Allison Irwin: The Journey Extends, August 15, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7 – 25, 2019


Mission: Coastal Pelagic Species Survey

Embarkation Port: Newport, Oregon

Cruise Start Date: 7 July 2019

Days at Sea: 19

Conclusion

Golden Gate Bridge
Golden Gate Bridge Just After Sunrise

On July 25, 2019 NOAA Ship Reuben Lasker and its crew navigated slowly under the Golden Gate Bridge into San Francisco Bay. As the fog smothered entrance to the bay loomed ahead of us, I stood on the bow with the Chief Bosun and a few others listening to, of all things, sea shanties. We passed a couple of whales and a sea lion playing in the water, and we cruised right passed Alcatraz before arriving at our pier to tie up.

San Francisco did not disappoint! I walked a total of 20 miles that day stopping at Pier 39 to watch the sea lions, Ghirardelli Square to get chocolate ice cream, and Boudin Bakery to try their famous sourdough bread. I walked along the San Francisco Bay Trail, over the Golden Gate Bridge, and then back to the ship.

  • Sea Lions at Pier 39
  • Ghirardelli Square
  • San Francisco Bay Trail

Later that evening I went out for dinner with three of the science crew and the restaurant had a couple of local items that I hold near and dear to my heart now – sardines and market squid. It felt like everything came full circle when I ordered the fried sardine appetizer and grilled squid salad for dinner after having caught, measured, and weighed so many of them on the ship. I never would have stopped before to think about the important role those little critters play in our food chain.

The first entry for this blog posted almost two months ago framed an introduction to a journey. Even though I’ve been back on land for three weeks now, I couldn’t quite bring myself to title this entry “The Journey Ends.” Instead it feels like the journey has shifted in a new direction.

I spent a lot of time on NOAA Ship Reuben Lasker thinking about how to integrate lessons from this project into my classroom and how to share ideas with other teachers in my district and beyond. Most of all this trip inspired me to reach out even more to my colleagues to collaborate and design instructional activities that push the boundaries of the traditional high school paradigm.

Allison Irwin: Art and Science, July 22, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-15, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 22, 2019

Weather at 1200 Pacific Standard Time on Monday 22 July 2019

When I walk outside onto the deck, the sky is a stunning shade of blue matching the color of Frost Glacier Freeze Gatorade. The sun is warm against my skin – I’m finally not wearing a jacket – and bright, but not so bright that I have to squint against the reflection of the water. I put my sunglasses on anyway since the polarized lenses help me see more defined colors in bright sunlight.  The instruments show 15° Celsius right now with 25 knot winds. The horizon has a funny haze along its whole length even though the sky above me is absolutely clear. When I look over the long distance, I’m seeing cumulative aerosols – dust, water vapor, and other particles suspended in the air to form a haze along the horizon. I can’t see it directly above me even though it must be there.

PERSONAL LOG


One of the most beautiful things I’ve seen this whole trip, even when you take the coastline into account, are the squid. Never thought I’d write that sentence. But they sparkle and change colors! Last week we found a tiny octopus in something called a bongo tow (I’ll explain that in the science section). That little critter was even more awe inspiring. It had big turquoise eyes that reminded me of peacock feathers.

Juvenile Octopus
Juvenile Octopus – Species Unknown

While I was in Newport, Oregon before the ship left, I was walking around Newport Marina and found a couple of guys painting a mural. The one who designed the mural is an art teacher at Newport High School. We started talking about his mural and the NOAA Teacher at Sea program. In addition to his career as an art teacher, Casey McEneny also runs his own art studio called Casey McEneny Art. The other guy helping him, Jason, has an art studio called Jay Scott Studios.

By painting the commissioned mural, he was connecting his career with his love of art and his community. His son even participated in the process by filling in a small portion of the mural while Casey worked on outlining the rest of it. Later he’ll go back and overlay the mural with color so it pops off the wall.

  • Casey McEneny with his son
  • Full mural
  • Jason from Jay Scott Studios


THE SCIENCE


Ok, so the bongo tow. Do you remember as a kid (if you were a kid in the movies) when you used to run through fields of flowers catching butterflies in a butterfly net? I’m imagining a 6 year old girl with a flowing sundress. Well, take two oversized white butterfly nets and attach them to a metal frame that look like spectacles. Each hoop in this frame has a 71 centimeter diameter. These mesh nets each have a codend just like the trawl nets, except these codends are less than 1 foot long and are made out of extremely fine mesh. They’re designed to catch zooplankton – copepods, krill – and other smaller things that the net collects while traveling through the water column.

Bongo Net Ready to Deploy
Bongo Net Ready to Deploy

The juvenile octopus we found in the bongo tow last week was too difficult to identify at that young stage. It was only about 1 inch long. I searched through their identification books in the lab and tried to figure it out, but even the scientists said that the science community just doesn’t know enough yet about cephalopods (think octopus and squid species) to identify this beautiful creature until it’s an adult. We do know, since it has 8 arms and a fused mantle, that it’s at least an octopus and not a squid. Squid are not octopods, they’re decapods – in addition to the 8 arms they also have 2 long tentacles.

There are two species of octopus living in this area that look very similar even as adults. They are the Enteroctopus dofleini (Pacific Giant Octopus) and the Octopus rubescens (East Pacific Red Octopus). As adults, they’re both a dark red color almost like rust or brick. The artist I mentioned earlier, Casey, included a Pacific Giant Octopus in his mural at Newport Marina. But those are just two of many, many species of octopods in this area. Our little guy is probably neither of those. Still, I’m hoping it is a baby Octopus rubescens since they have a high density of chromatophores that make them sparkle!

Pacific Giant Octopus
Pacific Giant Octopus from Casey McEneny’s Mural

The chromatophores are cells that both reflect light and contain different colors (pigment). They come in all different patterns and are distinct enough to use as identification tools for different species. They can be individually large or small and show up either in dense patches or scattered like freckles. Octopus and squid species contract and expand these special cells to change color based on necessity, if they need camouflage for example, or it’s thought that they even use color to communicate their mood. I’ve seen them sparkle in brilliant colors like a kaleidoscope but that’s probably, unfortunately, an expression of their agitated state since we’re catching them.

While there’s no way to tell exactly what they’re thinking, it is well known that octopus species are highly intelligent compared to other animals found in the ocean. They are curious, they sometimes play pranks on divers, and they seem to be more intentional than fish in their actions. Their intelligence made me think they’d have long lives, that they gained experience and personality over time, but octopus species typically only live a few years. Females will usually only reproduce once in their short life spans.

TEACHING CONNECTIONS


There are so many ways to connect cephalopods to the classroom! First, research shows octopus species may plan ahead and that they can learn and adapt to their surroundings. They’re problem solvers. They’re curious by nature. How often do I wish my students were more curious about learning and literacy! By reading about the resiliency and learning capabilities of an octopus, maybe it will inspire my students to see themselves as more capable of persevering through difficult challenges and adapting their learning styles to meet the needs of different disciplines. I can drive home the point that studying for biology might not look the same as studying for their upcoming test in civics, and that the more academic learning tools they have to employ from their toolbox, the more they’ll be able to master this whole “being a student” thing.  If you’re at a loss for how to bring an octopus into the classroom, try starting with this activity from the NY Times Learning Network called Learning with “Yes, the Octopus is Smart as Heck. But Why?”.

Casey, the art teacher from Newport High School, shared an interesting activity from his art class. He recommends using images of zooplankton under microscope (we found plenty of these in our bongo tow!) to inspire abstract art projects similar to how Carl Stuwe intertwined science with art at the beginning of the 20th century.  English teachers could share the same images to get students writing creative fiction or a mini lesson on imagery.  Science and art provide a natural blend and plenty of opportunities for teachers to collaborate and combine our instructional force so we can integrate important concepts across the disciplines.

As a literacy teacher, I can’t help but think about how awesome it would be to teach my students the Latin prefixes and root words that are commonly used to name sea creatures. Names like Doryteuthis opalescens, Rossia pacifica, Octopus californicus, or Thysanoteuthis rhombus.  Then, let them loose to name, design, describe, and share their own octopus species – yet to be discovered! While I’m sure their imaginations would come up with some elaborate ideas, few things are ever as fantastical as reality. Check out the Vampyroteuthis infernalis living in the deep, dark depths of the ocean.

Vampire Squid
Vampire Squid Source: https://marinebio.org

We wouldn’t have found this creature or been able to capture its image without technology like Remotely Operated Vehicles (ROVs) and underwater submersible vehicles. There are clearly ways to link instruction to technology courses in addition to art, science, and literacy. Maybe students could take a sea creature that already exists and use mixed media to present an artistic representation of it like the Oregon Coast Aquarium did for their Seapunk exhibit. They could get their mixed media supplies from scrap leftover in the tech wing.

TEACHING RESOURCES

Allison Irwin: The Otolympics, July 20, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 20, 2019

Weather at 1300 Pacific Standard Time on Friday 19 July 2019

We’re rockin’ and rollin’ out to sea. This transect carries us 138 miles off the coast, and the winds are steady at 35-40 knots. Waves keep slapping up over the deck outside our lab. I’m watching it through a window. As the boat rocks back and forth, the full frame of the window alternates between powder blue sky and foamy, purple blue sea. We’ve started tacking (zig-zag) through the water so we can minimize the effect of the roll. But with 12 foot waves, it’s only a minimal aide to our comfort. We’ve rolled a full 35° and pitched about 15° throughout the day. Though I haven’t been outside to compare it to other days, the temperature on the monitor reads 17° Celsius. With the strong breeze, I must assume it feels colder than that outside.

PERSONAL LOG

Let’s talk about seasickness.  It rattles everyone from the novice to the career fisherman. It depends on sea state and state of mind. The rougher the weather, the more people seem to feel woozy and nauseated. There’s no pattern I can see between people who are new versus people who have been at this a while. It doesn’t seem to get any better with experience. Almost everyone I’ve talked to has taken some sort of motion sickness medication at some point over the last three weeks for some reason. I’d like to believe that the more healthy you are going into it – physically fit, decent diet – the more stoic your stomach will be, but I haven’t seen a connection in that respect either.

All I know, is that some people are sick and some are not.  Differences? Medication is one. We’re all taking different types. Of those I’ve seen wearing a patch, they are not feeling well. I’ve been taking Bonine and I’ve felt great the whole trip. Bonine is a chewable tablet that you only need once each day. I took it for the first few days, stopped taking it, then started again when the weather forecast looked bleak. I’ve found that if it’s in my system before the waves get choppy, then I fair well through the storm.

Another difference is attitude. Of the people who are not feeling well, those who smile and take it in stride are able to spend more time out of their staterooms focused on the task at hand – whatever their role may be. Distraction is a bonus. It’s not like you have a virus that is running its course. If you can get yourself good and distracted, it eases the symptoms and provides some relief.

And also, sleep. There is a definite connection between quality of sleep and symptoms of sea sickness. I’ve seen a solid nap cure a couple people of their ails. Thankfully, due to a little bit of luck and a little bit of Bonine, the waves lull me to sleep each night so I wake feeling rested and I do not contend with nausea during the day. All in all, the best combination I could have hoped for.

And then there are the folks who need no meds at all and they feel fine. Lucky ducks.

THE SCIENCE

Jack Mackerel Otolith Under a Microscope
photo taken by Bryan Overcash, Fisheries Biologist

Fifteen hundred years ago, a thousand years before Magellen’s crew successfully sailed around the world, sailors used otoliths to divine whether rough or fair seas awaited them on their journey. During the era of John Smith and Peter Stuyvesant, some Europeans recognized the otolith as medicinal with the ability to cure colic, kidney stones, and persistent fevers. If you’re truly interested in the legends associated with the otolith, you should read the brief and probably only account of Fish Otoliths and Folklore ever published.  Though primarily informative, it reads with a touch of humor and it’s easy to tell that Christopher Duffin enjoyed researching the topic. As did I!

The science of otoliths as they’re used in the modern era is even more incredible than the folklore. You can determine the age of a fish by reading the annuli on its otolith under a microscope just as a botanist might count the rings on a tree to determine its age. The bands themselves can tell scientists how fast a fish grew and whether it went through periods of slower growth or not. The unique chemistry in each ring can also be studied to learn just about anything you’d want to know from that year – water temperature, migration patterns, what the fish ate, and how healthy it was. Since the shape of an otolith is unique to its species, we can even study the stomach contents and feces of other animals like sea lions or predatory fish to build a picture of their diets. Scientists use this information to craft complex food webs.

Anthropologists find otoliths in ancient scrap food piles called middens that are still intact and can shine light on the diets of bygone cultures. On this trip we’re saving fish for scientists at the San Diego Natural History Museum so they can compare bones from the coastal pelagic species with bones that they’ve excavated from archaeological expeditions.

Jack Mackerel Otolith on my Keyboard

But what is an otolith? Some call it an earstone. The otolith is a small structure of calcium carbonate that accumulates throughout a lifetime.  Where humans have an ear canal, fish have an otic capsule that houses, actually, three symmetrical otoliths on each side of its head.  When people say otolith though, they’re typically referring to the sagitta which is the largest one (in most fish) and is usually situated just behind the stem of the brain. Those are the ones we’re collecting during the Coastal Pelagic Species Survey. It takes such a concerted effort to collect them each night that one of the interns, Hilliard Hicks, started calling it the Otolympics!

To get to it is not pretty. The otoliths are situated within the brain cavity, posterior and ventral to the brain itself. The easiest way to get to them in a Jack Mackerel without breaking the otoliths is to first make a vertical incision where the base of the fish’s head meets its body. Then, turning the fish onto its side, you make another cut across the top of the fish’s head from one eye to the other. You’re essentially cutting off and removing a rectangular section at the top of the head to reveal the brain cavity.  Then, after removing the brain, you get easy access to the otic capsule where the otoliths sit. Using small forceps or tweezers, we pull them out, dry them off, and encapsulate each fish’s sagittae in a vial for further study back on land. Multiply that process by about 75-100 and add weight and length measurements, and you get a sense of what our routine is after each trawl. We usually have 3-5 people attending to the task and it takes us roughly 45 minutes.

If you’d like, you can try determining the age of a fish without all the mess. This interactive Age Reading Demonstration website from NOAA is a great one for someone interested in the topic. It can also be used with students. New technology for aging otoliths seems to be on the horizon for scientists as well.

The main component of an otolith, calcium carbonate, is used today for lots of familiar medicines. While not derived from an otolith itself, it is still notable that calcium carbonate is a very common substance in pharmacology. We use it in antacids to neutralize the acid in our upset stomachs, to boost calcium thereby warding off osteoporosis, and to save us from enduring heartburn. It’s no wonder people used to pop otoliths in their mouth to cure what they identified as kidney stones. Maybe on some level, it really did help to assuage pain associated with their stomachs and digestion. In 2015, a team of scientists published a study in the Journal of Chemical and Pharmaceutical Research to share how they’ve been researching the use of otoliths with diabetes. There are far easier ways to collect stores of calcium carbonate, but the study shows that interest in otoliths stems not just to ichthyology, but also to climatology, anthropology, and pharmacology. It is an important little item.

Don’t have diabetes or an upset stomach? Not looking to see what the folks were eating in your neighborhood 500 years ago? Maybe you’d like to add an otolith to your wardrobe instead. In Alaska there are a couple of different places you could stop to purchase otoliths as jewelry.  When used in earrings they look like tiny little feathers. A unique gift item for sure.

TEACHING CONNECTIONS

Stick with me for a minute while I get to my point. Earlier this week one of the scientists taught me about ctenophores (pronounced teen-a-fours with emphasis on the first syllable). They’re a type of zooplankton that look like translucent globes. If you’ve ever blown a bubble and watched it shimmer in the sunlight, that is exactly what they look like under a microscope. Except now visualize that bubble with eight longitudinal stripes lined with hundreds of little hairs. This orb is a living creature called a ctenophore.

Later, while I was reading on my own to research otoliths, I stumbled across the word ctenoids. A ctenoid scale on a fish has many little cilia (tiny hairs or spikes) all around its edge. “Cteno-“ can be traced back to Latin or Greek origins to mean “little comb” and I was able to use that understanding to help me visualize a ctenoid fish scale. So, here’s my point. If it weren’t for that short exchange with the scientist earlier this week about ctenophores, I would have breezed right past the word ctenoid while reading without ever having paused to visualize what the fish scale looked like. I would not have learned as much while I was researching on my own.

As teachers, we can’t possibly know all the things our students will come across in a day. By teaching them Latin and Greek word parts that align to our curriculum, they stand a better chance of connecting their lives outside the classroom to our class content.

Prefixes, suffixes, and root words are used in every discipline to help identify concepts and patterns. Don’t teach them in the abstract, instead teach them in word groupings so our students’ brains have something to latch onto. I particularly enjoy using root word tree images. Spending 15 minutes per week going over a root word tree with students, and providing them a digital link so they can look over it again at their leisure, is an excellent way to ignite a conversation in your discipline. 

Sharing a root word tree with students can be a powerful way to solidify abstract concepts.

taken from https://membean.com/treelist

If I were a history teacher for example, I might choose to start a unit on modern democracy by passing out copies of the “dem: people” root word tree, telling each student to write a paragraph at the bottom of the page with whatever comes to mind while they’re looking at the tree. Then they could walk around the room sharing their writing with their classmates and highlighting patterns they find in the responses. They’ll hopefully never forget that a democracy is a government built of the people, by the people, and for the people (as the famous saying goes). At the very least, they’ll understand why the first three words of the preamble are “We the people…” and how a democracy is different from other forms of government like a monarchy, theocracy, and dictatorship.

TEACHING RESOURCES

Allison Irwin: In the Kitchen with Kathy, July 17, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 17, 2019

Weather at 1000 Pacific Standard Time on Wednesday 17 July 2019

We’re expecting rougher weather at the end of the week. The wind is forecast to stay at 15 knots all day today with patchy fog. Then tomorrow and Friday winds double to 30 knots with waves of 12 feet. Currently the wind is 11 knots and the sea state is stable. The sunsets out on the water are spectacular! People gather on the fantail to watch the evening sun melt into the horizon when it’s exceptionally colorful or dramatic, and last night did not disappoint.

Sunset Tuesday July 16, 2019
Sunset Tuesday July 16, 2019


PERSONAL LOG


Most of the time during meals I sit with the science crew. Sometimes I’ll sit with my roommate, Lindsey, who works as an augmenter. Think of augmenters as floaters – they are employed full time but will move from one ship to another based on the needs of each ship. Lindsey helped me a lot this trip from learning how to do laundry and climbing in and out of a top bunk on a rolling ship (without falling) to understanding nautical terms. She’s also pretty good at spotting whales!

A couple of my meals have been spent talking with 2nd Cook Aceton “Ace” Burke. He normally is the Chief Cook on NOAA Ship Thomas Jefferson, but he’s augmenting on this trip to fill in for someone who is on vacation. When he’s cooking for his crew, his favorite meal to prepare is pork ribs. He cooks them low and slow for hours until they’re fall-off-the-bone tender.

He and Kathy keep the kitchen spotless, the food hot, and the mealtimes cheerful. Kathy was kind enough to share some recipes with me and I intend to take every one of them home to cook this summer! For dinner one night soon I’ll make Kalbi Ribs with Cheesy Scalloped Potatoes and Macadamia Nut Cookies for dessert. I’ll reserve the Creamy Chicken Rice Soup for a cold winter weekend and be sure to add chopped, roasted red peppers and wild rice to the recipe like Kathy instructed.


INTERVIEW WITH A CHEF

Kathy's kitchen
Kathy’s Kitchen

After working in an office environment for a few years in Los Angeles, our Chief Steward Kathy Brandts realized she didn’t fit the nine to five lifestyle. Plus, who would ever want to commute to work in LA? So she left LA and moved back to Colorado to live with her sister for a while until she found something more appealing.

That’s when cooking began to kindle in her blood. Every night she would sift through cookbooks and prepare dinner in search of a way to express gratitude to her sister for helping her get back on her feet. But it would still be a few years before she started earning a living in the kitchen.

First came the Coast Guard.  At 27 years old, she was less than a year away from the cutoff. If she didn’t enter basic training before her 28th birthday, a career with the Coast Guard would no longer be an option. It appealed to her though, and a recruiter helped her work a little magic.  She made the cut!  While she initially wanted to work deck personnel so she could maintain the ship and qualify as law enforcement (some Coast Guard personnel, in addition to belonging to a military branch, can simultaneously take on the role of federal law enforcement officers), she was too pragmatic for that. It would have taken her three years to make it to that position whereas cooks were in high demand. If she entered as a cook, she wouldn’t have to wait at all.

So the Coast Guard is where she had her first taste of formal training as a cook.  She traveled on a two year tour to places like Antarctica and the Arctic Ocean visiting port cities in Hawaii and Australia to resupply. Ironically, to be out to sea a little less often, she decided to join NOAA as a civilian federal employee after her service with the Coast Guard ended.  She’s not exactly out to sea any less than she used to be, but now she gets to go on shorter trips and she can visit family and friends while NOAA Ship Reuben Lasker is in port between cruises.

Kathy is a perfect example of someone who wasn’t willing to settle for a job. She spent the first half of her life searching for a career, a calling, to energize and motivate not just herself but all the people her meals feed throughout the day. She believes that food is one of the biggest morale boosters when you’re on a ship, and it’s clear at mealtime that she’s correct. I watch each day as the officers and crew beam and chatter while they’re going through the buffet line. I hear them take time to thank her as they’re leaving to go back to work.

A well-cooked, scratch meal has the power to change someone’s day. Not only does Kathy take pride in her work as a professional, I also get a touch of “den mother tending to her cubs” when I see her interact with everyone on the ship. She says she provides healthy, flavorful meals because she loves food and wouldn’t want to serve anything she wouldn’t eat herself. In turn, this seems to make everyone feel cared for and comforted. When you’re packed like sardines in a confined area for a month at a time, I can’t think of any better morale booster than that.

  • dessert
  • Halibut Picatta
  • garlic and black beans
  • Chicken Pad Thai and Kalbi Ribs
  • roasted vegetables
  • Fresh Salad Bar


TEACHING CONNECTIONS


I think it’s hard sometimes for students to visualize all the steps it takes to get to where they want to end up. As with all people, teenagers don’t always know where they want to end up, so connecting the dots becomes even less clear. Take Kathy as an example. She started her adult life in an office and ended up in a tiny kitchen out in the middle of the ocean. I doubt that at sixteen years old, sitting in some high school classroom, she ever would have imagined she’d end up there.

So our job as teachers is not to push students in one direction or the other. Part of our job, I believe, is to help students get out of their own way and imagine themselves in settings they won’t hear about in their counselor’s office. One way to do this is to invite people from our communities to come in and share how their profession connects to our curriculum. I can think of plenty of people to invite – the local candy maker, a trash collector, a professor researching octopods, a farmer, a cyber security professional or white hat, a prison guard, military personnel, an airline pilot, or a bosun (even though I probably won’t find any of those in my local community since I don’t live near the water). Reading about the profession is one thing. Talking to someone who lives it everyday is another.

One lesson I’m taking from my day spent in the kitchen is the value of scenario based activities. If student teams are posed with a problem, given a text set to help them form their own conclusions and plan for the solution, and then asked to present their solution to the class for feedback, that is a much more enriching lesson plan than direct instruction.  In November my students will be tasked with preparing a budget and presenting a plan to feed 30 people for a three week cruise. I like the idea of the cruise because they can’t just run out to the store if they forget a few things – the plan has to be flawless. This one activity, though it would take a week to execute properly, would have my students making inferences and drawing conclusions from text, communicating with one another using academic language and jargon specific to the scenario, solving a real-world problem, and critically evaluating an assortment of potential solutions.

We can prepare students for “the career” regardless of what that ends up being. Every career requires critical thinking skills, problem solving, patience, a growth mindset, and the ability to communicate with others.  And all these skills are essential to the classroom regardless of grade level or discipline.

TEACHING RESOURCES

Allison Irwin: Whales! July 16, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

07-25 July 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 16, 2019

Weather at 1300 Pacific Standard Time on Monday 15 July 2019

We’re slowly coasting through a dense patch of fog. I can see about 20 meters off the deck before the horizon tapers to a misty, smoky haze. Then my eyes are affronted with a thick wall of white. It’s like we’re inside a room covered in white felt wallpaper – one of those rooms in a funhouse where the walls keep closing in on you as you walk through it.  For safety, the ship keeps sounding a loud horn at least once every 2 minutes to announce our position for other boats in the area. It’s been like this for an hour now. It’s a little spooky.


PERSONAL LOG


On a brighter note, we saw whales earlier this morning! We were one mile off the coast of southern Oregon, and ahead of us we saw the backs of a few whales peeking out of the surface. I was able to grab a pair of binoculars sitting next to me on the bridge, and with those I could clearly see their dark bodies in the water! Every once in a while one would gracefully lift its tail above the surface as it prepared to dive. They were so cute!

Eventually we got closer to them and we started to see more whales on either side of the ship. I spent probably 15 minutes moving from one side of the bridge to the other with my binoculars to get a better look. I’m lucky the NOAA Corps officers are so accommodating! Otherwise I think my constant fluttering from one area to another could’ve been construed as a pain.

The officers like to see whales too, so they were happy to share what they knew with me. It turns out we were most likely watching Humpback Whales. LT Dave Wang, Operations Officer on the ship and trained as an ichthyologist (fish biologist), said most whales have a distinctive blow pattern, tail shape, and dorsal fin size that makes it easier to identify which kind he’s looking at. I had no idea before today that there were so many different species of whales. I knew Orca – Free Willy, Humpback, and maybe something called a Blue Whale? But that would’ve been the extent of it. In the marine mammals identification guide housed on the ship, there are 45 types of whales in the table of contents! And that’s probably not a complete list of all whale species.

At one point today, eventually, once the fog lifted, we were 36 miles off shore and started seeing shoals of coastal pelagic species all around the ship. We could pick them out easily because each shoal looked like a dark, churning, rippled inkspot on the otherwise smooth-as-glass surface. While the low wind conditions are partly what left us in a thick layer of fog all afternoon, it is what also kept the water smooth enough to pick out the shoals. So I guess not all was lost. We saw even more whale activity around these shoals than we saw this morning, and they were a lot closer to the ship! 

One of the whales just off the starboard bow left a footprint. Larger whales like the Humpback produce larger footprints, and the calm sea state today allowed us to see them! It looked like a smooth patch of water in the center of concentric circles.

I’ve been trying to see whales and other marine mammals the whole trip. I saw a sea lion the other day, just one glimpse of it before it went under the water and we left the area, but now having seen the whales I feel pretty content.  The Commanding Officer of the ship also told me that seals or sea lions like to hang out on the pier that we’ll be docking at in San Francisco, so there’s still hope yet!


THE SCIENCE


If you’ve ever been whale watching on a boat, the type of whale you probably saw was a Humpback Whale. They can often be seen near the shore since they like to stay within the continental shelf, and they spend a lot of time near the surface compared to other whales. Not all whale species exhibit this same behavior.  If whales had a personality, I would call the Humpback Whales the Jersey Shore cast of the sea. They do things that come across as attention-seeking behaviors to the outside observer – slapping their unusually long flippers on the surface of the water, smacking their tails against the water in agitation, flipping their tails in the air before diving, and sometimes breaching the surface with their whole bodies. Of course, they’re not doing it to get our attention. But it makes for easy and exciting observation!

All Humpback Whales have unique patterns of coloration and texture on their flukes, so scientists can use photos to track specific animals as they migrate or go about their regular activities in a similar fashion to how we use fingerprints to uniquely identify people.

They also have the advantage of something called countershading. One of the whales I saw today had a silvery-shiny underside to its fluke that glistened in the sunlight and contrasted greatly with the dark, almost black color of its back. A lot of fish and marine mammals like whales and porpoises use countershading to help camouflage them by having naturally darker backs (dorsal side) and lighter stomachs (ventral side). This way when something is looking down at the creature, it blends in with the dark depths of the ocean, and when something is looking up at the creature, it blends in better with the lighter, sunlit layer of water near the surface.

Anything from krill to small fish are fair game for Humpback Whales when they’re hungry. Sometimes a group of Humpback Whales will work together as a team to catch fish. One way they do this is by bubble net feeding. It’s rare to witness, but a bubble net is a pretty sophisticated way to catch fish. It reminds me of the trawling we do each night from NOAA Ship Reuban Lasker except in this case the whales use a circular pattern of bubbles to corral a bunch of fish into one area… then they thrust forward aggressively, quickly, to scoop up the masses. We use a trawl net to corral the little critters into a codend instead of swallowing them whole.

bubble net
Photo of Humpback Whale Using Bubble Net to Catch Anchovies.
Photo by LT Dave Wang, taken earlier this year
krill in a jar
Quart Jar Filled with Krill Collected in a Bongo Tow

Baleen whales, like the Humpback, have a unique mouth that is hard to explain. If you can visualize a pelican’s beak, it looks a bit like that from the outside. These whales gulp a whole mouthful of water – including zooplankton, krill, and small fish – into their mouths, but they don’t swallow it down outright and they don’t exactly chew their food either. With all that saltwater and prey in their mouths, they use long rows of baleen attached to their upper jaw like a fine-toothed comb. And just like we would use a cheesecloth to strain the moisture off of runny yogurt, Humpback Whales filter the water out of their mouths through the baleen and keep the fishy goodness for themselves.


TEACHING CONNECTIONS


Watching the whales all day kept drumming up images in my mind from when I read Grayson by Lynne Cox. I wrote a review of Grayson in July 2014 on the Pennsylvania Council of Teachers of English and Language Arts (PCTELA) blog. This book, by far, is one of my favorite recommendations to read aloud to students.

If you’re not an English teacher, you probably didn’t spend a lot of late nights in college reading novels to cram for a test. It wasn’t part of your major. But you’re missing out! There are so many ways to use novels and literary nonfiction across the content areas.  Grayson, for example, is artfully written. In the book review I wrote it tells Lynne’s “account of meeting a baby whale in the ocean during one of her early morning training swims. This lonely whale, separated from its mother, stays close to Lynne in the water while fishermen search for the mother.  This true yet almost unbelievable story is hauntingly beautiful.”

