pollock in years when the acoustic mid-water trawl survey does not occur.

Scale model of the Aleutian Wing Trawl (AWT) net courtesy of NOAA Scientist Kresimir Williams

When the net is deployed from the ship, the first part of the net in the water is called the cod end.  This is where the caught fish end up.  The mesh size of the net gets smaller and smaller until the mesh size at the cod end is only ½ inch (The mesh size at the mouth of the net is over 3 meters!).

The AWT is also outfitted with a Cam-Trawl, which is the next major part that hits the water.  This is a pair of cameras that help scientists identify and measure the fish that are caught in the net.  Eventually, this technology might be used to allow scientists to gather data on fish biomass without having to actually collect any fish (more on this technology later).  This piece of equipment has to be “sewn” into the side of the net each time the crew is instructed to deploy the AWT.  The crew uses a special type of knot called a “zipper” knot, which allows them to untie the entire length of knots with one pull on the end much like yarn from a sweater comes unraveled.

Cam-Trawl on deck, ready to be “sewn in” to the AWT.
The Cam-Trawl is now “sewn in” to the AWT and is ready to be deployed.

 Along the head rope, there is a piece of net called the “kite” where a series of sensors are attached to help the scientists gather data about the depth of the net, the shape of the net underwater, how large the net opening is, determine if the net is tangled, how far the net is off the bottom, and see an acoustic signal if fish are actually going into the net (more on these sensors later, although the major acoustic sensor is affectionately called the “turtle”).

Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net. The third wire holds the electrical wires that send data from the turtle to the bridge (courtesy of Kresimir Williams).

Once the kite is deployed, a pair of tom weights (each weighing 250 lbs), are attached to the bridal cables to help separate the head rope from the foot rope and ensure the mouth of the net will open.  Then, after a good length of cable is let out, the crew transfers the net from the net reel to the two tuna towers and attach the doors.  The doors act as hydrofoils and create drag to ensure the net mouth opens wide.  Our AWT net usually has a 25 meter opening from head rope to foot rope and a 35 meter opening from side to side.

This picture shows the A-frame with the two tuna towers on either side. The AWT is being deployed down the trawl ramp on the stern of the ship.

The scientists use acoustic data to determine at what depth they should fish, then the OOD (Officer on Deck) uses a scope table to determine how much cable to let out in order to reach our target depth.  Adjustments to the depth of the head rope can be made by adjusting speed and/or adjusting the length of cable released.

The scientists use more acoustic data sent from the “turtle” to determine when enough fish are caught to have a scientifically viable sample size, then the entire net is hauled in.  Once on board, the crew uses a crane to lift the cod end over to the lift-table.  The lift-table then dumps the catch into the fish lab where the fish get sorted on a conveyor belt.  More on acoustics and what happens in the fish lab in my next blog!

The port side crane is lifting the cod end over to the starboard side where the lift-table will receive this morning’s catch.

Personal Log:

WOW!  What an adventure!!!  So I must get you caught up on some of the happenings thus far.  After a mix-up where my reservation was cancelled on the Saturday afternoon flight from Anchorage to Dutch Harbor and the threat of being stranded in Anchorage for another day, I finally made it to Dutch.  The weather cooperated (which is not the case more often than not), and we landed on Dutch Harbor after a quick refueling stop in King Salmon.  Since we landed after 8pm, we went straight to one of the few restaurants in Dutch Harbor and had a late dinner before heading to the Oscar Dyson for the night.

My flight after landing in Dutch Harbor, Alaska!

Sunday morning, we went with several of the scientists out to Alaska Ship Supply to get some gear.  I picked up my obligatory “Deadliest Catch” shirt and hat as all tourists do here in Dutch Harbor. We made three trips to the airport throughout the day to see if some of the science gear and luggage came, but came back disappointed.  On one of our trips to the airport, we had lunch at the airport restaurant.  I had Vietnamese Pho, which is a beef noodle soup, but it wasn’t nearly as good as the Pho my wife makes. 🙂 We also drove up the “Tsunami Evacuation Route” to an overlook where we could see all of Dutch Harbor and the town of Unalaska.  Later, we drove around Unalaska and stopped to check out some tidal pools on our way back to the Oscar Dyson.  In the afternoon, we checked out the World War II museum that was absolutely fascinating!  I did not know Dutch Harbor was bombed by the Japanese and that so many American soldiers were stationed in the bunkers surrounding the harbor.  For dinner, I had black cod (sablefish) at the Grand Aleutian Hotel.  Yummy!

Overlooking Dutch Harbor after driving up the Tsunami Evacuation Route.

Monday we embarked on our adventure shortly after noon.  We had to leave the dock because another ship was scheduled to offload there in the afternoon.  The scientists’ equipment arrived on a late Monday morning cargo flight, but they didn’t make it to the ship on time!!! We couldn’t go to sea without them, so we deployed the “Peggy D” to go pick them up and bring them aboard!

The Peggy D brings our scientists Rick and Kresimir with their long-awaited research equipment to the Oscar Dyson so we may head out to the Bering Sea!

Once we had our missing scientists, we left the safety of Dutch Harbor and ventured into open water.  On our way, we saw dozens of humpback whales!  None of the whales breached (jumped out of the water), but several of them fluked (dove and put their tail out of the water).

A couple of humpback whales spotted as we were leaving Dutch Harbor.

We started our day and a half journey to get to the starting point of our survey transects (the end point of last month’s survey).  On our trip out, we experienced 6 to 10 ft seas and a 25 knot wind.  It was a “gentle” welcome to the Bering Sea, but I struggled to get my sea legs underneath me.  Meclizine is great motion sickness medication, but it sure knocked me out.  I feel better now that I am not taking anything and am used to the rocking deck.  While we made our way to our first transect, we had a couple of emergency drills.  Here I am with fellow Teacher at Sea, Johanna, in our immersion suits as we completed our abandon ship drill.

Relaxing in the lounge after putting on our “gumby” suits.

On Wednesday morning, we began our first transect and did our first trawl along the transect (more on that later).  I learned how to work in the fish lab collecting biological data on the catch we brought on board.  I have been struggling to adjust to both my shift, which is 4am to 4pm, and the fact that the sun sets around 1am and rises at about 7am.

In the fish lab processing Pollock! Did someone order fish-sticks?

Thursday morning I woke on time and observed the survey scientists and crew deploying the CTD (Conductivity, Temperature, Depth) rosette from the hero deck (on the starboard side).

Skilled Fisherman Jim is assisting with deploying the CTD.

We also had beautiful clear skies and I was able to see Venus and Jupiter.  At sunrise, I saw the GREEN FLASH!!!  It was a beautiful start to the day.

A Bering Sea sunrise!

We processed one mid-water AWT (Aleutian Wing Trawl) trawl that was all pollock, then switched to the 83-112 bottom trawl net (83 foot long head-rope and 112 foot long foot-rope) and pulled up a lot of jellyfish with our pollock.

Last night, I finally got a really good night sleep!  This morning (Friday), I watched the CTD deployment again and learned more about the data being collected (more on this later).  No spectacular sunrise this morning as it was the typical gray, foggy weather.  I went up and spent some time on the bridge and Chelsea, our navigator/medic, taught me a lot about the instrumentation used for navigating the ship.  There sure is a lot of technology on board!!!

A picture of the helm with some of the displays the OOD (Officer on Deck) uses to navigate the ship.

From the bridge, we saw a pod of Dall’s Porpoise feeding, splashing around, and moving fast!  We processed another AWT trawl of pollock that had quite a few herring mixed in.  We traveled further into Russian waters than originally anticipated as we tried to identify the northern boundaries of the pollock population to get the best picture of the entire pollock range.  We spotted a huge Russian trawler from the bridge!

A Russian trawler! I took this picture through the lens of the CO’s (Commanding Officer) binoculars.

We then headed south again towards American waters, but needed to do a quick water column profile test.  Since we did not want to stop to drop the CTD again, I got to deploy a XBT (Expendable Bathythermograph)!  After all the talk about safety briefings, the use of ballistics, and outfitting me with every piece of safety gear we could muster, I got ready to fire the XBT!!!  Turns out, when you pull the firing pin, the XBT just slides out of the tube… no fireworks, no big bang… just a small kurplunk as the XBT enters the water.  We all had a good laugh at my expense.  See, scientists know how to have fun!

Safety first!!! All decked out for the “fireworks” of shooting the XBT. My “was that it?” face says it all…

WOW!  So I have just scratched the surface of our voyage thus far!  Next time, I will give you a snapshot of what life was like aboard the ship.

Susan Kaiser: Safety and Teamwork Needed for Success, July 27, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: Friday, July 27, 2012

Weather Data from the Bridge
Latitude:  24 deg 41 min N
Longitude:  82 deg 59 min W
Wind Speed: 5.61 kts
Surface Water Temperature: 30.33 C
Air Temperature: 29.33 C
Relative Humidity: 79.0%

Science and Technology Log

Close up of the bridge of NOAA Ship Nancy Foster
Close up of the bridge of NOAA Ship Nancy Foster

Safety is first in the science classroom AND on board the NOAA Ship Nancy Foster too. Our expected departure was delayed by one day because the Public Announcement (PA) system was not working. Without the PA system, communication about emergency situations would not be possible. The ship’s crew worked to solve the problem themselves and also contacted outside help, but in the end a part had to be replaced so we stayed in port at Key West an extra day. Ships don’t sail without meeting safety requirements. By morning on Friday the system was working fine and the crew prepared to set sail.

Lt Josh Slater leads the science team safety briefing in the dry lab.

