Tom Savage: What is Life Like aboard the Fairweather? August 17, 2018

NOAA Teacher at Sea

Tom Savage

Aboard NOAA Ship Fairweather

August 6 – 23, 2018

 

 

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, northwest Alaska

Date: August 17, 2018

Weather Data from the Bridge

Latitude  64   42.8 N
Longitude – 171  16.8  W
Air temperature: 6.2 C
Dry bulb   6.2 C
Wet bulb  6.1 C
Visibility: 0 Nautical Miles
Wind speed: 26 knots
Wind direction: east
Barometer: 1000.4  millibars
Cloud Height: 0 K feet
Waves: 4 feet

Sunrise: 6:33 am
Sunset: 11:45 pm

 

Personal Log

I was asked yesterday by one of my students what life is like aboard the NOAA Ship Fairweather?  So I thought I would dedicate this entry to address this and some of the other commonly asked questions from my students.

Life on board the ship is best described as a working village and everyone on board has many specific jobs to ensure the success of its mission; check my “Meet the Crew” blog.  The ship operates in a twenty four hour schedule with the officers rotating shifts and responsibilities. When the ship is collecting ocean floor data, the hydrographers will work rotating shifts 24 hours a day. With so much happening at once on a working research vessel, prevention of incidents is priority which leads to the ship’s success. A safety department head meeting is held daily by the XO (executive officer of the ship) to review any safety issues.

During times when the weather is not conducive for data collection, special training sessions are held. For instance, a few days ago, the officers conducted man over board drills.  Here, NOAA Officers practice navigating the ship and coordinating with deck hands to successfully rescue the victim; in this case it’s the ship’s mascot, “Oscar.”

(Fun fact:  at sea, ships use signal flags to communicate messages back and forth [obviously, this was more prevalent before the advent of radio].  For example:  the “A” or “Alpha” flag means divers are working under the surface; the “B” or “Bravo” flag means I am taking on dangerous cargo [i.e. fueling]; and the “O” flag means I have a man overboard.  The phonetic name for “O” is, you guessed it, “Oscar” … hence the name.  You can read about other messages here: https://en.wikipedia.org/wiki/International_maritime_signal_flags).

Precision and speed is the goal and it is not easy when the officer is maneuvering 1,591 tons of steel;  the best time was 6:24. This takes a lot skill, practice and the ability to communicate effectively to the many crew members on the bridge, stern (back of boat), and the breezeways on both port and starboard sides of the ship.  Navigating the ship becomes even more challenging when fog rolls in as the officers rely on their navigation instruments. Training can also come in the form of good entertainment. With expired rescue flares and smoke grenades, the whole crew practiced firing flares and activating the smoke canisters.  These devices are used to send distress signals in the event of a major ship emergency. I had the opportunity of firing one of the flares !

 

Flares

Practicing the release of emergency smoke canisters ~ photo by Tom Savage

 

What are the working conditions like on board? 

At sea, the working environment constantly changes due to the weather and the current state of the seas. Being flexible and adaptive is important and jobs and tasks for the day often change Yesterday, we experienced the first rough day at sea with wave heights close to ten feet.  Walking up a flight of stairs takes a bit more dexterity and getting used to.  At times the floor beneath will become not trustworthy, and the walls become your support in preventing accidents.

NavigatingFog

View from the Bridge in fog. ~ photo by Tom Savage

 

Where do you sleep? 

Each crew member is assigned a stateroom and some are shared quarters. Each stateroom has the comforts from home a bed, desk, head (bathroom & shower) sink and a port hole (window) in most cases. The most challenging component of sleeping is sunlight, it does not set until 11:30 pm. No worries, the “port holes” have a metal plate that can be lowered. It is definitely interesting looking through the window when the seas are rough and watching the waves spin by.  Seabirds will occasionally fly by late at night and I wonder why are they so far out to sea ?

Stateroom

My stateroom – photo by Tom

Generally, when sharing a stateroom,  roommates will have different working shifts.

Meals are served in the galley and it is amazing! It is prepared daily by our Chief Steward Tyrone; he worked for the Navy for 20 years and comes with a lot of skills and talents !  When asking the crew what they enjoy the most on board the ship, a lot of them mention the great food and not having to cook.

Fairweather's Galley

Fairweather’s Galley ~ photo by Tom

 

Are there any activities? 

Keeping in good physical shape aboard any vessel out at sea is important. The Fairweather has a gym that can be used 24 hours a day. The gym has treadmills, elliptical, weights and a stair climber.

ExerciseRoom

The exercise room – photo by Tom

 

There is the lounge where movies are shown in the evening. Interestingly, the seats glide with the motions of the waves. Meetings are also held here daily, mostly safety briefings.

The lounge

The lounge

 

What are the working hours like?

During any cruise with NOAA, there is always things that come up that were not planned, staff and schedules are adjusted accordingly. On this leg of the trip during our transit back to Kodiak Island, we stopped by Nome, Alaska, to pick up a scientist from NOAA’s Pacific Marine Environmental Lab PMEL office.  One of their research buoys separated from its mooring and went adrift in the Bering Sea (it drifted over 100 miles before we were able to catch up to it.  The Fairweather was dispatched to collect and store the buoy aboard, after which it will eventually be returned to PMEL’s lab in Seattle Washington.