Taking 15 minutes of class time to read an excerpt from this book aloud could enrich any classroom. There are many instances when she writes about wanting to give up and swim back to shore. The baby whale is ultimately not her responsibility. It was very cold. She’d been out there in the ocean for hours with nothing but her own strength and experience to keep her afloat. She hadn’t eaten all day. But she stayed with the baby whale. She resolved to see it through to the very end. Any teacher can use her stick-with-it attitude as an example to encourage students to work through academic challenges.

One of my friends, blogger Allyn Bacchus, is a middle school social studies teacher. He uses historical fiction in his class every year. He writes, “My 8th grade U.S. History class covers a unit on Industry and Urban Growth in the late 1800’s and early 1900’s.  I have supplemented our unit with the historical fiction novel Uprising written by Margaret Peterson Haddix.  It covers the story of 3 teenage girls and their involvement in the Triangle Shirtwaist Factory in New York in 1911.  The author brings to life the living, working, and social conditions of the time period and allows my students to experience this unit through the eyes of girls who are living in it.”

Through the eyes of girls who are living in it.  This is something a textbook cannot do.

No one knows your discipline, your students, and your intended classroom environment better than you. Take an hour to fall down the Amazon rabbit hole! Search for a topic you find interesting and relevant to your curriculum, read the book review, click on the comparable book recommendations… you get the point.  Most of the time you can find a book preview to check out the text before purchasing – is the font too small? Too complicated? Too boring? Choose a short excerpt from a text you like for your first attempt at using literature in the classroom and build from there.


TEACHING RESOURCES


Since we’re talking about literature today, I’ll narrate the resource list.

  • We can search online for other educators who have already blazed the trail for us. Here is a blog post written by Terry McGlynn titled Assigning Literature in a Science Class.  The post itself is well written, and if you take the time to read through 54 comments below it, you will find lots of other text recommendations for a science classroom.  This article written by Kara Newhouse titled How Reading Novels in Math Class Can Strengthen Student Engagement shows why two math teachers read books in their high school classrooms. One of those teachers, Joel Bezaire, wrote a blog post with suggestions for other novel studies in math class. The other teacher, Sam Shah, shares a student example to explain how powerful it can be to use literature in a math class. It gets students to understand abstract and often elusive mathematical concepts.
  • I’ve written four nonfiction book reviews to accompany this NOAA Teacher at Sea experience and PCTELA is posting one review each week in July to the new media platform on their website. If not Grayson, then maybe you’ll find useful one of the books I read and reviewed to prepare for this trip. They include Gone Tomorrow: The Hidden Life of Garbage, Blind Man’s Bluff: The Untold Story of American Submarine Espionage, The Hidden Life of Trees: What they Feel, How They Communicate – Discoveries from a Secret World, and Biomimicry: Innovation Inspired by Nature.
  • And finally, I would be remiss to end this post without steering you toward The Perfect Storm written by Sebastian Junger about a small fishing vessel and crew caught in an Atlantic storm and In the Heart of the Sea: The Tragedy of the Whaleship Essex by Nathaniel Philbrick – a captivating true story about the whaling industry which is thought to be the inspiration for Moby Dick.

Allison Irwin: Trawling for Fish, July 13, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 13, 2019

Weather at 1600 Pacific Standard Time on Thursday 11 July 2019

Happy to report we’re back to a much calmer sea state! I finally made it up to the flying bridge again since it isn’t raining or choppy anymore. It’s the first time in two days I’ve needed to wear sunglasses. The ocean looks almost level with scattered patches of wavelets which indicates about a 5 knot wind speed. It reminds me of the surface of my palms after I’ve been in the water too long – mostly smooth but with lots of tiny wrinkles. Check out this awesome weather website to look at what the wind is doing in your area!

weather conditions
A weather map from Windy.com


PERSONAL LOG


Stretch everyday. I should stretch everyday. I do not. On the ship it’s even more of a necessity. One of the scientists calls it “Boaga” – like mixing “boat” with “yoga.” Try doing yoga on the ship and the rocking might cause you to tumble, but I enjoy a good challenge. Fitness requires strength and flexibility, so if I do some yoga and have to work harder to stay balanced since the ship is rocking, all the better.

A combination of the good food, constant access to homemade snacks, and lack of natural ways to burn calories on the ship, I need to turn to deliberate exercise. I just haven’t started that routine yet. The ship does have a nice, albeit small, gym on the same floor as my stateroom. It includes free weights, kettlebells, a treadmill, and a few other pieces of equipment. Now that our first week is coming to a close, my goal for today – and everyday forward – is to develop a routine for stretching and cardio. Sigh. Otherwise the five pounds I’ve already gained will turn into fifteen. And I have no desire to work off fifteen pounds of belly fat when I get home.


THE SCIENCE


“Trawl” has its origins in Latin. The original word meant “to drag” and it still carries a similar denotation. Fishermen use trawl as a noun, verb, and adjective. On NOAA Ship Reuben Lasker we use a Nordic 264 Surface Trawl to conduct the Coastal Pelagic Species Survey each night. The trawl is spooled onto a giant iron net reel which connects to the deck with sixteen 2.5 inch bolts and is securely welded.  We try to get three trawls in per night, but sometimes we don’t quite make it. Poor weather, issues with the net, or sighting a marine mammal can all put a quick end to a trawl.

Now let’s use it as a verb. The origin “to drag” deals more with how you operate the net than the construction of the net itself. To trawl for fish like we do each night means to slowly unravel 185 meters in length of heavy ropes, chains, and nylon cord mesh into the water off the stern with an average of 15,000 pounds of tension while the ship steams at a steady rate of about 3 knots. Getting the net into the water takes about 15 minutes.

Scott Jones, Chief Bosun, took me on a tour of the equipment. Two reels below deck spooled with cable the diameter of my forearm, one even larger reel on the fantail to house the net and ropes, a winch to lift the weight of the trawl as it transitions from deck to water, plus two work stations for the Chief Bosun to manually monitor and control all those moving pieces. There are three additional nets on board in case they need to replace the one we’ve been using all week, but the deck crew are pretty adept at sewing and mending the nets as needed.

As I stand on the bridge watching the net snake its way into the water behind the ship, everything pauses for a brief moment so the deck crew can use daisy knots to sew floatable devices into the kites. Later, they attach two more of these floats to the headrope (top line). The floats keep the mouth of the net open vertically.   A couple minutes later they stop to attach 250lb Tom weights to the footrope (bottom line) of the trawl opening. When fully deployed, this roughly 25 meter vertical opening is as tall as an 8-story building!

It’s like watching choreography – every detail must be done at exactly the right moment, in the right order, or it won’t work. The Chief Bosun is the conductor, the deck crew the artists. Hollow metal doors filled with buoyant wood core – together weighing more than a ton on land – are the last to enter the water. Each hangs on large gallows on the starboard and port side of the ship, just off stage, until they’re cued to perform. These doors are configured with heavy boots and angled in the water to act as a spreading mechanism to keep the net from collapsing in on itself.

largemouth bass

If unspooled properly, the net ends up looking like an enormous largemouth bass lurking just under the surface.

photo from http://www.pixabay.com

Commercial fishermen use all kinds of nets, long lines, and pots depending on the type of catch they’re targeting, fishing regulations, and cultural traditions. But if we use “trawl” as an adjective, it describes a specific kind of net that is usually very large and designed to catch a lot of fish all at one time. It looks like a cone with a smaller, more narrow section at the very end to collect the fish.

I imagine something like a cake decorating bag that’s being used to fill a mini eclair. Except, instead of squeezing delicious icing into the pastry, we’re funneling a bunch of fish into what fishermen call a “codend.” This codend (pronounced cod-end, like the fish) houses the prize at the end of the trawl! When they haul everything back in – taking a little longer, about 45 minutes to complete the haul back – they end up with (hopefully) a codend full of fish to study.

mini eclairs
Two Mini Eclairs Filled with Pastry Cream

A trawl net can either be used like we are to collect fish close to the surface or it can be weighted and dropped to the sea floor in search of groundfish. We’re searching for pelagic fishes that come up to the surface to feed at night, so it makes sense for us to trawl at the surface. Think of pelagic fish as the fishes in the water. Sounds funny to say, but these fishes don’t like to be near the seabed or too close to the land by the coast. They like to stay solidly in the water. Think of where anchovies, mackerel, tuna, and sharks like to hang out.

To catch groundfish on the other hand, we’d need to trawl the bottom of the ocean since they prefer to stay close to the ocean floor. Trawling the seabed in the Northeast Pacific Ocean would bring in flavorful rockfish and flounder, but we’re not looking for groundfish during this survey. One very lucrative and maybe less known groundfish in this area is the sablefish. In commercial fishing, they use bigger nets, and a trawl can bring in tens of thousands of pounds in just one tow. When I spoke to someone on board who used to work on a commercial trawl boat, he said catching sablefish are a pain!  They live in very deep waters. Plus, the trawl must hit the seabed hard and drag along the bottom in order to catch them. This causes huge tears, many feet wide, in the mesh. He said they used to keep giant patches of mesh on the boat deck so they could patch up the holes in between trawls. When I get home, I’m definitely going to purchase sablefish and try it for dinner.

  • Trawl Net Spooled
  • Chief Bosun Scott Jones
  • Trawl Entering the Water
  • Codend Floating in the Water
  • Trawl Net Snaking off the Stern
  • Floats Sewn into the Kites
  • Floats
  • Daisy Knot
  • Getting Ready to Add Tom Weights
  • Hauling the Net back on Deck
  • Prepping the Codend
  • Emptying the Catch


TEACHING CONNECTIONS


I’ve never once wondered how the fish I buy at the grocery store ends up on my plate. Now I can’t seem to stop asking the scientists and deck crew questions. There are all these regulations to follow, methods to learn based on what type of fish you’re targeting, and so much that someone would need to understand about traveling in the ocean before even attempting to fish commercially. I’ve been immersed in a world I don’t recognize, and yet the fishing industry impacts my life on a daily basis. We are so far removed from what we eat.

The other aspect to the trawling topic that interests me is just how effortless it looks. The deck crew make such an intricate task look, truly, easy. An article on BBC News called Can 10,000 Hours of Practice Make You an Expert? does a nice job of summarizing how this might be possible. Of course, it doesn’t hurt that I’m currently reading Grit: The Power of Passion and Perseverance by Angela Duckworth, that I’ve already read Outliers: The Story of Success by Malcolm Gladwell and Mindset: The New Psychology of Success by Carol Dweck, and that as a teacher I’m familiar with Ericsson’s work on deliberate practice. I know how many years and cumulative hours they each must have put in to make it appear seamless.

Like most teachers, I want my students to find a career that they love enough to practice with such diligence. I want them to find a vocation instead of just work to pay the bills. I feel very much led to making sure my students have access to as much information as possible about post-secondary career and training options. For that reason, I’m glad to have met these folks and learn from them so I can share their practice with the hundreds, possibly thousands of teenagers I’ll teach over the course of my career.

It’s easy for me to do this as a reading specialist since I can read career profiles with students, let them annotate the text, and then engage them in a discussion on a regular basis. Reading, analyzing, and discussing text are kind of my bread and butter. For other disciplines, it might take a bit of a re-work to fit this in, but certainly not impossible. A science, math, art, STEM, you-name-it teacher could post a career profile specific to their discipline to their digital classroom space each week for students to read at their leisure. Or you could bring discipline specific literacy skills into your classroom by incorporating short texts into your lessons a few times each quarter.

I’m planning now to read a career profile with my students one time per week. I’ll keep the texts short so that reading, annotating, and discussing the text will stay under 15 minutes.  Some careers from the ship they might find interesting are the Chief Bosun position or a NOAA Corps Officer, but I’ll share a wide variety of career profiles from many disciplines based on the students’ interests once I meet them this year.


TEACHING RESOURCES

Allison Irwin: Working in the Acoustics Lab, July 11, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 11, 2019

Weather at 1100 Pacific Standard Time on Wednesday 10 July 2019

The winds picked up. Dreary is a good way to describe the sky – an overcast layer on top with smoky-gray smudges of smaller clouds just a little lower. According to the Beaufort Wind Scale, I can describe the sea as moderately choppy with 4’ – 8’ waves, white caps scattered throughout, and some spray.  But on the scale that only accounts for 17-21 knots of wind.  The instruments on the ship track the wind in real time, and it’s showing anywhere from 20 – 30 knots. Today I need a couple of light layers under a warm, cozy jacket to keep me feeling comfortable. And a hat to keep my hair in place while the wind blows all around us.

PERSONAL LOG


I didn’t want to get my hopes up in regard to food on the ship. Between the constant rocking, less than ideal conditions for fruits and vegetables, and confined space, I didn’t have high expectations. But once I got to NOAA Ship Reuben Lasker, the regulars on the ship thankfully put my worries at ease. They told me we have one of the best chefs on the NOAA fleet of ships.

Fresh Cherries
Fresh Cherries

Our Chief Steward, Kathy, is in charge of the kitchen. She makes her job look effortless, though I’m sure it’s not. She puts out an eclectic menu each day that would rival any popular restaurant. Since I’m a Food Network junky, I really think she belongs on Chopped. She’d blow her competitors out of the water! She seasons everything perfectly.

She always has snacks available like fresh baked macadamia nut cookies or homemade rice crispy treats. So far she’s served Peruvian chicken, kalbi ribs, chicken pad thai, open-faced meatloaf sandwiches, West African peanut soup, and chicken marsala. Oh, and pancakes, and omelets, and cheeseburgers, and Cuban sandwiches, and black bean soup, and… the list goes on. She always offers fresh fruit or a fresh salad bar. It’s clear she’s had a lot of experience working with the constraints this unique environment must put on her. I’m lucky to be on a ship with someone who so clearly loves to cook! The foodie in me is very happy.

Pork Chop
Mustard Glazed Pork Chop, Veggies & Rice, Side Salad


THE SCIENCE


The acoustics lab is something to behold. If you took a classroom and cut it in half lengthwise, it would be that large. Since we’re on a ship where space is limited, I get the sense that this equipment is important. And after working a shift in the room, I know why. The data collected in this room provides the backbone for the whole survey.

Acoustics Lab
Chief Scientist Kevin Stierhoff in the Acoustics Lab

NOAA scientists use sonar to identify various types of fish in the water below us – and to the sides – as we travel along. Individual echoes from discreet targets – noise, small plankton, large fishes – show up on one screen as raw data. Through post processing, the system removes most of the unwanted echoes so that all we’re left with are echoes from the fishes of interest on a separate screen.

The Coastal Pelagic Species show up as a seemingly indistinguishable, colorful blob of dots on the screen, but our chief scientist Kevin Stierhoff interprets each blob with a fair amount of accuracy. He explained what looked like hocus pocus to me originally is really just simple logic. For example, pelagic species tend to stay relatively close to the surface. So if I see a blob of red and yellow that’s, let’s say, more than 100 meters below the surface, then I’m probably looking at a type of fish that prefers deeper waters near the rocky seabed. Those deeper blobs could indicate a species of Rockfish (of which there are plenty), but probably not one of the pelagic species we’re searching for.

Ever try searching for a needle in a haystack? Get frustrated and walk away? Yeah. NOAA is more strategic than that. Acoustic sampling is conducted during the day when the Coastal Pelagic Species are deeper in the water and schooled together. This makes them easier to see using the sonar equipment on board. Later we’ll return at night to noted areas of high activity to trawl for the anchovies, sardines, herring, mackerel, and squid while they’re closer to the surface feeding.  Plus, they can’t see the net at night and therefore won’t be able to avoid it like they would if we attempted to trawl for fish during the day.

Acoustic sampling allows us to efficiently survey a much larger area than we could without it. Its primary purpose is to more precisely determine the biomass of the pelagic fish community over a large area. NOAA’s Southwest Fisheries Science Center started using this style of acoustic data collection to enhance its fisheries mission about 15 years ago, but this is only the second year they’ve deployed saildrones – wind and solar powered unmanned surface vehicles – to extend the survey area both in shore where it’s more shallow and far off shore where Reuben Lasker will not have time to travel during this survey. The saildrones allow scientists to capture more acoustic data from a wider survey area.


TEACHING CONNECTIONS


One of the coolest things about education is that we can connect students not just to their local community, but to their global community. For the last three years, the Pacific Marine Environmental Laboratory has written a blog to help classrooms and individuals follow the adventures of their latest saildrone missions. They’re intending to write another series of blog entries to track a mission in 2019 and 2020, but you could easily use one of the previous year’s text in the classroom if you can’t wait for the new entries to be posted. Read a few of these entries with your students and use them as a springboard to teach about cutting edge technology, stewardship, environmental science, storytelling, culture, math, or navigation.

Thankfully, almost any topic can be used to build literacy skills. When texts like this inspire me to connect my students to local and global community leaders in a particular field of interest, I usually reach out to the authors directly. Some teachers will find it more challenging to make these connections to their classrooms, but it is worth the effort. If I can find an email address or contact information for the person who wrote an article I enjoy, typically they can lead me to someone who is a dynamic speaker and willing to come into my classroom. Or sometimes they will offer to come out themselves if they live nearby. Then I find companion texts to read with my students before and after the person comes in to present.

The possibilities are almost too voluminous to count. In one direction, you could bring in a local scientist or graduate student doing interesting research to speak on some topic as it relates to your classroom content. You should also consider arranging a field site visit to a unique local gem if the funding is available. Usually local field trips are much less expensive. Our local communities are filled to the brim with places that relate to our class content. It takes a little leg work to find them sometimes, but if you choose the right place you’ll see a return on your investment for the full school year.

Last year I was lucky enough to coordinate a visit to the Penn Vet Working Dog Center in Philadelphia which is one of the leading working dog training facilities in the nation. It’s housed in a tiny little building off some obscure road in Philadelphia. I never would have found it if I weren’t out there directly searching for something like it. Most places like this can be found and initially filtered online with a little bit of strategic searching. Something as small as a one-day site visit or facility tour, if it’s the right location, can motivate students to push themselves academically a little bit further than they thought they could go on their own.

This one visit ended up being the springboard for my students to read authentic nonfiction texts (like media release forms and liability release forms), to think critically and make decisions, to write a press release, to build background knowledge, to enhance their vocabulary, and to learn the value of reading not for the sake of a grade but because interpreting the texts and being able to share information with others (like younger students they ended up mentoring or like our district’s administrative team who were interested in their project) was vital to the success of their project. Most important, it provided a means of intrinsic motivation for my students – that elusive creature that often comes so close to my grasp but then flutters away again when I use less engaging methods of classroom instruction.

If you want to go in more of a global direction, you could ask a facility farther away in another state or country if they have the capacity to involve your students in an integrated learning experience via Skype or old school pen-pal style communication throughout the year. Students can participate in or monitor on-going research around the world all while learning about unfamiliar cultures and locations.  And of course, bring your own diverse experiences and travel into the classroom! Apply for the NOAA Teacher at Sea program to get out of your own comfort zone and be a positive means of bridging your classroom to the global community.

Teaching Resources

Allison Irwin: Tsunami Awareness, July 10, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 10, 2019

Weather at 1600 Pacific Standard Time on Monday 08 July 2019.

We’ve made our way back near the coast and we’re currently progressing south at a cautious 6 knots through a relatively shallow, protected area called Cape Perpetua Marine Reserve.  The winds and sea are both calm. The deck is warm and sunny! The sky has just a few high level clouds that look like wisps of white painted onto a clear blue canvas. A long-sleeved cotton shirt is comfortable in this weather along with long pants and boots.

PERSONAL LOG

Sunday Night

07 July 2019

We left Yaquina Bay just after 1700 on Sunday evening. I was eating dinner when we left and had no idea we were moving. The ship is that smooth when it’s traveling slowly. I made it out just in time to see us pass the boundary between the bay and the Pacific Ocean. My job tonight is to stay up until 0200 so I can prepare for my 12 hour shift that starts Monday and runs from 1400-0200. We’ll see how that works out. I’m typically in bed long before 0200.

As the ship started making its way along the coast this evening, I sat on the Flying Bridge.  The Bridge on a ship is often at one of the highest levels and it’s the command center. The Flying Bridge is one level above that. It is all open air with no windows and no walls (there are railings, of course). It was freeing and frightening at the same time! I think that’s my favorite area on the ship. I plan to go there a lot over the next few weeks to feel the sunshine, clear my head, and prepare for the day. 

One of the scientists on board made a sensible comment yesterday. She said we should walk as much as we can before the ship sails because after that we won’t walk more than a few feet at a time in any given direction. Today I walked 7.5 miles all over Newport Marina. I’m tired, but I’m glad I heeded her advice!

THE SCIENCE

Sunday Morning

07 July 2019

Today I learned more than I ever wanted to know about tsunamis. I went on an estuaries tour with the Hatfield Marine Science Center this morning and we saw a lot of “Tsunami Evacuation Route” signs along our tour. The tour guide explained a tsunami is actually a series of waves and not just one giant wave like we see in movies. Additionally, it doesn’t really “break” the way we’re used to seeing waves crash into the beach. Those waves are caused by the wind moving over the surface of the water. A tsunami reaches the coastline more like a storm surge or like a very strong tide because the energy forcing this wave forward comes from deep within the ocean floor – from seismic or volcanic activity – and not from the wind. Thankfully, in the ocean (where I’ll be for the next three weeks!) a tsunami is only barely noticeable with maybe a three foot height increase. But once the force of all that moving water hits the shallow bottom of our coastline, the water begins to pile up and can reach anywhere from a few feet all the way up to 100 feet above sea level.

The Newport Marina is in a Tsunami Hazard Zone. Most tsunamis tend to be less than ten feet high because energy from the point of origin must travel many miles before reaching a coastline, but the Newport Marina is in a particularly hazardous area because it lies within the Cascadia Subduction Zone. If a major earthquake hits this close to home, a larger than average tsunami could follow in just fifteen minutes! The Newport Marina is only six feet above sea level, so even a relatively small tsunami would cause intense damage from both flooding and debris.

A major earthquake shakes the Cascadia Subduction Zone once every 300-350 years on average. The last major earthquake in Newport, OR occurred in 1700, so… they’re due for another one soon. That might be why the Hatfield Marine Science Center decided to design its brand new building in Newport Marina to be both earthquake and tsunami resistant using state-of-the-art engineering methods. It includes a unique ramp on the outside of the building that spans multiple levels so people have easy access to the evacuation location on top of the roof. After seeing the current evacuation location, a very small hill just across the street from the marina, I think it’s good they’re adding a facility with capacity for another 900 people!

NOAA’s National Weather Service (NWS) provides a U.S. Tsunami Warning System. It works much like our system for tornadoes and thunderstorms by communicating four different levels – warnings, advisories, watches, or threats.

TEACHING CONNECTIONS

Sunday Afternoon

7 July 2019

The man I met yesterday while he filleted his catch from Yaquina Bay is still sitting on my mind. He shared his story with me.  When he was 18 years old, he was homeless. He had no connection to school because he didn’t fit into the square peg the narrow curriculum required. Pausing his rhythm with the fish, he tried to explain.

He’s dyslexic. When he was a kid, that threw him a gigantic curve ball. It took him a long time to learn how to adapt and overcome that challenge.  What strikes me about his story is that school didn’t help him, it held him back. Dyslexia is one of the most common types of learning disabilities. Students are faced with challenges in school every day – whether it’s a learning disability or other challenge – and teachers are often there to support, teach, and guide students through those challenges. But I see students every year who, like this gentleman, don’t fit into the script. They’re the outliers who need a different approach. 

Last year my district engaged in a study of Continuous School Improvement. While my understanding of it is still in its infancy, I do know that it requires us to look at multiple forms of data in order to get a wider picture of what is going on in our schools. We then use what we find to determine “where the fire is burning the hottest” (according to our Continuous School Improvement guru working with our district) and correct those issues first. Typically, by correcting those big ticket items, a trickle-down effect occurs that will solve some of the smaller issues organically.

I would definitely categorize the nature of this fisherman’s story as a big ticket item that many districts are trying to understand and correct. We all know that teacher in the building who connects with the students who don’t connect to school. There’s always that one teacher who manages to make this look easy – though it is not. 

Even though reading comprehension, the primary means to learning in most disciplines, is difficult for the gentleman I spoke to at the filleting station, he valued learning so much that he stuck with it even as he failed his classes. He told me that he has thousands of audiobooks and a whole library of traditional books at home which he’s been accumulating for years. We talked about Malcolm Gladwell, tax preparation, real estate, and a host of other diverse topics. He runs his own successful business that he politely called “medium sized” as he smiled, sheepishly at his friend.

I hope, just as I’m sure all teachers hope, that my students who struggle each year will value learning enough to push through the challenges they each face. While I might not always succeed in teaching every student the content of my discipline, I at least hope that they each leave my classroom at the end of the year with a sense of desire to learn more. To not give up when the challenges pummel them, wave after wave, and feel unrelenting. I hope that someone will speak to them one day, 20 years from now, and they’ll wink as they describe how successful they’ve become due to their hard work, resilience, and unshakable love for learning. And that they’ll come to realize strong literacy skills are an integral part of learning.

Teaching Resources

Allison Irwin: Traveling to the Ship, July 8, 2019

NOAA Teacher at Sea

Allison Irwin

Aboard NOAA Ship Reuben Lasker

July 7-25, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 8, 2019

Weather at 0800 on Monday 08 July 2019.

Winds and sea are calm. Weather is cool. Heavy overcast layer of white, thick clouds in the sky. Very comfortable out on deck with a sweater or light jacket. The visibility is unreal – I can see for miles! Nothing but cold water and salty air.


PERSONAL LOG

Friday Night

05 July 2019

Tomorrow I’ll board a ship with NOAA Officers and scientists headed for a three week research cruise in the Pacific Ocean. My whole life at home is not skipping a beat without me. But I feel like I’ve hit a pause button on my character. Like I won’t return to the movie of my life until the end of July. Important decisions get made without me. Disputes with family and friends won’t include my voice again for almost a month. Everything moves forward at home this summer but me.

I have a new appreciation for folks who dedicate their lives to careers requiring them to be away from home for long periods of time. This is only three weeks. I can’t imagine the way I would feel if I were leaving for three months. Or a year.  I do feel very grateful for the opportunity to spend the next three weeks with these people though. They will be, no doubt, passionate about their careers, and I’ll learn a lot from traveling with them.

THE SCIENCE

Saturday Morning

06 July 2019

After a 6 hour flight from the East Coast to the West Coast and a 2.5 hour car ride from Portland International Airport to Newport, Oregon, I’m finally on NOAA Ship Reuben Lasker! A handful of scientists, two volunteers, and myself met at the airport. We coordinated so all our flights would arrive within an hour of each other so we could drive together. As soon as we got there, my roommate gave me a tour of the ship. It didn’t take very long, but there are a lot of ways to get lost! I felt a little disoriented after that. There is a galley and dining area which they call the mess. I’ve been told we have one of the best chefs on board our ship! A laundry room, exercise room, plenty of deck space, the bridge where NOAA Officers will navigate and operate the ship, and stairs. So. Many. Stairs.

Upon meeting the chief scientist, Kevin Stierhoff, it became clear that the Coastal Pelagic Species Survey is a big deal. NOAA runs this survey every year for about 80 days! They break it up into four 20 day legs. Most of the scientists will rotate through only one or two legs, but the NOAA Corps Officers in charge of the ship’s operation typically stay for the full survey. That’s a very long time to be away from home.

We’re traveling on the 2nd leg, so the survey has already been underway since June. It started farther north off the coast of Vancouver Island, British Columbia and will meander down the coast for almost three months until it reaches the US-Mexico border. Kevin described the ship’s movements like someone explaining how to mow the lawn – we will run perpendicular to the coast in a back-and-forth pattern traveling south, slowly, until we get to the waters off San Francisco Bay. First we’ll travel straight out into the ocean, turn south for a bit, then travel straight back toward the coast. Repeat. Repeat… for three weeks.

mowed lawn
Patterned lines in a freshly mowed lawn – accessed on pixabay.com

Why such a funky pattern, you might ask? We’ll be using acoustic sampling during the day to determine where the most densely populated areas of fish are located. Then at night, we’ll put that data to good use, immediate use, as we trawl the waters for specific types of pelagic species. There are five species in particular that the scientists want to study – anchovy, herring, sardines, mackerel, and squid – because they’re managed species or ecologically important as prey for other species. That funky pattern of travel allows us to sample the whole coastal region.

It reminds of me of one of the scanning patterns the Civil Air Patrol uses when we conduct search and rescue missions from a Cessna. When I was trained to be a scanner in the back seat of the plane, they taught me to look for signs of a missing person or downed plane below me in a systematic way. If I just look sporadically at everything that pops into my line of scan, I’ll never find anything. It’s too haphazard. But if I start from a fixed point on the aircraft and scan out up to a mile, then bring my scan line back in toward the plane, I’ll naturally scan all the ground below me for clues as the plane moves forward.

Even though they’re looking primarily at those five coastal pelagic species, the scientists will catalogue every kind of fish or marine life they find in their trawl nets. They are meticulous. It’s such an important endeavor because it helps us to fish our waters using sustainable practices. If this survey finds that one of the fish species in question is not thriving, that the population sample of that species is too low, then NOAA Fisheries and the Pacific Fisheries Management Council will set harvest guidelines next year to help that species rebound. If it’s looking very dire, they might even determine that commercial fishing of that species needs to be put on pause for a while.

For more details about NOAA Fisheries and the importance of the annual Coastal Pelagic Species Survey, read this short two page guide called U.S. Fisheries Management: Sustainable Fisheries, Sustainable Seafood.

TEACHING CONNECTIONS

Saturday Evening

06 July 2019

Since the three hour time change traveling in this direction worked in my favor, I gained three extra hours of daylight to explore Newport.  I spent most of the evening walking around the small port where NOAA docked Reuben Lasker. It’s only a couple square miles, but it houses the Oregon Coast Aquarium, the Hatfield Marine Science Center’s Visitor Center, Rogue Brewer’s on the Bay, and a public fishing pier. I walked a total of 6 miles today and was never bored.