After boarding the NOAA Ship Nancy Foster one of our first tasks was to review the safety protocols of the ship with one of the ship’s officers.  We learned the whistle signals for man overboard (3 prolonged blasts of the alarm), fire (1 continuous blast of the alarm) and abandon ship (7 or more short blasts followed by 1 long blast) and the designated places to report in these situations. We will be practicing abandon ship in a drill very soon so I will report on that later. Since the ship works on a 24 hour schedule someone is always awake on board which means someone is always asleep too.  Lt. Slater stressed the importance of not being too loud and showing respect for others’ space.  After all this ship is home to the crew and the science team are guests in that home.

NOAA Ship Nancy Foster officers ENS Jamie Park, ENS Michael Doig and Lt Josh Slater (hidden), inspect diving equipment.
NOAA Ship Nancy Foster officers ENS Jamie Park, ENS Michael Doig and Lt Josh Slater (hidden), inspect diving equipment.

Teamwork is critical on board the ship. The science team and the ship’s crew work closely to help each other achieve the best results and stay safe. Most of the data collected on this cruise uses divers. Twice each day, the science team meets to review the Plan of the Day or POD. This meeting allows team members to learn the expectations of them to meet the research objectives of the day. They also have the chance to provide input or to ask questions. What do you think is a main focus of this meeting?  You got it…Safety! While we waited for the PA system repair, the scientists checked their SCUBA gear again under the supervision of the ship’s crew members. This double-check insures all the equipment is safe to use.

After we steamed away from the keys, the scientists did a practice dive to simulate an unconscious diver at the surface. This drill included 5 science team divers as well as the ship’s crew and allowed them to practice their response in an emergency situation as well as deploying a small boat. A debriefing meeting afterward helped to identify the important tasks that need to be completed in the event of an emergency.   Practicing through drills allows a quick response to an unusual situation and helps everyone stay safe.

Unconscious diver drill. Pictured Ben Binder, Lt. Slater, and Chris Rawley. Sarah Fangman, who acts as the unconscious diver, is in the boat.

With the safety issues well-covered, the science team is ready to begin retrieving the “listening stations” called VR2s from their positions on the ocean floor tomorrow.  VR2 stands for Vemco Receiver 2 and is the model of the equipment used by the scientists use to collect fish movement information.  What do you think the “listening stations” are listening for? Read about the “listening stations” in a future posting of my blog. For now you can make an educated guess by reading for hints in this blog and answering this poll.

Personal Log

Mrs. Kaiser at the Reno-Tahoe International Airport ready to start her NOAA Teacher at Sea adventure!

Flying out of Reno, NV the plane took off heading south climbing quickly into the sky.  From my window seat I could see Pine Middle School below. Then after a quick glimpse of Lake Tahoe to the west, the plane turned gracefully eastward. As I looked down I could see the desert valleys that once lay beneath the ancient Pleistocene lakes, covering a good part of the Great Basin with water. Although it doesn’t seem possible, one can still find shells and marine fossils in these now desert locations. I thought how different the landscape is today compared to the distant past. Our environment is undergoing constant changes even though the processes may seem slow and may not be noticed from day to day.

This is why it is important to observe, record and think about all aspects of our environment and to be aware of small changes so we can predict if they may become big impacts. Soon I would be landing in Florida, a state very different from Nevada, and joining the science team aboard the NOAA Ship Nancy Foster. This team is one of many that makes observations of their marine ecosystem, recording data and interpreting any changes or patterns they notice. I am very pleased to join them for the next 2 weeks and expect to learn a great deal.

Greeting me at the airport were artistic decorations made of models of tropical fish found along the Florida coast.  High on the walls, they are creatively arranged in geometric patterns reminding me of synchronized swimmers competing in the Summer Olympics. These fish are more than art. They represent an important economic factor to Florida. They lure tourists for diving and snorkeling activities. Some of them are harvested for food or fished for sport. They are also important to the ecosystems of the coastal reefs and shore communities of Florida. I wonder what changes these scientists are seeing in this marine ecosystem. What are the solutions they will propose to the public? How can a balanced management meet the needs of people who live and work there? These are difficult questions to answer.

Great Basin at 30,000 ft. This area would have been covered with small lakes during the Pleistocene period.

It is dark when I arrive finally in Key West but a scientist meets me at the airport and drives me to the ship where I find my bunk and spend the night! Everyone has been very kind and helpful which makes participating in NOAA Teacher at Sea even more amazing – if that is even possible!

Stacey Jambura: We’re All in This Together! July 20, 2012

Stacey Jambura
July 6 – July 17, 2012
.
Geographical Area of Cruise: Gulf of Mexico
Current Geographical Area: Waterloo, Iowa 
Date: July 20, 2012
.

Science and Technology Log

Crew of the NOAA Ship Oregon II

It is no small feat to conduct a research survey for NOAA. It takes many individuals with many different strengths to ensure a safe and successful cruise. From the captain of the ship who is responsible for the safety of the ship and the crew, to the stewards who ensure the crew is well fed and well kept, every crew member is important.

I interviewed many of the crew members to get a better idea of what their jobs entail and what they had to do to become qualified for their jobs. I complied all of the interviews into a video to introduce you to some of the Oregon II’s crew.

Safety Aboard the Oregon II

While out at sea, safety is a critical issue. Just as schools have fire and tornado drills, ships have drills of their own. All crew members have a role to fulfill during each drill. Emergency billets (assigned jobs during emergencies) are posted for each cruise in multiple locations on the ship.

Emergency Billets
Emergency Billets
Abandon Ship Billets
Abandon Ship Billets

Fire on a ship is a very critical situation. Because of this, fire drills are performed frequently to ensure all crew recognize the alarm, listen to important directions from the captain, and muster to their assigned stations. (To muster means to report and assemble together.) One long blast of the ship’s whistle signals a fire. (Think of someone yelling “Firrreee!!!”) Each crew member is assigned to a location to perform a specific duty. When the fire whistle is blown, some crew members are in charge of donning fire fighting suits and equipment, while others are in charge of making sure all crew have mustered to their stations.

Immersion Suit
Donning My Immersion Suit

Another drill performed on the ship is the abandon ship drill. This drill is performed so that crew will be prepared in the unlikely event that the they need to evacuate the ship. Seven short blasts of the ship’s whistle followed by one long blast signals to the crew to abandon ship. Crew members must report to their staterooms to gather their PFDs (personal flotation devices), their immersion suits, hats, long-sleeved shirts, and pants. Once all emergency equipment is gathered, all crew meets on the deck at the bow of the ship to don their shirts, pants, hats, immersion suits, and PFDs. All of this gear is important for survival in the open ocean because it will keep you warm, protected, and afloat until rescue is achieved.

The last drill we perform is the man overboard drill. This drill is performed so that all crew will be ready to respond if a crew member falls overboard. If a crew member falls overboard, the ship’s whistle is blown three times (think of someone shouting “Maann Overr-boarrrd..!). If the crew member is close enough, and is not badly injured, a swimmer line can be thrown out. If the crew member is too far away from the ship or is injured, the RHIB (Rigid Hull Inflatable Boat) will be deployed and will drive out to rescue the crew member. The crew member can be secured to a rescue basket and lifted back onboard the ship.

Man Overboard
Chris Nichols and Tim Martin performing a man overboard drill.
(photo courtesy of Junie Cassone)
Man Overboard Drill
Man Overboard Drill
Safety Equipment
Donning my hard hat

It is important to practice allof these drills so that everyone can move quickly and efficiently to handle and resolve the problem. All drills are performed at least once during each cruise.

Daily safety aboard the Oregon II is also important. When any heavy machinery is in operation, such as large cranes, it is important that all crew in the area don safety equipment. This equipment includes a hard hat and a PFD (personal flotation device). Since cranes are operated at least once at every sampling station, this safety equipment is readily available for crew members to use

Personal Log

July 20th

At the bow of the Oregon II
At the bow of the Oregon II
(photo courtesy of Junie Cassone)

I have now returned home from my grand adventure aboard the Oregon II. It took a few days for me to recover from “stillness illness” and get my land-legs back, but it feels nice to be back home. I miss working alongside the crew of the Oregon II and made many new friends that I hope to keep in touch with. Being a Teacher at Sea has been an experience of a lifetime. I learned so much about life at sea and studies in marine science. About half way through the cruise I had started to believe this was my full-time job! I am eager to share this experience with students and staff alike. I hope to spark new passions in students and excitement in staff to explore this opportunity from NOAA.

I want to thank all of the crew of the Oregon II for being so welcoming and including me as another crew member aboard the ship. I also want to thank the NOAA Teacher at Sea Program for offering me such a wonderful opportunity. I hope to be part of future opportunities offered by this program.

Valerie Bogan: First Days at Sea, June 9, 2012

NOAA Teacher at Sea
Valerie Bogan
Aboard NOAA ship Oregon II
June 7 – 20, 2012

Mission: Southeast Fisheries Science Center Summer Groundfish (SEAMAP) Survey
Geographical area of cruise: Gulf of Mexico
Date: Saturday, June 9, 2012

Weather Data from the bridge:  Sea temperature 27.5 degrees celsius, Air temperature 24.2 degrees celsius, calm seas with thunderstorms in the area.

Science and Technology Log

As I mentioned in the previous entry the Oregon II is conducting a groundfish survey.  During this research cruise we are studying many aspects of the Gulf’s ecosystem.  We start by collecting general information about the water chemistry.  To do this we use a piece of equipment called a CTD which stands for Conductivity/temperature/depth.  This piece of equipment collects information on the temperature, salinity, fluorescence and turbidity.

CTD
This is the instrument used to measure salinity, called a CTD.