 

Buoy Retrieval

Retrieval of NOAA’s PMEL (Pacific Marine Environmental Lab) buoy. photo by NOAA

 

The place with the most noise is definitely the engine room.  Here, two sixteen piston engines built by General Motors powers the ship;  the same engine power in one train engine ! It is extremely difficult to navigate in the engine room as there is so many valves, pipes, pumps, switches and wires.  Did I mention that it is very warm in the room; according to the chief engineer, Tommy, to maintain a healthy engine is to ensure that the engine is constantly warm even during times when the ship is docked.

Tom in Engine Room

Navigating the engine room …… I did not push any buttons, promise! Photo by Kyle

 

Until next time,  happy sailing !

~ Tom

Helen Haskell: Getting Underway, June 5, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

6/5/2017-6/26/2017

Mission: Hydro Survey

Geographic Area of Cruise: Southeast Alaska – West Prince of Wales Island Hydro Survey

 

Date: June 5th

Weather Data: Full cloud cover, rain showers.

Location: Ketchikan, 55.3422° N, 131.6461° W 

Personal Log

Today the boat is leaving Ketchikan. Breakfast is between 7-8 and as I sat with my plate of eggs and toast, I watch the hustle and bustle of life on a boat preparing it to get underway. There are many challenges to sailing a ship, and while I had a general idea, I did not understand how much organization, safety protocols, equipment and manpower it takes to make a boat run, complete science research, and be a safe place for people to live and work. This first couple of days on the boat have been not focusing on the science research being done here, but one of getting a sense of how a research vessel works, the myriad of roles and jobs that are done here and the multiple hats that most people wear.

The ship’s communication system put an all-hands-on-deck call to help with unloading food deliveries at port. Here we passed boxes one by one from the truck up on to the ship and in to the kitchen storage areas where the stewards will unload and store the food ready for our meals and snacks. There are three main meals per day: breakfast (7-8), lunch (11-12) and dinner (5-6). In between these times snacks and drinks are readily available. What I am finding too is that many people work a shift system, or are on the smaller boats away from the ship for a day. Food for them is packed or available and no one goes hungry. Snacks and drinks are available 24-7 too. The meals are diverse and food is plentiful. I hope to talk with the stewards to figure out how they plan the menus and order all the food, to feed about 50 people for a three-week period.

Next came a safety briefing and tour. The first thing I had to do was to practice putting on my emergency gear – how to describe it? This ‘dry-suit onesie’ would allow me to be in the Alaskan waters and survive. While my whole body is covered except for my eyes, the suit contains a life vest, and would allow me to easily float upright. As you can tell from the photo, the main issue I had was with my hair getting in my face, a common occurrence apparently for those of us with long hair. Next we learned about all of our stations and our role for different scenarios: fire, man-over-board, and a full ship evacuation. We learned about the different alarms that would be sounded, the types of fire extinguishers, where the medical office is, and where the AED’s are. We were also reminded that in each stateroom is a breathing device kit that is can be used to provide ten minutes of oxygen, should it be needed.

IMG_0164

Me in my emergency suit

Pulling out of port yesterday, the boat first only went a few hundred yards up the narrows. The next stage was to ‘top up’ on fuel – 18,000 gallons of fuel. The boat can hold much more but the cost in Ketchikan is less than further north so it pays to fill up now. As you can imagine there are big safety issues with fueling of boats and during this time, several temporary bans were put in to place on the ship so that no sparks of any kind were made (no cooking, welding etc). The fuel is stored in several large tanks. The tanks are not connected to each other and each can be turned off individually in the event of a fire or leak. Earlier that day too we had also filled up with water.

There are many conservation and environmental practices put in to place that I have already seen on the ship. There are many protocols put in to place to protect both the environment and to conserve resources. During the fueling, a ring (oil boom) was put around the ship so that if there were an accidental fuel spill or leak, it would be contained on the surface of the water. Laundry is ‘closed’ until next weekend and only full loads are allowed in order to conserve fresh water. Water can be made from seawater using equipment on the ship, but it costs $8/gallon to run the equipment, so conservation is the first measure put in place.

IMG_0167

Getting fuel in Ketchikan

We also have practiced emergency drills. In these drills, everyone has a station to go to and a job to do. The fire drill mimicked a fire in the generator room and a person receiving burns. What’s interesting to realize it that people wear multiple hats on the ship and so everyone needs to know what to do and how to help. Formal fire fighting equipment is worn by trained people, radios are used to communicate between groups, diagrams of the ship are pulled out and drawn on and labeled to keep account of who has been tasked to do what and where the situation is located. Out at sea, the fire department and the medics cannot be called. The staff members on the ship are the medics and the fire department. During the drill a person role-played being the burn victim, so not only were firefighters needed but also medics. After the drills, everyone meets to debrief. Ideas and observations are shared. Communication is crucial and common here.