The fishing culture struck me the most. Kids, adults, everyone seemed to have a working knowledge of local sustainability, ecosystems, commercial fishery practices, things that are so foreign to me. I suppose it would be like going to Pennsylvania and asking someone to explain deer hunting. Trust me, we can. But fishing? Not as much. I wish that we as teachers would tap into the local knowledge base more fully. From Pennsylvania for example, we could share Amish culture and heritage, details about the coal mining industry, steel production and engineering practices, hunting, and so much more. Until I realized how unaware I was of the local knowledge here in Newport, I never stopped to think about how rich and diverse my students’ local knowledge must be as well. One thing I plan to do this school year is dig into that local culture and explore it with my students.

I watched one gentleman as he filleted his catch at the filleting station just off the pier. To me it looked like a cooler of fish. I could tell you with certainty that they were indeed fish. But he knew each type, why the Lingcod had blue flesh instead of white, how many of each type he was allowed to take home with him, how to cook them, and the list goes on. I was impressed. In talking with others this evening, it seems like that’s par for the course here. Later, a couple of fishermen with a cooler full of crab started talking to me and offered me some to try. It was cleaned, cooked already, fresh out of Yaquina Bay. It was delicious – sweet and salty.

The people I interacted with today, every single one of them, were genuinely kind. They were patient and explained things to me when I didn’t understand. This is a lesson every teacher can take to the classroom. We know how important it is to smile and be kind. We know it. But sometimes it’s hard to put that into practice when we’re rounding into May and having to explain that one tricky concept again, pulling a different approach out of our magic hat, and hoping that this time it will click.

It’s not always easy to mask the frustration we feel when something that is so natural for us (in no doubt because we love the subject and have studied it for at least a decade) just doesn’t make sense to a student. And it’s not always the student I get frustrated with, it’s myself. Teachers tend to be their own worst critics. When a lesson doesn’t go as well as we expected, we double down and try harder the next day. No wonder so many of us burn out in the first five years and switch to a different career!

TEACHING RESOURCES

Karah Nazor: Cool Catch Highlights, June 2-7, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: June 2-7, 2019

June 2, 2019 Game Plan and Trawling Line: 5 hauls in the Piedras Blancas Line near San Simeon, CA. Piedras Blancas is known for its Northern elephant seal colony, M. angustirostris. Hauls were conducted outside of the marine reserve and we did not encounter seals.

Catch Highlights: The night started off with excitement when Keith Sakuma brought in an Pacific electric ray, Torpedo californica, and we all got to see it up close before releasing.

Keith S and electric ray
Chief Scientist Keith Sakuma holding a Pacific electric ray, Torpedo californica

In Haul 3 we collected a pelagic octopus, Ocythoe tuberculata, shown below. Chromatophores in cephalapods, including squid, cuttlefish and octopus, are complex organs made up of both muscle and nerve and provide the ability for the animal to rapidly change its skin color in order to blend into the surrounding environment to avoid predation, communicate, or send a warning signal. It was impressive to watch the chromatophores at work as the pelagic octopus attempted to blend into the white background of his tank by turning white (see photos below) We released it back to the sea.

Pelagic octopus
Pelagic octopus (Ocythoe tuberculata) attempting to camouflage with the background and flashing white
Pelagic octopus chromatophores
Pelagic octopus (Ocythoe tuberculata) with chromatophores expressing orange, purples and pinks. The beak is exposed here.

The differences in skin coloration of the five primary squid species we are catching including Boreal Squid, Blacktip Squid, Unknown Squid, Gonadus Squid, and Market Squid (see image below) are noteworthy. While living market squid exhibit brown, pink and purple skin color (see image below) the Chiroteuthis squid tentacle displays orange and red chromatophores (see image below).

Common squids
Common squids in our catches. From top to bottom, Boreal Squid, Blacktip Squid, unknown species, Gonadus Squid, and Market Squid.
market squid
Living market squid exhibiting brown, pink and purple chromatophores.
chromatophores
Pink and purple chromatophores on the mantle of a market squid.
chromatophores
Orange and red chromatophores on a tentacle of the Chriroteuthis squid.

In Haul 4 we collected a Cranchia scabra, which Chief Scientist Keith Sakuma calls the “baseball squid” or glass squid whose body is covered with tubercles (brown spots on mantle in photo below). This animal attempted to hide from us by turning white, retracting its tentacles and inflating himself into a ball, somewhat resembling a baseball. After a few pictures, we released it back to the sea.

Cranchia scabra or "baseball squid"
Cranchia scabra or “baseball squid”

Another exciting deep-sea creature, the Pacific hatchet fish, Argyropelecus affinis, was collected in a bongo net deployed prior to CTD, for Dr. Kelly Goodwin’s eDNA research.  The fish we collected below still has intact blue scales due to being well preserved in the bongo. The hatchet fish lives in mesopelagic zone down to 2000 m depths where the CTD sensors recorded a temperature of four degrees Celsius! Hatchet fish have upward facing eyes and mouths and swim up to the the epi-pelagic zone at night to feed on salps and krill.

Pacific hatchet fish, Argyropelecus affinis
Pacific hatchet fish, Argyropelecus affinis

Kelly conducted a quick surface bucket dip prior to CTD deployment in which we found a small (~2 inch) siphonophore, which I was very excited about since this was my first one to ever see in person! Siphonophores are colonial Cnidarians composed of individual animals called zooids. Moss Landing Graduate Student Kristin Saksa and I were able to confirm the identification of this beautiful creature as a siphonophore using an invertebrate field guide that Keith Sakuma brought on board. Perhaps due to the temperature change from being in the sea to being observed in a cell culture dish under the microscope, the siphonophore broke apart into its individual zooids right in front of my eyes.  See before and after photos below.   

Intact Siphonophore colony
Intact Siphonophore colony from bucket dip, note tip or “hat” at the bottom on the animal.
individual siphonophore zooids
Siphonophore individual zooids appear as semi circles consisting of small brown semi-circles.

Tonight I was also able to observe living salps that were pulled up in the bongo net and take a video.  It was neat to see the salps pulsing.

Haul 5 was a massive haul full of pyrosomes, Pyrosoma atlanticum.  Kristin Saksa volunteered to stir the bucket of pyrosomes (using her arms) so that we could obtain an accurate distribution of organisms for the initial volume count and analysis.  As I video of this event (see stills from the video below), we were all laughing and realized that Kristin may be the only human on Earth who has ever stirred pyrosomes.

Kristin stirring pyrosomes
Kristin Saksa stirring a bucket full of Pyrosoma atlanticum
Kristin stirring pyrosomes
Kristin Saksa stirring a bucket full of Pyrosoma atlanticum

In haul 5 we were surprised to find a Giant 7-armed Atlantic octopus, or blob octopus. Keith Sakuma explained that the males have 7 arms as the fifth is a sex appendage whereas the female has 8 arms. After photographing this beautiful deep-sea octopus, we released him back to the sea.

blobtopus
Giant Seven-Armed Atlantic Octopus or “blob octopus”


June 3, 2019 Game Plan and Trawling Line: 5 hauls Outside Monterey Bay

Catch Highlights: Two of the hauls produced a lot of krill. The hauls had a high species density with a lot of myctophids, salps and blue lanternfish. Such hauls are time consuming to sort so as not to overlook something new and small. In one of the hauls we found a new-to-me myctophid called Nanobrachium. I dissected some of the fish and found that CA lanternfish and Northern anchovies were full of eggs, and their age/reproductive status was previously unknown.

A catch with a high krill count
A catch with a high krill count

We caught 2 young ocean sunfish, Mola mola.  Both were immediately returned to the sea.

Kaila with young Mola mola
Scripps Graduate Student Kaila Pearson with a young ocean sunfish, Mola mola.
Keith and mola mola
LTJG Keith Hanson with a young ocean sunfish, Mola mola.

We found several species of deep sea dragonfish which we arrayed below on a ruler. Most of these fish are less than 6 inches long, no bigger than a pencil, but they are equipped with sharp fangs and are apex predators in their realm! Dragonfish have large bioluminescent photophore organs underneath their eyes (and sometimes lining their bodies) which produce light and are used to attract or deter prey and attract mates.

dragonfish
All of the dragonfish caught on June 3, 2019 on the NOAA Ship Reuben Lasker.
more dragonfishes
Longfin dragonfish, Tactostoma macropus, on left and a Pacific black dragon, Idiacanthus antrostomus, on right. Also in the photo are a krill (on the left of the dragonfish) and a Gonatus Squid (top left corner of photo).
Longfin dragonfish, Tactostoma macropus, with large photo organ underneath the eye

We collected a stoplight loosejaw, Malacosteus niger, which can unhinge its jaw in order to consume large prey.

Stoplight loosejaw
Stoplight loosejaw, Malacosteus niger.
Face of stoplight loosejaw
Face of stoplight loosejaw, Malacosteus niger.


June 4th: Davenport Line

The highlight of today was at 5:45 P.M.  when team red hats went to the flying bridge for our workout and to hang out with Ornithologist Brian Hoover.  There was a lot of Humpback whale activity. I counted around 20 spouts. We observed one whale that flapped its tail against the sea surface around 45 times in a row, perhaps communicating to nearby whales by generating pulses in the water or creating a visual cue.  We saw several full breaches. We finished up the Davenport Line at 6:00 AM as the sea became rough. Thanks goodness for handrails in the shower.

The sorting team
The sorting team, aka Team Red Hats. From left: Kristin Saksa, Flora Cordoleani, Karah Nazor, Ily Iglesias, and Kaila Pearson.


June 5th: Outside of Tomales Bay

I woke up at 4PM and headed to the galley for dinner at 5PM.  The boat was rocking so much that I became dizzy and knew that I would become sick if I tried to eat dinner, so I headed straight back to bed. Around 9PM the sea seemed to have calmed a bit, but I soon learned that it only felt calmer because the ship was traveling in the same direction as the swell at the moment but that we were about to turn around.  Due to the rough conditions, the first haul inshore at Tomales Bay was delayed until midnight so the fish sorting team decided to watch “Mary Poppins Returns” in the galley. The talented chefs of the Reuben Lasker made the most amazing almond cookies today and, thankfully, temped me to eat again.  

Catch Highlights: Haul 1 at station 165 was one of the easiest and most exciting catches of the survey so far because we collected a lot of jellyfish – my favorite! We counted 66 West Coast sea nettles, Chrysora fuscescens, seven Northern anchovies (7) and 24 market squid. I actually have a tattoo of West Coast sea nettle on my ankle. We placed the jellyfish flat on the lab bench and quickly measured their bell diameter before returning them to the sea. They did not sting us as most of the nematocysts were likely triggered during haul in.  I removed a rhopalia, a sensory structure that lines the margin of the bell of Syphozoans (the “true” jellyfish). West Coast sea nettles have eight rhopalium which house the the ocelli (light sensing organ) and statolith (gravity sensing organ). A photomicrograph I took of the rhopalia under the dissecting microscope is below.

Karah measures sea nettle
Teacher at Sea Karah Nazor measuring a West Coast sea nettle Chrysora fuscescens.
Karah examines sea nettle
Karah Nazor examining a West Coast sea nettle, Chrysora fuscescens.
Kaila holds up sea nettle
Scripps graduate student Kaila Pearson examining a West Coast sea nettle, Chrysora fuscescens.
Kristin holds up a sea nettle
Moss Landing graduate student Kristin Saksa examining a West Coast sea nettle, Chrysora fuscescens.
light sensing organ
Photomicrograph of the ocelli or light sensing organ in the rhopalia of a West Coast sea nettle, Chrysora fuscescens.

Haul 2 mostly consisted of Northern anchovies, 1 krill, a few moon jellyfish, Aurelia aurita, a few squid, which made for another very short and easy sort (see photo below). I study moon jellyfish in my lab back at McCallie High School, so I was curious to look inside of the stomach and reproductive organs of these wild jellyfish. Under the dissecting microscope, eggs were present and were purple in color (see photomicrograph below).

jellyfish eggs
Photomicrograph of purple eggs and clear gastric filaments of the moon jellyfish, Aurelia aurita
sorting Haul 2
Kaila Pearson (left) and Karah Nazor and Keith Hanson sorting Haul 2.

Haul 3 had a lot of krill, young of year (YOY) Pacific hake, Merluccius productus, one large hake, and a few market squid. This sort was also super easy except for separating the small YOY Pacific hake from the krill.

Sorting of haul 3 which had a lot of krill and young of year (YOY) Pacific hake, Merluccius productus.


June 6th: Outside Farallones. On our final night, we conducted three hauls with very small harvests consisting of few organisms and low species density.  One new to me fish in the final catch was a top smelt fish (see image below). These were the three easiest sorts of the survey. It was suggested by Keith Sakuma that the catches were small due to the stormy conditions.

catch from the last night
A small catch from the last night June 6, 2019, with one West Coast Sea Nettle, a Gonatus squid, and two topsmelt silversides, Atherinops affinis.
Kristin with a topsmelt
Moss Landing graduate student Kristin Saksa with a topsmelt silverside, Atherinops affinis, from the final haul of the survey.


June 7, 2019: Return to San Francisco

Group photo at Golden Gate Bridge
In front of the Golden Gate Bridge at the conclusion of the cruise. From left: Brian Hoover, Kelly Goodwin, Ily Iglesias, Karah Nazor, Flora Cordoleani, Kristin Saksa, Lauren Valentino, and Jarrod Santora.
group photo at Marin Headlands
In front of the Marin Headlands at the conclusion of the cruise. From left: Ily Iglesias, Kristin Saksa, Flora Cordoleani, Kaila Pearson, Lauren Valentino, and Karah Nazor.

Karah Nazor: Interview with NOAA Scientist Flora Cordoleani, Ph.D., June 2, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: June 2, 2019

Scientist Spotlight: Flora Cordoleani, Ph.D., NOAA NMFS, SWFSC, Fisheries Ecology Division (FED). Dr. Cordoleani is a member of the fish sorting team on this survey.

Interests: Rock climbing, surfing, reading, studying Japanese

Education: Dr. Cordoleani’s doctoral degree is in Marine Biology and Ecology from Aix-Marseille University in France. There she researched interactions between phytoplankton and zooplankton. During her postdoc at the University of California, Davis, in the lab of Louis Botsford, she studied the impact of marine protected areas on rockfish along the CA coast.  

Flora measuring anchovies
Flora Cordoleani, Ph.D., measuring Northern Anchovies after a sort on the Reuben Lasker.
Flora and Karah
Dr. Flora Cordoleani and Dr. Karah Nazor, Teacher at Sea.

Current Research: Dr. Cordoleani leads a research program at UC Davis on preservation of Chinook Salmon, Oncorhynchus tshawytscha, of the Central California Valley Spring Run, which is a threatened species. She explains that these Chinook Salmon are genetically different from salmon of other runs such as the Late Fall, Fall, and Winter runs that take place in the Sacramento River, San Joaquin River, the Delta, the San Francisco Bay, and all of its tributaries.

The primary objective of Dr. Cordoleani’s research is to develop a life cycle model of the entire Spring Run from the spot where the young salmon are reared in the river to their journey through the Golden Gate to the sea where they spend a couple of years before returning back to their home river to spawn, thus completing the life cycle.  She aims to uncover environmental factors that are impacting the survival at each stage of the life cycle.

Project 1: Dr. Cordoleani’s team placed acoustic tags in the stomachs of young fish to trace their journey from the river to the ocean.  She has found that water temperature, water velocity, and flow are the major factors impacting whether or not juvenile fish are able to make it from their place of birth to the Golden Gate. She has observed that drought negatively impacts survival and that the fish fare better in wetter years.  Her data helps federal agencies, such as NOAA, with fish stock assessments and informs them for making science policy decisions on fishing and setting fishing quotas.

Project 2: Since water flow and velocity affect the survival of young salmon called fry, Dr. Cordoleani is very interested in water usage in the Central California Valley and gaining a better understanding how freshwater habitats are managed and how this affects wild salmon.  A major obstacle these fish encounter are dams, which blocks the natural flow of rivers. Spring run salmon have an additional challenge of low water levels and low stream flow in the Spring. During the Spring months, there is less water available in floodplain habitats due to the heavy consumption of water by the agriculture industry during this time.   

To study the effects of water flow and velocity on salmon fry, Dr. Cordoleani made mesh fish cages and placed the cages in either shallow floodplain habitats or the main river.  She placed ten fry (measuring 40 mm in length) in each cage and allowed them to grow for 6 weeks. At the end of the 6 weeks, she again measured the fish and found that the floodplain shallow water habitat promoted fish growth.

Rice farmers use floodplain habitats for their crop and Dr. Cordoleani is working on partnering with this industry to explore how they can work together to manage land to benefit native salmon runs.  She is excited that the rice farmers, as well as duck clubs, are interested to learn how their land can be used to help wild salmon populations thrive and how they can be a part of the solution to some of the obstacles wild salmon face.

Project 3:  Fish otoliths provide a treasure trove of information to reconstruct the life history of fish.  The CA Department of Fish and Game has for many years been collecting otoliths from salmon carcasses after spawning events throughout various locations in the Central CA Valley.  They gave Dr. Cordoleani access to their 450 stored otoliths for her research on the salmon life cycle. She will analyze the otoliths using laser ablation mass spectrometry and stable isotope analysis (using the Strontium 64 or 65 ratio) to determine in which river the adult fish were reared, where they were present at each stage of their life cycle, and how long they spent there. She will also be able to determine if the fish were wild or farmed-raised because hatchery feeding produces a different strontium signal, she explains.

With data from the otolith project, Dr. Cordoleani will compare different cohorts of fish and assess how fast the fish grew in each type of habitat in order to understand which habitats are most ideal for salmon survival. Importantly, she will be able to determine whether and how their growth was affected by different environmental factors and seasons over the years.  Dr. Cordoleani uses USGS databases and other agency websites to obtain water data records for her research.

Karah Nazor: Myctophids, Rockfish, eDNA, and Interview with NOAA Lab Operation Officer Keith Hanson, June 1, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: June 1, 2019

Game Plan and Trawling Line: Four trawls on the San Miguel Line in the Channel Islands.

Time Recap: 5:00 PM: Wake up and then Squat Challenge. 5:30 PM: Dinner. 8:30 PM: Report to fish lab.  Learn how to count to ten in French. Kristin sang France’s National Anthem (she learned in 7th grade). 10 PM: First Haul. 3AM: Kaila used her face flip app to turn us into the opposite sex and it was the most hilarious thing ever. 4AM: Latte made by Kaila. A lot of laughing. 6:20 AM: Finish fish lab clean up. 6:21 AM: Still heavily caffeinated so Team Red Hats headed up to the flying dock to watch the sunrise. The sea was very smooth and glassy as we approached Conception Point. We saw several dolphins and a humpback whale. 7:00 AM: To the Galley for a breakfast of blueberry pancakes. 7:45 AM: Lights out.

Part 1: How to distinguish between myctophid species in our catches

In this survey, we are conducting trawls at 30 meters, which is technically the epipelagic zone, so why do we catch deep sea creatures?   Many deep sea creatures, such as myctophids, participate in a daily vertical migration where they swim up into the upper layer of the ocean at night, likely following the migration of zooplankton on which they feed.  Myctophids are also known as lantern fish or lampfish and they feature photophore organs which bioluminesce. Around 250 species of mcytophids have been described. Graduate student Ily Iglesias is saving a lot of the myctophidae we catch on this cruise for her dissertation work.

Tonight most of the catches were small in volume (filling about 10% of a blue bucket), but had good species density. The catches consisted mostly of salps, anchovies and several species of myctophids. It is important to learn how to properly distinguish between the various myctophids in our catches. This is a daunting task for the novice fish sorter, such as myself, since these fish are small (1 to 2 inches long) and appear very similar to each other. It is worth noting that most of the myctophids lose their skin (scales) during the trawling operation. This exposes the underlying pink muscle tissue, however, their photophores remain intact. Fish collected in a bongo net deployment typically have better preserved scales.

Northern lampfish, Stenobrachius leucopsarus, have 3 photophores in a slanted line under the lateral line while the similar looking Mexican lampfish, Triphoturus mexicanus, have more streamlined bodies and have 3 photophores on the lateral line. Many of the Northern lumpfish had a heart parasite which is evident in the photo below. California lanternfish, Symbiophorus californiensis, are typically larger fish and have a distinguished lateral line. California headlight fish, Diaphus theta, have two photophores “headlights” on the front on their face. Blue lanternfish, Tartetonbeania crenularis, are easy to distinguish from the others because they have wider bodies and blue/silver scales.

Northern lampfish photophores
Northern lampfish, Stenobrachius leucopsarus, have three photophores in a row (circled).
Mexican lampfish
Mexican lampfish, Triphoturus mexicanus, are more narrow than Northern lampfish and have three photophores right on the lateral line.
California lanternfish, Symbiophorus californiensis, have a distinguished lateral line.
California headlight fish
California headlight fish, Diaphus theta, are easy to distinguish because of the two large photophores on the face.
Blue lanternfish
Blue lanternfish, Tartetonbeania crenularis, collected in a bongo net with intact scales. Photo courtesy of Lauren Valentino.
Blue lanternfish Photoorgans
Photoorgans lining ventral surface of Blue lanternfish, Tartetonbeania crenularis.


Part 2: Rockfish: why are we catching so few?

Last night there were 4 rockfish in the last haul, and the fish sorting team got excited because we have not seen very many.  The title of this survey is officially “Juvenile Rockfish Recruitment and Ecosystem Assessment Survey,” however, sampling for pelagic juvenile rockfish is only one of the project’s objectives. Other objectives include sampling for other epi-pelagic micronekton species, studying prevailing ocean conditions and examining prominent hydrographic features, mapping the distribution and abundance of krill (Euphausiacea), and observing seabird and marine mammal distribution and abundance.

Rockfish, perch, or redfish are common names for the Sebastes genus of fish (with more than 100 species) which are abundant off of the California coast, and are a very important genus for the commercial fishing industry. Rockfish are benthic fish that live among rocks, and can be found in kelp forests or in the bathypelagic zone. One of the goals of this survey is to inform the fishing industry on the status of the population of rockfish so that reasonable catch limits can be set.

This year is proving to be a poor year for the rockfish pre-recruitment index, lower than the previous several years, says Chief Scientist, Keith Sakuma. He explains that one year of a weak young of year (YOY) rockfish class is not enough to have an impact on the fishing industry, but if the index was low for say, 10 years in a row, then this could potentially affect the exploitable population. He explains that since rockfish can live to be 100 years old or greater, they have many seasons to reproduce. Rockfish prefer cold water habitats. Keith’s research has demonstrated that most poor pre-recruitment index years are correlated to El Nino events which cause an increase in water temperatures and a reduction in cold water upwelling. This year’s slump in terms of rockfish numbers is not correlated to a strong El Nino event.

 young Cabazon Rockfish
Two young Cabazon Rockfish, Scorpaenichthys marmoratus.


Part 3: Environmental DNA (eDNA) Sampling on the Reuben Lasker

Last night Flora Cordoleani and I helped Dr. Kelly Goodwin collect water from the Conductivity, Temperature and Depth (CTD) bottles for the purpose of collecting environmental DNA (eDNA).  Kelly’s assistant, Lauren Valentino, is primarily on the day shift (see photo of Lauren with the CTD apparatus below). Isolation of eDNA from seawater is a newer technique used to determine which species swam through a particular location based on the DNA they left behind, through shedding of cells. This technique does not require that the organism be harvested to know that it had been present, and could be of value in detection of the presence of endangered species, for example.

For this CTD deployment, three bottles are filled at depths of 5 and 100 meters, and at the chlorophyll max somewhere between 5 – 20 meters. The water from each depth is run through a filter (pore size of 2 microns) in the eDNA lab on the ship (see photo below). The vacuum filtration procedure is a time-consuming process, as samples must be processed in triplicate, and in which aseptic technique is paramount so that human DNA does not contaminate the water.  Once the DNA is trapped on the filters, they are stored at -20C. The DNA will be purified from the filters back in the San Diego NOAA lab using a Qiagen kit. Species-specific regions of DNA known as bar-code regions will be amplified by Polymerase chain reaction (PCR) using 3 primers sets for analysis of DNA from bacteria, plankton, and fish. Illumina techology will be used to obtain DNA sequences, which are compared to DNA libraries for species determination.

The results from the eDNA study will give us a list of species that were present at each trawling station up to 48 hours prior to CTD deployment and fishing using the Cobb Trawl. We will be able to compare this list with the list of species that were physically caught in nets. Nighttime CTDs are deployed at the same station as bongo nets. Daytime CTD trawls occur at the same stations as night fishing.

Lauren with CTD
Lauren Valentino with the Conductivity, Temperature and Depth (CTD) Rosette on the Reuben Lasker.
Kelly Goodwin in the eDNA lab
Kelly Goodwin filtering water in the eDNA lab on the Reuben Lasker.


Part 4: Career Spotlight: NOAA Commissioned Officer Corps, Scientist Interview: Keith Hanson, NOAA Lab Operation Officer B.S. Marine Biology, University of Miami (UM) Hometown: Rye, New York

Keith H. and anchovies
NOAA Lab Operation Officer Keith Hanson with a large catch of anchovies.
Keith H sorting the catch
NOAA Lab Operation Officer Keith Hanson sorting the catch.

Keith Hanson joins this survey to assist with research and is a knowledgeable and experienced member of the science team.  Keith has taught me a lot about the fish we are collecting and was the first to show me around the ship.

Keith earned a Bachelor’s degree in Marine Biology from the University of Miami (UM) where he was vice president of the scuba club.   His favorite part of being a student at UM was being located so close to ocean and the many trips he took to Biscayne Beach and The Everglades.  While at UM, Keith worked as a Naturalist at the Biscayne Nature Center and with the Marine Operations Department at The Rosenstiel School of Marine and Atmospheric Science (RSMAS), where he managed boats and vehicles.  

After graduating from UM, Keith started the NOAA Corps Basic Officer Training Class (BOTC) at the U.S. Coast Guard Academy in New London, Connecticut.  His first assignment as a Junior Officer was on the NOAA Ship Nancy Foster in Charleston, SC which has a multi-mission platform with fish habitat and population studies, seafloor mapping surveys, oceanographic studies, and maritime heritage survey.  Keith enjoys the traveling opportunities afforded in this line of work. On the Nancy Foster, he got to travel to Cuba, the Caribbean, and Mexico. After 2.5 years of service, Keith advanced to OP Officer.

Keith is currently on his land assignment in Santa Cruz NOAA working as the Vessel Operations Coordinator and he manages a fleet of small boats from kayaks to a 28 foot barge.  Most vessels are used for river salmon work and groundfish research. His favorite vessel is the Egret offshore fishing boat which is used for rockfish hook and line sampling.

When asked what advice he has for undergraduate students wanting to purse degrees and careers in marine biology, he suggests getting involved in a research lab early on to gain a competitive edge.

Karah Nazor: The Glowing Dolphins of the Channel Islands and Interview with UCSC Graduate Student Ilysa “Ily” Iglesias, May 31, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 31, 2019

Game Plan and Trawling Line: Channel Islands San Nicolas Line

I am up on the flying bridge and I just saw two humpback whales spouting, an albatross soaring and a large Mola Mola on the sea surface.  In this blog I will write about an amazing once in a lifetime experience that from last night- May 31, 2019. The first haul was called off due to an abundance of Pacific White-Sided Dolphins, Lagenorhynchus obliquidens, (as reported by the inside marine mammal watch prior to net deployment), so we motored on ahead to the second station, but dolphins chased the ship all the way there, too.  One strategy to encourage marine mammals to leave is for the ship to stop moving with the hope that the dolphins become disinterested and vacate the area. This pod was intent on having a party at the ship so Keith Sakuma encouraged everyone to just go outside to observe and enjoy the dolphins! 

Fishing on this survey takes place at nighttime (so the fish do not see the net) and Scripps graduate student Kaila Pearson and I stepped outside on the side deck into the darkest of dark nights. Kaila and I carefully placed one foot in front of the other because we couldn’t see our feet and where to step next. I was afraid I would trip. When I asked Keith Hanson if we should use a flashlight to safely make our way up to the top deck, he suggested that we stay in place for a few minutes to allow our eyes to adjust. Within 5 minutes or so objects around us started to present themselves to us within the black void.  We could eventually see our feet, each others faces, the dolphins, and even the finer features of the sea surface.

Within a few minutes Ily Iglesias reported seeing bioluminescence, a type of chemiluminescence that occurs in living things, such as the familiar green glow of lightening bugs in the Summer in the South.   This glow results from oxidation of the protein luciferin (present in photophore cells/organs) by the enzyme luciferase.  It its excited state, lucifern emits light.  This reaction is known to occur in some marine bacteria, dinoflagellates (single celled photosynthetic organisms), squid, deep sea fish, pyrosomes and jellyfish, and I am fortunate to have observed many of these creatures already on this research cruise (see photos below).  Some animals have photophore organs and generate their own luciferin, while others are hosts to bioluminescent bacteria.

deepsea longfin dragonfish
The large photo organ is a large green circle under the eye of the deepsea longfin dragonfish, Tactostoma macropus.
California lanternfish
California lanternfish, Symbolophorus californiensis, with photophores under the lateral line and the ventral surface.
California lanternfish photophores
California lanternfish photophores
Blue lanternfish
Blue lanternfish, Tarletonbeania crenularis, collected from a bongo net at 265 meters. Photophores line the ventral surface of the body.
Cranchia scabra
Cranchia scabra “baseball squid” with large photophores lining the eyes.
Chiroteuthis veranii squid
Chiroteuthis veranii squid

When dinoflagellates floating on the sea surface are agitated, they glow.  At first when I was trying really hard to see this, I noticed a couple of tiny flashes of green light, sort of like lightening bugs, but it wasn’t anything super obvious. In time, I noticed clouds of faint light, sort of like a glowing mist floating the water’s surface, that moved up and down with the swell.  I hypothesized that dinoflagellates on the sea surface were being agitated by the passage of waves through them and Ily suggested that it was caused by schools of anchovies.