I am going to briefly explain what each of these readings are and why they are important to the scientific community.  Everyone knows what temperature is but you may not be aware of its importance to the health of our planet.  The phrases global warming and climate change have become very popular in the last few years. By collecting temperature data in the same spot year after year scientists can determine if the oceans really are getting warmer.

sea surface temperature map
Map of the surface temperatures around the world. The highest temperatures are found in the red areas the lowest temperatures are found in the blue areas. (photo courtesy of bprc.osu.edu)

The oceans contain salt water which  is the most important difference between oceans and lakes.  The measurement of the amount of salt in an ocean is called salinity.  And the amount of salt in an ocean can reflect the workings of the water cycle.  If there is an excessive amount of evaporation due to high temperatures, the ocean will become more salty due to the fact that there is more salt in less water.  On the other hand  if there is a lot of rain or melt waters from glaciers and mountains then the water will become less salty because now the same amount of salt is dissolved in more water.

salt
The amount of salt in the water determines the salinity.

Fluorescence is the measurement of light which is connected to the photosynthesis rate of algae.  The health of the algae has a direct connection to the amount of carbon dioxide that can be absorbed by the ocean.  Algae produces its own food just like a tree so if the algae is healthy,  more carbon dioxide will be necessary  to carry out photosynthesis  and then ocean can absorb more natural and man-made carbon dioxide.   These readings can also tell us how well the oceans are responding to climate change.

algae
These algae make their own food through the process of photosynthesis.(photo courtesy of swr.nmfs.noaa.gov

Turbidity is the measure of water clarity.  If the turbidity is high it means that light isn’t getting through to the organisms below which in turn means that the algae and seaweed can’t get the light they need to make their own food.  High turbidity can also cause the water temperature to go up due to the excessive amount of silt and particles floating and absorbing energy from the sun.  High turbidity can also cause small animals on the bottom  of the ocean to be buried alive as the particles settle out the water column.

muddy Mississippi river
This is an example of the silt and particulate matter which is flowing into the ocean everyday.(photo courtesy of http://www.motherjones.com)

Personal log

Greetings from the Gulf of Mexico.  I have now been onboard  the Oregon II for one complete day and am slowly but surely becoming accustomed to the layout of the ship.  It has all the comforts of home even if they have different names and  look different from the parts of your home.  The place I sleep and keep my belongings in  is called a stateroom.  It is a small space but honestly the only thing I use it for is sleeping .  One other difference from your room at home is that the cabinets have latches which keep them closed even when the ship is rolling with the waves.  Given the fact that large waves may come up at any time it is important that all personal belonging are securely stored so that they don’t become flying projectiles which can hurt someone.

stateroom
This is where I am bunking for the voyage.

cabinets

The ship also contains restrooms but they are called the heads.   Fresh water is an important resource on the ship as we only brought so much with us so the toilets are flushed using  seawater which is very easy to come by out here on the gulf.  There are also a couple of showers something which is very important given the fact that our work has the ability to make us very dirty and nobody wants to be stuck on a boat with a bunch of dirty stinky people.

shower
This is where we clean off all the dirt that accumulates during sampling runs.

Safety is very important on ship so we have drills to practice what to do in case of emergency, just like the drills we do at Maple Crest middle school.  Today we had a fire drill during which the scientists were to muster (that means to report) in the lounge and stay out-of-the-way of the crew members who are actually trained to put out a fire if one should occur on the ship.  Following that we had an abandoned ship drill during which we had to put on long pants and shirts and a survival suit.  The purpose of all this clothing is to keep you protected from the elements if you have to float in the water for an extended time while waiting on a rescue ship to come

Survival suit
This is the suit you must wear during abandon ship drills.

Dave Grant: Terra Nova, February 13, 2012

NOAA Teacher at Sea
Dave Grant
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: February 13, 2012

Weather Data from the Bridge

Position: 26.30N Latitude – 71. 55W Longitude
Windspeed: 15 knots
Wind Direction: South (bearing 189 deg)
Air Temperature: 23.2 C / 74 F
Atm Pressure: 1013.9 mb
Water Depth: 17433 feet
Cloud Cover: 30%
Cloud Type: Cumulus

Personal Log

After an uneventful flight from New Jersey and an eventful trip from the airport at Charleston and through security at the naval base (Taxi drivers don’t like to have their vehicles inspected…), I am setting up my bunk on the Brown. There is a skeleton crew since I have arrived early and everyone else is expected to report tomorrow. Crates of equipment are still being loaded, so it is advisable to stay off the outside decks, and after a quick orientation by every  ship’s most important crew member (the chef),  I will have the evening free to find my way around the ship and explore the dock.
First order of business: Pick up bedding from the laundry down below.
Next: PB&J sandwich (Since the galley doesn’t open until tomorrow).
Finally: Grab the camera to catch the sunset and an amazing assortment of cloud types.

South Carolina’s estuaries are noted for their fine “muff” mud and oyster banks and the tideline at the docks is covered with a dense ring of oysters. Besides filtering great quantities of water and improving its quality, oyster “reefs” provide a secure habitat for a myriad of marinelife, and food for many creatures. (As a frustrated oyster farmer in South Jersey once remarked: “There ain’t much that lives in the ocean that doesn’t like to eat oysters!”)

Oyster Chain
Oyster Chain

Comorant
Comorant

 

Grebe
Grebe

The prettiest bird around is the red-breasted merganser, another diving fish eater. Hunters nicknamed mergansers “saw-bills” since their bills have tooth-like notches for snaring fishes. The word merganser comes via Latin mergere meaning “diver” and “to plunge.” Curiously, one of my favorite students always mixes up the word and somehow it comes out as Madagascar (!).

(Images on the Ron Brown by Dave Grant)

The most secretive and uncommon bird around the piers is the pied-billed grebe. It also dives for its dinner, but on the bottom. When frightened (or pestered by a photographer trying to get close in the fading light) it discreetly sinks straight down and disappears like a submarine. Locally, this trick earned the grebe the nickname water witch, and by Louisiana sportsmen Sac de plomb (bag-of-lead).

Grackle
Grackle

By far the noisiest birds around and the only ones onboard, are boat-tailed grackles. The iridescent, purple-black males are hard to ignore when gathering for the night on our upper rigging. A common bird of Southeastern marshes; since the 1960’s boat-tails have been expanding their range north along the Eastern seaboard beyond Delaware Bay, and now breed all along the New Jersey coast. (A normal extension of their population, or perhaps a response to warming climate? Time will tell.)

Just before dark a peregrine falcon surprised me as it glided past the ship – undeniably the most exciting sighting of the day and a great way to end it.

 “Oh end this day,
show
me the ocean.
When shall I see the sea.
May this day set me in emotion
I ought to be on my way”
(James Taylor)

Dave Grant: The Ship Was Cheered, the Harbor Cleared…, February 15, 2012

 NOAA Teacher at Sea
Dave Grant
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: February 15, 2012

Weather Data from the Bridge

Position: Windspeed: 15 knots
Wind Direction: South/Southeast
Air Temperature: 23.9 deg C/75 deg F
Water Temperature: 24.5 deg C/76 deg F
Atm Pressure: 1016.23 mb
Water Depth: 4625 meters/15,174 feet
Cloud Cover: less than 20%
Cloud Type: Cumulus

Personal Log

Crew and scientists are reporting for duty and everyone is to be onboard by sunset for a scheduled departure tomorrow morning. There are many boxes of equipment to unload and sampling devices to assemble, so everyone is busy, even during meal times.

Tall ships had miles of rope and lines for handling enormous amounts of sail.
The Brown is also carrying miles of line and cable too, but not for sailing. This is coiled neatly on reels and will be used to anchor moorings of monitoring equipment that will record water temperatures and salinities for an entire year until they are recovered on the next cruise. These moorings are anchored with ship recycled chain and old railroad wheels and their long lines of sensors rising to the surface from 5,000 meters form the electronic “picket fence” spaced between Florida and Africa across the 26.5 degree North Latitude line we are sailing.

On our last night ashore we went downtown to enjoy dinner at one of the many nice restaurants in the historic district. It was a good time to update each other on different projects and make any last minute purchases. Everyone is anxious to get started. As captains like to say:

 “Ships and sailors rot at port.”
(Horatio Nelson)

Day 3 
We are leaving the dock on schedule and heading down river.

Old sailors’ superstitions say that a small bird or bee landing on the deck of a departing vessel foretells good luck on a voyage, and a tangled anchor line forecasts bad luck. Glancing around, I observe our noisy grackles preparing to depart neighboring ships at dock –  so I hope they qualify as small birds. And huddled out of the wind on deck is a crane-fly – not a bee, but a harmless bug that looks like a giant mosquito. Perhaps no guarantee of good luck, but since all our lines and chain are neatly stowed, I am confident that an old “salt” – seeing how ship-shape the Brown is – would concur that we shouldn’t unnecessarily envision any bad luck on our cruise.

Cranefly
Dolphin "X"

Sailing down river we receive a great treat and are guided to the sea by small groups of dolphins surfing underwater in our bow wave. These are Tursiops – the bottle-nosed, the most common and well-known members of the dolphin family Delphinidae. Tursiops is Latin for “dolphin-like.”  Their comradeship is another reassuring sign of good luck to suspicious sailors. It is a remarkable spectacle and entertainment to everyone, even the veteran crew members, who, like the ancient mariners, have reported it many times. Although they seem to be taking turns at the lead, one dolphin that keeps resurfacing has a small cross-shaped scar on the port side (Left) of the blowhole; proving that at least one member of the pod has kept pace with us for the entire time.

Ship mates. (Images on the Ron Brown by Dave Grant)

Curiously, they know to abandon us near the river mouth to join other “bow riders” that have caught the wave of a freighter that is entering the river and heading upstream. Noteworthy is the bulbous bow protruding in front of the freighter. Reminiscent of the bottle nose of a dolphin, the bulb modifies the way the water flows around the ship’s hull, reducing drag – which increases speed, range, fuel efficiency and stability – things dolphins were rewarded with through evolution. And what a show the dolphins make riding the steeper bow wave! Actually launching out of the vertical face of it like surfers.