IMG_0255

My emergency assignments

With communication at the forefront, there are many mechanisms put in place to make sure the people on board know the specifics of the mission each day and their role in the mission. There are different departments in the boat, but one cannot function without the other. People are hired as Survey crew, Engineers, Deck crew, Stewards, Electronic Tecnicians and as NOAA Corps officers. There are also visitors on the boat, such as myself, some who are with the boat for the whole season, others like myself for a few weeks. Schedules are placed around the boat indicating who is on what shift. Meetings are held at 8am each day with the science and deck teams to discuss where the small research boats are surveying that day. During these briefings safety reminders and weather conditions are discussed as well as the location of where each boat will be. Boats radio in each hour for safety. Department heads meet daily to share their updates, keeping everyone up to date with different aspects of the ship. Debrief sessions happen at the end of each research day after dinner. Everyone participates as no one person’s job is isolated here. Issues and concerns are dealt with and go in to the decision making for the following day. Communication is key.

IMG_0211 2

The morning meeting

 

Fact of the day:

The Fairweather is divided in to 26 fire zones to help with safety and fire fighting. All the doors operate manually and many internal doors are held open by a magnet. In the event of a fire, the doors can be closed instantly from the Bridge, using a switch to stop the magnets working.

Word of the day: Muster

This is the term used when all the people gathered in the correct place for the fire/emergency drill. Roll was taken and we had a ‘full muster’. 

What is this?

What do you think this is a picture of? (The answer will be in the next blog installment).

IMG_0257

(Previous answer: Rubber boots with spikes in to help with traction. Here on the boat, and in many parts of Alaska waterproof footwear is very useful. While the boots the staff here don’t have spikes in them, these were on display in the Southeastern Alaska Discovery Center.

 Acronym of the Day

EEBD: Emergency Escape Breathing Device

Lauren Wilmoth: Strange Sea Creatures, October 16, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Friday, October 16, 2014

Weather Data from the Bridge
Air Temperature: 7.32 °C
Wind Speed: 9.2 knots
Latitude: 57°44.179′ N
Longitude: 152°27.987′ W

Science and Technology Log

ENS Steve Wall collecting a bottom sample.

ENS Steve Wall collecting a bottom sample.

Wednesday, I went on a launch to do bottom sampling and cross lines.  Wednesday was our last day of data acquisition, so the motto on the POD (Plan of the Day) was “LEAVE NO HOLIDAYS! If in doubt, ping it again!”  Bottom sampling is pretty straight forward.  We drive to designated locations and drop a device that looks a little like a dog poop scooper down into the water after attaching it to a wench.  The device has a mechanism that holds the mouth of it open until it is jarred from hitting the bottom.  When it hits the bottom, it snaps closed and hopefully snatches up some of the sediment from the bottom.  Then, we reel it up with the wench and see what’s inside.

We took 10 bottom samples and most were the same.  We had a fine brown sand in most samples.  Some samples contained bits of shell, so we documented when that was the case.  At one location, we tried for samples three times and every time, we got just water.  This happens sometimes if the sea floor is rocky and the device can’t pick up the rocks.  If you try three times and get no definitive answer, you label the sample as unknown.  Two times we got critters in our samples.  One critter we found was an amphipod most likely.  The second critter was shrimp/krill-like, but I don’t know for sure.  Cross lines are just collecting sonar data in lines that run parallel to the previous data lines.  This gives us a better image and checks the data.

TeacheratSea 008 (8)

Survey Tech Christie and Me on our bottom sampling launch.

Amphipod found in bottom sample.

Amphipod found in bottom sample.

Unknown shrimp/krill critter from bottom sample.

Unknown shrimp/krill critter from bottom sample.

 

 

 

 

 

 

 

 

 

 

 

Staff observations at Terror Bay.

Staff observations at Terror Bay.

Thursday, we closed out the tidal station at Terror Bay. This entailed doing staff observations, a tidal gauge leveling check, and then break down everything including completing a dive to remove the orifice.  Since I have already taken part in a tidal gauge leveling check, I was assigned to the staff observations and dive party.  As I mentioned in an earlier post, for staff observations you just record the level of the water by reading a staff every six minutes for three hours.  We did this while on a boat, because the tide was pretty high when we got started, so we wouldn’t be able to read the staff if we were on shore.  Again, the reason we do staff observations is so we can compare our results to what the tidal gauge is recording to make sure the tidal gauge is and has been working properly.

While doing staff observations, I saw a small jellyfish looking creature, but it was different.  It had bilateral symmetry instead of radial symmetry. Bilateral symmetry is what we have, where one side is more or less the same as the other side.  Jellyfish have radial symmetry which means instead of just one possible place you could cut to make two side that are the same, there are multiple places you can cut to make it the same on each side.  Also, the critter was moving by flopping its body from side to side which is nothing like a jellyfish.  I had to figure out what this was!  In between our observations, Jeff, the coxswain, maneuvered the boat so I could scoop this guy into a cup.  Once we finished our staff observations, we headed to the ship.  I asked around and Adam (the FOO) identified my creature.  It’s a hooded nudibranch (Melibe leonina).  Nudibranches are sea slugs that come in a beautiful variety of colors and shapes.

Bilateral versus radial symmetry.

The hooded nudibranch.

The hooded nudibranch.

ENS Wood and ENS DeCastro diving for the orifice.

ENS Wood and ENS DeCastro diving for the orifice.