Since the dolphins were intent on staying, we decided to head to the next station.  I knew that as the ship began to move that the bow would be breaking through surface water that had previously been undisturbed, and I predicted the bioluminescence would be much more intense.

As we took off, the dolphins began to bow surf and, as I predicted, the dinoflagellates were activated and this time their glow was a bright white.  As the dolphins surfaced to breath, their skin became coated with the glowing algal cells, creating an effect as if they were swimming in an X-ray machine.  The dolphins were literally glowing white swimming in a black sea! We were so entranced and excited by the beauty, we screamed in delight. I am sure the dolphins heard us cheering for them. They too, seemed excited and could see each other glowing as well.

Next we saw the faint cloud of dinoflagellates caused by Northern anchovies (Ily was right) up ahead of us. As the ship encountered the school of small (~ 3-6 inch) fish, they also started to glow really bright and it was easy to see all of the individual fish in the school. The dolphins could also see the glowing fish and split off in different directions to hunt them.  There were hundreds of fish that dispersed as they were being chased creating a pattern of short white glowing lines somewhat like the yellow lane markers on the highway.

The display was unlike anything I have ever witnessed. It was like the Aurora Borealis of the sea.  Despite our best efforts, our cell phone cameras were unable to pick up the bioluminescent signal, however, we do not need photos because the patterns of light will be forever embedded in our minds. The dolphins eventually tired from the surf and chase and departed. Ily said the experience was “an explosion of light that overwhelmed the senses” while Flora said it was “better than fireworks.”

With no marine mammal sightings at the third station, we completed a five minute haul in the deep channel and collected a huge white bin of anchovies (see photo of Keith Hanson with this catch below). In this catch we found a few Mexican lampfish, 3 king of the salmon, a lot of of large smooth tongues, a lot of salps, a few pyrosomes and one purple striped jellyfish.  The purple-striped jelly (Chrysaora colorata) is is primarily preyed upon by Leatherback turtles. Haul 2 was conducted over shallower water near San Nicolas Island and we only found salps and four small rockfish in the catch.  After these two hauls, we called it a night and wrapped up at 4:15 a.m.

Scientist Spotlight: Ilysa Iglesias, NMFS SWFSC FED/ University of California Santa Cruz (UCSC)

Ilysa “Ily” is a doctoral student who works in John Field’s Lab at UCSC.  She is studying the fish we are collecting on this cruise as part of her research. She is very knowledgeable about all of the survey research objectives. She is also one of the most positive and gregarious people I have every met. Ily grew up in Santa Cruz, CA, and enjoys surfing, hiking, gardening and raising chickens.   Ily is a fan of early marine explorer Jacques Cousteau, who often wore a red beanie/toboggan and a blue shirt. Ily came prepared and brought six red hats (that she knit herself) for each of the members of the sorting team. Ily’s favorite fish is the hatchetfish. She was thrilled when we found on in the catch!

Ilysa with hatchetfish
Ilysa Iglesias with deepsea marine hatchetfish
deepsea marine hatchetfish
A deepsea marine hatchetfish caught in the bongo which was deployed to depth of 265 meters.

Ily obtained a Bachelor’s degree from UC Berkeley in integrated biology and a Masters Degree from the University of Hawaii in Zoology with a specialization in marine biology.  Her thesis was on the function of intertidal pools as a nursery habitat for near-shore reef fish. She compared otoliths (fish bone ears) of fish reared inside and outside of tide pools and compared their growth rates.  Otoliths can be used to the age of the fish much like counting rings on a tree and stable isotope analysis reveals information about where the fish were reared.

Ily, Flora and Kristin have all used otoliths in their research and taught me how to locate and collect the sagittal otolith from anchovies and myctophids. It is a tiny ear bone (one of three) that is positioned near the hindbrain of fish.  See photos below of the otoliths we collected. This is a technique that I will definitely take back to my classroom and teach my McCallie students.

Otoliths
Otoliths we collected and observed under the dissecting microscope.
Photomicrograph of otoliths
Photomicrograph of otoliths we collected from blue lanternfish (top) and Northern Anchovy (bottom) and observed under the dissecting microscope.

After obtaining her masters degree, Ily was Conservation Fellow for the Nature Conservancy in HI and worked in octopus fisheries before returning home to join NOAA’s salmon team and then the rockfish team as a Research Associate.  Ily has just completed the first year of her doctoral work in the Field Lab and expects to complete the program within 5 years.

On this cruise, Ily is collecting small fish called Myctophids for her research. These are small bioluminescent fish that live at depths of 300 and 1,500 m in the bathypelagic zone. In this survey, we encounter these deep sea dwellers during their nightly vertical migration up to the edge of the photic zone at depths we are targeting.  They are likely chasing their prey (krill) on this upward journey. It is amazing to me they are able to withstand the pressure change. Mcytophids are also known as lanternfishes and have bioluminescent photophores dispersed on their bodies. The fish sorting team analyzes the position of these organs to help distinguish between the different species. There are 243 known species of myctophids, making these little fishes one of the most diverse vertebrates on Earth.  They are so abundant in the sea that they make up 65% of the ocean’s biomass, but most people have never heard of them!

In 2014- 2015 there was an anonymously high sea surface temperatures off of the Pacific Coast known as The Blob.  Marine scientists are still elucidating the effect of the hot water had on fish populations and ecosystems. Ily explains that “atmospheric forcing caused changes in oxygen and temperature resulting in variability in the California current.”  The water was less nutrient dense and caused a reduction in phytoplankton. This disruption of primary production propagated up the trophic cascade resulting in die offs of zooplankton, fish, marine mammals and birds.  

Ily is using the catch records and acoustics data from the rockfish survey to study changes in distribution and abundance of myctophids from before, during and after The Blob (2013-2019).  She aims to understand if and how their trophic position of myctophids was affected by the unusually high sea surface temperatures.   Using elemental analysis isotope ratio mass spectrometry to analyze the Carbon and Nitrogen atoms incorporated into fish muscle, Ily can determine what the myctophids were eating each year.

Allison Irwin: The Journey Begins, June 26, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7 – 25, 2019

Mission: Coastal Pelagic Species Survey

Embarkation Port: Newport, Oregon

Cruise Start Date: 7 July 2019

Days at Sea: 19

Introduction

I’m actually afraid of the sea. The unspeakable power, the dark depths, the mysterious uncharted territory – the sea has always held curious minds captive. I want to be someone who faces the things that scare me. And for 19 days, on a relatively tiny ship, I will be doing just that.

NOAA Ship Reuben Lasker
Reuben Lasker Pulls Into the Navy Pier on 1 May 2014

NOAA Ship Reuben Lasker is “one of the most technologically advanced fisheries vessels in the world” according to the Office of Marine & Aviation Operations.  In addition to studying fish and marine life populations, it is also equipped for acoustic data sampling and the gathering of oceanographic data. It can stay out to sea for up to 40 days at a time without needing to return for food or fuel replenishment. 

And yet, as I’m writing this, I can’t help but think about SS Edmund Fitzgerald and RMS Titanic. They were the most advanced ships of their time too. Of course, I’m just letting my imagination get carried away. People fear the things they don’t understand. And I’m looking forward to learning as much as I can on this cruise in order to understand not just how this incredible vessel operates, but also how the ocean and atmosphere impact my life on a daily basis.

I was lucky last year to stumble across a professional development opportunity funded through the American Meteorological Society. I took two graduate level courses since then – DataStreme Atmosphere and DataStreme Ocean. Upon finishing this program I’ll earn a graduate certificate from the California University of Pennsylvania and be able to apply my new understanding of earth science directly to my classroom instruction. Already I’ve been able to incorporate fascinating information about coral reefs, the Bermuda Triangle, map reading, and weather into lessons and activities this year.

Why does a Reading Specialist need all this professional development, you might ask? In science of all things? Because nobody reads about things they’re not interested in (unless they have to). Students need to have something to connect with, to care about, in order to learn. When was the last time I, as an adult, read something I didn’t care about? Probably years. 

Humans are curious by nature, and by incorporating new topics into our reading lessons over the past year, I’ve noticed that students really like learning about earth science. It’s like the mother who hides cauliflower in the lasagna – students are more motivated to read when they’re reading about something exciting and directly relevant to their lives. Thankfully, the more they read, the better they get at comprehending the nuances of the text. And then the less they need me.

A classroom

One of the most valuable aspects of this trip for me is that I’ll return with a new appreciation for earth science, current events as they relate to our food supply and environment, and marine life. I can use this experience to build exciting lessons for high school students who may use their connection to these lessons as a lifeline. The last ditch effort to find something exciting to learn before graduating with a lackluster memory of the doldrums of the high school classroom.

Teenagers are tough eggs to crack! But I like them. And I’m very grateful to the NOAA Teacher at Sea program for giving me, and other teachers, opportunities like this to show our students that there are literally thousands of directions to take after high school in regard to career and quality of life. And that high school is one of the few places where they can build the foundational knowledge necessary to get them there – for free.  I want my students to pursue their passions. To get excited about learning! And the first step to doing that successfully is to expose them to as many post-secondary options and lessons about their world as we can in the short time that we spend with them. Thanks NOAA! I’m excited to start my journey.

Karah Nazor: Sorting Protocol and the Ubiquitous Tunicates of the Central CA Coast: Salps and Pyrosomes, May 30, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 30, 2019

Last night I fell asleep, twice, at the lab bench in between trawls, since I am still adjusting to being on the night shift.  We worked from 9:00 P.M. to 6:30 A.M. After the shift I had a nice hot shower and slept a solid 9 hours from 7:00 AM to 4:00 PM.  Hopefully, I will be less drowsy tonight!

Upon waking, I went to the galley and grabbed some Raisin Bran and coffee and took it up to the flying bridge to hang out with Ornithologist Brian Hoover.  Our current location is in the middle of the Channel Islands, an area I know something about because my friend Evan Morrison, mentioned in my first blog, helps with the Channel Islands Swimming Association, and I would like to swim between these islands one day.  Lauren Valentino, Flora Cordoleani, Ily Iglesias and I congregated on the flying bridge and decided we should exercise. We joined Flora in her squat challenge (80 squats on this particular day), followed by 5 minutes of planking and a bit of erging.  Half of female members of the fish sorting team are avid rock climbers. They did lots of pull-ups using the rock ring climbing training holds that are installed there.

It felt nice and warm when the ship stopped for deployment of the Conductivity, Temperature and Depth (CTD) Rosette, and it got chilly again as the wind picked up when the ship started moving again. We saw a few whale spouts in the distance and at 5:30 P.M. we went down to the galley for a delicious meal of steak and mashed potatoes.  I am beginning to really appreciate how nice this whole experience has been in terms of amenities. The NOAA Reuben Lasker first set launch in 2014 and is a state of the art fisheries vessel with a sophisticated acoustics lab, fish lab, dynamic positioning system, CTD, etc., but is ALSO equipped with creature comforts including a movie lounge, an ice cream cooler loaded with ice cream sandwiches, snickers, fruit pops, you name it, and my personal favorite – a coffee bar where all coffee is freshly ground, an espresso machine, and all varieties of milk and creamers, including Reese’s cup whipped cream. The mattress in my stateroom bunk is quite comfortable and the shower gets hot within seconds! I doubt it can get much better than this for a research experience at sea?

Game Plan and Trawling Line: Point Sal line with five 15 minute hauls.

I am familiar with the sorting protocol now. The catch is dropped from the net into the bucket by members of the deck crew and survey tech, with the oversight of Keith Sakuma, Chief Scientist and NOAA Operations Officer Keith Hanson.  The bucket is immediately placed in the fish lab and this is when the fish sorting team starts our work.

Cobb Trawl net
Dropping the catch from the Cobb Trawl net into the bucket.
fish on a sorting tray
A volume of fish just placed on a sorting tray. This catch has a lot of anchovies, krill, and California smoothtongues.
Separating the krill
Separating the krill from the myctophids, Northern anchovies, and California smoothtongues.
Sorting fish group photo
Team Red Hats sorting fish. NOAA’s Keith Hanson in the rear left side.


SORTING AND COUNTING METHOD

We start by carefully picking through a 2000 mL or 5000 mL volume of the harvest, depending on Keith Sakuma’s initial assessment of the species density and volume in the bucket.  The first volume of catch to be sorted is evenly dispersed onto four white sorting trays arrayed on the main lab bench. Once you have a pile of the catch on your tray, you start to separate them into piles of different types of organisms, such as Northern anchovies, ctenophores, krill, salps, pyrosomes, Californian smoothtongues, squid, rockfish, myctophids, and young of year (YOY) fish.  I prefer to use my hands for sorting while others use forceps. Once sorted, we count the number of individuals for each species. If we have difficulty identifying an animal that we have not yet seen, we ask Keith Sakuma or a more experienced team member to help with identification. YOY fish, some in larval form, are particularly difficult for me.

Once sorted and counted, we verbally call out the common name and number of organisms to Keith Sakuma who manually records the data in a 3-ring binder for the lab hard-copy.   For smaller organisms, such as krill or salps, or in hauls with a high number of any particular species, it would be quite tedious to pick out and count each individual in the total haul.  This is why we start with a small subsample volume or 0.5, 2 or 5L, count the individuals in that small volume, establish the ratio for the number of individuals in that volume, and then extrapolate and calculate by the total volume of the haul.  For example, if we counted 97 pyrosomes in the initial 5L sort, and we collected a total of 1000L, then we can say that there are 19,400 pyrosomes in the haul.

Chief Scientist Keith Sakuma
Chief Scientist Keith Sakuma recording the data from a haul during sorting.

Once 20 individuals of each species have been called out, we no longer have to count that species since the ratio for this catch has already been established and to expedite sorting the rest of the volume.  Following sorting, the length of the twenty representatives of each species is measured using electronic calipers and the values populate on an Excel spreadsheet. After measuring, specimens requested by various research institutes including Scripps Institution of Oceanography, Moss Landing, and Monterey Bay Aquarium Research Institute (MBARI) are collected, labelled and frozen.

Flora Cordoleani
Flora Cordoleani keeping track of which specimens are to be preserved for various research groups.
Keith Sakuma bagging specimens to send to collaborators.

Creature(s) feature: Salps and Pyrosomes. 

Salps What are these strange gelatinous organisms in our catch that look like little puddles of clear jelly with a red, green, yellow, and brown digestive organ in the center?  They are goopy, small and slippery making them difficult to pick up by hand. They float on the sea surface and are ubiquitous in our hauls BUT NOBODY KNOWS ABOUT THEM.

These creatures are called salps and belong to the subphylum Tunicata. Tunicates have a notochord in their early stage of life which makes them members of the phylum Chordata, to which humans also belong. Having a transparent body is a way escape being preyed upon.

A group of salps. This species is dime to quarter sized and this number of salps occupies a volume of ~10-15 ml once placed in a beaker.
Salp digestive organs.

Salps are planktonic tunicates  That can be found as individual salps or in long chains called blastozooids.   The salps shown in the photo below were individuals and were notable in most of our hauls. Individual salps in this pile are dime to quarter sized and occupy a volume of ~10-15 ml. We measured the volume of salps in every haul.

While on the topic of salps, I will tell you about a cool 1 inch long salp parasite I found on my sorting tray (see image below). Keith Sakuma explained that it was a deep sea amphipod called Phronima which is a parasitoid that takes up residence inside of a salp’s body, eats the salp’s organs, and then lays its eggs inside of the salp. The King-of-the-salmon, Trachipterus altivelis, (which we are also catching) uses its protrusible jaw to get inside of the salp just to eat this amphipod!

Phronima amphipod
Phronima amphipod – lives and reproduced in salp after eating the salp’s organs. King-of-the-salmon fish use their protrusible jaws to eat the amphipod.
King-of-the-salmon
King-of-the-salmon, Trachipterus altivelis
King-of-the-salmon jaw protruded
King-of-the-salmon, Trachipterus altivelis, who preys upon phronima living inside of salp, with jaw protruded.
A large haul full of salps.

Another type of salp we keep catching is Thetys vagina, a large solitary species of nektonic salp that feeds on plankton, such as diatoms, and is an important carbon sink in the ocean. Thetys has an external surface, or test, that is covered with bumps and ridges, as seen in the photo below.

Thetys vagina, the twin-sailed salp.
Thetys vagina, the twin-sailed salp.
internal filtering organ
The internal filtering organ of Thetys vagina.
Kristin Saksa examining a larger Thetys
Kristin Saksa examining a larger Thetys vagina, or the twin-sailed salp. The dark colored tentacles are downward facing. This is the siphon where water enters the sac-filled body.

Pyrosomes Pyrosoma atlanticum are another type of planktonic tunicate which are very numerous in most of our hauls. Pyrosomes look like bumpy pink hollow tubes with openings on both ends. They are rigid in structure and easy to pick up by hand, whereas salps are goopy and difficult to pick up by hand.  We have collected some pyrosomes that are 13 inches long, while most are in the 4-6 inch range. The small pyrosomes look like clear Tic Tacs, but they do not taste as such.

Pyrosoma atlanticum
Pyrosoma atlanticum, with an ~6 inch specimen on the left and small pyrosomes on the right.

How can pyrosomes be so ubiquitous just 20 miles or so off of the Central California Coast, but I have never seen one that has floated up on the beach or while swimming?

Pyrosoma atlanticum are also planktonic tunicates, but are colonial organisms made up of many zooids held together by a gelatinous structure called the tunic. One end of the tube is wide open and filters the water for zooplankton and phytoplankton, while the other end is tighter and resembles a diaphragm or sphincter. The pyrosomes we harvested appeared in diverse array of pinks and purples.  Pyrosomes are believed to harbor intracellular bioluminescent bacteria. Pyrosomes are drifting organisms that swim by beating cilia lining the branchial basket to propel the animals through the water and create a current for filter feeding. 

Pyrosome rainbow
Pyrosoma atlanticum assorted by color.
Kristin Saksa
Moss Landing Graduate Student Kristin Saksa excited about the large haul of Pyrosoma atlanticum.
high-five
Pyrosoma atlanticum high-five.

Karah Nazor: Departure from the San Francisco Bay and First Night of Fishing, May 29, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 28-29, 2019


I departed Chattanooga, TN, for San Francisco, CA, on May 28th to participate as a NOAA Teacher at Sea on Leg 2 of NOAA’s Juvenile Rockfish Recruitment and Ecosystem Assessment Survey.  My job as a Teacher at Sea will be to share my experience and knowledge acquired over the next 10 days working alongside NOAA scientists with MY AUDIENCE. Who is my audience? You! I hope that you all can be my students!  You, my McCallie students and colleagues, my friends, my swimming community and my family members. My intention here is to explain in layman’s terms what I learned, and especially, what I thought was cool.

After tapas in North Beach with my San Francisco friends Cathy Delneo and Evan Morrison, they dropped me off at Pier 15 to sleep in my stateroom on the NOAA Ship Reuben Lasker. I felt rocking even while docked in the San Francisco Bay, but I slept great and am happy to report that my CVS brand “less drowsy” Dramamine tablets seem to be working as I am prone to motion sickness. This morning Evan and I got to explore the ship and take a bunch of photos of The City from the top deck of the ship, called the Flying Bridge. I imagine I will be spending many hours up here over the next 10 days!

Karah and Evan on the Flying Bridge
Karah and Evan on the Flying Bridge the morning of departure.


Meeting the Science Team

The first science team member I met was Kelly Goodwin, Ph.D., an environmental molecular biologist from NOAA National Marine Fisheries Service (NMFS), Southwest Fisheries Science Center (SWFSC) La Jolla, and NOAA Atlantic Oceanographic and Meteorological Laboratory.  Kelly is here along with Associate Researcher Lauren Valentino to collect environmental DNA (eDNA) from water collected at three depths (5 meters, the chlorophyll maximum, and 100 meters) during deployment of the Conductivity, Temperature and Depth (CTD) Rosette.  There will be more about these marine scientists and the cool biotechnology they will be employing to come in a future post!

Next, I met my stateroom bunkmate Flora Cordoleani, Ph.D., of NOAA NMFS, SWFSC,Fisheries Ecology Division (FED).   Her research lab at the University of California Davis focuses on the management of the endangered king salmon in the Central California Valley.  I will definitely interview her for a future blog!

Meet the rest of the team: Doctoral student Ilysa (Ily) Iglesias, NMFS SWFSC FED/ University of California Santa Cruz (UCSC), works in John Field’s Lab.  Ily will be analyzing the myctophids (one of the most abundant mesopelagic fish groups) collected on this survey and elucidating their role in the trophic cascade.  She was on the cruise last year as well and I can already tell is psyched about this opportunity and wants to teach everyone. 

John Field, Ph.D., was on the previous leg of the cruise and is the Principal Investigator for this project while Keith Sakuma, of NMFS SWFSC FED, is the Chief Scientist and has been working on this survey for 30 years as of this cruise!     

Kristin Saksa of NMFS SWFSC FED/ Moss Landing Marine Lab (MLML) and Kaila Pearson, NMFS SWFSC FED, of Scripps, who are both working on master’s degrees in marine science.  

Jarrod Santora, Ph.D., an ecologist from NMFS SWFSC FED/UCSC, will be on the day shift.  Brian Hoover, Ph.D., an ornithologist who works for the Farallon Institute for Advanced Ecosystem Research (FIAER), will be observing birds and marine mammals on the day shift. 

Keith Hanson is a NOAA Corps Officer representing NMFS SWFSC FED and is also a valuable member of the science team.

Night shift fish sorting crew
Night shift fish sorting crew. From left: Karah Nazor, Ph.D., Flora Cordoleani, Ph.D., Kristin Saksa, Keith Sakuma, Keith Hanson, Kaila Pearson, and Ilysa Iglesias.

After a welcome aboard orientation and safety briefing given by NOAA Corps Officer David Wang, we enjoyed a delicious reuben sandwich in the galley (cafeteria) of the Reuben Lasker.  Meals are served at 7 AM, 11 AM and 5 PM. Since I will be on night shift I can request to have meals put aside for me to eat whenever I want. Below is a typical menu.  The food is superb! See a menu from one of our last days below.

Menu for my last day.
Menu for my last day.

After a noon departure the engineers spent a couple of hours testing the dynamic positioning system just north of the Bay Bridge.  This system takes inputs from ocean conditions such as the tide, wind, waves and swell and uses the propulsion and thrusting instruments on board to maintain a fixed position on the global positioning system (GPS).   Most of the night shift science crew used this opportunity to nap since we had to stay up all night!

Kaila Pearson woke me up just in time as we exited San Francisco Bay to take in the spectacular view of passing under the Golden Gate Bridge.  It was a gorgeous sunny day in San Francisco and I felt super grateful to be a part of this research team, excited to get to know the team of amazing (mostly) female scientists I had just met, and ready to start fishing! It was fun to get to serve as a impromptu San Francisco tour guide as we departed the Bay, since I am quite familiar with this landscape. This body of water was my first open water swimming playground when I used to live in San Francisco during my postdoc at UCSF and was a member of the South End Rowing Club.  

Departing San Francisco Bay
Our departure from the San Francisco Bay. Photo taken on the flying bridge. From Left: Kaila Pearson, Flora Cordoleani, Ph.D., Lauren Valentino, and Ilysa Iglesia with Teacher at Sea Karah Nazor, Ph.D., in front.


Night 1 of Cobb Trawl and Fish Sorting

We arrived at our first trawl line, Monterey Bay, around 11:00 P.M.  My job as part of the night crew is to participate in marine mammal watches before and during fishing, and then to sort, count and measure the different species of animals collected, as well as bag and freeze specimens for various research organizations.  The fishing method used on this survey is a modified Cobb midwater trawl.  The net is deployed to fish at 30 meters depth and has a 9.5 mm codend liner (mesh at the end of the net where the fish gather).  Trawl operations commence just after dusk and conclude just before dawn, with the goal of conducting up to 5 trawls per night. The duration of fishing at target depth before “haul back” of the net can be either 5 minutes or 15 minutes.  Five minute trawls are used in areas of high abundance of gelatinous organisms such as jellyfish in order to reduce the size of the catch (e.g., fishing the additional 10 minutes would result in catches large enough to damage the net). 

catch from the first Cobb trawl
From left, Keith Hanson, NOAA Operations Officer, and Chief Scientist Keith Sakuma, help release the catch from the first haul of the survey.
first haul's catch
At first glance, it appeared the catch consisted mostly of Northern anchovies.
Graduate student Ilysa Iglesias
UCSC graduate student Ilysa Iglesias examines the first sort of the first haul, with the organisms arranged by species.

There are two marine mammal watches per trawl: the inside watch and the outside watch.  The inside watch goes to starboard side of the bridge 30 minutes prior to reaching the planned trawl station.  If any marine mammals such as sea lions, seals, dolphins or whales are spotted within one nautical mile of the planned trawl station, then the ship must move.  This protocol is employed for mitigating interaction with protected marine species.

If the inside watch does not see any marine mammals, then trawl operations can begin.  This is when the outside mammal watch takes over and looks for marine mammals during net deployment, trawling, and haul in.  The outside watch is conducted one floor above the fishing deck, and the person must wear foul weather gear, a life vest, and a helmet. This is summer, but it is the Pacific, and it is COLD out there.  If a marine mammal is spotted by the outside watch then the trawl net must immediately be reeled in.

I spotted a school of dolphins in Monterey Bay during haul back and reported the sighting via radio to the bridge officers and recorded my observations in the lab on the provided data sheet in the lab.

The duration of the entire fishing operation from net deployment, dropping the two “doors” (large metal plates weighing 900 pounds each) used to spread the net mouth open, fishing, haul in, properly wrapping the net on the winch, and finally, dispensing the harvested fish into the collection buckets, takes between 45 minutes to an hour and a half, depending on conditions.  

Our first catch consisted primarily of Northern anchovies (Engraulis mordax) and California market squid, Doryteuthis (Loligo) opalescens. Ily was excited by the presence of a few plainfin midshipman, Porichthys notatus, and showed us their beautiful pattern of large photophores located on their ventral surface.  These fish are quite hardy and survive the trawling procedure, so as soon as we saw one in the bucket, we placed it in a bowl of sea water for release after obtaining its length. Photophores are glandular organs that appear on deep sea or mesopelagic fish and are used for attracting prey or for confusing and distracting predators.  

Northern anchovies
Northern anchovies, Engraulis mordax,, are one of the most abundant species we catch.
Photophores
Photophores on ventral surface of Plainfin midshipman, Porichthys notatus.

Mesopelagic depths start around 200 meters, a depth at where 99% of the sunlight can no longer penetrate, and extend down to 1000 meters below the ocean surface.  Above the mesopelagic zone is the epipelagic zone where sunlight reaches from the ocean surface down to 200 meters and, in California, corresponds to the ocean above the continental shelf.  

In this survey, we will conduct trawls at 30 meters, which is technically the epipelagic zone, so why do we catch deep sea creatures?   Many deep sea creatures participate in a daily vertical migration where they swim up into the upper layer of the ocean at night as that area is relatively rich in phytoplanktonic organisms.  Phytoplankton are the sun-powered primary producers of the food chain, single-celled photosynthetic organisms, which also provide the majority of the oxygen we breath.

After the first night of work I feel confident that I can identify around 10 species of mesopelagic fish and forage organisms, the California Headlight Fish (more to come on these amazing myctophids from my interview with Ily), a juvenile East Pacific red octopus, Octopus rubescens, (alive), and ctenophores!  Thanks to the Tennessee Aquarium’s Sharyl Crossly and Thom Demas, I get to culture ctenophores in my classroom.

Californian Headlightfish
Two large photophores in between the eyes of a Californian Headlightfish, Diaphus theta
Small octopus
Small octopus – Octopus rubescens.
Karah holding ctenophores
Karah Nazor with a handful of ctenophores! These are Hormiphora – Undescribed Species.


Scientist Spotlight: Ornithologist Brian Hoover

Brian Hoover, Ph.D., an ornithologist who works for the Farallon Institute for Advanced Ecosystem Research (FIAER) in Petaluma, CA, observes birds and marine mammals on the day shift of this NOAA research cruise.  

Brian Hoover
Brian Hoover, Ph.D., at his office in the San Francisco Bay
Brain and Jarred watching for birds
Brian Hoover, Ph.D., and Jarred Santora, Ph.D., watching for birds and marine mammals as we went underneath the Golden Gate Bridge.

Brian is from Colorado and earned his doctorate at UC Davis in 2018.  On this cruise we will be traversing through biological hotspots that occur near islands, underwater canyons, and where there is strong upwelling of the cold and nutrient rich deeper waters of the California Current.  Small fish feed on these nutrient rich waters, and birds feed on these fish. Hotspots on this cruise included the Gulf of the Farallons (just south of the Point Reyes upwelling plume) , the Channel Islands, and Monterey Bay with its submarine canyon. Brian’s hours on the ship are from 7am to 7pm.

Brian can be found perched on the flying bridge during the day shirt with a pair of binoculars in his hand and his laptop off to his right on a table.  Every time a bird or marine mammal is spotted within 300 yards of the ship to the right of the mid centerline of the bow, Brian records the species and numbers of animals observed in his database on his laptop. The objective of Brian’s work aboard the ship is to study how what is present underwater correlates with birds observed above the water.  In other words, he aims to find correlations between the distribution and abundance of seabirds and marine mammals to the species and abundance of prey we collect during our night trawls and data collected from the ship’s acoustic krill surveys which collect data during the day. Brian explains that such information teaches us about what is going on with the bird’s prey base and how well the ecosystem is functioning as a whole. His observations allow him to observe shifts in the system over time and how this affects tertiary and apex predators.  To find trends in these datasets, he used R software, Python, and ArcGIS mapping software to run spatial statistics and linear models.

Since 2010 Brian has been on 12 to 13 cruises and this is his third on the Reuben Lasker.  Brian is excited to perhaps spot the Cooks Petrel, Pterodroma cookii, or the Short-tailed albatross, Phoebastria albatrus, which only lives in a volcano in japan.  His favorite birds are the storm petrels because these birds are small and live in open ocean, only coming onshore to breed once a year.  His dissertation focus was on the reproduction and behavior of the leeches storm petrol. He explains that seabirds have an incredible sense of smell which they utilize to find a mate and food. Brian was able to collect blood samples from burrowing birds for genotyping. He found that the major histocompatibility complex (MHC) molecules located on antigen-presenting cells may play a role in odor detection and mate selection in these birds.  He found that males chose and avoided particular genotypes combinations and that healthier birds had more diverse MHCII complexes.