Bow rider!

Passing historic Ft. Sumter we receive an impromptu lecture by some of the crew on Charleston’s rich history from the days of Blackbeard the pirate, up through the Civil War. There is an interesting mix of people on board, from several countries and with extraordinary backgrounds. There is also a great assortment of vessels using the bay – freighters, tankers, tugs, patrol boats, cranes, sailboats and a huge bright cruise ship. I am reminded of Walt Whitman’s Song for All Seas, All Ships:

Of ships sailing the seas, each with its special flag or ship-signal,
Of unnamed heroes in the ships – of waves spreading and spreading
As far as the eye can reach,
Of dashing spray, and the winds piping and blowing,
And out of these a chant for the sailors of all nations…

        

     

 I note a transition here from the river to bay ecosystems reflected in the birdlife observed. Grebes and mergansers are replaced by pelicans and gulls.

The bay mouth is protected from wave action by low rip-rap jetties, and outside of them in a more oceanic environment are loons, scoters, and our first real seabirds – northern gannets. Loons spend the summer and nest on pristine northern lakes like those in New Hampshire (Reminding me of the movie On Golden Pond) but migrate out to saltwater to winter in ice-free coastal areas.

Scoters (Melanitta) are stocky, dark sea ducks that winter over hard bottoms like the harbor entrance, where they can dive down and scrape mussels and other invertebrates from the rocks and gravel.

Gannets are cousins of the pelicans but much more streamlined. They too dive for food but from much greater heights, sometimes over 100’. They also plunge below the surface like javelins to snare fishes. They are wide-ranging visitors along the East and Gulf coasts, wintering at sea, and returning to isolated cliff nesting colonies known as a “gannetry”  in Maritime Canada

The ship was cheered, the harbor cleared,
Merrily did we drop,
Below the kirk, below the hill,
Below the lighthouse top.

(Coleridge)
 Sullivan Island lighthouse
Latitude: 32.75794
Longitude: -79.84326

The odd triangular shaped tower of Sullivan Island lighthouse originally had installed the second brightest light in the Western Hemisphere. (Said to be so powerful that keepers needed to wear asbestos welding gear when servicing the light)
At 163 feet, its unusual flash pattern is tricky to catch on camera, but it is our last visual link to the mainland, and it will be the only land feature we will see until we are off the lighthouse at Abaco, Bahamas, after ten days at sea. A lighthouse keeper at the lens room, watching us sail away, could calculate at what distance (in miles) we will disappear over the horizon with a simple navigator’s formula:

The square root of 1.5 times your Elevation above se level.
Try it out:  √1.5E’ = _____ Miles 

√1.5 x 163′  = _____ Miles  to the horizon

(Images on the Ron Brown by Dave Grant)
 

Elizabeth Bullock: We Are Underway! December 11, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: December 11, 2011

Weather Data from the Bridge
Time: 2:30pm
Air Temperature: 24.5 degrees C (76 degrees F)
Wind Direction: 65.9 degrees east northeast
Wind Speed: 15.8 knots
Relative Humidity: 78%

Science and Technology Log

Today is the first day of the research cruise.  The R/V Walton Smith left its home port in Miami, FL this morning at about 7:30am.  After a delicious breakfast, the crew and scientific party received a safety briefing from Dave, the Marine Tech.  We learned about the importance of shipboard drills and we were shown the location of all the safety gear we might need in case of an emergency.  This ship works like a self-contained community.  The crew of the ship must also be the policemen and firemen (or policewomen and firewomen).

After our safety briefing, the science party went outside to our first station of the day.  The first piece of equipment we put into the water was a CTD.  The CTD is named after the three factors the equipment measures: conductivity, temperature, and depth.  The CTD will be deployed at precise locations along our route.  Since they conduct this research cruise twice a month, they can see if conditions are changing or staying the same over time.

Liz at computer
Here I am, reading the data that came up from the CTD.
CTD
This is the CTD, which measures conductivity, temperature, and depth.

Question for students: What is the relationship between salt and electrical conductivity?  If the salt content in the water increases, will it conduct electricity better or worse?

The next piece of equipment we deployed was the Neuston Net.  This net sits at the water line and skims organisms off the surface of the ocean.  The net is in the water for 30 minutes at a time.  After bringing the net onto the deck, the fun part starts – examining the contents!  Our Neuston Net had two main species: moon jelly (Aurelia) and sargassum.  The term sargassum actually describes many species, so the scientists on board will study it carefully in order to classify which kinds they caught in the net.  Sargassum is an amazing thing!  It is planktonic (which means that it floats with the current) and it serves as a habitat for bacteria and small organisms.  Since it is such a thriving habitat, it is also a great feeding ground for many different species of fish.

Once we emptied the contents of the Neuston Net, Lindsey and Rachel, two of the scientists on board, began to measure the quantity of each species they caught.  In order to measure the weight of the moon jellies, they used the displacement method.  This is because we can’t use regular scales onboard.  Here are the steps we took to measure the moon jellies:

1)      We poured water into a graduated cylinder and recorded the water level.  For example, let’s say that we poured in 100ml of water.

2)      We put a moon jelly into the graduated cylinder and recorded the new water level.  For example, let’s say that the new water level read 700ml.

3)      We subtracted the old water level from the new, and we could tell the volume of the moon jelly we had caught.  For example, based on the numbers above, we would have caught a 600ml moon jelly!

Neutson Net
Lindsey examines what we caught in the Neuston Net.

Both the CTD and the Neuston Net will be deployed many times over the course of the cruise.

 

Personal Log

Despite a bit of seasickness, I am having a wonderful time!  Everyone on board is very welcoming and happy to answer my questions.  Everyone is so busy!  It seems like they have all been working nonstop since we arrived on board yesterday.

Answers to your questions

First, let me just say that these are great questions!  Good job, Green Acres.  Here are some answers, below.

1)      How do the currents make a difference in the water temp?  The currents play a major role in water temperature.  In the Northern Hemisphere, currents on the east coast of a continent bring water up from the equator.  For example, the Gulf Stream (which is a very important current down here in Florida) brings warm water from the tropics up the east coast of the United States.  This not only keeps the water temperature warm, but it also affects the air temperature as well.

2)      How does the current affect the different algae populations?  Currents regulate the flow of nutrients (which phytoplankton needs to survive).  Strong currents can also create turbidity, which means that it stirs up the water and makes it harder for light to penetrate the water column.  As you know, phytoplankton rely on sunlight to grow, so if less light is available, the phytoplankton will suffer.  I’m told by Sharein (one of the phytoplankton researchers) that algae are hearty creatures.  This means that as long as the turbid conditions are temporary, algae should be able to thrive.

Staci DeSchryver: A Major Ursus, August 3, 2011

NOAA Teacher at Sea
Staci DeSchryver

Onboard NOAA Ship Oscar Dyson
July 26 – August 12, 2011 

Mission: Pollock Survey
Geographical Area of Cruise: Gulf of Alaska
Location:  57.43287 N, 152.28867 W
Heading:  
241.2 (Stationary)
Date: August 3, 2011

Weather Data From the Bridge
Overall Weather:  Clouds and fog

Science and Technology Log

One of the most serious emergencies that can take place onboard a ship is a fire.  The NOAA Ship Oscar Dyson has many security measures in place in the event of a fire while underway.  During our time in port, the crew of the Dyson planned a ‘’Safety Stand Down” Day to review safety protocol for all types of emergencies, particularly what the crew should do in the event of such a serious issue.

Before we began discussing some of the features of fire-fighting and emergency equipment, we participated in a survival activity that will certainly be used for the first days of school in my AVID class.    The activity consisted of a list of 15 items that we had in a mock abandon-ship emergency situation.  We were supposed to rank order the items of greatest to least importance for survival.  Some items were quite obviously important (water, food, and shelter, for example) and some were quite important but at first glance appeared to be about as useful as chewing gum.  There was a third group of items that appeared to be important, but in reality, ended up being about as valuable as a lawn ornament.  We rank ordered the items first on our own, and then formed groups of four or five to discuss our lists and come up with a group consensus of what is valuable.  As I predicted, repurposing items was the name of the game and those seemingly useless chewing gum items realized their full potential for being used for some other function.  Overall, I won!  I will be accepting applications for spaces in my life raft in the event of an emergency.  Preference will be given to those who can demonstrate strong paddling capabilities and have a deep aptitude for celebrity impersonations for entertainment purposes while on the raft.  Although all candidates will be judged carefully, those who write detailed, yet succinct and poignant essays will be given highest consideration due to limited on-raft seating.

After we finished the safety exercise, we were given the opportunity to take a look at the fire-fighting gear.  Think about this:  what happens when there is a fire at home?  It is usually detected by a smoke alarm, then, if there is time, the type of fire is determined.  Did it start with grease in the kitchen?  Or is it coming from an unknown source, maybe like an electrical fire?  The type of fire will determine what can and cannot be used to put it out.   If the fire can’t be put out quickly, the next step is to…call…the…fire…department.  Now, think about this:  What would happen on a ship in the event of a fire?  Well, many people are typically on watch to ensure that fires don’t start to begin with.  But fires can start on board in all of the same ways they can start at home.  So, in preparation for this, the ship must be equipped not just for fire, but for all kinds of fire.  If the fire can’t be put out quickly, the next step is to…call…the…fire…department…but wait!  That really can’t be done.  Who, then, do we call?  (Not the Ghostbusters, but good try.)  The crew doubles as the fire department.   In fact, any person who is on the ship is a member of the fire-fighting team to a certain extent.  My job is to be accounted for and stay the heck out of the way so the pros can do their job.