After a quick return to the ship, we headed back out with a dive team to remove the orifice from underwater. Quick reminder: the orifice was basically a metal tube that air bubbles are pushed out of.  The amount of pressure needed to push out the air bubbles is what tells us the depth of the water. Anyways, the water was crystal clear, so it was really neat, because we could see the divers removing the orifice and orifice tubing.  Also, you could see all sorts of jellyfish and sea stars.  At this point, I released the hooded nudibranch back where I got him from.

Jellyfish!

Jellyfish!

Just as we were wrapping up with everything.  The master diver Katrina asked another diver Chris if he was alright, because he was just floating on his back in the water. He didn’t respond.  It’s another drill! One person called it in on the radio, one of the divers hopped back in the water and checked his vitals, and another person grabbed the backboard. I helped clear the way to pull Chris on board using the backboard, strap him down with the straps, and pull out the oxygen mask. We got him back to the ship where the drill continued and the medical officer took over. It was exciting and fun to take part in this drill.  This was a very unexpected drill for many people, and they acted so professional that I am sure if a real emergency occurred, they would be prepared.

Drill: Saving ENS Wood.

Drill: Saving ENS Wood.

Personal Log

Sadly, this was most likely my last adventure for this trip, because I fly out tomorrow afternoon. This trip has really been a one-of-a-kind experience. I have learned and have a great appreciation for what it takes to make a quality nautical chart. I am excited about bringing all that the Rainier and her crew have taught me back to the classroom to illustrate to students the importance of and the excitement involved in doing science and scientific research. Thank you so much to everyone on board Rainier for keeping me safe, helping me learn, keeping me well fed, and making my adventure awesome!  Also, thank you to all those people in charge of the NOAA Teacher at Sea program who arranged my travel, published my blogs, provided me training, and allowed me to take part in this phenomenal program.  Lastly, thank you to my students, family, and friends for reading my blog, participating in my polls, and asking great questions.

Did You Know? 

1 knot is one nautical mile per hour which is equal to approximately 1.151 miles per hour.

Challenge:

Can you figure out what my unknown shrimp/krill critter is?

Unknown shrimp/krill critter from bottom sample.

Unknown shrimp/krill critter from bottom sample.

 

Cassie Kautzer: TEAMWORK! SAFETY FIRST! August 27, 2014

NOAA Teacher at Sea
Cassie Kautzer
Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Hydrographic Survey
Geographical Area of Survey: Enroute to Japanese Bay
Date: August 27, 2014

Temperature & Weather:  10.5° C (51° F), Cloudy, Rainy

Science & Technology Log

The past week/ week and a half, docked alongside the US Coast Guard pier in Kodiak – it was easy to see people settle into a routine.  This morning, however, we are preparing to leave the Coast Guard base – there is something in the air. Without it being spoken, it is clear both the NOAA Corps officers and the wage mariners are excited to get underway.  THIS is what they signed up to do!

The Rainier is 231 feet in length, with a breadth (width) of 42 feet. She cannot be run by a single person – it takes a team, a large team, to operate her safely.  Aboard the Rainier there is a crew of NOAA Corps Officers, including Commanding Officer CDR Van Den Ameele (CO), Executive Officer LCDR Holly Jablonski (XO), Field Operations Officer LT Russ Quintero (FOO) and a number of Junior Officers. There is also a full staff of Surveyors, Stewards, Deck Hands, Engineers, a Chief Electronics Tech (ET) and an Electronics Eng. Tech (EET).  All of the people on the Rainier’s nearly 50 member crew take on more than one job and help with whatever is asked of them.  It takes a team of people to drive the ship, a team to deploy launch boats, a team to process survey data, a team level tide gauges, a team to keep the boat in good maintenance, etc…

This is the Crew Board for all team members currently aboard the Rainier.  ENS Micki Ream updates the crew board each leg.

This is the Crew Board for all team members currently aboard the Rainier. ENS Micki Ream updates the crew board each leg.

This morning, in preparation for getting underway, all NOAA Corps officers met for a Nav (navigation) Briefing, to go over the Sail Plan, to make sure all necessary parties were prepared and informed.  NOAA Corps is one of seven uniformed services in the United States.  Its commissioned officers provide NOAA with “an important blend of operational, management, and technical skills that support the agency’s science and surveying programs at sea, in the air, and ashore.” (www.noaa.gov)  The Sail Plan, prepared today by Junior Officer, ENS Cali DeCastro, includes step-by-step guidelines for sailing to our next destination.  For each location or waypoint along the route, the sail plan gives a course heading (CSE), Latitude and Longitude, distance to the that point (in Nautical Miles), the speed (in knots) the ship will be cruising at to get to that point, and the time it will take to get there.   Today we are headed to Japanese Bay, and our cruise to get there is about 98 Nautical Miles and will take us almost 9 hours.

As seen from the fantail (back of the ship) - TEAMWORK!  SAFETY FIRST!

As seen from the fantail (back of the ship) – TEAMWORK! SAFETY FIRST!