Brian is a sensory ecologist and studies how seabirds interact with their environment  through observations of their behavior and physiology. When Ily asked Brian how do the seabirds know where the fish are in the open ocean, he explained that birds have a sense of smell that is as good or better than any commercial sensor that detects sulfur.  Why have some seabirds evolved to be so good at sniffing out traces of sulfur in the ocean breeze up to 10 miles away from its source? Brian explained that sulfur is an important part of the photosynthetic pathway for phytoplankton (algal cells) and that when krill eat the algae, the algae releases the chemical dimethyl sulfide (DMS).  Marine plastic debris floating on the sea surface also release DMS and provides an explanation as to why seabirds eat plastic.

Karah Nazor: One Week Until I Board and I am Already Dreaming About Fish, May 22, 2019

NOAA Teacher at Sea

Karah Nazor

Aboard NOAA Ship Reuben Lasker

May 29 – June 7, 2019


Mission: Rockfish Recruitment & Ecosystem Assessment

Geographic Area: Central California Coast

Date: May 22, 2019

Hi!  My name is Karah Nazor and I am a science teacher at McCallie High School, an all-boys college preparatory school in Chattanooga, TN, which is also my hometown. It is one week until I board the Reuben Lasker in San Francisco, and I am already dreaming about fish.  I teach marine biology, molecular biology and environmental science and “coach” students in our after-school science research program. We typically have around 20 tanks running at a time in my classroom including three species of jellyfish, a reef tank, zebrafish tanks, and a freshwater shrimp tank.  Ongoing marine research projects in my lab include primary culture of nerve nets of the jellyfish Aurelia aurita, moon jellyfish, (students Jude Raia and Danny Rifai), the effects of ocean acidification on the jellyfish Cassiopea xamachana, upside down jellyfish, (students Ian Brunetz and Shrayen Daniel) and spawning of the lobate ctenophore Mnemiopsis leidyi (Thatcher Walldorf). Seniors Keith Kim and Eric Suh just presented their findings on the effects of river acidification on freshwater snails at the International Science and Engineering Fair in Phoenix, AZ, and sophomore Kevin Ward just wrapped up his research on the effects of a high sugar diet on tumor formation in tp53 zebrafish.

A corner of the Nazor Classroom/Lab
A corner of the Nazor Classroom/Lab
Freshmen Ian Brunetz and Shrayen Daniel Shenanigans
Typical shenanigans with Freshmen Ian Brunetz and Shrayen Daniel
Freshman Danny Rifai and Junior Jude Raia Culturing Moon Jellyfish Nerve Cells
Freshman Danny Rifai and Junior Jude Raia Culturing Moon Jellyfish Nerve Cells

Education

I am a lifelong competitive swimmer who loves the sea, marine mammals, and birds, and like many of my students today, as a high schooler I dreamed of becoming a marine biologist.  I earned a bachelors of science in biology with a minor in gerontology from James Madison University, where I was also on the swim team. I was interested in learning more about the neurodegenerative diseases of aging, such as Alzheimer’s disease (AD), and attended the Ph.D. Program in Gerontology at the University of Kentucky and worked in the Telling Lab.  There I studied the molecular foundation of prion diseases, caused by protein misfolding which forms aggregates in the brain, a pathology similar to AD. I continued this research as a postdoc at the University of San Francisco (Prusiner Lab).

How did I come to raise jellyfish in my classroom?

Chattanooga is home to the world’s largest freshwater aquarium, the Tennessee Aquarium, located on the Tennessee River waterfront.  This non-profit public aquarium has two buildings, River Journey, which opened in 1992, and Ocean Journey, which opened in 2005. The Ocean Journey exhibit “Boneless Beauties and Jellies: Living Art” (2005-2019) featured exotic invertebrates including around 10 species of jellyfish, ctenophores, cuttlefish, giant Pacific octopuses, and spider crabs. On my first visit to Ocean Journey in 2005, I became transfixed with the “comb jelly” (the ctenophore Mnemiopsis leidyi) tank, specifically its rapidly beating ctene rows, which refract light creating a rainbow effect, and function as the animal’s  swimming organ. Many people mistake the light refraction of the beating ctenes for electrical signals traveling along the ctenophore’s body.  This first visit to the comb jellies tank left a lasting impression on me, and I was truly inspired by their beauty and curious to learn more about this gelatinous creature..

A  comb jelly Mnemiopsis leidyi in my classroom tank
A comb jelly Mnemiopsis leidyi in my classroom tank

Six years ago, I visited the comb jelly exhibit again and decided to try to bring jellyfish into my classroom.  I missed swimming in the frigid waters of the San Francisco Bay, so I sought to bring the cold ocean and at least one of it’s critters into my classroom. I chose to raise the Pacific Ocean variety moon jellyfish, which I so often encountered swimming in the San Francisco Bay and at Tomales Point!   A gifted student built a special jellyfish tank, called a Kriesel, and next I contacted the TN Aquarium’s invertebrate specialist Sharyl Crossley to inquire about how to raise jellyfish. I was beyond thrilled when she invited me to train under her for a summer!  That Fall, I began culturing moon and upside down jellies in my classroom and my students began research projects right away. Raising jellyfish is not easy, as they require perfect current, and water the salinity and temperature that matches their native habitat.  Jellyfish require daily live feed of two day old enriched brine shrimp nauplii and rotifers. We actually have to feed the jellyfish’s food. The next year, I was ready to introduce the more difficult to raise comb jellies into the lab and have cultured them ever since.  In 2017, I got to spend a week with Dr. William Brown at the University of Miami to learn how to spawn ctenophores, study hatchlings, and dissect out stem cell rich niches from the animals for in vitro work in the cell culture lab.   You can often find me in the lab late at night at the dissecting scope still mesmerized and awed by the simplistic nature and immense beauty and of ctenophores in their spawning bowl.

Moon Jellyfish (Pacific Ocean variety) in my classroom tank
Moon Jellyfish (Pacific Ocean variety) in my classroom tank

Back to the Bay Area for a cruise on NOAA Ship Reuben Lasker!

The years that I lived in San Francisco for my postdoc were some of the best of my life because of the science plus athletic opportunities afforded by living next to the ocean including open water swimming, surfing, and abalone diving.   I made lifelong friends partaking in these cold and rough water ocean sports. I lived in the Sunset neighborhood and I often went to Ocean Beach for the sunset and swam in the Bay several times per week at the South End Rowing Club (SERC).   In 2008 I swam the English Channel. While swimming in the Bay, we often saw NOAA ships and I never thought I would get to join a cruise one day as part of the science team! While living in San Francisco, I did have the opportunity to go on a couple of whale watching tours and swim all over the San Francisco, Richardson, and San Pablo bays for my training swims, but I have never got to spend much time on a boat and I have never spent the night at sea!  I am a bit nervous about becoming seasick and adjusting to being on the night shift next week.

Swimming with SERC friends in 2017 next to the Muni Pier at Aquatic Park in San Francisco (I am in the center with goggles on).
Swimming with SERC friends in 2017 next to the Muni Pier at Aquatic Park in San Francisco (I am in the center with goggles on).

Even though I was raised visiting the Atlantic ocean for summer vacations and am fond of the Caribbean Islands and the coral reefs, I am partial to the West Coast, where the mountains meet the sea.   I prefer the cold green rough seas, the winter swell, kelp forests, abalone at Fort Bragg, great white sharks at the Farallones, Pier 39 sea lions, harbor seals, salps, humpbacks, orcas and sea otters in Monterey Bay, Garibaldi of La Jolla Cove, sting rays of La Jolla Shores, and elephant seals of Ano Nuevo.  I enjoy kayak fishing for rockfish and yellowtail in San Diego with my brother, Kit.

Karah at Pillar Point near Half Moon Bay, CA in 2018
Karah at Pillar Point near Half Moon Bay, CA in 2018
Abalone shell on top of a cooler or some other white surface
A large beautiful abalone I harvested from about 40 feet down from Fort Bragg, CA in 2007. You can see the algae on its shell. The abalone diving season is now closed until 2021.

The rockfish recruitment survey is a longitudinal research project in its 30th year led by the NOAA chief scientist Keith Sakuma.  I have always been inspired by ichthyologists, specifically Dr. David Etnier, of the University of Tennessee, who worked with my step-dad, Hank Hill, on the snail darter case (Hill v. TVA) in the court’s first interpretation of the Endangered Species Act in 1978.   I am excited to learn from NOAA chief Scientist Keith Sakuma and the other members of the Reuben Lasker‘s science team about the rockfish and groundfish species we will be targeting in the recruitment survey. I look forward to learning how to identify up to 100 additional species of epipelagic fish, most of which I have never seen (or even heard of) before, as well as micronekton including several types of krill, tunicates, and hopefully jellyfish!  

The animals we will be surveying are known as forage species and are mostly primary and secondary consumers in the food web. These young of year rockfish and groundfish, epipelagic crabs, and small fish such as anchovies, sardines, and lanternfish are important prey for tertiary consumers including marine mammals, large fish, and seabirds. Long-term research studies allow for scientists to study the relationships between hydrographic data such as sea surface temperature, salinity, and density and the abundance and geographic distribution of forage species over decades, and in the case of this survey, three decades. An ecological rearrangement of forage species can affect not only the tertiary consumers and apex predators such as orcas and great white sharks, but will also impact the fishing industry. It is important to understand the impact of warming oceans and weakened California upwelling events have had and will have on the diversity and health of the ecosystem of the Pacific Coast.

Kimberly Godfrey: Back in Philly… June 29, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

 

Mission: Rockfish recruitment and ecosystem assessment survey

Geographic Range: California Coast

Date: June 29, 2018

 

*Update from previous blog*

I mentioned in my previous blog that one of our scientists was analyzing water samples for sea turtle eDNA. Here is what she added about her research…

“Kirsten Harper, a postdoctoral researcher with NOAA/AOML, collected water to analyze for environmental DNA (eDNA). This is DNA that might be left in the air, soil, or water from feces, mucus, or even shed skin of an organism. In her case, she is trying to detect the diurnal vertical migration of fish species, such as sardine, using eDNA. Additionally, she is using eDNA to detect the presence of leatherback turtles. Very little is known about leatherback turtles in the open ocean, as they are difficult to find and survey. eDNA could help solve this problem!”

I officially left the Reuben Lasker on the morning of June 11, 2018 via small boat transfer. While I was looking forward to getting back to family my students, I realized I wasn’t quite ready to leave the ship and the work behind. I finally felt integrated into the team and the work, and that quick it was over. I definitely wanted to stay!

The small boat transfer was fun; it was the fastest speed I traveled in over a week. We also spotted dolphins on the way into shore.  Once on land, I had the opportunity to meet with Emily Susko, Program Specialist for NOAA TAS.  I had almost a full day to spend on land, and [I believe] Emily knew I had only been to California once before for a very short visit.  She was an awesome host and decided to show me some really cool attractions that were more first-time experiences for me.

The first place we visited was the Henry Cowell State Park, a well-known location for exploring redwood forests. I am not sure I ever knew the difference between the coastal redwoods and the giant sequoia redwoods; I now understand the coastal redwoods are the smaller of the two species. Nonetheless, there were still the biggest trees I think I’ve ever seen. I also had the chance to test some of my birding skills. I do not know Pacific coast species as well, but some calls sound similar to east coast species, and I feel pretty confident in saying I heard and saw chestnut-backed chickadees, a species we do not have in Philly.

Redwood Tree cookie
Kimberly Godfrey TAS 2018 with Emily Susko visiting Henry Cowell State Park.

Coastal Redwood
Coastal redwood tree in Henry Cowell State Park

The second place we visited was Natural Bridges State Beach. This was another equally exciting experience for me because, again, it was so different. On the east coast, the land is pretty flat along the ocean. Therefore, our coast is lined with salt marshes (another one of my favorite places). Being able to see the rocky coasts in Santa Cruz was cool because it’s something I’ve only seen in pictures. When we teach beach ecology, we use this coast as an example because the ecological boundaries are so visually obvious, and I saw it for the first time in person. We explored some of the tidal pools, and they were teeming with little organisms. Now the next time I teach about them in class, I can use my own pictures!

Tide Pool
Tide pool from Natural Bridges State Beach. I cannot wait to use these pictures in class in the Spring!

Long story short, I had a blast! I am so genuinely grateful for the opportunity to participate in something like this. As someone who started out in Marine Biology, it is near and dear to my heart. I like to think I knew a few things coming in, but I learn so much during this trip. I learned about how much has changed since the last time I did this type of research, like the importance of being able to read and write programming language to analyze data. I personally enjoyed working with people whose work has the potential to impact the environment and people alike. I also learned a lot about how many people it takes to get the work done. It included every individual on the ship, no matter his or her role.

It’s been a few weeks since I returned from my cruise. I had some time off to catch up with home life, and then had to get back in the office and prepare for the summer.  Since our program is an out-of-school program, we are running programs and opportunities year-round. I have a group of Seniors who completed the program, the current 9th-11th grade students move up a grade, and we have a brand-new group of rising 9th grade students beginning the WINS journey. Everyone, from family to colleagues to students, has been asking to hear about my experience. I have a few dates in place to present what I’ve learned and how they too can get involved. I am looking forward to the next stage of the process, writing the activities based on my experience.

I especially want to thank everyone from the Science Team, all of the NOAA Corps. Officers, and the crew of the NOAA Ship Reuben Lasker. I truly enjoyed my time while aboard the ship, and appreciate that you all welcomed me and treated me with kindness. I hope this is not my only visit to the Reuben Lasker!

Kimberly Godfrey: Night time..Day time! June 10, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

 

Mission: Rockfish recruitment and ecosystem assessment survey

Geographic Range: California Coast

Date: June 10, 2018

Data from the Bridge

Latitude: 36° 39.980′ N

Longitude: 122° 33.640′ W

Wind: 30.87 Knots from the SE

Air Temperature: 12° C

Waves: 2-3 feet with 6-8 foot swells

Science Log

As you may have gathered from my previous blogs, I spent my time working with the night scientists. However, there was a lot happening during the daylight hours that I would like to highlight. There was a separate team assigned to the day shift. Some of their tasks included analyzing water samples, fishing, and surveying marine mammals and seabirds.

Catching fish during the day allowed them to see what prey were available to diurnal predators, and they could also compare their daytime catch to the evening catches. They used a different net called a MIK Net, which is a smaller net used for catching smaller and younger fish.

MIK Net
The MIK net used by the day time scientists to catch juvenile fish.

The day shift is also the best time for spotting seabirds and marine mammals. Some of the bird species spotted included brown pelican, common murre, terns, black-footed albatross, shearwaters, and at least 1 brown booby. The marine mammals we spotted included humpback whales, fin whales, blue whales, common dolphins, and sea lions.

I had an opportunity to speak with Whitney Friedman, a postdoctoral researcher with NOAA, and she explained to me some of the goals of their marine mammal survey. Many may recall that there was a time when whale populations, especially humpback whales, were in significant decline. Today, humpback whales are considered a success story because of rebounded populations. The concern now is monitoring the success of their food sources. Humpback whales feed on krill and fish like anchovies. However, it is possible that when these sources are less available or as competition increases, they may feed on something else. The question is, what is that something else? During this survey, one goal was to collect whale scat for analysis. Studies have found that some seabirds feed on juvenile salmon incidentally when their preferred local prey is limited, and they move inshore to feed on anchovy. Is it possible that whales might do the same? What else might they be foraging on? Unfortunately, we did not have much luck catching whale scat this time around, but they will try again in the future, and hopefully will find the answers they are looking for.

As previously mentioned, we also did water quality tests and took water samples using the Conductivity, Temperature, and Depth (CTD) Rosette. This instrument has multiple functions. As the initials suggest, it detects conductivity (the measure of how well a solution conducts electricity) and temperature at any given depth. Salinity (the amount of dissolved salts and other minerals) and conductivity are directly related. By knowing the salinity and temperature, one can determine the density. Density is one of the key factors that drives the ocean currents. Many species depend on the ocean currents to bring in nutrients and food. It all comes full circle.

CTD
CTD Rosette used to capture conductivity, temperature, and depth. We also used this to take water samples at specified depths.

CTD
The CTD is lowered into the water by a winch with the assistance of the deck crew.

When we lowered the CTD we could also take water samples at any given depth. This allowed scientist to test for various parameters. For example, we filtered various water samples to determine the amount of chlorophyll at certain depths. This can help scientists estimate the growth rates of algae, which in the open ocean are called phytoplankton. One of the scientists collected water to analyze for environmental DNA (eDNA). This is DNA that might be left in the air, soil, or water from feces, mucus, or even shed skin of an organism. In her case, she was trying to find a way to analyze the water samples for sea turtle DNA.

I’ve heard of eDNA, but I have never actually understood how they collected and analyzed samples for this information. My understanding is that it can be used to detect at least the presence of an extant species. However, when collecting these samples, it is likely to find more than one species. Scientists can use previously determined DNA libraries to compare to the DNA found in their samples.

Personal Log

We started trawling again on the evening of June 7th. By then we settled ourselves into the protection of the Monterey Bay due to the weather getting bad. While we still had some off-shore stations, we tried our best to stay close to the bay because of the wind and swells. We had some interesting and challenging trawls in this area: lots of jellyfish. Some of the trawls were so full we had to actually drop the catch and abort the trawl. If not, we risked tearing the net. We tried to mitigate the overwhelming presence of jellies by reducing our trawls to 5 minutes instead of 15 minutes, and we still had similar results. One night, we had to cancel the final trawl to sew up the net. I’ve been told that sewing a fish net is an art form. Our deck hands and lead fisherman knew exactly what to do.

Let me tell you my experience with jellyfish during the survey. As you may recall, someone must be on watch for marine mammals on the bridge. This is the ship’s control room that sits on the 5th level above water.

Reuben Lasker
The Bridge of the Reuben Lasker is where we do inside Marine Mammal Watch. This is where the main controls of the ship are located.

From here you can see the surface of the water quite well, which makes it a great spot for the marine mammal watch. It was also great for watching hundreds of moon jellies and sea nettles float right by. It was one of the coolest things to watch. It was somewhat peaceful, especially hanging your head out of the window, the cool air blowing against your face, and the occasional mist of sea spray as the ship’s hull crashes against some of the larger swells. However, that same peaceful state disappears the moment you realize, “I’m gonna have to lift, count, and sort all those jellies!” I wasn’t too concerned about being stung; we had gloves for the sea nettles and the moon jellies were no real threat. However, the sea nettles (Chrysaora fuscenscens) smelled AWFUL, and the moon jellies (Aurelia spp.) are quite large and heavy. I’m honestly not sure how much they weighed; we did measure up to 20 per haul, some of them measuring over 400 mm. Even if they weighed about 5 pounds, lifting 50-60 of them consecutively until the count is complete is enough to get the muscles burning and the heart rate elevated. It was a workout to say the least. I was literally elbows deep in jellyfish. I also wore my hair in a ponytail most of the time. Anyone that knows me knows well enough that my hair is long, and definitely spent some time dipping into the gelatinous goop. I smelled so bad! HAHAHAHA! Nonetheless, it was still one of the most intriguing experiences I’ve had. Even though the jelly hauls proved to be hard work, I enjoyed it.

In those last few days, I felt like I became integrated into the team of scientists, and I felt comfortable with living out at sea. I had a few moments of nausea, but never really got sea sick. I still couldn’t walk straight when the ship rocked, but even the experts wobbled when the ship hit the big swells. Then, that was it for me. By the time I got the hang of it all, it was time to leave. I wish there were more hours in the day, so I could have experienced more of the day time activities, but I still got to see more than I thought I would, and for that I am grateful.

Did you know…

NOAA offers many career options. As a scientist, here are some things one might study:

  • track and forecast severe storms like hurricanes and tornadoes; monitor global weather and climatic patterns
  • Research coastal ecosystems to determine their health, to monitor fish populations, and to create policies that promote sustainable fisheries
  • Charting coastal regions and gathering navigational data to protect the ship from entering unsafe waters

NOAA Corps allows one to serve as a uniformed officer, commanding a ship or piloting aircraft. On NOAA Ships, they need engineers, technicians, IT specialists, deck hands, fishermen, and even cooks (The Reuben Lasker had two of the best, Kathy (Chief Steward) and Susan (second cook)). There are many opportunities available through NOAA, and there is a longer list of amazing experiences one can have working for this organization. If you want to explore in more detail, visit http://www.careers.noaa.gov/index.html

 

Kimberly Godfrey: Creature Feature, June 8, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

 

Mission: Rockfish recruitment and assessment survey

Geographic Range: California Coast

Date: June 8, 2018

 

Data from the Bridge

Latitude: 36° 43.508′ N

Longitude: 121° 52.950′ W

Wind: 30.87 knots from the SE

Air Temperature: 12.7°

Waves: 2-3 feet with 6-8 foot swells

 

Science and Technology Log

We moved up north to continue with our trawls. The first night we trawled just north of Monterey Bay. It was a good thing we did because outside the bay, the wind and swells are rough. We saw lots of jellyfish and lots of krill in our catches. However, I would like to talk a little about a very specific group of fish, rockfish. If you read the mission above, you will recall that rockfish are the primary focus of this survey. Therefore, I think they need a moment in the spotlight to themselves.

While this number may vary, NOAA has over 60 species of rockfish listed on the West Coast. They are an intriguing group of fish for many reasons. First, it is important to note that they are extremely significant to their food web because they are a prey species, but they are also important as a food and income source for humans. Species like the bocaccio rockfish and the yelloweye rockfish are species of concern due to over fishing, and populations are slow to recover. That is enough reason to learn as much possible about these fish.

Yelloweye Rockfish
Yelloweye Rockfish

Bocaccio
Bocaccio

What we know about rockfish species is they can live for a long time. Many can live over 50 years, some can even live over 100 years of age!  Their growth rate is relatively slow, and very few make it to adulthood because they are prey for other fish. During the first year (sometimes more depending on the species), they spend much of their time in the pelagic realm (open water). If they live long enough, they can grow to a size that allows them to settle in the benthic zone (ocean floor). For many species, 60 mm is a large enough size to settle. This is what the term “recruitment” refers to. Once rockfish settle out of the pelagic zone, they have a higher chance of reaching reproductive maturity.

YOY Rockfish
Various species of YOY (Young Of the Year) rockfish caught in one of our trawls. Photo Credit Keith Sakuma

NOAA Fisheries has been surveying the West Coast for rockfish since 1983. They first started in a smaller region from Monterey Bay to Point Reyes, CA. The survey area expanded in 2004 and by 2013 it covered the entire coast of California. The success of the local ecosystem and the commercial fisheries depend on healthy fish populations. The survey tries to collect at least 100 specimens per species of rockfish and take them back to the lab (on land).  Back at the lab the species identifications are determined as many rockfish are difficult to identify to species at this life history stage without using a microscope.  In addition, their size is recorded and tissue samples taken for genetic studies. Then, on select species, otoliths are removed to age the specimens. The otolith is an ear bone. In fish, the ear bone deposits layers of bone in rings. It happens daily and these daily rings can be counted using a microscope to learn how old the fish is. These ages are used by scientists not only to learned how old the fish are, but they can compare this information to the size data collected and estimate the expected size of a fish at any given age.

I had a chance to talk to everyone from the night shift science team about what they do and how they came to work for NOAA:

Keith Sakuma has been working with the survey since 1989. He is the chief scientist and team leader of the night crew. He works hard to make sure we are all focused and efficient because it is a fast-paced work environment. In between hauls, he enjoys the company of his team and a few Dragon Ball episodes. He was born and raised in Hawaii, and went to University of Hawaii for his Bachelor’s degree in Zoology.  In his younger years, Keith worked for the Division of Aquatic Resources, where he spent his days walking up and down the beach to count fisherman and interview them about their catches for the day. He also did snorkel surveys doing fish counts in fisheries management areas.  In addition, he worked on a team that implemented fish aggregating devices, buoys that attract fish for the local fisherman.

While at the University of Hawaii, he was part of the Marine Option program where they teach you various marine skills and connect you with marine research activities. Through this program he completed his scientific diving training, and then participated in two diving surveys. Both surveys documented the impacts of tourism on the reef systems on the island of Lanai Island and Molokini, which is a tiny islet off Maui. On Molokini, tourist traveling to the islet by boat, dropping anchor in the reef, caused a significant amount of damage to the reef. Mitigation included the addition of moorings so boats could tie up and not have to drop anchor, destroying more of the reef.

For his Master’s, he attended San Francisco State University.  His major advisor just returned from a 2-year sabbatical, working with the National Marine Fisheries Service (NMFS) [also known as NOAA Fisheries] on the mid water trawl survey, and suggested that Keith do his Master’s Thesis on the data he collected on the survey. While finishing his Master’s degree, he was offered a full-time position working with NMFS, and has been here ever since. That means he has 29 years put into this work.

Growing up in Hawaii near the ocean definitely influenced his decision to pursue Marine Science. He used to say to others how much he loved the ocean and that the ocean loved him back. He couldn’t wait to spend time at the beach in the water. And while today this remains true, he has mentioned that that cold waters of Pacific Coast are not as affectionate as the warm waters of Hawaii.  The water around the islands is so clear, allowing one to see at a distance the beauty that lies beneath. Here, you must pick the right day at the right time to find tolerable temperatures and some visibility. The murkiness makes it hard to see anything, but that murkiness is what contributes to the productivity of the region.

Even after 29 years, Keith still very much enjoys being at sea. He doesn’t get sea sick, so he can spend time working in the field with real specimens and real-time data rather than just analyzing data collected by other people. He enjoys seeing new people come on and get excited about the work. For anyone interested in pursuing Marine Biology and any research science, it is important to have a strong background in math and statistics, especially in today’s world. He also mentioned how important it is to have computer skills and programming skills. The software used to process and analyze data requires one to read and write programming language. Having these skills make one a stronger candidate when applying for research positions. It also gives one more validity when having to speak about and defend the analysis of the research.

That’s Keith, the Chief Scientist, in a nutshell. I also got to learn more about the rest of the team. Thomas Adams has been working with this survey for 5 years now. He started as a volunteer with NMFS, analyzing marine chlorophyll samples. He always had an interest in Marine Biology, and already had a connection to someone working in a NOAA lab. He was invited to work on the rockfish survey because he was known for being a knowledgeable and efficient worker. He too is very enthusiastic and really enjoys being at sea with Keith and the rest of the team. He is the main provider of Dragon Ball, and the Simpsons, which the team enjoys in between trawls. He recently completed his Bachelor’s degree and plans to go for his Master’s in Marine Biology in the near future.

Melissa Monk is a Research Mathematical Statistician, and is responsible for fisheries stock assessments for West Coast near shore ground fish. She also participates in research related to improving fisheries. Her schedule is on a bi-annual cycle. One year is devoted to stock assessment, and the next year is devoted to research.  During stock assessment years, there is a mad dash that happens around September to learn anything and everything about your assigned species. At the end of the assessment season, there is a week-long panel review of all the data gathered during the assessment. Once the assessment is approved, the information is used for species management and harvest regulations. She received her undergrad in Wildlife Sciences with a minor in Statistics. Her Master’s was in fisheries. She spent half her year monitoring the sea turtle populations in North Carolina, and the other half of the year in classes. She did a lot of quantitative work, research, and recruitment training for her Master’s. She also had a connection to NOAA because her PhD advisor at LSU used to work for NOAA. She learned that NOAA trained people to become stock assessors, and pursued fisheries as a career. Her favorite part about working for NOAA is that her work directly impacts fisheries success.

Rebecca Miller is a GIS Specialist, works on a variety of projects at the Santa Cruz NOAA lab. One project is the spatial mapping of rockfish and other marine species. She maps California fisheries catches in both time and space, and is able to analyze this data as far back as the 1930’s. Her Master’s degree is from Oregon State University in Fisheries Sciences with a minor in Geography. She knew since 6th grade that she wanted to be a Fisheries Biologist. She participated in internships and part-time summer jobs in freshwater salmon fisheries, marine intertidal work, and geodatabase management. She loves the people she works with, and the fact the work is so diverse. There is a lot of field work, lots of data analyses, and different projects to work on. She too enjoys knowing that her work helps to sustain fisheries to be both utilized and conserved.

Stephanie Oakes is from NOAA Fisheries Office of Science and Technology (OST). She got her Ph D. in Marine Sciences, and worked on Antarctic krill in an ecosystem context.  The rockfish survey is similar in the sense the it also surveys species in an ecosystem context.  Being able to participate in surveys like this is important to her because she gets to experience first had what happens during the surveys and how the team operates.  Her personal gratification is that she gets her hands in the catch, in the field like she did for her Ph.D.  NOAA Fisheries OST is there to advocate and ensure sound scientific basis for NOAA Fisheries science programs and resource conservation and management decisions.

Did you know…

Here are some of the species we found during our trawls:

  • Adult and young of year (YOY) anchovy
  • Adult and YOY sardine
  • Jack Mackerel
  • Northern Lamp fish
  • Mexican lamp fish
  • California Lamp fish
  • Blue lantern fish
  • Northern smoothtongue
  • Black smelt
  • Pacific Hake
  • Pacific Sanddab
  • Speckled Sanddab
  • CO Turbot
  • Black-bellied dragon fish
  • High fin dragon fish
  • Barracuddina
  • King-of-the-salmon
  • Market squid
  • Gonatus squid
  • Boreal squid
  • Octopus
  • Electric Ray
  • Wolf Eel
  • Pacific Sea Nettle
  • Purple striped jelly
  • Moon Jelly
  • Krill
  • Pelagic Red Crabs

Pacific Sanddab
Young of Year (YOY) Pacific Sanddab

King of the salmon
King-of-the-Salmon

Krill
Krill. There is mostly one species of krill here, but we’ve seen multiple species in our catches.