All of the crewmen are trained in firefighting procedures.  There are two fire lockers, one fore and one aft of the ship.  Inside the fire locker is a treasure trove of nozzles, hoses, and fire axes.  They are ready for anything on the ship because they have equipped themselves with a variety of means with which to fight different kinds of fires.

fire gear
Here, two members of the Oscar Dyson practice changing out air supply tanks.

What I found both interesting and important is that all of the hose lengths must be able to reach any connection on the ship so that all parts of the ship are covered in the event of a fire.  This can easily be explained if you think about a poorly designed sprinkler system.  If your sprinklers don’t cover all areas of the yard, you end up with conspicuous brown patches in the grass where the water doesn’t reach.  However, if the sprinkler system is set up correctly, no brown patches exist.  The Oscar Dyson requires that all of the hoses are long enough so that there are no “brown areas” on the ship.  If appropriate and necessary, the hoses will pull seawater out directly from the ocean to fight a fire in favor of the purified water onboard.  Usually, they prefer to use carbon dioxide to fight the fire.  It’s relatively benign in terms of dangerous reactions that could potentially take place.  For example, if there was a grease fire onboard, it wouldn’t make much sense to put water on it, but Carbon Dioxide would be a great option.

Next, we were given a demonstration of all of the nifty features of the firefighting gear. Ensign David Rodziewicz, the head safety officer, gave pointers on how to effectively put fire-fighting gear on.  The goal is to be able to get in and out of fire gear in less than two minutes, with the ideal time being less than a minute.  ENS Rodziewicz indicated that the most important way to be successful with suiting up is to have the gear properly set up – if boots are tipped over and gloves are strewn all over the place, not much will be accomplished in the time frame allotted – and being able to fight a fire quickly, while critical in all areas, is imperative on a boat.  Where land-based fires are a tragic and sobering experience, there is often an escape.  One can leave and go to a wide parking lot or out to the street away from the flames.  On the ship, the only place to go if things really take a turn for the worse is the ocean.  This is why timing is so important.There are some neat features on the fire-fighting equipment.  The air supply tanks are equipped with a 45-minute supply of air.  Most fire fighters are not expected to stay in an active fire area for that long, but the supply is large enough just in case there is a problem.   There is no need to keep time while fighting fires.  A “heads-up” display is clearly visible in the fire mask, with green, yellow, and red indicator lights representing the percentage of air left in the tanks.  The batteries for the light displays are changed quarterly – an important thing to check off on a to-do list!  Of all of the things to remember to do on a ship, it seems to me like that would be an easy task to forget.  But, they never do.  Another interesting feature is the communications system.  Each fire-fighting mask has a built-in communications system, so there is no need to take a radio in to an area with flames.  It’s almost like having a fire-fighting Bluetooth.  Each coat is also equipped with a flashlight and an emergency nylon strap in case of an emergency.  The neatest feature to me was the emergency bypass for the oxygen tanks.  If a crew member runs out of air, he or she can “latch” on to another person’s tank by ENS Rodziewicz utilizing a connector hose from the back of the rescuing party’s tank.  This will give approximately a ten minute air supply, although  points out that if one finds    himself or herself in that kind of a situation, he or she should not be in a fire zone for an additional ten minutes.  The emergency air supply is to safely remove a crew member only – not for fighting fires.One of the most useful ways to fight fire on a ship is to simply cordon off the area and then let the fire run its course in the offending room.  On the ship, there are many fire-retardant walls built into the bulkhead.  At that point, the fire fighters will utilize a tactic known as “boundary cooling.”  When you shut off a single room in the ship, the above and below decks can still conduct heat.  Therefore, the crew will spray a layer of ocean water in the rooms directly above and below the target area to ensure that the fire does not spread above or below floors.  Water has a high specific heat, so it acts as an excellent energy absorber.   This tactic is called boundary cooling, and is used often used in fire-fighting on a ship.Afterward, we watched the crew practice putting on, activating, and utilizing their fire-fighting equipment.  Each person who is responsible for fire-fighting has a partner who assists him or her in getting suited up, changing out air supply tanks, and assisting in other duties as necessary.Here, Cat and I are pret-a-porte in our stylish life-saving devices. Will we go into the water? Check out my other blog to find out…

From there, the day got really exciting, but if you want to read about it, you’ll have to visit my other blog at www.mrsdisonaboat.blogspot.com– a quick hint:  it involves a gumby suit and a big splash!  It’s not for the faint of heart.  Here’s a preview in the picture to the left.  Also, be sure to check out Cat’s blog:  www.blueworldadventures.blogspot.com to see what she’s been up to!  Cat does some incredible cartoons that are really funny and informative, so she is capturing this adventure in a completely different light.  We make a great team!

Personal Log

Will Cat and I make a big "splash?" Check out my other blog to find out!
Will Cat and I make a big "splash?" Check out my other blog to find out!

Yesterday, Cat and I went out to Fort Abercrombie.  Fort Abercrombie was an established World War II outpost that was designed to defend American soil in the event of an attack from the Axis Powers.  We found this really interesting interpretive trail called the Wildflower Trail.  Along the trail, there were informative signs about various wild flowers, their scientific name, their Inuit name, and uses for the roots, blossoms, stems, and leaves.  After encountering a sign, it was a sure bet that we would see the celebrity flower just a few clicks up the trail.  The trail carried us to a decrepit lookout post over the inlet that we could enter into and see what the defenders of our nation saw when they looked out on the glass blue waters of the bay.

The lookout
Here at Ft. Abercrombie, Marshmallow busied himself by taking post in the military lookout. He claims he was scanning the air for potential threats to our borders. Since there are not imminent threats to Alaska at this juncture, I maintain that he stole Cat's binoculars to look for Salmon.

Old buildings stood steadfast, fighting reclamation by the forest while many had a legacy left only by a sign pounded in to a rotting foundation.  Again, I found myself trying to tell the story of those who used to call this enchanted forest home.

We also (sound trumpets!) saw a Kodiak Brown Bear!  There is a difference between a Brown Bear, a Kodiak Bear, and Grizzly Bear – mainly demographic.  A Brown Bear (Ursus arctos) is called a brown bear because it is found in coastal areas.  Kodiak Bears are the largest of the Brown bears and are found only on Kodiak Island.  Inland bears (like the ones you find in Yellowstone) are called Grizzlies (Ursus arctos horriblis).  Bears on boats are called Marshmallows.  All bears (excepting Marshmallow himself) are in the genus Ursus.   Brown bears, Grizzly Bears, and Kodiak Bears are Ursus arctos, while Marshmallow’s distant cousins to the north are Ursus maritimus.  After discovering this as his namesake, Marshmallow was quite revolted.  He has decided to write a strongly worded letter to the Linnaeus Society as the term maritimus paints a less menacing and voracious picture of polar bears than does the Grizzly’s namesake.

Mbear in the flowers
Marshmallow has been quite incorrigible since his discovery of his species name. I suggested that he attach this photo to his strongly worded letter, which paints him in a most frightening manner.

He has suggested instead to be called Ursus kickyerbuttus.    I maintain that Marshmallow should be renamed Ursus domesticus stuffedus wimpus, because the closest he has ever been to a salmon run is from the comfort of his 60 inch HDTV.  He has a stateroom for crying out loud.

As we drive along the road, we slow down to a crawl at all of the river crossings hoping to see Kodiak Bears.  Our luck was good that day, because we saw three in a matter of about 4 hours.  Here he is now.

Brown Bear
This bear is not a Marshmallow. Nor is he a Pooh or a Yogi. Let me break this down into a simple equation: No stuffing + large + curious and furtive glances at surrounding humans + large teeth and claws = I should probably be further away than I am right now.

A fisherman nearby hypothesized he was a juvenile male, about 2 or 3 seasons away from his mamma and on his own as a hunter.  He was pretty indifferent to the existence of people, but not menacing in any way.  He ambled along, chasing after magpies and hopping in and out of the water.  It was neat to see him up so close, but still have the safety of the bridge to keep us at a safe distance.  This was of course, until he decided to climb up onto the road.  He was quicker than I would have liked him to be!

After dinner, we were driving back to the ship along Women’s Bay and one ran out in front of the car!  His shoulder blade was at the same level as the roof of the Impreza we were driving – no fish tale.  He glanced casually at us and loped off into the trees toward the salt marsh.  The next creek up the bay hosted a third bear, but we only got a glimpse of him as he was gone by the time we turned the car around.  It was really a blessing to get to see (more than once!) such neat little critters.  And by little critters I mean large toothed, long clawed beasts that have the capability to chew your head off in one fell swoop.  Thankfully, they are more interested in salmon at this time of year, and really don’t have much of a taste for people.  (In defense of Mr. Kodiak, there are more casualties from dogs in a given year than there are fatal maulings in ten years from Kodiak Browns.  We would have much more to worry about if we tasted like Salmon or Salmonberries, as this is what comprises the majority of their diet.  However, they should be treated with a healthy respect – especially a momma bear with her cubs.)

It has been an action packed week so far.  We are hoping to learn as much as we can about the island while we are here, and we are making the best of being in port while we wait to set sail.  It’s been wonderful to walk out on the peninsula every morning and have some time to myself to show gratitude for all that has been done for me to get me out here and experience this first hand.  The standing joke when we witness something truly spectacular is to say “I think in my evaluation of the Teacher At Sea program I am going to suggest that they actually find places for us to go that aren’t so ugly.  This place is such an eyesore…”  I hope you sense the sarcasm dripping in my voice.

Trivia Question:

True or False?  Sea Stars are Echinoderms that can regenerate lost body parts.

Answer:  True.  “Sea stars are remarkable, as they are able to regenerate lost or damaged parts of their bodies. An arm that is broken off can be regrown. Some species can actually regrow a complete new body from a single severed arm, if it is attached to part of the central disc.”