It is important to note that nautical miles and knots at sea are different than linear miles and miles per hour on land.  Nautical miles are based on the circumference of the Earth, and are equal to one minute of latitude.  (http://oceanservice.noaa.gov/facts/nauticalmile_knot.html)  Think about the Earth and what it would look like if you sliced it in half right at the Equator.  Looking at one of the halves of the Earth, you could then see the equator as a full circle.  That circle can be divided into 360 degrees, and each degree into 60 minutes.  One minute of arc on the Earth is equivalent to one nautical mile.  Nautical miles are not only used at sea, but also in the air, as planes are following the arc of the Earth as they fly.  1 nautical mile = approximately 1.15 miles.  A knot is a measurement of speed, and one knot is equivalent to 1 nautical mile per hour.

It is also important to be aware of all the safety procedures on board.  There is a lot to keep track of – but the Rainier is well prepared for any kind of emergency situation.  Prior to departing the Coast Guard Base this morning, our emergency alarms and bells were tested.  Emergency bells and whistles are used during a Fire Emergency, an Abandon Ship situation, or a Man Overboard situation.

In any situation, every crew member has an emergency billet assignment.  This assignment tells you where to muster (meet), what to bring, and what to do – dependent on the situation.  For fire and emergency, abandon ship, and man overboard each person has a different assignment.  Within 24 hours of setting sail, the entire crew does safety drill practice (We did this in the early afternoon today!)  For fire and emergency both the general alarm bell and the ship’s whistle will continuously sound for ten seconds; for an abandon ship situation, seven short blasts on the ship’s whistle and general alarm bell will sound, followed by one prolonged blast; and for a man overboard there will be three prolonged blasts of the ship’s whistle and general alarm.

Safety is not only a concern in emergency situations – it is at the forefront of all operations aboard the ship.  Proper safety equipment is donned at necessary times, especially when working on deck or on the survey launches.  Personal Floatation Devices (PFD) are worn anytime equipment is being deployed or handled over the side along with safety belts and lines for those handling equipment over the side.   Every crew member is issued a hard hat and must be worn by everyone involved in recovery or deployment of boats and other equipment.   Closed toed shoes must be worn at all times by all crew and crew must be qualified to handle specific equipment. Everyone is also issued an Immersion Suit (survival suit), affectionately nicknamed a Gumby Suit!  The Immersion suit is a thermal dry suit that is meant to keep someone from getting hypothermia in an abandon ship situation in cold waters.

In my "Gumby" Immersion Suit during our Abandon Ship Drill.  This suit is a universal, meaning it can fit people of many sizes, including someone much much taller than me.  Do I look warm?  (Photo courtesy of Vessel Assistant Carl Stedman.)

In my “Gumby” Immersion Suit during our Abandon Ship Drill. This suit is a universal, meaning it can fit people of many sizes, including someone much much taller than me. Do I look warm? (Photo courtesy of Vessel Assistant Carl Stedman.)

Personal Log

Believe it or not – I have made a lot of connections from the Rainier to my school.  At the bottom of our daily POD’s (Plan Of the Day), the last reminder is, “Take care of yourself.  Take care of your shipmates.  Take care of the ship!”  The environment here has not only made me feel welcome, but safe as well.

I even felt safe when they let me man the helm (steer the ship).  Out of picture, Officer LTJG Adam Pfundt and Able Seaman Robert Steele guide me through my first adventure at the helm!

I even felt safe when they let me man the helm (steer the ship). Out of picture, Officer LTJG Adam Pfundt and Able Seaman Robert Steele guide me through my first adventure at the helm!

 

For my Students

Here is a wildlife update.  I saw Whales today!  I think there were Humpback Whale.  I saw quite a few blowing out near the ocean service.  I marked three in my graph because I only saw three jumping and playing in the water!

graph (2)

Some questions to reflect on…

  1. Why is teamwork important? What can you do to be a good team member?
  2. Can you make any connections between the mission and rules I am learning on the ship and the mission and rules you are learning at school?

Gregory Cook, Super Fish, August 2, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 2, 2014

Science and Technology Log 

See this guy here? He’s an Alaskan Pollock.

If fish thought sunglasses were cool, this fish would wear sunglasses.

Alaskan Pollock, aka Walleye Pollock.
Credit: http://www.noaanews.noaa.gov

“Whatever,” you shrug.
“Just a fish,” you scorn.
“He’s slimy and has fish for brains,” you mock.
Well, what if I told you that guy there was worth almost one billion dollars in exports alone?
What if I told you that thousands of fishermen rely on this guy to provide for their families?
What if I told you that they were the heart of the Sub-Arctic food web, and that dozens of species would be threatened if they were to disappear?
What if I told you they were all secretly trained ninja fish? Ninja fish that carry ninja swords strapped to their dorsal fins?
Then I’d only be wrong about one thing.


Taina Honkalehto is the Chief Scientist onboard the Oscar Dyson. She has been studying Pollock for the last 22 years. I asked her what was so important about the fish.

“They’re the largest single species fishery in North America,” Taina says. That makes them top dog…err… fish… in the U.S. fishing industry.

Chief Scientist Taina Honkalehto decides where to fish based on data.

Chief Scientist Taina Honkalehto decides where to fish based on data.