Barracudina
Barracudina

Adult Anchovy
Adult Anchovy

Myctophids
Blue lantern fish

Pelagic Red Crab
Pelagic Red Crab

Chryasora colorata
Purple Striped Jelly

Boreal Squid
Boreal squid

Octopus
Octopus

Wolf eel
Juvenile wolf eel Photo Credit Wyatt Sebourn

Kimberly Godfrey: Trawl Away! June 6, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

June 6, 2018

 

Mission: Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean along the California Coast

Date: June 6, 2018

Data from the Bridge

Latitude: 36° 59.462 N

Longitude: 122° 31.056 W

Wind Speed: 12.77 knots

Wind Direction: Northwest winds

Wave height: 2 to 3 feet with 4-6 foot swells

Air temperature: 12.76° C

Science and Technology Log

Our first official night on the Job was Sunday, June 4th. My shift is technically 6:00 pm to 6:00 am, but we could not begin trawling until the evening when skies were dark. If fish can see the net, they can avoid it. The method we use to catch fish is a midwater trawl, also known as a pelagic trawl, because the net fishes in the water column. It’s called a modified Cobb midwater trawl net. It has a cod end, the narrow end of a tapered trawl net where the catch is collected during the trawl.

Trawl Net
Diagram of a Trawl net used on NOAA Ships

Before we lower the net, the water around the ship must be clear of marine mammals. Thirty minutes prior to each trawl, someone stands the marine mammal watch on the bridge. Once the net is deployed, someone must be watching for marine mammals outside the entire time. If any marine mammals are spotted (this includes dolphins, porpoises, seals, and sea lions), we report it to the officer on the bridge. The rule is that if we spot a marine mammal, the net must be hauled back in and we sail a mile away from the sighting. Marine mammals are protected and we do not want any caught in the net.

When the net is in the water, we trawl for 15 minutes at 30 m deep. Optimal speed is about 2 knots, but that is weather dependent. During this time, our deck crew, and Survey Technician monitor each step of the haul, reporting back to the officer on the bridge. As they haul the net in, the deck hands and Survey Technician work together to make sure the catch goes into the bins for sorting.

Winch
The winch used to deploy and haul in the trawl net on the Reuben Lasker

Trawl net with Cod end
Survey Technician Jaclyn Mazzella, Deck Hands Ethan Skelton and Raymond Castillo, and NOAA Fisheries Intern Thomas Adams dropping the cod end of the net into a bin to collect our catch.

Pyrosomes and salps
First catch of the first trawl. Some fish and squid are present, but this catch was dominated by salps and pyrosomes.

I didn’t know what to expect from our first catch. Maybe we would have some fish, crabs, squid…However the first catch brought something I never saw before. Lots of Thetys!

Thetys
Thetys

Thetys are a type of salp. Salps are planktonic, colonial tunicates from the phylum Chordata. We also had pyrosomes, another type of colonial tunicate. They are efficient feeders, filtering particles of plankton from the water. It is expected that in areas where salps are prevalent, one can expect to find less of other species from the same trophic level.  For this catch, that happened to be the case.

Pyrosomes
Pyrosomes, another type of planktonic, colonial tunicate.

As of today, I officially completed 3 shifts on the job, which included 12 trawls in total. It seems that each catch was dominated by 1 or 2 species. There were other species present, but we had to sort through the catch to find them.

We had a catch that was loaded with anchovies, another with krill, and one full of pelagic red crabs. I find this to be one of the most interesting parts of the work, anticipating what we will find. There are many variables that can impact the productivity of an ecosystem, and therefore can determine what we find. Things like salinity, sea surface temperatures, upwelling, proximity to land or open ocean, and human impact, can all influence an ecosystem.

Anchovies
This is me with Fisheries Intern Thomas Adams, stunned by the amount of anchovies we had in this catch. Photo by Keith Sakuma

Krill
This catch consisted predominantly of krill species. Some catches will have 3 to 4 different species of krill

So, what do we do with our catches once we have them? We count them, and there is a method to the count. Depending on the size of the catch, we may measure out 1,000 ml, 2,000 ml, or 5,000 ml. We start with that first bucket and count every individual (species like krill or salps are measured by volume). The numbers are reported to Keith Sakuma, our chief scientist, and recorded in a handwritten data sheet, then transferred to an excel document. After the first bucket, we may focus on sorting for all other species except the predominant species. For example, for our large anchovy catch, we sorted through approximately 60 liters of fish. We didn’t count every single anchovy, but based on our primary count, we can use the total volume to estimate. However, we sort through looking for all other species and record the findings.

Sorting and Counting
Here we are counting the first 5,000 ml bucket of anchovies. Here you can see we separated out the other species and count them as well.

Leg 2 Team Rockfish Recruitment and Assessment Survey
Here is the team starting clockwise from the left: Melissa Monk, Stephanie Oakes, Thomas Adams, Becky Miller, and Kimberly Godfrey. Photo taken by Keith Sakuma

We will record each species we find, and then we have a list of specified species that need to be measured.  We take the first twenty specimens of each so we have a record of the average size fish caught in that specific location and time. We focus on measuring the species of fish that have the most ecological and economic importance. These are the prey and those that are consumed by us. Therefore, they are also likely to suffer from human impact. Learning about these species are important to the understanding of what makes them successful, and how to mitigate the things that negatively impact their productivity.

Measuring specimens
This is me, measuring species of focus for this survey. Afterward, we bag and freeze those needed for further analysis back on land, and the rest get washed back to sea.

Caliper
Electronic caliper used to measure the specimens. It has a USB cable that connects to the computer and immediately records data into a spreadsheet.

Data Sheet
This data sheet is a record of all the measured species from our catches.

So far this is our routine. Tonight, we had a break from trawling as we transit up to Davenport, just North of Santa Cruz.  The current conditions are not favorable for trawling, so we will get back to work tomorrow evening. While we take it easy, our NOAA officers navigate the ship up the coast. I had the opportunity to speak to our Executive Officer (XO), Lieutenant Commander Emily Rose.

How did you come to work for NOAA?

I went to the University of Hawaii and got my degree in Meteorology. From there, my friend referred me to someone who currently worked in the NOAA Corps. The things she told me about the job piqued my interests, so I applied. I was selected in 2008. There was a 5-month training period, and then I was stationed in Hawaii on the Ka’imimoana, a ship that has since been decommissioned. I was sent to Santa Rosa, CA to work for National Marine Fisheries Service (NMFS) during my first land assignment, then I became the Operations Officer aboard the Okeanos Explorer. Before I joined the Reuben Lasker, I was stationed at the National Centers for Environmental Information (NCEI) in Boulder, CO for 2 years.

Since you have a degree in Meteorology, do you get to use what you’ve learned for your current position?

Every time I’ve been on a ship, I’ve been the defacto weather officer. On the Reuben Lasker, I haven’t had to do too much with weather so far, but on other assignments I’ve done weather presentations and helped others like the CO (commanding officer) interpret weather patterns, and just to provide information to those who are interested in learning. It’s is not a career in Meteorology, but having a degree in a science that relates to what NOAA is beneficial. You use critical thinking skills throughout the job. If there is a challenge, you can come up with a solution. You also have math and physics, and a basic understanding of how things work. All these things help make operations successful.

What is the most important part of your job now?

The most important part of my job is to manage the ship’s crew. I make sure they are put first. I manage their time and attendance, their pay, their leave time, any personnel issues, etc. Anything they need, I am there for them. They are the reason we (the ship) are successful.

What is your favorite part of your job?

All of it! The variety. My job changes from day to day; there are new challenges each day. The variety makes it interesting.

What tool is the most important for you to do your job?

For me I would not be able to do a good job if I did not have a positive attitude. Sometimes we are faced with challenges that are not easy to fix without support and understanding. Having a positive attitude helps me get through it and helps others around me.

I also think it is important to be open-minded and be willing to try new things. There is a lot that we deal with that some have never dealt with before. Having an inquisitive mind and ability to be ready for anything are important.

When you applied for NOAA, did you know this is what you wanted to do?

Yes. Once I applied, I thought it would be pretty cool. I was also thinking about being a math teacher, or to pursue weather in the air force. I’m glad I didn’t because I get to do a whole lot more here than I would if I were in an air force weather center. Once the application process got rolling, and then I got an interview, I thought “Yeah, this is what I want to do.”

Was there something you found surprising about your job when you started?

There were a lot of surprises! You always have an idea of what you expect, but once we all got together for training, we learned something new every day. Some of us had never been on a ship before, some have never driven a small boat, some have never done any charting. And I still feel like I learn something new each day. Everybody that I’m around has a different background and experience, so it’s fun to learn from them.

If you weren’t working for NOAA, what would you be doing now?

I don’t think I would be doing something else. I don’t feel like I’ve missed out on something. In fact, I tell people all the time about what they are missing! I’ve got to do more in this job than I ever thought I would. I’ve been all over the world, included places like Western Samoa, The French Marquesas, and the Marshall Islands.

If you were give advice to a young person considering a NOAA career, what would you recommend?

Anyone who is interested in going into NOAA as a scientist, crew member, or Corps Officer, one important piece would be to study hard and work hard, but keep in mind, grades are not the end-all be-all. Try hard and learn the material, and learn how to problem solve. Don’t be afraid of a challenge, and be ready to give 110% because that will help get you to the next level. For NOAA Corps specifically, having some experience working on a ship and understanding of nautical operations is beneficial. And don’t be afraid to reach out to someone from the NOAA Corps because they are willing to offer guidance.

What are your hobbies?

Sports! I play any sport that you ask me to, but I play on teams for soccer, softball, ice hockey, tennis, and a basketball league not too long ago. When I’m on land, I join as many teams as I can. I love riding my bike. On my last land assignment I went two years riding my bike to work and didn’t drive at all. My husband even bought me snow tires. You name it I’m game!

Did You Know…

  • Before you can set out, you must have multiple permits. Depending on where trawling occurs, one may need a permit for state waters and federal waters. Those conducting research may receive permits to trawl in both state and federal protected areas.
  • We keep some of the specimens for further analysis in the lab (back on land). There are various reasons scientists want to study further, including learning about their genetics, development, and reproduction. One group includes all the juvenile rockfish we find. Please stay tuned for the next blog to learn more about this part of the research.

Kimberly Godfrey: Above all else, Safety First! June 5, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

Mission: Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean along the California Coast

Date: June 5, 2018

Data from the Bridge

Latitude: 33º 42.135 N

Longitude: 119º 15.440 W

Sea Wave Height: 1-2 feet

Wind Direction: 125.98º (Southeasterly Winds)

Air Temperature: 17.35º C

Sky: Cloudy

Science and Technology Log

I arrived on NOAA Ship Reuben Lasker on Wednesday, May 31st. However, we just left the Port of San Francisco last night (June 2nd) because the ship had to make sure everything was running properly and pass multiple inspections. Safety is a serious thing out here, and I appreciate that very much. Once we had the green light, we sailed out of San Francisco Bay underneath the Golden Gate Bridge. The winds were about 25 knots (almost 29 mph) with 10 foot swells. Conditions like this are not ideal for data collection, so we sailed about 220 nautical miles to the South where conditions were more promising.  I spent my first night on the job acclimating to the evening schedule. In that time, I learned about some of the equipment and programs we use to collect and analyze our catches and samples.

The first thing that I noticed was a GPS system used to track the ship’s location and the locations for each trawl. The boat icon shows the location of the ship, and the dots indicate locations where we plan to survey. Those with a triangle inside are the trawling locations, while the others indicate spots where we need to perform CTD tests. This systems marks locations using latitude and longitude, and can provide an estimated time of arrival.

GPS
GPS Program used to plot survey points and map the location of the ship in real time.

The second program I learned about was NOAA’S Scientific Computer System (SCS). This system allows the ship to record a variety of environmental and positional data immediately into the computer. While some data is still recorded by hand, this system reduces human recording errors, in turn allowing for analyses that accurately represent the data collected.  I also had the opportunity to interview our Survey Technician, Jaclyn Mazzella. Jackie is one of the NOAA Crew members on board, but she is also one of the most important people that serves as a liaison for both the scientists and the crew.  Read the interview below:

What are the responsibilities of the Survey Technician?

The Survey Technician is responsible for data management. All the data collected on the ship is recorded in the Scientific Computer System Database. This includes data from the thermometers, anemometer (wind speed), TSG (thermosalinograph), fluorometer, etc. The data is organized and then delivered as a data package to the scientists. There are two major types of files, continuous files and snapshot files. A continuous file may include data that is taken every 30 seconds, like latitude and longitude, speed over ground, course over ground, etc. A snapshot file provides information about a very specific event. For example, their system records every single step in the trawling process, including the moment the net hits the water, “shooting the doors” that hold the net open, begin fishing, and then every step in the return of that process. While this is happening, all the environmental parameters are simultaneously and continuously being recorded. Jackie maintains these files until the end of a survey and then gives the data to the chief scientist in a document known as the MOA, or the Marine Operations Abstract. The information is also sent to the National Center for Environmental Information, the world’s largest active archive of environmental data. These archives are available to the public.

Continuous Files
This is the continuous system that records conditions in the water, such as conductivity, temperature, and more. This is done every 30 seconds.

Snap Shot
This component tracks each individual step of any activity we do on the ship during a survey.

Why did you apply to work for NOAA?

At first, I didn’t know what NOAA was. I originally wanted to study things like Marine Biology, Astronomy, and Physics. I was attending the Borough of Manhattan Community College as a liberal arts major. I planned to transfer to another school for Physics and Astronomy, but my counselor suggested another option, knowing my interest in Marine Science. I then went to SUNY Maritime in the Bronx to study Marine Environmental Science (State University of New York), a school I never knew existed considering I lived right down from the street from it. Upon graduation, I received an email from a former classmate also working for NOAA, stating that NOAA was seeking Maritime Majors for this position. She gave me a contact, I sent my resume, and I got the job.

What is the most important tool you need to do your job?

The SCS is the most important thing I need, and am fortunate that NOAA Ship Reuben Lasker has up-to-date, top-of-the-line equipment. We are one of the most technologically advanced ships in the world.  We also have back-ups for almost everything on board which is nice to have while at Sea.

What advice would you give to someone interested in pursuing this position as a career?

Being a Survey Technician requires you to have a degree in science. Be certain that if you apply for a position, be sure to know what you are applying for.  Much of my training was on the job training, and I was fortunate to work with Phil White, Chief Survey Technician with years of experience. I learned a lot from him. Phil also developed course for those wanting and needing to learn the ins and outs of a Survey Technician.

If you didn’t work for NOAA, what career would you choose?

Working in Astronomy or Physics because I had a strong interest in both. However, I would say that joining NOAA was one of the best decisions I ever made. I came from a rough background growing up, and now I get to experience things I never would have imagined. NOAA provides an acceptable salary, nice benefits, leave time, vacation time, and paid overtime. When I take leave, I travel to other countries. This is something I always wanted to do.

What are your hobbies?

I love trying new foods when we go in port. I love drawing, painting, and playing video games. And I love to travel. I’ve already been to Egypt, Qatar, Europe. In the next year for two occasions, I plant to travel to Italy, then [for my honeymoon] to Vietnam, Cambodia, Thailand, and the Maldives.

Analyzing data can be a daunting task. “R,” a coding language used for statistical computing and graphics, allows scientists to analyze their data in a variety of ways. The program can be used to perform statistical computations of large amounts of data to show underlying patterns and trends. It can also be used to create plots of specific sects of data if one wanted to highlight a location or time. Many scientists like this program because it is very user friendly, and if one needs help with a program (code), there is a free and open community of users available to provide advice and feedback.

Personal Log

When I arrived at the NOAA Ship Reuben Lasker, we expected to sail on May 31st. However, we were delayed in port for 2 extra days, officially leaving port on June 2nd. During the waiting period, I explored the piers along the Embarcadero. I had the chance to visit the Exploratorium, the Bay Aquarium, and the famous Pier 39. Pier 39 is where the Sea lions aggregate every day and, apparently, have been doing so for 28 years.

Sea lions
The Pier 39 Sea Lions

Coit Tower
Coit Tower

I hiked up the stairs to Coit Tower, a historic landmark built in 1933 (Lillian Hitchcock Coit, a rich socialite, bequeathed over $100,000 back in 1929 to restore and beautify sections of San Francisco). Hey WINS girls, remember how we climb the steps coming out of Tumbling Waters, and how you felt like you were going to die before you reached the top…I almost died twice climbing those stairs! By the second time it was easier.

When on the ship, I would read or sit out on deck and watch the pelicans, gulls, cormorants, terns, and common murres. I also got to do a little bird watching heading to Coit Tower, where I saw lots of Anna’s humming birds, chestnut-backed chickadees, and song sparrows. It was interesting because I don’t recognize the calls of west coast birds. Even the song sparrow, which are also common Philadelphia, have a variation in their song, like an accent or a dialect.

As of June 2nd, we have been out to sea. I’ve been assigned to night shift, which means I will be working a lot on sorting the overnight hauls (Stay tuned for the next blog). However, the weather leaving the bay on the first night was rough, so we sailed south to find calmer waters. I didn’t mind so much because as soon as we passed the Golden Gate Bridge, I got to see something I wanted to see my whole life, humpback whales! It was worth the wait.

 

 

Kimberly Godfrey: Preparing for the Adventure! May 25, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

Mission: Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean along the California Coast

Date: May 25, 2018

Introductory Personal Log

One time, I had the chance to visit California for a conference, and I got to dip my feet into the Pacific Ocean. It was so cold! In less than a week I will be surrounded by Pacific waters as I set sail on NOAA Ship Reuben Lasker for 12 days. The anticipation has been building since I learned of my assignment, and now the time has finally come.

My name is Kimberly Godfrey, and I am the Coordinator of the Women In Natural Sciences (WINS) Program at the Academy of Natural Sciences of Drexel University (yes, that it a mouthful). The Academy (1812) is the oldest natural history research institution in the Western Hemisphere, and WINS just celebrated 35 years. WINS is a science enrichment, after-school program for high school girls in public and charter schools in Philadelphia. Our goal is to provide opportunities for exposure to the natural sciences in ways the students cannot find in the classroom. Our long-term goal is that they take what they learn and turn it into a career.  Most of our participants have had little to no real-world, hands-on science in the classroom, and they share many first-time experiences with the WINS staff and other participants.

WINS Participants peforming stream studies
WINS participants collecting macroinvertebrates to determine the health of a stream in Avondale, PA

WINS 2018 Seniors
2018 WINS Senior Farewell. Of our 15 graduates, 12 are pursuing STEM majors and careers!

That’s my favorite part of being a WINS girl. I can share my experiences and my knowledge with them. I have a degree in Marine Biology, and had the opportunity to participate in marine mammal research for 2 years. I taught about environmental science and wildlife conservation for 10 years prior to working at the Academy.  And, something that is important to me, I am a Philadelphia native who, like these young ladies,  knew little about my urban ecosystem while growing up in the city (the only eagles I ever saw growing up were the Philadelphia Eagles, you know, the 2018 Superbowl LII Champions! You may have heard it a time or two). It wasn’t until I returned from college that I began to explore the world right under my nose. Now I help them explore the wildlife in their backyard, and then push them to branch out of the city, the state, and even across the globe.

Over the past few weeks, I found it difficult to refrain from talking about my upcoming trip. I shared the information I’ve learned so far with some of my girls, and each time I share something new, they become equally excited to follow my adventure at sea. I met with one of the Academy’s fisheries scientists, Paul Overbeck, to learn how to remove an otolith.  Some of my preparation stories have led to a lot of joking and humor. For example, trying on every pair of waders, boots, and waterproof gear that we have, all of which are too big for my size 5 shoe and my 5’0” height; how my freshly caught blue fish dinner turned into a dissection in my kitchen as I practiced removing the otoliths; or how I randomly had the opportunity to meet Sian Proctor, 2017 TAS participant and face of the 2018 TAS application (she happens to be friends with one of my co-workers)! All of this leads to one very anxious and excited woman ready to set sail.

Blue fish otolith
Practicing how to remove an otolith on what was supposed to be my dinner.

Blue fish
Beginning the process of removing a blue fish otolith.

TAS Participants K. Godfrey S. Proctor
Small world indeed! I had the chance to randomly meet Sian Proctor, 2017 TAS Participant.

Quite a few of our girls wish to explore Marine Science as a career, so my plan is to absorb everything I can and bring it back to them. I want them to know the importance of this research, and that this career is truly an option for any one of them. One day, I would love to see a WINS girl aboard a NOAA research vessel, dedicating their careers to the understanding and stewardship of the environment. That’s what NOAA’s mission is all about!

Did you know?

Scientists working with NOAA and the Southwest Fisheries Science Center have been conducting surveys along the California Coast since 1983. Along with rockfish (Sebastes spp.), they’ve been collecting abundance data and size information on other species including Pacific Whiting (Merluccius productus), juvenile lingcod (Ophiodon elongatus), northern anchovy (Engraulis mordax),  Pacific sardine (Sardinops sagax) market squid (Loligo opalescens), and krill (Euphausiacea). The information gathered from these studies is used to examine recruitment strength of these species because of their economic and ecological importance.

Visit NOAA”s website to learn more here https://swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=19340

 

 

Kip Chambers: Parting Shots II of II… August 7, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17 – 30, 2017

 

Mission:  West Coast Pelagics Survey   

Geographic Area of Cruise:  Pacific Ocean; U.S. West Coast

Date: August 7, 2017

 

 

L to R Austin Phill Nina Kip
Left to Right: Austin, Phill, Nina, Kip

 

Weather Data from the Bridge:  (Pratt, Kansas)

Date: 08/07/2017                                    Wind Speed: E at 9 mph

Time: 19:25                                               Latitude: 37.7o N

Temperature: 22o C                                  Longitude: 98.75o W  

 

Science and Technology Log:

A week has passed since I left the Reuben Lasker, but I have continued to monitor the haul reports from the ship.  The last haul report indicates that haul #79 of the West Coast Pelagics Survey was conducted off of the coast of California just south of San Francisco Bay.  The survey is fast approaching the concluding date of August 11th when the Reuben Lasker is scheduled to be in port in San Diego.  Based on their current location, there are probably only a couple of days/nights of sampling left for the survey before the ship has to steam for its home port of San Diego.

As I looked through the spreadsheet with the summary of the data that is being collected for the survey, I can’t help but be impressed by the volume of data and the efficiency in which it is being recorded.  Although I was only on the ship for a short period of time, I know how much work is involved in preparing for the evening trawls and how much time it takes to process the catch and record the data.  I have a tremendous amount of respect for the talented, dedicated, hard-working science team members aboard the Reuben Lasker.  Below is a series of interviews with many of the science team members that I had the pleasure to work with while I was on the ship.

 Each team member was asked the following 3 questions:

Q1:  Can you tell me a little bit about your background, including education and work history?

Q2:  What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?

Q3:  What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?

Science Team Member: Phill Dionne

 

 

Q1:  Phill’s post-secondary academic career started at Stoney Brook College in New York where as an undergraduate he studied Geology.  Phill’s undergraduate program also included time in Hawaii where he took several courses towards his minor in Marine Science. After his bachelor’s degree, Phill spent a year in the Florida Keys, initially as an intern, then as a marine science instructor at a science camp.  As Phill continued to pursue his educational goals he began to focus on marine science as a career pathway.  Ultimately, Phill completed a graduate degree program at the University of Maine where he studied the migrations and abundance of ESA listed sturgeon and earned masters degrees in marine biology and marine policy.

Phill moved to the state of Washington in 2011 where he currently works for the Department of Fish and Wildlife.  Phill’s current positon as Senior Research Scientist includes overseeing programs centered on habitat and stock assessments for forage fish including surf smelt, sand lance and Pacific herring.

Q2:  When asked what he had learned during his time on the Reuben Lasker, Phill pointed to gaining a better understanding of the techniques and challenges associated with managing coastal fisheries, and how they differ from nearshore survey techniques.

Q3:  Phill’s advice to first year college students considering a career in science is to get experience in data management and to get involved in internships early in your academic career.  Phill also emphasized that it is important to understand that a career in marine science is more than just a job, it is a “lifestyle” that requires commitment and hard work.

Science Team Member: Andrew Thompson

Q1:  Although originally from California, Andrew earned his graduate degree from the University of Georgia where his studies focused on stream ecology.  Eventually Andrew would earn his PhD from the University of California in Santa Barbara.  As part of his work for his PhD, Andrew studied a unique mutualistic symbiotic relationship between a species of shrimp and shrimp gobies (fish) on tropical reefs near Tahiti.  In this unusual relationship there is a system of communication between the fish and shrimp in which the fish acts as a type of watchdog for the shrimp communicating the level of danger in the environment to the shrimp based on the number of tail flips.  After a stint with the United States Fish and Wildlife Service in California, Andrew began working for NOAA in 2007 where he specializes in identification of larval fish.

Q2:  Having experienced multiple assignments on NOAA research vessels, Andrew’s response to what he had learned while on this cruise related to his enjoyment in watching the younger volunteers see and experience new things.  He voiced an optimism in the younger generation expressing how many “good, talented kids are coming through programs today.”  One of the observations that Andrew pointed out about this survey was the number of pyrosomes that are being found which is uncommon for this geographical area.  In a bit of an unusual find, a juvenile medusa fish within a pyrosome also sparked Andrew’s interest (see photo above).

Q3:  With regards to advice for prospective students, Andrew pointed out that a career path in science is often non-linear.  Like many of the science team members that I interviewed, he talked about how important it is to persevere and push through the difficult times as you pursue your goals.

Science Team Member: Nina Rosen

 

 

Q1:  Nina Rosen grew up in California where her connection and love of the ocean developed at an early age.  Nina completed her undergraduate degree at Humboldt State University in northern California.  Her graduate degree is a masters degree in advanced studies (MAS) from SCRIPPS Institution of Oceanography.  Nina’s work while at SCRIPPS was focused on understanding interactions between communities and ocean resources with a particular interest in small scale fisheries.  Nina’s background includes a diverse work history that includes working as a naturalist at field stations in Alaska, and working with the Department of California Fish and Wildlife to gather information from anglers that is used to help manage the California’s recreational fisheries.

Note: A special thank you to Nina.  Many of the outstanding photos included on my blogs throughout the survey were taken by her (see images above).

Q2:  When asked about what she had learned while on the survey, Nina stressed how important it was for a variety of people with different specialties to come together and communicate effectively to make the project successful.  I think her comment “all of the parts need to come together to understand the fishery” reflects her holistic approach to trying to understand our oceans and how people interact with this precious resource.

Q3:  Nina’s response when asked what advice she would give to 1st year college students interested in a career in science was simple and to the point. She said “go for it” reflecting her enthusiasm for marine science and research.  She went on to point out how important it is to take advantage of every opportunity that presents itself because “you never know what may come out of the experience.”

Science Team Member:  Austin Grodt

 

Q1:    Austin is from Orange, California, he will be entering his 4th year of studies at the University of California in San Diego majoring in environmental chemistry.  In addition to going to school, Austin works as a California state lifeguard.  Like many of the people I met while on the ship Austin’s connection to our oceans is central to his core values.  When I first met Austin he described himself saying “I am a stereotypical California guy, I am all about the water.”

Q2:  With regards to what he has learned while on the survey, Austin expressed that he had developed a greater understanding of the state of California fisheries and how they operate.  Austin also spent a lot of time interacting with the members of NOAA Corps learning about how the ship functions and large vessel navigation.

Q3:  When asked what advice he would give 1st year college students Austin said “when it gets hard don’t be discouraged, keep pushing. It is totally worth it.”  Austin also pointed out that the opportunities and number of fields available for STEM graduates are diverse and “in higher quantity than you can imagine.”

Science Team Member: Lanora

Q1:  Lanora’s first experiences with the ocean were in the Gulf of Mexico during family vacations. She went on to earn a BS degree from the University of Southern Mississippi.  After graduating, she spent time working for NOAA on research cruises in the Gulf of Mexico.  Lanora would eventually return to school and complete a masters program in marine science at the University of South Alabama.  In 2016 she would once again go to work as a NOAA scientist where she is currently working on research vessels stationed out of California.

Q2:  When asked what she had learned during the survey Lanora said “all of the pieces have to come together in order for the big picture to work.”  She went on to explain that several groups of people with a common task have to work together in order for the overall goals of the survey to be accomplished.

Q3:  Lanora’s advice to college students interested in marine science is to seek out opportunities to volunteer and participate in internships.  She indicated it was important to explore different areas to find out what you are truly interested in.  Like many of the science team members she went on to say that if you are passionate about science “go for it, don’t quit, and persevere.”

Personal Log:  Final Thoughts…

 

The most important, lasting impression that I will take away from this experience is the quality and commitment of the people that I have met along the way.  Although I will remember all of the people that I have worked with, the individuals on the science team have each given me something special.  I will remember and learn from: Dave, his calm demeanor, focus and attention to detail; Sue, her easy smile, and determination; Lanora, her relentless work ethic, and ability to manage multiple layers of responsibility; Andrew, his sense of optimism and genuine happiness; Phill, his relaxed sense of self awareness and wisdom beyond his years; Nina, her contagious laugh and commitment to, and love of our oceans; Austin, his boundless energy and curiosity about everything… thank you.

I also learned that the ocean has a heartbeat. If you’re quiet you can hear it in the rhythm of the waves.  The ocean has a soul; you can feel it in your feet if you wiggle you toes in the sand.  The ocean has an immensity and strength beyond imagination.  At first glance it seems as if the ocean has a beauty, diversity and abundance that is boundless, but of course it is not.

Due to our relentless pursuit of resources, and the pollution generated by that pursuit, our oceans are hurting.  We have to do better.  In many ways we live in troubling times, but as I learned from Andrew, it is not too late to be optimistic.  We can live a more peaceful, balanced existence with the planet’s resources and the other organisms that call the earth home.  It is my sincere desire that through hard work, education and the commitment of people from all generations we can come together to make our oceans and the planet a more harmonious home for all species…Thank you to everyone who has made this journey such a rewarding experience.

Learn more about education and career opportunities in marine science at the web site below.