**http://www.marineparks.wa.gov.au/fun-facts/95-sea-stars.html

Caitlin Fine: Chemistry Is All Around Us, August 4, 2011

NOAA Teacher at Sea
Caitlin Fine
Aboard University of Miami Ship R/V Walton Smith
August 2 – 6, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: August 4, 2011

Weather Data from the Bridge
Time: 10:32pm
Air Temperature: 30°C
Water Temperature: 30.8°C
Wind Direction: Southeast
Wind Speed:  7.7knots
Seawave Height: calm
Visibility: good/unlimited
Clouds: clear
Barometer: 1012 nb
Relative Humidity: 65%

Science and Technology Log

As I said yesterday, the oceanographic work on the boat basically falls into three categories: physical, chemical and biological. Today I will talk a bit more about the chemistry component of the work on the R/V Walton Smith. The information that the scientists are gathering from the ocean water is related to everything that we learn in science at Key – water, weather, ecosystems, habitats, the age of the water on Earth, erosion, pollution, etc.

First of all, we are using a CTD (a special oceanographic instrument) to measure salinity, temperature, light, chlorophyll, and depth of the water. The instrument on this boat is very large (it weights about 1,000 lbs!) so we use a hydraulic system to raise it, place it in the water, and lower it down into the water.

CTD
Lindsey takes a CO2 sample from the CTD

The CTD is surrounded by special niskin bottles that we can close at different depths in the water in order to get a pure sample of water from different specific depths. Nelson usually closes several bottles at the bottom of the ocean and at the surface and sometimes he closes others in the middle of the ocean if he is interested in getting specific information. For each layer, he closes at least 2 bottles in case one of them does not work properly. The Capitan lowers the CTD from a control booth on 01deck (the top deck of the boat), and two people wearing a hard hat and a life vest have to help guide the CTD into and out of the water. Safety first!

Once the CTD is back on the boat, the chemistry team (on the day shift, Lindsey and I are the chemistry team!) fills plastic bottles with water from each depth and takes them to the wet lab for processing. Throughout the entire process, it is very important to keep good records of the longitude and latitude, station #, depth of each sample, time, etc, and most importantly, which sample corresponds to which depth and station.

We are taking samples for 6 different types of analyses on this cruise: nutrient analysis, chlorophyll analysis, carbon analysis, microbiology analysis, water mass tracers analysis and CDOM analysis.

The nutrient analysis is to understand how much of each nutrient is in the water. This tells us about the availability of nutrients for phytoplankton. Phytoplankton need water, CO2, light and nutrients in order to live. The more nutrients there are in the water, the more phytoplankton can live in the water. This is important, because as I wrote yesterday – phytoplankton are the base of the food chain – they turn the sun’s energy into food.

Carbon
Sampling dissolved inorganic carbon

That said, too many nutrients can cause a sudden rise in phytoplankton. If this occurs, two things can happen: one is called a harmful algal bloom.  Too much phytoplankton (algae) can release toxins into the water, harming fish and shellfish, and sometimes humans who are swimming when this occurs.  Another consequence is that this large amount of plankton die and fall to the seafloor where bacteria decompose the dead phytoplankton.  Bacteria need oxygen to survive so they use up all of the available oxygen in the water. Lack of oxygen causes the fish and other animals to either die or move to a different area. The zone then becomes a “dead zone” that cannot support life. There is a very large dead zone at the mouth of the Mississippi River. So we want to find a good balance of nutrients – not too many and not too few.

The chlorophyll analysis serves a similar purpose. In the wet lab, we filter the phytoplankton onto a filter.

chlorophyll
I am running a chlorophyll analysis of one of the water samples

Each phytoplankton has chloroplasts that contain chlorophyll. Do you remember from 4th grade science that plants use chlorophyll in order to undergo photosynthesis to make their own food? If scientists know the amount of chlorophyll in the ocean, they can estimate the amount of phytoplankton in the ocean.

Carbon can be found in the form of carbon dioxide (CO2) or in the cells of organisms. Do you remember from 2nd and 4th grade science that plants use CO2 in order to grow? Phytoplankton also need CO2 in order to grow. The carbon dioxide analysis is useful because it tells us the amount of CO2 in the ocean so we can understand if there is enough CO2 to support phytoplankton, algae and other plant life. The carbon analysis can tell us about the carbon cycle – the circulation of CO2 between the ocean and the air and this has an impact on climate change.

The microbiology analysis looks for DNA (the building-blocks of all living organisms – kind of like a recipe or a blueprint). All living things are created with different patterns or codes of DNA. This analysis tells us whose DNA is present in the ocean water – which specific types of fish, bacteria, zooplankton, etc.

The water mass tracers analysis (on this boat we are testing N15 – an isotope of Nitrogen, and also Tritium – a radioactive isotope of Hydrogen) helps scientists understand where the water here came from. These analyses will help us verify if the Mississippi River water is running through the Florida Coast right now. From a global viewpoint, this type of test is important because it helps us understand about the circulation of ocean water around the world. If the ocean water drastically changes its current “conveyor belt” circulation patterns, there could be real impact on the global climate. (Remember from 2nd and 3rd grade that the water cycle and oceans control the climate of Earth.) For example, Europe could become a lot colder and parts of the United States could become much hotter.

This is an image of the conveyor belt movement of ocean currents

The last type of analysis we prepared for was the CDOM (colored dissolved organic matter) analysis. This is important because like the water mass tracers, it tells us where this water came from. For example, did the water come from the Caribbean Sea, or did it come from freshwater rivers?

I am coming to understand that the main mission of this NOAA bimonthly survey cruise on the R/V Walton Smith is to monitor the waters of the Florida Coast and Florida Bay for changes in water chemistry. The Florida Bay has been receiving less fresh water runoff from the Everglades because many new housing developments have been built and fresh water is being sent along pipes to peoples’ houses. Because of this, the salinity of the Bay is getting higher and sea grass, fish, and other organisms are dying or leaving because they cannot live in such salty water. The Bay is very important for the marine ecosystem here because it provides a safe place for small fish and sea turtles to have babies and grow-up before heading out to the open ocean.

Personal Log

This cruise has provided me great opportunities to see real science in action. It really reinforces everything I tell my students about being a scientist: teamwork, flexibility, patience, listening and critical thinking skills are all very important. It is also important to always keep your lab space clean and organized. It is important to keep accurate records of everything that you do on the correct data sheet. It can be easy to get excited about a fish or algae discovery and forget to keep a record of it, but that is not practicing good science.

It is important to keep organized records

It is also important to stay safe – every time we are outside on the deck with the safety lines down, we must wear a life vest and if we are working with something that is overhead, we must wear a helmet.

I have been interviewing the scientists and crew aboard the ship and I cannot wait to return to Arlington and begin to edit the video clips. I really want to help my students understand the variety of science/engineering and technology jobs and skills that are related to marine science, oceanography, and ships. I have also been capturing videos of the ship and scientists in action so students can take a virtual fieldtrip on the R/V Walton Smith. I have been taking so many photos and videos, that the scientists and crew almost run away from me when they see me pick up my cameras!

Captain Shawn Lake mans the winch

The food continues to be wonderful, the sunsets spectacular, and my fellow shipmates entertaining. Tomorrow I hope to see dolphins swimming alongside the ship at sunrise! I will keep you posted!!

Did you know?

The scientists and crew are working 12-hour shifts. I am lucky to have the “day shift” which is from 8am to 8pm. But some unlucky people are working the “night shift” from 8pm to 8am. They wake-up just as the sun is setting and go to sleep right when it rises again.

Animals seen today…

zooplankton under the dissecting microscope

–       Many jellyfish

–       Two small crabs

–       Lots of plankton

A sampling of zooplankton

–       Flying fish flying across the ocean at sunset

–       A very small larval sportfish (some sort of bluerunner or jack fish)

Some moon jellyfish that we collected in the tow net

Sue Zupko: 17 Life on the Pisces

NOAA Teacher at Sea: Sue Zupko
NOAA Ship: Pisces
Mission: Extreme Corals 2011; Study deep water coral and its habitat off the east coast of FL
Geographical Area of Cruise: SE United States from off Jacksonville, FL to Biscayne Bay, FL
Date: June 24, 2011

If you are just beginning this blog, you might wish to go back to post #1 and start reading there.

Before reading this post further, take the quiz.

Life at Sea

Red sunset within clouds over the ocean
Dusk on a limitless ocean

Life at sea is things in miniature—except the view.  The ocean seems to stretch on forever.  It’s easy to see why people in ancient times thought you would fall off the edge if you got too close.  Explorers ventured out to prove them wrong.  Mathematicians and astronomers also studied it to try to discover the truth.   We’ve come a long way in our understanding of the universe since then, but there is so much more to explore and learn.  The ocean is just one of those unexplored and undiscovered places.

Men exiting a gate with suitcases
ROV Guys departing

After the scientists disembarked in Ft. Lauderdale, I stayed aboard the Pisces to learn about the workings of the ship while it steamed back to its home port of Pascagoula, MS.  After all, how often does one get an opportunity like this?  I had a tour of engineering, discussions on the bridge, conversations with the crew in the mess,  and a lesson on bandwidth.  This post is an attempt to describe some everyday things you need to know about going to sea with NOAA.

Safety

Shortly after we boarded, we had a briefing in the conference room.  This was mostly to cover safety issues and things to help us understand procedures.  Of course, meal time hours were shared.  I made a mental note of those hours since I knew I wouldn’t want to miss any meals. The stewards’ reputation for good meals preceded them.

ENS Michael Doig began our briefing by drawing the following on the white board.