“In the U.S. they are fish sticks and fish-wiches (like Filet-o-Fish from McDonalds). They’ve become, foodwise, what Cod used to be… inexpensive, whitefish protein,” Taina continues. They’re also the center of the sub-arctic food web. Seals, walruses, orca, sea lions, and lots of larger fish species rely on Pollock as an energy source.”
But they aren’t just important for America. Pollock plays an important role in the lives of people from all over the Pacific Rim. (Remember that the Pacific Rim is made up of all the countries that surround the Pacific Ocean… from the U.S. and Canada to Japan to Australia to Chile!)

Pollock Need Love, too!

Pollock Need Love, too!

“Pollock provide a lot of important fish products to many countries, including the U.S., Japan, China, Korea, and Russia,” Honkalehto says.

Making sure we protect Pollock is REALLY important. To know what can go wrong, we only have to look at the Atlantic Cod, the fish that Cape Cod was named after. In the last twenty years, the number of Atlantic Cod has shrunk dramatically. It’s cost a lot of fishermen their jobs and created stress in a number of families throughout New England as well as tensions between the U.S. and Canada. The U.S. and Canada share fish populations.

The primary job of the Oscar Dyson is to sample the Pollock population. Government officials use the results to tell fishermen what their quota should be. A quota is a limit on the number of fish you can catch. The way we gather that data, though, can be a little gross.

The Aleutian Wing Trawl (or AWT)

Fishermen Deploy the AWT

Fishermen Deploy the AWT.

The fishermen guide the massive Aleutian Wing Trawl (or AWT) onto the deck of the ship. The AWT is a 150 meters long net (over one and a half football fields in length) that is shaped like an ice cream cone. The net gets more and more narrow until you get all the way down to the pointy tip. This is known as the “cod end,” and it’s where most of the fish end up. Here’s a diagram that XO (Executive Officer) Kris Mackie was kind enough to find for me.

AWT

The Aleutian Wing Trawl (or AWT). over one and a half football fields worth of Pollock-Snatching Power.

The AWT is then hooked onto a crane which empties it on a giant mechanical table. The table has a hydraulic lift that lets us dump fish into the wet lab.

Allen pulls a cod from the Table

Survey Technician Allen pulls a cod from the Table

Kids, whenever you hear the term “wet lab,” I don’t want you to think of a water park. Wet lab is going to mean guts. Guts and fish parts.

In the wet lab, the contents of the net spills onto a conveyer belt… sort of like what you see at Shaw’s or Market Basket. First we sift through the Pollock and pull any odd things… jellyfish, skates, etc… and set them aside for measurement. Then it’s time to find out what sex the Pollock are.

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Genitals on the Inside!

Pollock go through external fertilization (EF). That means that the female lays eggs, and the males come along and fertilize them with their sperm. Because of that, there’s no need for the outside part of the sex organs to look any different. In science, we often say that form follows function. In EF, there’s very little function needed other than a hole for the sperm or egg cells to leave the body.

Because of that, the only way to tell if a Pollock is male or female is to cut them open and look for ovaries and testes. This is a four step process.

Ladies before Gentlemen: The female Pollock (in the front) has ovaries that look like two orange lobes. The Male (in the back) has structures that make him look like he ate Ramen noodles for dinner.

Ladies before Gentlemen:
The female Pollock (bottom) has ovaries that look like two orange lobes. The Male (itop) has testes that make him look like he ate Ramen noodles for dinner.

Step 1: Slice open the belly of the fish.

Step 2: Push the pink, flippy floppy liver aside.

Step 3: Look for a pair of lobes (a bag like organ) that is either purple, pink, or orange-ish. These are the ovaries! If you find this, you’ve got a female.

Step 4: If you strike out on step 3, look for a thin black line that runs behind the stomach. These are the testes… As Tom Hanks and Meg Ryan might say, you’ve got male.

Then the gender and length of the fish is then recorded using CLAMS… a software program that NOAA computer scientists developed for just this purpose. With NOAA, like any good science program, it’s all about attention to detail. These folks take their data very seriously, because they know that so many people depend on them to keep the fish population safe.

Personal Blog

Safety!

Lobster Gumby

Your teacher in an Immersion Suit. Sailors can survive for long periods of time in harsh environments in these outfits.

.

On the first day aboard the Oscar Dyson, we were trained on all matters of safety. Safety on a ship is often driven by sirens sounded by the bridge. Here’s a list of calls, what they mean, and what you should do when you hear them:

What you hear… What it means… What you should do…
 Three long blasts of the alarm: Man Over Board Report to safety station, be counted, and report in to the bridge (unless you’re the one that saw the person go overboard… then you throw them life rings (floaties) and keep pointing at them).
 One long blast of general alarm or ship’s whistle: Fire or Emergency onboard Report to safety station, be counted, and report in to the bridge. Bring Immersion Suit just in case.
 Six or more short blasts then one long blast of the alarm: Abandon Ship Grab your immersion suit, head to the aft (back) deck of the ship, be counted, and prepare to board a life raft.

 

The immersion suit (the thing that makes me look like lobster gumby, above) is made of thick red neoprene. It has two flashing lights also known as beacons…  one of them automatically turns on when it hits water! This helps rescuers find you in case you’re lost in the dark. It also has an inflatable pillow behind your head to help keep your head above water. Mostly just wanted to wear it to Starbucks some day.