NOAA Fisheries: Southwest Fisheries Science Center

https://swfsc.noaa.gov/swfsc.aspx?id=7532&ParentMenuId=33

 

 

Kip Chambers: Parting Shots I of II… July 22, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17-30, 2017

Mission: West Coast Pelagics Survey  

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: 07/22/2017

 Weather Data from the Bridge: (Pratt, Kansas)

Date: 08/02/2017                                                                    Wind Speed: SE at 5 mph

Time: 18:40                                                                            Latitude: 37.7o N

Temperature: 29o C                                                                Longitude: 98.75o W

Science and Technology Log:

During my last few days aboard the Reuben Lasker before steaming to Bodega Bay for a small boat transfer on July 30th, we were fishing off of the southern Oregon coast. The ship continued to run the longitudinal transect lines using acoustics and collecting data using the continuous underway fish egg sampler (CUFES) during the day and performing targeted trawls for coastal pelagic species (CPS) at night. The weather and the pyrosomes picked up as we moved down the Oregon coast to northern California, but on what would turn out to be the last trawl of my trip in the early morning hours of July 28th, we had our biggest catch of the trip with over 730 kg in the net. Once again we saw 3 of the 4 CPS fish species that are targeted for the survey including the Pacific sardine, Pacific mackerel, and jack mackerel, but no northern anchovies were to be found. The science crew worked efficiently to process the large haul and collect the data that will be used to provide the Southwest Fisheries Science Center (SWFSC) with information that can be used to help understand the dynamics of CPS in the California Current. The data collected from the CPS fish species includes length and weight, otoliths (used to age the fish), gender and reproductive stage, and DNA samples. The information from these different parameters will provide the biologists at SWFSC with information that can be used to understand the nature of the different populations of the CPS fish species that are being studied.

 

 

I am home now in southcentral Kansas, but as I am writing this, I can picture the science team beginning preparations for a night of trawling probably just north of Bodega Bay. By now (22:00) it is likely that a bongo tow and the conductivity, temperature and depth (CTD) probe samples have been collected providing data that will be used to calibrate and maximize the effectiveness of the acoustics for the area. Lanora and the rest of the team will have prepped the lab for a night of sampling, weather data will be recorded, and someone (maybe Nina or Austin) will be on mammal watch on the bridge. It all seems so familiar now; I hope the rest of the survey goes as well as the first half of the second leg. I will be thinking about and wondering how the science team of the Reuben Lasker is doing somewhere off the coast of California as I settle in for the night. One thing I am sure of, after spending two weeks aboard the ship, is that the entire crew on the Reuben Lasker is working together, diligently, as a team, using sound scientific practices to produce the best data possible to guide decisions about the fisheries resources in the California Current.

 

 

 

Video Transcription: (Narration by Kip Chambers)

(0:01) Ok, we’re preparing to remove otoliths from a jack mackerel. It’s for the Coastal Pelagic Species survey on the Reuben Lasker, July 27, 2017.
(0:22) We have Phil, from Washington Fish & Game, who’s going to walk us through the procedure. 
(0:30) The otoliths are essentially the fish’s ear bones. They help with orientation and balance, and also have annual rings that be used to age the fish.
(0:48) And so the initial cut is – looks like it’s just in front of the operculum and about a blade-width deep. 
(1:01) And the secondary cut is from the anterior, just above the eyes and kind of right level with the orbital of the eyes, back to the vertical cut.
(1:22) It’s a fairly large jack mackerel. And, once the skull cap has been removed, you can see the brain case, and you have the front brain and kind of the hind brain where it starts to narrow…
(1:42) … and just posterior to the hind brain, there are two small cavities, and that was the right side of the fish’s otolith, 
(1:55) … and that is the left side. And that is very well done. Thank you Phil.

 

I wanted to use a portion of this section of the blog to share some comments that were expressed to me from the members of the science team as I interviewed them before I left last week. The first “interview” was with Dave Griffith, the chief scientist for the survey. Dave was kind enough to provide me with a written response to my questions; his responses can be found below.

Dave Griffith
Chief Scientist Dave Griffith

Q1: Can you tell me a little bit about your background, including education and work history?

Q1: I was born and raised in a small suburb of Los Angeles county called Temple City. Located in the San Gabriel valley at the base of the San Gabriel mountains, it was the perfect place to exercise the love and curiosity of the animals I could find not only in my backyard but also in the local mountains. It wasn’t until I reached high school that I realized I had a knack for sciences especially biology. This interest and appeal was spurred on by my high school teacher, Al Shuey. With little concept of a career, I continued on to a junior college after high school still not sure of my direction. Here I dabbled in welding, art, music and literature but always rising to the surface was my love of sciences. My fate was sealed.

I entered San Diego State’s science program and was able to earn a bachelor’s degree and a master’s degree of science. For my dissertation I studied the re-colonization capabilities of meiofaunal harpacticoid copepods in response to disturbed or de-faunated sediments within Mission Bay. While studying for my masters, I was hired by Hubbs-Sea World Marine Laboratory as the initial group of researchers to begin the OREHAP project which is still operational today. The OREHAP project’s hypothesis was that releasing hatchery reared fish into the wild, in this case white seabass (Atractocion nobilis), would stimulate the natural population to increase recruitment and enhance the population. At the time the white seabass population numbers were at their all time low. During that time of employment at HSWML, I was also teaching zoology at SDSU as a teaching assistant in the graduate program. I was also the laboratory manager and in charge of field studies at Hubbs. My plate was pretty full at the time.

I heard about the opening at the SWFSC through a colleague of mine that I was working with while helping her conduct field work for her Ph.D. at Scripps. I applied and was hired on as the cruise leader in the Ship Operations/CalCOFI group for all field work conducted within CFRD (now FRD) working under Richard Charter. That was 1989. I have now been the supervisor of the Ship Operations/CalCOFI group since 2005.

My main objective on the Coastal Pelagic Fish survey as the cruise leader is to oversee all of the operations conducted by personnel from FRD during the survey. All scientific changes or decisions are made by the cruise leader using science knowledge, logic, common sense and a healthy input from all scientists aboard. I am the liaison between the scientific contingent and the ship’s workforce as well as the contact for the SWFSC laboratory. The expertise I bring out in the field is specific to fish egg identification, fish biology, field sampling techniques, knowledge of the California Current Large Ecosystem and sampling equipment.

Q2: What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?

Q2: First, that you never have preconceived ideas of what you expect to find. You always come out with knowledge of previous studies and a potential of what you might see, but the ocean always will show you and demonstrate just how little you know. When I was beginning in this career I was able to witness the complete dominance of a northern anchovy centric distribution change to a Pacific sardine centric distribution and now possibly back again. It’s mind boggling. I remember one of my colleagues, one of the pre-eminent fish biologists in the field, Paul Smith say to me during these transitions say, “Well, you take everything you’ve learned over the past 40 years, throw it out the window and start over again.” Yeah, the ocean environment will do that to you.

Q3: What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?

Q3: Keep an open mind. Once you enter a four year university you will see areas of study that you never thought or believed existed. Have a concept of where you want to be but don’t ignore the various nuances that you see along the way. Go for the highest degree you feel capable of achieving and do it now because it becomes so much more difficult as you get older or the further away you get from academics if you begin working in a science position.

And last, and I feel most important. Read. Read everything. Journals, magazines, classics, modern novels, anything and everything and never stop. Communication is such an incredibly important part of science and you need to have a command of the language. Not only is reading enjoyable but it will make you a better writer, a better speaker and a better scientist.

 

Personal Log:

I am back home in Kansas now after wrapping up my assignment on the Reuben Lasker and I have started to contemplate my experiences over the last couple of weeks. There are so many facets related to what I have learned during my time on the ship; the technology and mechanics of such a large research vessel are both fascinating and daunting at the same time. There are so many moving parts that all have to come together and work in a very harsh environment in order for the ship to function; it is a testament to the men and women that operate the boat that things operate so smoothly. As impressive as the technology and research is on the Reuben Lasker, it is the people that have made the biggest impact on me.

You can see from Dave’s response above that there are some incredibly talented, dedicated individuals on the ship. I would like to share with you some of my observations about some of those people that I worked with including Dave Griffith. Dave is not only an outstanding scientist that has spent a lifetime making important contributions to fisheries science, he is also an incredibly well rounded person and an encyclopedia of knowledge. I would like to take this opportunity to personally thank Dave for his patience, and willingness to listen and provide insight and advice to me during my time on the ship. In my upcoming blog, I will provide more information about the other members of the science team that I had the pleasure to work with while on board. Until then please enjoy the pictures and video from my last week on the Reuben Lasker.

Kip Chambers: Rocking and Rolling on the Reuben Lasker… July 22, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17 – 30, 2017

Mission:  West Coast Pelagics Survey

Geographic Area of Cruise:  Pacific Ocean; U.S. West Coast

Date: July 22, 2017

 

Weather Data from the Bridge:

 Date: 07/22/2017                                                                 Wind Speed: NW at 8 Knots

Time: 20:20                                                                            Latitude: N 43 53.78

Temperature: 18.5 C                                                              Longitude: W 124 38.7

OLYMPUS DIGITAL CAMERA
Kip and Austin Pacific sardine data (Photo Credit: Nina Rosen)

Science and Technology Log:

After steaming north out of San Francisco, the Reuben Lasker arrived on location just south of Newport, Oregon early Wednesday (07/19) morning ready to begin the 2nd leg of the West Coast Pelagics Survey (WCPS). The survey is targeting coastal pelagic species (CPS).  The Southwest Fisheries Science Center (SWFSC) uses the following characteristics to describe CPS. CPS have relatively short life spans, high reproductive potential, responsivity to climate change, schooling or swarming behavior, and inhabiting the upper or mixed layer of the water column (swfsc.noaa.gov/).  The survey uses a combination of methods to try to locate the target species for sampling.  The primary fish target species for the survey include Pacific sardine (Sardinops sagax), Pacific mackerel (Scomber japonicus), jack mackerel (Trachurus symmetricus), and the northern anchovy (Engrraulis mordax).  In addition to these fish species, the market squid (Doryteuthis opalescens) is also included as a target species for the survey.  These coastal pelagic species are critical to the ecology of the California Current pelagic ecosystem.

Source: https://swfsc.noaa.gov/textblock.aspx?id=1041&ParentMenuId=110

A very important part of the survey involves using the acoustic trawling method (ATM) to locate and sample CPS.  This method of sampling uses a systematic approach to help locate the target species that are being monitored.  The area for the survey is laid out using a transect system. Transect lines (perpendicular to the coast) are latitudinal at 10 mile intervals and approximately 30-40 miles long.  During the day, the ship follows these transect lines while using a continuous underway fish egg sampler (CUFES) and “listening” for CPS using some of the most advanced acoustics systems in the world.  CUFES pulls water in from below the ship at a rate of 640 liters/ minute.  As the water moves through the sampler it passes through a fine mesh filter that is continuously agitated.  Any plankton or fish eggs that are larger than 505 microns are screened out, collected, and analyzed at 30 minute intervals.  The CUFES requires constant monitoring and an experienced eye to be able to identify the various organisms in the sample.  That responsibility falls on the shoulders of the lead scientists on the survey, Dave Griffith and Sue Manion.  As this information is coming in it is entered into a computer that plots the results in relationship to the transect line that is being traversed.  Of particular interest to the scientists on this survey are Pacific sardine eggs due to declining populations of this important forage fish over the last 10 years.

Along with the CUFES data, the survey is being guided by a complex array of sonars and split beam eco-sounders.  Dan Palance, is the ships acoustician.  Dan monitors and collects data from 2 split beam echo-sounders, the EK60 and the EK80 and 3 multi-beam sonars, the MS70, ME70 and the SX90.  As the ship moves down the transect line information from the eco-sounders and sonars is being monitored and analyzed.  The images from the acoustics system provide insight into what types of fish or other marine organisms may be present near the transect line.  Dan and the lead scientists use the data from CUFES and acoustics system to determine the best locations to trawl for the target species.  Once the likely target areas are determined, the lead scientist will consult with the NOAA Corps officers to eventually determine where the boat will trawl.  There is an incredible amount of information and data that is being generated to direct the survey.  Each group of people involved bring their own unique skill set to the table, and communication between these groups is essential to the success of the survey.

Once the location for sampling areas has been determined, a series of trawls will be conducted in those areas.  The trawls are done at night to provide the best opportunity to catch the target species which are migrating up in the water column following the plankton species that they feed on.  Since arriving on location we have been able to average 2-3 tows per night.  The Reuben Lasker is equipped with trawl net (13 X 20 meter fishing mouth) with progressively smaller mesh as you move towards the cod end.  The net is deployed behind the boat and fishes from the surface down to a depth of about 13 meters for 45 minutes.  As the net is hauled back the excitement and anticipation about what may be inside grows.  Over the course of the last 3 days we have found 3 of the 4 CPS fish species that are being monitored and market squid. The target fish species that we have seen so far include the Pacific sardine, jack mackerel, and Pacific mackerel.  We have not found northern anchovies yet, but we have seen a variety of other marine organisms (listed below).  Once the haul is collected from the net it is brought into the wet lab to be “worked up.”  Everything that comes up in the net will be weighed and/or measured.  In addition to weight and length measurements, gender is determined and DNA samples and otoliths are collected for the target fish species.

Along with CUFES there is another process in place for collecting plankton using a “bongo net.”  These paired nets are lowered into the water over the starboard side paying out 300 meter of cable before beginning the retrieval process.  Once 300 meters of cable have been released the ship will set a speed to establish a 45O angle in the cable connecting to the bongos.  As ship is underway the nets will be retrieved at of 20 meters/minute.  Once at the surface the nets contents are washed down into a fine mesh collecting bag at the bottom of the net.  This sample is preserved and will be analyzed to gain a better understanding of the planktonic community found in the water column.  The data from the bongo nets is used to help calibrate the acoustics systems.  The sampling protocol for the bongo nets has been well established and consistently followed for a long period of time leading to a reliable data set.  There is also a system in place using a conductivity, temperature and depth (CTD) probe for collecting water chemistry data at regular intervals.  The data collected from the various sampling methods is used to help direct the management of CPS in the California Current.

Personal Log:

As we push south down the Oregon coast the science team is settling into a routine and becoming more efficient at processing the hauls.  I feel fortunate to be part of such an eclectic group of people.  The team is made up seven members with a variety of backgrounds and experience, but all sharing the common goal of provide consistent, reliable data that can be used to help protect the ecological integrity of our oceans.  In up-coming posts I hope to be able to provide a brief summary of the individual team members.

Tonight (7/24) will be the fourth set of trawls for this leg.  Despite some of the challenges of switching over to an 8:00 pm to 8 am schedule the teams’ morale is high and everyone on the team is always eager to pitch in and lend a helping hand whenever it is needed.  Although there have been some long shifts and the weather has been pretty rough over the last few days, the people I have met are making this an incredibly rewarding experience.  Please find below a tentative list of common names for some of the species that we have seen since leaving San Francisco…

Taxa list from the net (common names):

 

Pacific sardine                                                        pacific mackerel

jack mackerel                                                           market squid

clubhook squid                                                        hake

northern spearnose poacher                                 pomfret

American shad                                                         ctenophores

blue shark                                                                  lions mane jellyfish

egg yolk jellyfish                                                      pyrosomes

blue lantern fish                                                      steelhead

northern lantern fish                                             chum salmon

California lantern fish                                           pink salmon

Observed from the deck:

humpback whale                                             albatross

Dawn White: Otoliths & a “Wet” Farewell: July 2, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: July 2, 2017

Weather Data from the Bridge (As in back home in North Branch, MN)

Date: July 2, 2017                                                             Wind Speed: 8 kts

Time: 7:30 p.m.                                                                 Latitude: 45.5102° N

Temperature: 26.7 oC                                                     Longitude:  92.9931° W

Science and Technology Log

It wasn’t until the last day or two of my leg of the research project that we finally started to catch the species the scientists were specifically looking to track and even then there were only a few.

Angela removes an otolith from the sample target species

Here’s Angela dissecting one of our first samples.  If the young captured were either sardines or anchovies, they were massed, length taken, sex determined (including whether or not they were sexually mature, if possible), and their otoliths were removed.

So what the heck are otoliths and why would anyone want to remove them?

Otoliths are small, bony parts of a fish’s earbones.  They help the fish with balance and orientation.  These bones are made of calcium carbonate and similar to the formation of rings on a tree, they grow with a ring-like pattern based on seasonal metabolic rates.  While the fish is growing faster during the warmer summer months, the rings are broader and more translucent.  Then, during the cooler winter months when a fish’s metabolic rate begins to slow down, that part of the ring appears to be more dense or opaque.

Look at the first illustration below that was taken from a 2008 NOAA press release.  On the lower right you see an image of an otolith from a haddock.  Each species has otoliths of a particular size and shape. If you know the region of ocean from which a set of otoliths was obtained, you may be able to determine the species by utilizing one of the many otolith references that can be accessed online, such as found in this memorandum published by NOAA researcher Mark S. Lowry.

 

The enlarged image on the right was taken from the NOAA Images Library.  Here you can see the rings very distinctly.

Extension question for my students:  Using the otolith image on the right, determine how old the fish was at the time of capture.  Not sure how to do this just yet?  Want to test your accuracy?  Read up on what is involved in the study of sclerochronology first. Then test yourself with this otolith aging interactive.  Enjoy!

Once the otoliths have been removed they are wiped clean and placed in a small vial to finish drying out.  The otoliths are cataloged and sent to the lab for evaluation as shown in the photos below.

 

The combination of measurements taken allow those studying the population to look at the demographics of the catch (What % of the population is juvenile?  What % is sexually mature? What is the relationship between % male vs. female?).  This data provides a sampling of the population’s health and viability, which can then be extrapolated to the population as a whole.  This information can then be used to help inform policy with regards to how heavily these populations can be fished without causing damage to the ecosystems of which they are a part.

 

Personal Log – It’s time to go home!

It seemed like we had just gotten started and it was time to go!  Although they had mixed work/sleep schedules, the science team was willing to gather to see me off.

Angela, Dereka, Dawn (TAS), Nick, Amy, Bryan, Sue, Emily

What an amazing learning experience!  My only regret was that we didn’t start to find the species requiring the more intense, time-consuming dissection and data collection until the very end.  I wanted to make sure I was doing my part!  In return, what I get to take home to my students is invaluable. I can’t wait to share all I have learned about life aboard a research vessel, the many ways in which this unique habitat is being studied, and the vast opportunities that await those who are interested in marine ecosystems.

The only travel plan that was not prearranged regarding my TAS adventure was the exact location of my departure from the Reuben Lasker.  What I did know was that it was to be a “wet transfer.”  What I didn’t know was exactly what that meant.  It was so much fun finding out!

The Reuben Lasker has a limited number of ports along the west coast where it is possible for it to dock.  The ship’s size, unique keel, and specialized, below-ship sonar equipment require channels to be much deeper than many smaller ports possess.  Because of this, whenever there is to be an exchange of personnel made before a larger port is reached, an onboard transfer craft brings those getting off to a smaller port along the way.  This allows the main vessel to stay in safer waters much further off shore.  Once the exchange of people and gear is made, the transfer boat returns to the ship and the journey continues.

Unique points to consider on this type of trip, however, are that you need to get the transfer boat launched from the main vessel, the ship lets you off several miles from port, and the boat has no seats – you stand up the whole way!  Who knew that even getting back to the mainland was to be an adventure?!

You can see the transfer boat below (right side in the picture – port side of the ship).  Notice how the Reuben Lasker carries it hoisted up off the floor of the back deck.

View of the transfer boat (at right) stored on Reuben Lasker

The transfer boat gets lowered to deck level so we can all step in.  Our gear is stored in the open bow and we all load in the back.  Behind the center console are poles with handles that give us something stable to hold on to as we will be standing for the duration of the trip.  We all wear life jackets and hard hats as the boat is lowered along-side the main ship.

Here’s Skilled Fisherman Victor Pinones ready at the controls as he lowers us to sea level.

Skilled fisherman Victor Pinones ready at the controls

The two outboard motors are started while we are along-side so we are ready to move away from the Reuben Lasker the minute we hit the water.  And we’re off! To give you some perspective of the size of the Reuben Lasker as it looks from the water, you can see Emily, Angela, and Dereka waving to me from the Level-1 deck.

View of NOAA Ship Reuben Lasker from the transfer boat

It didn’t take long before the ship was but a spot on the horizon….

Here’s a better look at the transfer vessel as crew members prepare to for the return trip.

Bon voyage to all!  Safe travels!

Did You Know?

Fun fact: Baby squid are adorable!  Just had to share one last image from under the microscope – thanks, Nick, for pointing this out!  At this larval stage, the squid are mainly transparent except for their developing eyes and chromatophores (sac-like structures filled with pigments that help the squid undergo color changes).  You can observe this process in action at the Smithsonian’s  Ocean Portal web site.

 

Looking at the enlarged photo at right you can just make out the scale – our little friend was a whole 3 mm in diameter!  Too cute!

Kip Chambers: Gone Fishing… July 21, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17 – 30, 2017

 

Mission:  West Coast Pelagics Survey

Geographic Area of Cruise:  Pacific Ocean; U.S. West Coast

Date: 07/17/2017

 

Science and Technology Log: 

I had my first opportunity to get a look at the Reuben Lasker when I arrived at the Exploratorium on Pier 15 in San Francisco (SF) on the 16th of July.  My first impression was, this is a big, incredibly sophisticated research vessel.  The boat has been in port for a few days as it prepares to leave for the 2nd leg of the West Coast Pelagics Survey.  The first leg of the survey was conducted over the previous three weeks starting off of the coast of Vancouver Island and working down to the coast of Oregon.  The vessel will be steaming out tomorrow (7/18/17) back to where the first leg was completed to begin the 2nd leg of the survey.  The 2nd leg will begin near Newport, Oregon and continue down the coast of California finishing in San Diego on/or about August 11th.

I am beginning to get to know the crew, which is made up of members of the NOAA Commissioned Officer Corps, civilian mariners and a science team.  All of the crews are under the NOAA umbrella and work closely together. The NOAA Corps, and civilian mariners are responsible for the operation and maintenance of the boat while the science crew’s role is to design the survey, collect samples, record, and analyze the data for the project.

There are 32 people on the boat, and I am amazed at the diversity of skills, education and background that is represented by everyone that is on-board.  It is encouraging to know there are so many talented people involved in this type of research. In just the short time that I have spent on the ship I have gained a better understanding of the many opportunities that are available for students in marine science.

As you might expect on a modern research vessel the technology is everywhere.  There are multiple sonar systems, numerous sensors that record continuous environmental information, and the wheelhouse is equipped with an array of navigational systems and computers that link to sensors throughout the vessel.  There are also the major mechanical components necessary to deploy and retrieve nets, gear, and various sensors.  I am eagerly anticipating seeing how all of these pieces fit together once we begin sampling.

Over the past 2 days while we have been in port, I have had a chance to explore the area around the dock and have found that NOAA is making a big impact on a global scale.  As I was walking up to the ship I noticed a buoy in the harbor that was labeled with PMEL-CO2 (Pacific Marine Environmental Laboratory).  Upon closer inspection I saw the NOAA symbol above the lettering and found an information plate on the rail describing the data the sensors on the buoy were collecting.  This buoy and others like it moored across the world’s oceans are collecting information about CO2 levels in our oceans.  The information is relayed to a satellite and then to a data center for analysis.  The data collected by these buoys will help provide a better understanding of how rising CO2 levels are affecting our oceans.  As I walked through the area surrounding the dock I found several more examples of research and educational programs that NOAA was supporting.  NOAA’s commitment to sound science and support for educational programs like the Teacher at Sea program is making a difference in how people interact with the planet.

 

Personal Log:

My journey to join the crew and scientist aboard the Reuben Lasker has been a rewarding experience in and of itself.  After arriving in SF I had the opportunity to spend the day exploring the area around the bay.  There is a great interactive facility near Pier 15 called the Exploratorium that is a designed to provide an enriching, educational experience featuring science and art displays. As I wondered through the facility it reminded me of why I love science and how creative approaches can inspire and bring out the child like curiosity and joy of learning in all of us.  I also had the opportunity to tour the impressive Aquarium of the Bay that had fantastic exhibits featuring marine invertebrates, numerous species of saltwater fish (including lots of sharks) and river otters.  NOAA’s fingerprint can be found here too, with a display explaining how NOAA is providing educational support for a program called The National Estuary Research and Reserve System that emphasize the importance of protecting and restoring estuaries.   It has been a very busy and fulfilling 3 days.  As I am writing, the ship is steaming toward Newport, Oregon and is already collecting data for the survey using a continuous underway egg sampler (CUFES). The CUFES sampler collects plankton and fish egg samples that will provide important data used by NOAA scientists to better understand the abundance and distribution of pelagic fish species in the California Current.  Once we arrive on location we will start using the acoustic trawling method (ATM) to sample for coastal pelagic fish species.  I can only imagine what wonders might lay ahead as we continue our journey,

I recently attended the Kansas Association of Teachers of Science (KATS) conference and listened to a very good presentation by Jeff Goldstein.   One the things he said struck me as particularly important.  He said, “Evidence based conclusions are important.”  It is important that we don’t disregard and ignore information that is based on good scientific principles and analysis.  My experiences over the last several days has given me a greater appreciation for critical role that NOAA plays in providing us with that information.  The photos above are representative of my first few days in SF and on-board the Reuben Lasker.

FYI: sometimes it seems like NOAA has its own special language, here is a small sample of some of the acronyms that I have picked up on so far…

CO – Commanding Officer

XO – Executive Officer

OO – Operations Officer

ATM – Acoustic Trawl  Method

CTD – Conductivity, Temperature and Depth

CUFES – Continuous Underway Fish Egg Sampler

CPS – Coastal Pelagic Species

SWFSC – Southwest Fisheries Science Center

NMFS – National Marine Fisheries Service

Links to Explore:

Pacific Marine Environmental Laboratory

https://www.pmel.noaa.gov/

The Exploratorium in San Francisco

https://www.exploratorium.edu/

Aquarium of the Bay in San Francisco

https://www.aquariumofthebay.org/

The National Estuary Research and Reserve System

https://coast.noaa.gov/nerrs/

Dawn White: Pinging for Populations, June 29, 2017

 

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship the Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 29, 2017

 

Weather Data from the Bridge

Date: June 29, 2017                                                         Wind Speed: 7.7 kts

Time: 6:15 p.m.                                                                 Latitude: 4805.5N

Temperature: 12.7oC                                                      Longitude: 12520.07W

 

Science and Technology Log

The technology present on this ship is amazing and at the same time quite overwhelming.  These systems allow for data to be collected on a wide range of variables both continuously and simultaneously.  Below are a couple of photos of the acoustics room where multiple sensors are monitoring the feedback from sonar systems placed below the ship’s hull.  One of the acoustic probes sends out sound waves in a cone-like formation directly below the ship.  Another unit emits sound waves in a horizontal pattern.  The ship was designed to run as quietly as possible so as to not disturb the marine life present in the waters as the ship passes by and also to reduce the interference of the ship’s sounds with the acoustics feedback.

 

 

Acoustics technician Dan Palance managing the multiple computers that are constantly collecting data.

Multiple programs help to eliminate the “noise” received by the probes until all that remains are images that represent schools of fish and their location relative to the ocean floor.

 

The images above were taken from a poster on board the Reuben Lasker. They illustrate the range of the water column surveyed by the various acoustic systems.

 

The “soundings” are received by the ship, processed and “cleaned up” using a series of program algorithms. The image below shows the feedback received from one of the systems.

Displays of feedback from an acoustics system

Once the background “noise” has been eliminated, the resulting image will show locations of fish, school size, and the depth (y axis) at which they can be found.

Graph of acoustic feedback, with background “noise” eliminated, depicting depth and size of fish schools

 

Extension question for my students reading this:  Approximately how deep are the schools of fish being picked up by the sonar at this location?

Acoustics aren’t the only tools used to try pinpoint the locations of the fish schools.  As I wrote about on an earlier blog, the CUFES egg sampler is used to monitor the presence of fish eggs in the waters that the ship passes over.  Water samples are analyzed every half hour.  If egg samples appear in an area where there is also a strong acoustics signal, then that may be a location the ship will return to for the night’s trawl.  The main focus of this trip is to monitor the anchovy and sardine populations, so extra attention is paid to the locations where those eggs appear in the samples.

Personal Log:

Each time we drop the net for an evening trawl it is always retrieved with a bit of suspense:  What’s going to be in the net this time?  How big is the haul?  Will we capture any of the key species or haul in something completely different?

I can honestly say that while on board there were no two hauls exactly the same.  We continued to capture large quantities of pyrosomes – unbelievable amounts.  Check out the net-tearing load we encountered one night.  We literally had to weigh them by the basketful!

Here I am getting ready to help unload this large catch.

TAS Dawn White prepares to help unload large catch

 

Net-tearing load of pyrosomes!

Above is the codend of the net filled with pyrosomes and fish.  A 5-basket sample was pulled aside for analysis.  The remainder was simply classified and massed.

While I was certainly don’t need to see another pyrosome any time soon, there were plenty of other times when some very unique species made an appearance!

Pacific Jack Mackerel

Solitary Common Salp

TAS Dawn White holds a Blue Shark

Dogfish Shark

Did you know?

The dogfish shark (pictured above) was one of about 50 or so that were caught in the same haul.  We had trawled through a school that was feeding on the small fish found at the ocean surface during the evening hours.  This is the same species of shark that is commonly provided to students for dissection.  Use the search terms “dogfish shark dissection” and see what you find!