______________________________

_______      _________      _________

_____     _____     _____     _____     _____     _____     _____     __________________________________

Black submarine next to an orange tug in the center of the harbor
Nuclear Sub

I thought this was a clever way to introduce what he would later discuss—our alarm bell and whistle patterns.  Mike, a former high school teacher, brought this method of capturing the class’s attention to his work on the Pisces.  One of the first things we practiced after the briefing was the “fire” drill.  Mike explained that one long bell and whistle meant either fire, collision (I figured we would feel that as well), or security alert.  If we heard this, we were to bring our PFD (Personal Floatation Device—life preserver), located under our bunks, to the conference room, which was the mustering (gathering) station for the scientists.  Our chief scientist, Andy David, would take a head count and call 101 on the phone to report to the bridge our headcount.  Mike explained that fire is one of the big concerns on a ship.  It really needs to be taken seriously.  You can’t run out to the mailbox to gather as many families do for their emergency spot where everyone knows to go.  So, they gather the scientists together since we are more like guests and wouldn’t know the correct procedures to fight a fire.  Of course, for the first drill the alarm said the fire was near the conference room so we had to muster on the fantail (back-end of the ship).  It was interesting to watch the crew quickly go to their duty stations in full gear to fight the fire.

ENS Doig clasps face in alarm in front of fire alarm box
Oh, no! Ensign Doig poses in fake alarm.

During the course of our trip, I did hear alarms sound on the bridge from different locations.  Often it was something someone needed to check on.  None turned out to be real emergencies, but were alerts to the crew to check on something.  Thank goodness.  These were always attended to immediately—not just when the bridge crew finished what they were working on.  ENS Doig happened to be on duty when one of these alarms went off and I was on the bridge.  Knowing I was going to take a picture, he made a face full of alarm.  It’s good to have a sense of humor, especially since they had checked out the possibility of a fire and determined the cause for the alarm wasn’t a fire.

Sue posing in bulky orange body suit
Gumby survival suit

After we finished our fire drill (by the way, when the alarm sounds they always announce whether it is a drill or not), we were told we’d be practicing our abandon ship drill.  For this you must bring a hat, long-sleeved shirt, long pants, PFD, and your “Gumby suit” (survival suit) to your muster station.  The Gumby suit probably has some long special name, but no one calls it that.  It is located in one’s stateroom in an orange bag next to the door.  It has handles and even pictures and directions explaining how to put it on.  Those who hadn’t donned a suit recently, crew and scientists, had to put it on.  Never having been at sea, I, of course, had to put it on.  What a pain!  One hopes never to have to abandon ship, but it would be difficult to put that on in the water.  I am pretty sure I’d have it on within the required minute if we were doing the act of last resort and abandoning ship.  Easier putting it on aboard the ship than in the water.   The signal to abandon ship is  6 or more short bells and/or whistles followed by one long one.

The answer to the quiz is three short bells or whistles is the signal for man overboard.  Our mustering station was the conference room for this activity so a head count could be taken.

Sue in yellow helmet and orange PFD taking photograph with long lens
Get that shot!

When working with a crane or winch and lifting something over the side of the boat, you must wear a hard hat and PFD —even if you’re just watching.  My first experience with this was when I stepped out by the door to take a picture of the ROV being launched.  The fisherman standing nearby told me I had to get properly dressed.   They were just getting ready to launch and I needed to be ready.  Oops!  I went right in and put on my hard hat and PFD.  Stephanie Rogers captured that moment after I was properly attired.  I later learned that when entering or leaving a port, you had to wear a hard hat on the bow.   Lots of safety rules.

Stainless steel counters in long lab
Sliding doors at the far end of the wet lab close automatically.

If  there is a fire alarm, some doors automatically close and you must know about it so you won’t stand in the way if they start to close.  I think the door would win in a battle for possession of that space.  We have similar doors at the school which slam shut during fires.  Watch out!  In other words, on a ship, just as in school, safety is always on everyone’s mind.

Captain leaning over filing cabinet referring to book
Captain refers to book

On the bridge, someone is always assigned to watch.  The captain pulled out his book, COMDTINST M16672.2D: Navigation Rules (COLREGS), to show me the regulation which he had just quoted.  I’m telling you, there is a book for everything on the bridge and they use them.  Reading makes life so much easier.  The Inland Steering section, Rule 5, says the ship “must maintain proper look-out by sight and hearing”.  The watch officer cannot risk a collision.  There are two radar screens displayed prominently on the helm station.  What do you need to watch for?  Won’t the radar pick up the boats?  Well, no.  Large boats usually have a “black box” like airplanes, which have a transponder telling the ship’s name and what type of craft it is.

Small boat crossing in front of the Pisces' bow
Game of chicken

Small boats often don’t have this equipment and are a big threat.  I found that out the day after we left port.  Boaters don’t seem to realize that there might be someone besides them on the water.  Even in deep water small fishing boats would cut in front of us.   It often seemed like a game of “Chicken”.  Victor, an able-bodied seaman (special certification for those with extra training and skill) pointed out that whenever the winds pick up to 15 or 20 knots there are more than a few incidents of boaters getting in trouble and the Coast Guard alerts all ships to be aware and possibly assist in rescue.  Besides possibly tipping over, small boats cannot be seen in high swells until a large ship is almost upon them.  Many don’t have transponders or radios to contact anyone to communicate problems or questions.  Also, they often drink alcohol and drive.  Dumb!  I asked Victor what the Pisces would do if a small boat got too close.  Run ‘em down was not the answer.  Trying to radio them, calling to them with a loudspeaker, or blowing the horn usually gets their attention, he told me.

Grey sneakers with red short socks
Scott always had interesting socks.

You must wear shoes enclosed on the toes and heels.  It’s readily apparent why.  The stairs can be treacherous when you are flopping around.  In waves you could slide and hurt yourself, walk out of the shoes and twist an ankle, or slip on a wet deck.  I found out several reasons for the deck being wet: rain (no kidding), humidity (it’s amazing how quickly water vapor condenses on the deck and makes a pond that sloshes around), swabbing (cleaning), and potable water runoff.

Two pipes, one with blue valve the other with black valve on top
Fresh Water Overflow

The ship makes its own fresh water.  If there is too much in the potable (drinking) storage tank, the excess water will exit out a runoff valve onto the deck.  I discovered this one morning toward the beginning of the trip.  The engineer who explained it to me said that the people on the ship were conserving their water, most likely, and the excess from the tank drained off onto the deck.  I heard the captain make the same comment a week later about how the people on this research expedition were doing a good job conserving.  That made me feel really good.  Those short showers paid off.  Fun fact: it takes one gallon of diesel fuel to produce one gallon of fresh water on the ship.

Stuffed pelican sitting on rail in hall
Petey Pelican on handrail

“One hand for yourself, and one for the ship” is how you walk on a ship safely.  There are railings everywhere for you to hang on to.  It’s a challenge in choppy seas to carry something, such as a laptop, and successfully maneuver down the hall while holding on as well.  When the seas were about seven feet high I found it more than a little challenging to stand let alone walk.

Ship Tour

Looking down stairwell with white railings and black steps
Steep Stairs

Let me explain how a ship is laid out.  When I say there are a lot of stairs, I’m not kidding.  Before I knew anything about the ship, we took a tour of most of the places we’d be “living” and a few extras.  Of course it was all fascinating.  We started in the conference room on the deck right across from my stateroom.  That deck inside includes staterooms, the lounge and conference room, the dive locker (the ship has three divers who can inspect the propeller, rudder and underwater parts of the hull if there is a problem), and business office.  Outside is the rescue boat, a couple of winches, and the bow.

Two green oxygen tanks strapped to wall
Oxygen tanks at top of stairs on O-2 deck

We climbed some stairs and as we got there the guide told us that this was the O 2 deck.  At first I thought he was kidding since right in front of me were two oxygen tanks.  I asked for clarification and he said this is the deck with the staterooms of the NOAA officers, bosun, chief engineer, and chief scientist.  Hmmm…still didn’t make any sense to me.  What does that have to do with oxygen?  I kept my thoughts to myself.  Later I found a map of the ship.  I slept on the O-1 deck, the officers were on the O-2 deck, and the bridge was on the O-3 deck.  Hello!  It was the level name of the deck and had nothing to do with oxygen.  It was just a coincidence.  Too funny.

Climbing above the bridge was the “flying bridge” (I wonder if that’s because the flags are there).  It houses the radio towers and says, “Danger–Radiation Warning.”  We were told to let the bridge know when we were going up there.  It’s a great place to try to catch a cell phone signal or watch a sunrise.

Sue with feet up on base of wheeled watertight door
Had to throw my weight into this door leading to the exercise room.

Doors

On the Pisces, and I would assume on other ships, there are doors everywhere.  I was surprised at how much strength I needed to operate them.  When entering the lab from where the ROV was being piloted, which was the center of all the dive activity, I found that I had to “put my hip into it” to push it open.  As a matter of fact, I noticed I have a few door-pushing bruises.

There are doors for everything.  The fire and watertight doors are to keep you safe from fire and flood.  The refrigerator and freezer doors protect food from bacteria and keep them preserved until it’s time to eat.  There are doors to the bathroom (yeah), doors for lockers, doors for closets, doors for equipment, medicine cabinet doors, stateroom doors, doors, doors, doors.  Almost all doors have a latch at the ceiling behind them so they can be held open.  A swinging door is a real safety issue.  You either close it right after you use it or go through it, or you latch it open.  I found it a pain to have to keep closing my locker door.  It would swing with the waves and I didn’t want to have it wake anyone up.  The noise bugged me as well.  As you can see, I had a bit of trouble with the door leading to the exercise room down below the main deck.  The engineers could close it with one hand.  I was there for two weeks and, try as I might, it never got any easier.