Food!

Another thing I can tell you about life aboard the Oscar Dyson is that there is plenty to eat!

kind of awesome. For one thing, there is a never ending supply of food in the galley (the ship’s cafeteria). Eva is the Chief Steward on the Oscar Dyson (though I call her the Head Chef!).

Chief Steward Eva gets dinner done right!

Chief Steward Eva gets dinner done right!

You’ll never go hungry on her ship. Dinner last night? barbeque ribs and mac and cheese. Yesterday’s lunch? Steak and chicken fajitas. And this morning? Breakfast burritos with ham and fruit. I know. You were worried that if I lost any weight at sea that I might just disappear. I can confirm for you that this is absolutely not going to happen.

Tune in next time when I take you on a tech tour of the Oscar Dyson!

 

Carol Glor: Lights, Camera, Action, July 7, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey (Third leg)

Geographical Area: Northwest Atlantic Ocean

Date: July 7, 2014

Weather Data from the bridge: Wind SW 18-20 knots, Seas 4-7 ft,  Visibility – good

Science and Technology Log: Starring the HabCam

The HabCam is a computerized video camera system. It is a non-invasive method of observing and recording underwater stereo images, and collecting oceanographic data,such as temperature,salinity, and conductivity.  The vehicle is towed at  1.5 – 2 meters from the floor of the ocean. The main objective of this mission is to survey the population of scallops as well as noting the substrate (ocean floor make-up) changes. Most substrate is made up of sand, gravel, shell hash and epifauna. We also note the presence of roundfish (eel, sea snakes, monkfish, ocean pout, and hake), flatfish (flounders and fluke), whelk, crab, and skates. Although sea stars (starfish) are a major predator of scallops, they are not included in our annotations.

HabCam

The HabCam awaiting deployment.

The crew and science staff work on alternate shifts (called watches) to ensure the seamless collection of data. The scallop survey is a 24-hour operation. The science component of the ship consists of 11 members. Six people are part of the night watch from 12am-12pm and the remaining members (myself included) are assigned to the day watch which is from 12pm until 12am. During the HabCam part of the survey all science staff members rotate job tasks during their 12-hour shift. These include:

A. Piloting the HabCam – using a joystick to operate the winch that controls the raising and lowering of the HabCam along the ocean floor. This task is challenging for several reasons. There are six computer monitors that are continually reviewed by the pilot so they can assess the winch direction and speed, monitor the video quality of the sea floor, and ensure that the HabCam remains a constant 1.5 – 2 meters from the ocean floor. The ocean floor is not flat – it consists of sand waves, drop-offs, and valleys. Quick action is necessary to avoid crashing the HabCam into the ocean floor.

HabCam pilot

Carol piloting the HabCam.

B. The co-pilot is in charge of ensuring the quality of digital images that are being recorded by the HabCam. Using a computer, they tag specific marine life and check to see if the computers are recording the data properly. They also assist the pilot as needed.

HabCam image

One of the images from the HabCam

C. Annotating is another important task on this stage of the survey. Using a computer, each image that is recorded by the HabCam is analyzed in order to highlight the specific species that are found in that image. Live scallops are measured using a line tool and fish, crabs, whelk and skates are highlighted using a boxing tool so they can be reviewed by NOAA personnel at the end of the cruise season.

Personal Log:

When not on watch there is time to sleep, enjoy beautiful ocean views, spot whales and dolphins from the bridge (captain’s control center), socialize with fellow science staff and crew members, and of course take lots of pictures. The accommodations are cozy. My cabin is a four-person room consisting of two sets of bunk beds, a sink, and desk area. The room is not meant to be used for more than sleeping or stowing gear. When the ship is moving, it is important to move slowly and purposely throughout the ship. When going up and down the stairs you need to hold onto the railing with one hand and guide the other hand along the wall for stability. This is especially important during choppy seas. The constant motion of the ship is soothing as you sleep but makes for challenging mobility when awake.

Top bunk

My home away from home.

Captain Jimmy

Captain Jimmy runs a tight ship.

 

Before heading out to sea it is important to practice safety drills. Each person is made aware of their muster station (where to go in the event of an emergency), and is familiarized with specific distress signals. We also practiced donning our immersion suits. These enable a person to be in the water for up to 72 hours (depending upon the temperature of the water). There is a specific way to get into the suit in order to do so in under a minute. We were reminded to put our shoes inside our suit in a real life emergency for when we are rescued. Good advice indeed.

immersion suit

Carol dons her immersion suit.

life jacket

Life jacket selfie.

 

Did you know?

The ship makes it’s own drinking water. While saltwater is used on deck for cleaning purposes, and in the toilets for waste removal, it is not so good for cooking, showers, or drinking. The ship makes between 600 and 1,000 gallons per day. It is triple-filtered through a reverse-osmosis process to make it safe for drinking. The downside is that the filtration system removes some important minerals that are required for the human body. It also tends to dry out the skin; so using moisturizer is a good idea when out at sea.

Photo Gallery:

Sharp

Waiting to board the RV Hugh R. Sharp

WG flag

West Genesee colors; flying high on the Sharp

Floating Frogs

Floating Frogs at the Woods Hole Biological Museum.

Seal at aquarium

Seal at the Woods Hole Aquarium – Oldest Aquarium in the US.

 

 

 

 

Carol Schnaiter, Home Again! June 25, 2014

NOAA Teacher at Sea

Carol Schnaiter

Aboard NOAA Ship Oregon II

June 7 – 21, 2014

Mission: I am back home in Amboy, IL, now so my mission is getting back to a “normal” schedule and getting my land legs back!

Weather: Partly sunny, 82 degrees

Date: June 25, 2014

Early morning work

Early morning work!

Science and Technology:

Hypoxia or low oxygen levels in the water is my final topic. The “dead zone” may seem like it does not relate to me being home, but in reality it really does.

This “dead zone” is affected by many things such as the oceanographic conditions, but a major cause is excessive nutrient pollution from agriculture and waste water. Being from a rural agricultural area I wonder how much of what we are doing here in the north affects the ocean waters far away?

So how does this all start? The nitrogen and phosphorus that flows into the water fuels the growth of algae, later when the algae dies and decays, it sinks to the bottom. At the bottom the bacteria will devour the dissolved oxygen from the water. With little or no oxygen the organisms living there must either move, if they can, or they will die.

Where does this nitrogen and phosphorus come from? Most of this can be found in fertilizers from agriculture, golf courses and suburban lawns, discharges from sewage treatment plants, and even from erosion of soil full of nutrients. Since past spring was very rainy and there were floods near the Mississippi River much of this was taken from the soil into the water. The flood waters then drained back into the river and into the gulf carrying many of these nutrients.

How do we know this is happening and that it is getting worse? On the NOAA Ship Oregon II and other ships there are daily checks of the water oxygen levels. Tests similar to these have been conducted for many years. The results are compared and they show that changes in the oxygen levels are happening and not for the better.

While on the ship the scientist performed these tests using the CTD.  Water taken from the CTD is handled very carefully so no oxygen is added by accident. As chemicals are added, you can see the changes where the oxygen in the water bonds to the chemicals. The results of these tests are compared to the results collected by the computer.  Having both tests generate similar results show more proof of the oxygen levels.

CTD coming up

CTD coming up!

I noticed that when the ship was closer to land, the oxygen levels would be lower and Lead Scientist Kim Johnson said as the ship traveled closer to the mouth of the Mississippi River, the levels would drop even more. (I plan on watching the results as they are posted.)

Can anything be done to stop this? Some scientist say one of the solutions would be to use fewer fertilizers another would be to maybe watch when the chemicals were added, so there would be less runoff.

Of course checking septic systems and sewage treatment plants to be sure they are up to code and working correctly would help. These solutions sound simple, but maybe people do not even realize what happens up north and how it really does affect what is going on at the bottom of the ocean.

Maybe our Amboy Marsh is the beginning, a place where the water can be filtered.

Here is a map showing the levels of oxygen in the water.

https://teacheratsea.files.wordpress.com/2014/06/20140625_051938-1.jpg

Personal Log:

I have been home now for four days. My land legs are back and I only feel dizzy when closing my eyes while washing my hair in the shower. I want to thank everyone for reading my blogs, I hope you enjoyed my adventure and learned something new.

As I look through my pictures, memories of the sixteen days I spent at sea flood my mind. I look at the safety precautions that were taken to make sure everyone on the ship stayed safe. The drills, the posting of where everyone was to go and what they were suppose to do in case of an emergency, and the sign stating how many days the ship had gone without a problem. I always felt safe, everyone was very careful and followed rules to ensure the safety of everyone….just like we do at school!

Accident free days

525 Days without an accident!

Ship's emergency bullets

Emergency bullets

I also think about how what seemed like a tiny space became my home away from home. Everything you need to survive on a mere 178 ft ship! Two showers for everyone to share, three heads (toilets) and one washing machine and one dryer. I thought it would be impossible, but it just proved my husband’s theory that we have too much in our home!

laundry area

Laundry Area!

Shower room

Two showers to share with everyone!

I want to tell you how thankful I am that NOAA has this wonderful program and allowed me to participate. I know many teachers applied for this and I am honored that I was selected. Thank you to the scientists aboard the ship: Kim, for EVERYTHING, the Night Shift: Taniya, Andre, Lee, Chrissy, and Rebeca for all of their guidance and help.

The deck crew: Chris, Chuck and Mike-thanks for your support and for making the night go by so quickly!  Master Dave Nelson and ALL the members of his crew for their help in explaining everything and the tours on the ship!

This survey opened my eyes to what is happening under the water and how fragile life in the deep blue sea really is. It confirmed my thinking that we (the human race) need to look closely at what we are doing everyday and how it affects others. I plan on following the NOAA Ship Oregon II during the rest of the summer groundfish survey and during the fall groundfish survey. I want to see how the oxygen level changes, how the data collected affects the shrimp season, and follow the members of the ship!

Day One

Our first day together! (Photo by Karen Mitchell)

I cannot wait to share with my students and with anyone that will listen! Would I do this again? YES, I would go back to sea in a minute if I had the chance!