Sue pushing into a door with a wheel
Wheeled water tight door with wind behind it

Close all watertight doors and fire doors, all the time.  Fire or flooding can lead to a rapid death.  The engineers and NOAA Corps constantly monitor for this.  Although it is a safety thing, opening and shutting doors was one of my biggest challenges on ship.  Good thing I have been working out with weights.  Opening those doors was often a very difficult—especially if there were a door or window open to the outside at the other end of the room.  I brought home several bruises on my hip for throwing my body into the door to get it open.  I once remarked that if someone ever opened the door to the ROV lab when I was pushing my way in from the other side, I’d go flying into the room.  Not cool since there is a counter right inside the door.  Think law of inertia.  Push hard against something (heavy door), it moves out of the way (someone opens it), you’re no longer stopped and off you fly (until you run into something).  Newton’s law of inertia….

Open door to a storage locker with ropes neatly coiled
Storage Locker

Exercise

Taking a walk on the ship for aerobic exercise isn’t easy.  The whole ship is only 209 feet long.  Well, you have to go through doors just about everywhere.  The only place I could have done this for any real length was to start near the wet lab, travel around to the right, over the fantail, up the stairs, up to the bow (front of ship), climb stairs to the bridge and turn around.  Can’t go farther since there are doors to enter the bridge.  When I needed to go just about anywhere inside the ship there were a minimum of two doors to open.  To get from my stateroom to the exercise room I had to go through three watertight or fire doors—and three to return.  When tired I’d pray for the door to open and someone to step through.

At night, make sure someone knows you are on deck.  ENS Doig told us to dial 101 and tell the bridge you’ll be outside in the dark.  Even better, take a buddy.  I also found it was good to carry a flashlight.  If you turn the flashlight off when on deck when you get where you are going, your eyes adjust and it seems almost as bright as day.  For this, you must extinguish (turn off) the flashlight.

Four white haired mops with buildings in the background
The Moppets

Politeness Counts

Living on a ship means if you want to make/keep friends, you are nice.  People are very close.  You can’t even walk two abreast down the hall.  If you enter a hallway and someone is half way down, wait for the other person to exit before entering yourself.  Same goes for the stairs.  If someone is coming down, or going up, don’t start until they pass you.  Not only is it polite, it’s just good common sense.

Jana on floor next to Sue in chair in stateroom
Buddies Jana and Sue

I was fortunate to have the Queen of Politeness, Jana Thoma, as a roommate.  She was always thinking of others and expressed thanks for everything they did–often several times.   I have thought of myself as pretty polite, but I don’t think I can even compare to Jana.  What a great example for me to follow.  She was always a patient teacher as she tried to help me learn about cnidarians.  Perhaps one of my students will work in her lab someday.

Ice machine, coffe pot, microwave, refrigerator
Drink station with juices, water, ice, coffee, etc

If someone drinks the last cup from a pot of coffee, he/she should make a fresh pot for the next folks.  Although I am not a coffee drinker, from the way this was stressed by the officers and stewards, it must be very frustrating for someone coming for a warm drink to not have it readily available.  They don’t have real long breaks.  Remember, they have a lot of doors to slow them down.  I think if they found out you took the last cup and didn’t refill the pot, you might be doing the Man Overboard drill as the victim (just kidding).

Clean up after yourself.  Seems like common sense.  The stewards are not your mother–they are busy working in the kitchen and cleaning.  They shouldn’t have to come and bus (clean) the tables.  You should take your dishes to the window, put the silverware in the water to soak, and put dishes, cups, bowls, and glasses in the plastic tub.  There are two trash cans.  One is for paper and plastic and a slop bucket for leftover food.  At Tremont food you don’t eat on your plate is called food waste.  If you take only what you’ll eat, this bucket has very little in it.  They separate the food from the other trash so it won’t get smelly.  They cover it with a lid and empty it when folks are all done eating for the day.

Jana peeking out from curtains in top bunk Sue peeking out from bottom bunk
Curtains were great for privacy

The ship runs 24 hours a day so someone is probably sleeping at any time.  Loved the curtains around the beds.  I could get up and not disturb Jana and vice versa.  Don’t slam doors.  This is not always easy, especially in rough seas.  I know I mumbled a couple of times “sorry” when the door slipped from my hands.  Locker doors and bathroom doors in staterooms also flop around and make a racket if left open.  I got in the habit of keeping these closed so they wouldn’t make noise.  Our bathroom door had a neat feature.  It had an automatic stay open fixture on it.  Unfortunately, it didn’t work in rough seas so we had to prop open.  I know if we had told the engineers they would have fixed it, but we kept forgetting to mention it.

The Pisces has an entertainment room for when you or the crew is off duty.  There is a selection of DVDs and home theatre chairs to lounge in.  My stateroom was right across the hall from this lounge.  I never noticed anyone playing the TV too loudly.  Movies also would feed into the staterooms.  You could put the DVD on a certain channel and go watch while lying in bed.  If you put a movie in, the rule was to let it play to the end.  Someone might be watching it in their room.  I am not sure how many movies can be played at the same time, but it is several.  I put one in one time and didn’t get to watch since I had to go do some work.  I figure I can watch movies at home, but will probably only be in this situation once.

The walls are really thin between staterooms.  Conversations can be heard as can loud TV.  Jana and I found that it’s easy to have a not so quiet discussion, especially if telling jokes, and tried to whisper.  We did have a lot of fun and had to think of any neighbors who might be sleeping.  Laura had hours opposite us and was our neighbor.   One rule of politeness is to use headphones when listening to music so as not to disturb others.  I used to work the midnight shift and went to school in the morning.  Only had a few hours to sleep before going back to work.  My upstairs neighbor got a new sound system and literally rocked me awake .  I had to go upstairs and remind them that I slept during the day.  Headphones would have let me sleep in peace.  On a ship this seems to be doubly important because walls are so thin.  The one exception to the headphone and music rule is in engineering.  When I was exercising it was nice to have some good music playing.  This happened a couple of times and it made the walking on the treadmill more enjoyable.  I’m glad they were there in the next room working with the music on.

White basket with condiments neatly arranged with Jesse in background
Putting things where they belong makes it easy for those who eat next.

Use paper if not eating during scheduled times.  The stewards have to keep the dishes washed and if someone put dirty dishes in the bin, they would have to clean it.  I noticed the crew was polite and used disposables after hours.

Conservation

Remember to shut off the water when just lathering up in the shower.  This limits water use to about two minutes.  I learned to do this during the power outage we had for 5 days in north Alabama after the tornadoes on April 27.  My husband and I limited the length of our showers and had warm water for many days.  Jana and I both said we loved how the shower on the ship works—it makes short showers possible.  It has a knob in the middle to turn the water on and off.  The knob on the right adjusts the temperature.  When you turn the shower back on after lathering, the temp is the same as when it was shut off.  Very neat.

Reuse your cup.  One of the scientists said that she loves to bring her coffee cup which has a lid.  It’s her way of staying in touch with home when on a ship and she always has a drink nearby.  The best part is she is reusing her cup and limiting waste.  That’s very smart.

Besides limiting water use and reusing cups, the crew recycles their aluminum cans just as we do at our school.  The money is put in a special fund for things such as deaths, births, and celebrations.

Tips

Jana learned on another ship that if you leave the heat lamp on in the head (bathroom), the water from the shower dries on the floor quicker.  I would think it would also inhibit mold growth.

Sue in sweatshirt looking up from microscope.  Diego in the background.
It was cold in this lab.

I learned that temperatures vary on a ship.  The acoustics lab, filled with computers, is freezing.  I used to work in a computer center on the midnight shift.  I brought an afghan to wrap up in when sitting at my station and had to wear pants (women didn’t usually wear pants to work in this office back then).  However, it wasn’t as cold as the chemical lab where the scientists photographed specimens, cataloged their data, and examined specimens under the microscope.  Then, go outside and it would be 82° F (about 28° C).   Jason Moeller writes in his blog that it is a lot colder.  Check that out.  He dresses in many layers–with good reason.

One thing I’ll remember is how bright the stars are.  What is really cool about being on a ship at night is that there are no trees to get in the way when viewing the stars.  There is very little light pollution too.  If I ever get to go to sea again, I’d like an astronomer with me to point out all the constellations.  I have a lot of trouble seeing them since there are so many stars which crowd out the major stars in constellations.

Engineering

Chief engineer standing at large console watching gauges
Watching gauges in engineering.

I didn’t see the engineers very often unless they were fixing something nearby or eating.  They stayed below most of the time working on keeping the equipment purring or doing preventive maintenance.  Often they were making something using the lathe or other tools.  There is always something going on with them in their sauna-like work spaces. I did learn that they watched for a few bad things: squirting fluids, smoke, strange sounds, and changes in their gauges.

The engineers have to be able to fix just about anything.  When you’re out at sea on a mission, you don’t just stop and run down to the boat repair shop to get things fixed.  They bring the boat repair shop with them.  In engineering there are milling machines, lathes, welding equipment, and so much more.  I was impressed.  At one point I saw Joe Jacovino making a frame to hold a light they were going to be adding outside.  Another engineer, Steve Clement, was nominated for an award on the mission for making a part to repair a piece of scientific gear.

Drill press
Lots of useful machines to help keep the ship operational

I was very interested in engineering.  There was so much to learn there.  I took more videos than I did photographs there since it was difficult to take notes and juggle all the stuff I had.  My students can put together something with all the video I took.  It was more  as a reference to remind me of the facts that Chief Engineer, Brent Jones, was teaching me.

All in all, it was a fabulous experience.  I hope more teachers will apply to learn about the work that NOAA is doing and pass this on to their students.  I am looking forward to learning from the other Teachers at Sea.  We will have lots of stories and lessons to share.

I took zillions of pictures (well, it seems like it).  If you’d like to see some more, click here.