Kip Chambers: From the Prairies to the Oceans… July 5, 2017

NOAA Teacher at Sea 

Kip Chambers

Aboard NOAA Ship Reuben Lasker 

July 17 – 30, 2017

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: July 5, 2017

Weather Data from the Bridge: (Pratt, KS)

Date: 07/05/2017
Wind Speed: SE at 6 mph
Time: 16:00
Latitude: 37.7o N
Temperature: 29o C
Longitude: 98.75o W

Science and Technology Log:

Soon I will be aboard one of the most technologically advanced fishing vessels in the world, the NOAA research vessel Reuben Lasker. I will be participating on the second leg of the Coastal Pelagic Species (CPS) West Coast Sardine Survey. The ship will depart on the 17th of July from San Francisco, CA to conduct a survey primarily focused on Pacific sardine (Sardinops sagax) populations. The data collected from this survey, and others like it, will be used by NOAA and other federal and state agencies to make decisions about how to best manage the Pacific sardine fishery to ensure that Pacific sardines are harvested in a sustainable manner. The data provided by these types of surveys is critical to ensuring that appropriate regulations are put in place to protect the ecological integrity of our complex, marine ecosystems.

Personal Log:

Hello, my name is Kip Chambers. I am a biology instructor at Pratt Community College (PCC). PCC is a small liberal arts/vocational technical school located in south-central Kansas. I am thrilled and humbled to have the opportunity to participate in the NOAA Teacher at Sea (TAS) program. I first learned about the program from a colleague more than 15 years ago, and it has been something that I have been contemplating for the last several years. After applying in the fall I was ecstatic to find out in early February that I had been accepted to the program. Even though I was born and raised in Kansas, and Pratt, Kansas is more the 600 miles away from our nearest ocean (Gulf of Mexico), I have always been fascinated by the immensity, power and beauty of our oceans. I have often been asked “what do the oceans have to do with Kansas?” For those of you who live near an ocean, or work directly with these precious resources, this may seem like a silly question, but for many of my students and people in my community there can be a lack of understanding of how our oceans affect all of us, and how critical they are to maintaining the biogeochemical cycles and energy flow that make life possible on the planet.

The story of Kansas’ geological history cannot be told without talking about oceans. The map below depicts the 11 physiographic regions that outline the geology of Kansas. Many of the rocks at and below the surface of Kansas were deposited as shallow seas moved into and out of Kansas over millions of years. Because of this, Kansas has a rich marine fossil record that provides insight into the role oceans played in shaping our state. There is an excellent web site that is maintained by the Kansas Geological Survey that provides additional information about our state’s geology and the types of marine fossils that can be found in many areas of the state.

Kansas Physiographic Regions           Figure 1.1 Physiographic regions of Kansas provided by the  Kansas Geological Survey. (http://www.kgs.ku.edu/Extension/home.html)

The geology of Kansas is just one way oceans have affected our state; our economy, weather patterns, and ecology are all influenced by our oceans. Helping students to connect to our oceans, and understand that oceans impact the ecology of the entire planet, regardless of where you live is one of the main objectives that I hope to accomplish as I move forward with this project. It is my sincere hope that through my experiences with the TAS program I will become a more effective communicator and stronger advocate for relating the importance of protecting our planet’s most valuable resource, our oceans.

I would be remiss if I did not thank the people that have helped make this opportunity possible. Thank you to the NOAA TAS program, the crew and scientists of the Reuben Lasker that I look forward to joining soon, Pratt Community College, my family and friends and my beautiful wife Janet. See you in San Francisco…

Images from the Sunflower State:

 

Figure 1.2  Upper left, wind and wheat, lower left, energy production, upper right, generalized flight plan, lower right, Chambers’ family (Sadie, Janet, & Kip).  All photos from DK Chambers, map from Google Earth.

Links:

Kip Chambers’ page on NOAA Teacher at Sea Program website:
http://teacheratsea.noaa.gov/#/2017/Dave*Chambers/blogs

Kansas Geological Survey’s GeoKansas website:
http://www.kgs.ku.edu/Extension/home.html

Pacific Fishery Management Council’s documents on Coastal Pelagic Species assessments:
http://www.pcouncil.org/coastal-pelagic-species/stock-assessment-and-fishery-evaluation-safe-documents/

Dawn White: Finally Fishing! June 27, 2017

NOAA Teacher at Sea

Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 27, 2017

 

Weather Data from the Bridge

Date: June 27, 2017                                                         Wind Speed: 28.9 kts with gusts
Time: 9:15 p.m.                                                                 Latitude: 4828.20N
Temperature: 13.4oC                                                      Longitude: 12634.66W

Science and Technology Log

White_Lasker route 6-27
The red line indicates the route of NOAA Ship Reuben Lasker transiting along the coast of Vancouver Island

We finally reached the tip of Vancouver Island on Sunday evening, June 25. It would be our first night of fishing.  The red line indicates the route taken by the Reuben Lasker as we transited along the coast to the northernmost tip of the island.  The blue lines indicate the path to be taken for regular interval acoustic monitoring for schools of fish.  Based on the acoustics results, a decision would be made as to where the fishing would occur at night.

 

 

 

White_deploying net
Crew deploying the fishing net

The photo at left shows the crew completing the deployment of the fishing net.  You can see the large winch that will release and retrieve the main body of the net.  The net will be set out for about 45 minutes.  During this time there are many variables that will be monitored.  Sensors attached to the net will collect data on time spent at each depth.  Other factors being monitored include temperature, wind speed, swell size,  and lat/long of trawl. In addition, there are four water-activated “pingers” attached to the net that emit sounds at frequencies known to disturb larger mammals in an effort to reduce accidental captures.

Once the net has been retrieved, the scientists collect the catch in large baskets and begin the process of weighing and sorting.  The first night’s catch was primarily made up of a very unique colonial type of organism called a pyrosome. The side nets and codend (mesh covered end of the main net where most of the catch is collected) were packed with these the first couple of trawls.

White_many pyrosomes
Many pyrosomes were mixed in with the catch.

You can see many pyrosomes mixed in with the rest of the catch here.  They are the pink colored cylindrical organisms.  They have been increasing in population over the past couple of years as well as appearing further north than ever observed before.  A nice overview of the pyrosome influx and volumes observed was recently reported in an article published by Environment entitled “Jellied sea creatures confound scientists, fishermen on U.S. Pacific Coast”. You can review the article here.

The trawl net being used was part of the research project, as it possessed modifications aimed at capturing and quantifying organisms that made it through an apparatus called the extruder door.  The purpose for this opening is to allow for larger mammals and non-target organisms to pass through the net relatively unharmed should they get caught.  Two additional pocket nets had been added to the main net for the specific purpose of monitoring what made it through the mesh.

This far north, the researchers were expecting to find mostly juvenile herring and salmon.  On our second night of fishing we actually had several species of fish and other marine animalia to i.d. The amount and type of data collected depended on the species of organism.  In some cases, we collected just the mass of the group of organisms as a whole.  For other species, we collected mass, lengths, presence/absence of an adipose fin, DNA samples from a fin clip, and more.  Certain species were tagged, bagged, and frozen for further study in a land-based lab.  It’s so interesting to see the variety we pull out of the net each trawl!

Some of the species collected can be seen below:

Extension question for my students reading this:

What traits could you use to differentiate between the juvenile salmon and Pacific herring?

 

Personal Log:

White_scientists collecting data
Here are some of the scientists making sure the correct data is collected and recorded from one of our catches.

White_here i am in yellow
Here I am (in yellow) with some of the scientists (L to R: Emily, Amy, and Angela) getting ready to receive the evening’s catch.

First trawl starts as close to sunset as possible, which for this latitude has been somewhere between 9:30-10:00 p.m. There is always this air of anticipation as we wait for the net to be emptied.  It has been enlightening to work with the science staff as they evaluate each sample.  The number of reference sheets and data recording forms is incredible.  It seems like you would need to take a course in data management just to ensure you were familiar enough with the requirements to not overlook some detail of importance.

The photo of the group above was taken about 11:00 p.m.  I was worried initially that I would not be able to flip my sleep schedule to match the work schedule, but it has been much more doable than I thought it would be.  Our staterooms are dark and quiet, so going to bed in the morning really doesn’t feel any different that at night.  Thanks to the extensive movie collection and my ability to keep downloading books to read on Kindle, I have had plenty of filler for downtime and that “reading before bed” I always do.

Time to go to work…..

 

Did You Know?

There are 36 species of dolphin worldwide, including 4 species of river dolphins.  Quite a few of the Common Bottlenose Dolphin followed the ship out of the harbor in San Diego, riding along on the wake produced by the ship.  On the way up the coast of California I saw a couple of Dall’s Porpoises (not in the dolphin family, but quite similar in appearance).  Then as we traveled south along Victoria Island there were a couple of Pacific White-Sided dolphins enjoying games along-side the ship. It is so exciting to see these animals out in their native habitat!

Every night before the ship drops the fishing net, a member of the science team is sent to the bridge to perform a 30-minute mammal watch.  The surrounding waters are observed closely for any signs of these and other larger species.  The investigators do their best to ensure that only the small fish species intended for capture are what enters the net.  Should there be a sighting, the ship moves on another 5 miles in an effort to avoid any accidental captures.  The scientists and crew work very hard to minimize the impact of their studies on the surrounding ecosystems.

Dawn White: Sampling the Pacific, June 24, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 25, 2017

 

Weather Data from the Bridge

 

Date: June 25, 2017                                                         Wind Speed: 22 kts

Time: 4:00 p.m.                                                                 Latitude: 5026.55N

Temperature: 14.3oC                                                      Longitude: 12808.11W

 

Science and Technology Log

 

Although the scientists have not performed any fishing trawls since departing San Diego, there is a survey crew on board that has continuously been monitoring the water column for a variety of factors using acoustics and an instrument called a Conductivity/Temp/Depth (CTD) probe.

Last night I was able to observe the launch and retrieval of a small, handheld CTD probe.  It looks very much like a 2 ft torpedo. The electronics and sensors built into the probe measure such factors as salinity, sound speed, depth, and water temperature.  This smaller probe is launched off the tail of the boat and let out on a line of filament from a reel that appears very similar to a typical fishing reel.  It does not take more than a couple of minutes for the probe to sink to a depth of about 300 meters.  Data is collected from the probe at various depths on the way down.  Once the probe has reached its target depth, it is simple reeled back in using a winch to retrieve it.  This requires quite a bit of energy as the probe is deployed with enough line for it to end up about 3 miles behind the ship.  The data from this probe is then blue-toothed to the program used by those monitoring the water column acoustically.  It help the techs make corrections in their acoustical readings.

 

White_scientists deploying probe_R
Surveyor Jian Liu and scientist Juan Zwolinski deploy the smaller CTD probe off the stern of NOAA Ship Reuben Lasker

 

The Reuben Lasker also carries a larger version of the CTD probe with the additional capabilities such as water collection at various depths.  However, this version requires the ship to be stationary.  Taking measurements with the unit slows down the work of the day as each stop takes about 30 minutes from launch until retrieval.  The launch of the larger CTD can be seen below.

 

White_CTD probe in basket
CTD Probe in steel protected basket

 

The data from the CDT probe is recorded real-time on the survey team’s computers.  Below you can see how this data presents itself on their video screens.

 

On the left video display you can see that there are several variables that are plotted against a depth vs. temperature. The green line tracks fluorescence (a measure of the chlorophyll concentration); the light blue line tracks dissolved oxygen; the red line represents temperature; the blue line is for salinity.

 

Extension question for my students reading this:  What correlations or relationships do you see happening as you observe the change in variables relative to changes in depth?

 

White_Lasker route
Route of NOAA Ship Reuben Lasker

Here is the route taken by the Reuben Lasker during the past 24 hours or so.  As you can see from the chart, the ship has now reached the northern-most end of Vancouver Island.  This is where the CDT recordings, marine mammal watching, deployment of two sets of plankton nets (to be explained later) and fish trawling will begin along the predetermined transect lines.

Note at the base of the screen the other parameters that are continuously recorded as the ship moves from place to place.

 

 

Personal Log

The action on-board is increasing dramatically today.  We have arrived at our outermost destination today, along the northernmost coast of Vancouver Island.  The sights from the bridge are amazing…all this blue water and rugged, pine covered coastline.  I am still waiting for that orca whale sighting!

The waves are up today but I’m holding my own.  Yeay!  Especially as the night fishing will begin in a few hours.

Unique activity of the day – I just finished a load of laundry!  The ship possesses 3 small washer/dryer units so we can redo our towels and whatever else we have used up during the course of this first week.  How serviceable can you get! I’ll retrieve mine as soon as dinner is over.  We have set meal hours and if you miss…it’s leftovers for you!  Best part of this is I am actually ready to eat a normal meal, even with the ship rocking the way it is today.

I have now been assigned deck boots and a heavy duty set of rain gear to cover up with when the fish sorting begins.  I can’t wait to see what all we pull up from these nutrient rich waters!

 

Did You Know?

Much of the data collected by the CTD and acoustic equipment from the Reuben Lasker is entered into a large data set managed by CalCOFI (California Cooperative Oceanic Fisheries Investigation).  Anyone interested in utilizing and analyzing this data can access it via the organization’s website located here.  There is an incredible amount of information regarding the work and research completed by this group found on this site. Check it out!

Dawn White: Onward to Vancouver! June 24, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship the Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 23, 2017

 

Weather Data from the Bridge

Date: June 15, 2017                                                         Wind Speed: 24 kts

Time: 12:00 noon                                                             Latitude: 4332.4806N

Temperature: 15oC                                                          Longitude: 12446.5864W

 

Science and Technology Log

One of the lessons I want to take back to my students is not only a better understanding of some incredible career opportunities out there that they probably are not aware of, but also how some simple, almost by chance factors can influence our career choices.  For example, in speaking with PJ Klavon one of the ship’s Officers on Duty (OOD), I asked how he came about becoming a NOAA officer.  He said he was at a job fair and a NOAA staff member asked him if he would like to fish and captain a ship.  He answered “Yes” and here he is, having been part of the NOAA program the past 7 years.  I also met Sarah Donohoe, the ship’s navigator.  She commented that while in middle school she happened to read the hardcover book about being a Teacher at Sea that NOAA produced a few years ago.  It intrigued her then and now here she is, working her way up the chain of command having first earned a degree in Biology.

We headed out of the San Diego port on Monday, June 19 with the objective of traveling straight to Vancouver where we are to begin our main transects, collecting samples of fish throughout the night along a very specific path.  The transect lines have been used for several years so that the data will show how species and population sizes change over time.

Transect Lines are paths along which one counts and records occurrences of the species of study (e.g. sardines). It requires an observer to move along a fixed path, to count occurrences along the path and, at the same time (in some procedures), obtain the distance of the object from the path.  There will be more on this to follow when we get to actively fishing in a couple of days.

Consider the path on the diagram below (image from http://www.fao.org).

Samplings are taken at regular intervals.  The pathways are marked by longitude and latitude so they can be repeated as needed.

Since we are mostly just cruising to our starting point, there has not been much research going on.  The main activity has been to collect eggs from the water directly below the boat.  This water is channeled through a tube containing a mesh filter capable of capturing organisms and eggs that are 5 microns in diameter or larger.  There are two main egg types that the researchers are looking for – the eggs from anchovies and sardines.  They are monitoring how many they find in the samples being collected every 30 minutes.  This information can be compared to the water temperature, location of the vessel, and the size of schools of these organisms as observed via sonography.

CUFES  (Continuous underway fish egg sampler)  Approx. 640 L/min of water flows through the apparatus illustrated below.  The water flows through a tube that has the 5 micron mesh filter inside which collects the eggs, etc. found in that water sample. The sample is then rinsed into a petri dish, where the number of eggs of each species is identified and recorded.  The sample is then placed in a 5% formalin/salt water solution for preservation and later study.

CUFES (Continuous Underway Fish Egg Sampler)

The image below represents the eggs and multiple species of zooplankton that can be captured during one CUFES sample period.  The anchovy eggs are a very distinct oval shape.  See if you can find them in the sample below!

CUFES sample with anchovy eggs

 

CUFES sample with circular fish eggs

Personal Log

I arrived in San Diego last Sunday afternoon.  With the ship in port for the weekend, there were few staff on board so I had a quiet start to my trip. PJ Klavon, the Officer on Duty (OOD) did a fabulous job of keeping me company and patiently answered my questions about the ship, our itinerary, what a “typical day” looks like, and the various roles of the ship’s personnel.  As the evening progressed, I had a chance to meet a few other members of the crew.   It was great to have some time to take it all in, move into my stateroom, and even enjoy an off-ship dinner in town.  I watched the sunset in the harbor from the same deck level my room is located on.

Here’s me squinting into the morning sun for a selfie the morning of our launch.  My room is on the 0-1 level with a small window looking out the starboard side of the boat.

TAS Dawn White and NOAA Ship Reuben Lasker

I haven’t written much these first few days for two reasons: 1) there hasn’t been much activity to report on and 2) I have struggled to get my “sea legs” beneath me.  The weather north of us has not been cooperating very well and the wind/waves have been rather severe at times.  Yesterday winds blew constantly at about 30 knots with periods of time blowing 40-45 knots.  The waves were incredible.  Quite an experience attempting stairs in such conditions, or trying to fill your plate during lunchtime!  The ocean is much less angry today so I feel like I can look at a computer screen for any period of time.

I am staying up later this evening to begin the transition to our nighttime fishing schedule.  We will be trawling and working on evaluating our catch from about 8 p.m. to 8 a.m. starting Sunday night.  I am really looking forward to seeing what we catch!

Did You Know?

There are opportunities beyond the Teacher at Sea program for those of you interested in seeing what life upon a research vessel is like.  Students with a degree in the sciences and an interest in marine biology can volunteer to assist on a NOAA research trip much like the one I am on right now.  In fact, one of the members of the science team on this trip is a new graduate who is interested in getting involved in the NOAA program.  You can read more about NOAA and its opportunities by checking out the information available on their home page at NOAA Home.

 

 

————————————————————————————————————————————–

 

Dawn White: Almost Bon-voyage! June 14, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 14, 2017

Weather Data from the Bridge

I am still at home in North Branch, MN having just finished the school year as well as the graduation festivities for my youngest.  Whew!  The weather data from my bridge is as follows:

Date: June 14, 2017                                                         Wind Speed: NE 9 mph

Time: 3:45 p.m.                                                                Latitude: 45.5102° N

Temperature: 81oF                                                          Longitude: 92.9931° W

Science and Technology Log

I obviously have nothing to add to the science log at this point, but having observed the blogs from those that have gone before me this season, I will have plenty to report on in the very near future!  I am excited for this fabulous learning opportunity and look forward to sharing all that I discover with those back at home and elsewhere!

 

Personal Log

I join the ranks of many of my fellow Teachers at Sea (TAS) when I say that being able to use my biology degree to get involved in actual field research has been on my “bucket list” for a long time.  I entered the field of teaching later in life and via other career paths, have been blessed to have used my degree in many ways – in the field of medicine, in pharmaceuticals, and now as a classroom teacher.  Along the way I grew to develop a passion for the field of environmental science and knowing that no one has taught this subject in our district for several years, took up the charge to design a course for the upcoming school year.  This idea had been developing for a while and without many funds available in our district for professional development in this content area I began to look for ways to get engaged in environmental programming that I could use directly in my classroom.   Through my initial research into this area, I uncovered this exciting TAS opportunity.  I hesitated to apply at first – this was going to be quite a challenge and way out of my comfort zone –  but isn’t that what I am always encouraging my students to do?  Step out of the box?  Our science department team attended the National Science Teachers Association (NSTA) conference in Minneapolis last fall where I met a couple of team members from the NOAA Teachers at Sea program.  With several questions answered, I decided to apply and here I am – on my way in just a couple of days!  I thank my family and friends for their words of encouragement and support.  Here are the ones I want to thank the most:

 

The Whites, L to R: Patrick, John, Courtney, Dawn, Cassidy

Did You Know?

 I am already starting my vocabulary lists!  Stay tuned for terms like:

pyrosome

pelagic vs. non-pelagic

hydroscopy

otoliths

ichthyoplankton

David Amidon: All Aboard for Science, June 12, 2017

NOAA Teacher at Sea

David Amidon

Aboard NOAA Ship Reuben Lasker

June 2 – 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean off the California Coast

Date: June 12, 2017

 

Science Log: 

IMG_1908
A Chrysaora colorata  jellyfish with an anchovy

As I end my journey on the Reuben Lakser, I wanted to prepare a post about the people on the ship. As in any organization, there are a lot of different people and personalities on board. I interviewed 15 different people and, looking back, I am particularly amazed by how much “Science” drives the ship. The Chief Scientist is involved in most of the decisions regarding course corrections and the logistics. It is really promising as a science teacher — NOAA offers a place for those interested in science to enjoy many different careers.  

The people working on the ship can be grouped into broad categories. I have mentioned the science crew, but there are also fishermen, deck crew, engineers, stewards and, of course, the ship’s officers. If you like to cook, there are positions for you here. Same thing if you want to be an electrician or mechanic. Each of those positions has different responsibilities and qualifications. For example, the engineers need proper licenses to work on specific vessels. All of the positions require ship specific training. For some, working on the ship is almost a second career, having worked in the private sector or the Navy previously. Kim Belveal, the Chief Electrical Technician followed this path as did Engineer Rob Piquion. Working with NOAA provides them with a decent wage and a chance to travel and see new places. For young people looking to work on a ship, these are great jobs to examine that combine different interests together. IMG_1930

All of the officers on the ships are members of the NOAA Commissioned Officer Corps, one of the nation’s seven uniformed services. They have ranks, titles and traditions just like the Navy and Coast Guard. Commander (CDR) Kurt Dreflak, the Commanding Officer, or CO and Lieutenant Commander (LCDR) Justin Keesee, the Executive Officer, or XO, are in charge of everything that happens on the Reuben downloadLasker. To reach these positions, someone must work hard and be promoted through the NOAA Corps ranks. They make the ultimate decisions in terms of personnel, ordering, navigation, etc. The XO acts as most people think a First Mate would work. What impressed me was how they responded when I asked about why they work for NOAA and to describe their favorite moment at sea.  They both responded the same way: NOAA Corps provides a chance to combine science and service – a “Jacques Cousteau meets the Navy” situation. They also shared a similar thought when I asked them about their favorite moments at sea – they both reflected about reaching the “Aha” moment when training their officers.  This is definitely something I can relate to as a teacher.

Other NOAA Corps officers have different responsibilities, such as the OPS or Operations Officer, and take shifts on the bridge and on the deck, driving the ship, coordinating trawls and keeping the ship running smoothly in general. Most of the NOAA Corps has a background in marine science, having at least a degree in some science or marine discipline. When I asked them why they decided to work for NOAA, the common response was that it allows them to serve their country and contribute to science. Again, this is an awesome thing for a science teacher to hear!

IMG_1906
A Butterfish

To emphasize how important science is to the organization, two NOAA Corps officers, LTJG Cherisa Friedlander and LTJG Ryan Belcher, are members of the science crew during this leg of the Juvenile Rockfish Survey. They worked with us in the Science Lab, and did not have the same responsibilities associated with the ship’s operations.

 

Cherisa provided a lot of background about the NOAA Corp and the Reuben Lasker  in particular. I am including her full interview here:

  • What is your name?
    • Lieutenant Junior Grade Cherisa Friedlander
  • What is your title or position?
    • NOAA Corps Officer/ Operations Officer for the Fisheries Ecology Division in Santa Cruz,CA
  • What is your role on the ship?
    • I used to be the junior officer on board, now I am sailing as a scientist for the lab. It is kind of cool to have sailed on the ship in both roles! They are very different.
  • How long have you been working on the Reuben Lasker?
    • I worked on board from 2013-2014
  • Why did you choose to work on the Lasker?
    • I originally listed the RL as one if the ships I wanted after basic training in 2012 because it was going to be the newest ship in the fleet. It was very exciting to be a part of bringing a new ship online. I got to see it be built from the inside out and helped order and organize all of the original supplies. The first crew of a ship are called the plankowner crew of the ship, and it stems from olden times when shipbuilders would sleep on the same plank on the deck while they were building the ship. It is a big task.

      13918058190_741d909766_o
      Cherisa (far right) when the Reuben Lasker was commissioned From: https://www.omao.noaa.gov/learn/marine-operations/ships/reuben-lasker
  • What is your favorite moment on the ship or at sea?
    • I was the first Junior Officer the ship ever had and got to plan and be on board for the transit through the Panama Canal!
  • Why do you work for NOAA?
    • I love my job! I come from a service family, so I love the service lifestyle the NOAA Corps offers while still incorporating science and service. I like that every few years I get to see a new place and do a new job. Next I head to Antarctica!
  • If a young person was interested in doing your job someday, what advice would you give them?
    • Explore lots of options for careers while you are young. Volunteer, do internships, take courses, and find out what interests you. The more activities you participate in, the more well rounded you are and it allows you to find a job you will love doing. It is also appealing to employers to see someone who has been proactive about learning new ideas and skills.
  • Is there anything else you’d like to share about your work or experiences at sea?
    • Working at sea can certainly be challenging. I can get very seasick sometimes which makes for a very unhappy time at sea. It can also be hard to be away from family and friends for so long, so I make sure to spend quality time with those people when I am on land. 🙂

 

IMG_1901
Wrapping up a trawl – measuring & bagging

The remainder of the science crew is at different points in their careers and have followed different paths to be a part of this cruise. Students motivated in science can take something from these stories, I hope, and someday join a field crew like this.   

San Diego red crabs last haul 1703.JPG
Last Haul- off coast of San Diego  Photo by Keith Sakuma

Chief Scientist Keith Sakuma has been part of the Rockfish Survey since 1989. He started as a student and has worked his way up from there. Various ships have run the survey in the past, but the Reuben Lasker, as the most state-of-the-art ship in the fleet, looks to be its home for the near future.

IMG_1910
An octopus

Thomas Adams is an undergraduate student from Humboldt State University. He has kept his eyes open and taken advantage of opportunities as they come up. He has been part of the survey for a few years already and looks to continue his work through a Master’s degree program.

Maya Drzewicki is an undergrad student from the University of North Carolina – Wilmington. She was named as a Hollings Scholar -in her words this is: “a 2 year academic scholarship and paid summer internship for college students interested in pursuing oceanic or atmospheric sciences. I am a marine biology major and through this scholarship program I have learned so much about ocean sciences and different careers.”

IMG_1900
Measuring Northern Lampfish

Rachel Zuercher is a PhD student associated with the University of California- Santa Cruz. She joined the survey in part because the group has provided her samples in the past that she has used for her research.

Mike Force is a professional birdwatcher who was able to make a career out of something he loves to do. He has been all over the globe, from Antarctica to the South Pacific helping to identify birds. As a freelance contractor, he goes where he is needed. His favorite time at sea was also a common theme I came across- there is always a chance to see something unique, no matter how long you have been on ship.

 

Ken Baltz is an oceanographer who ran the daytime operations on the ship. He was associated with NOAA Fisheries Santa Cruz lab – Groundfish Analysis Team. As advice to young people looking to get in the field, he suggests they make sure that they can handle the life on the ship. This was a common theme many people spoke to – life on a ship is not always great. Seas get rough, tours take time and you are working with the same group of people for a long time. Before making a career of life on a ship, make sure it suits you!

 

Personal Log

Sunday, June 11th

I experienced a truly magical moment on the Flying Bridge this evening as we transited off the coast near Santa Barbara. For a good 20 minutes, we were surrounded by a feeding frenzy of birds, dolphins, sea lions and humpback whales. It was awesome! The video below is just a snippet from the event and it does not do it justice. It was amazing!

 

 

 

Monday, June 12th

Sad to say this is my last night on the ship. We had plans to do complete 4 trawls, but we had a family of dolphins swimming in our wake during the Marine Mammal Watch. We had to cancel that station. After we wrapped up, it was clean up time and we worked through the night. The ship will arrive in San Diego early tomorrow morning.

Thank you NOAA and the crew of the Reuben Lasker for an awesome experience!!!

 

 

 

David Amidon: Back to Work, June 10, 2017

NOAA Teacher at Sea

David Amidon

Aboard NOAA Ship Reuben Lasker

June 2 – 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean off the California Coast

Date: June 10, 2017

Weather Data: 

Latitude: 33 degrees, 43 min North;  Longitude: 119 degrees, 32 min West

Air Temp: 16.7 C    Water Temp: 16.9 C     Wind Speed: 27 knots

 

 

 

Science Log

After our quick stop into port, we were back to the sorting last night.

IMG_1666
Sorting tables ready for the night

I will take you though a step-by-step account of the sort.

  • A science crew member reports to the Bridge for the 30 min Marine Mammal Watch. The fishermen ready the net.
  • We arrive at the Station. Science crew goes on deck for the Outdoor Marine Mammal Watch. The fishermen put the net in the ocean and begin trawling.
  • After a 15 minute trawl, the net is hauled in and the Marine Mammal Watch ends.
  • The crew brings the sample collected in a bucket into the Science Lab.
  • Based on the size of the catch and the organisms present, the crew determines an appropriate sample size. This time we went with a 250 ml sample as there were a TON of small pyrosomes. 

  • We sort based on visual identification. 

  • People sorting will call out their counts of each species and record the numbers collected.
  • Isolate a sample of krill to be specifically analyzed. They determine the species in the sample and number of each. 

  • Determine a second sample size to analyze. At each subsequent sample, we will stop counting specific organisms, such as tonight when we stopped counting the pyrosomes because we had enough data to extrapolate a value for the number collected. Then we stopped counting anchovies, etc. until we are just looking for outliers, or creatures in such low abundance an estimate would not be acceptable.

 

  • Repeat the steps until we have gone through the entire catch.
  • Afterwards, information is logged into the database and representative samples are measured and recorded.

    IMG_1709
    Sorting the catch
  • The last step is to prepare samples for onshore analysis. Many labs have a standing request if samples are available, such as 5 Hake or a sample of anchovies. Specifically, the juvenile rockfish will undergo DNA analysis as well as having otoliths removed for further analysis. Basically, fish grow these little ear bones with rings like a tree. The more rings, the longer a fish has been alive. Therefore, the researchers can determine the age and growth rates of the fish based on these features. 

img_1719.jpg
An Argonaut – basically an octopus with a shell

IMG_1537
A Pyrosome under the microscope. This is really a COLONIAL organism, not truly multicellular.

 

Personal Log

Thursday, June 8th

We arrived in port today, so nothing on the science end to report. As we conducted the trawls the night before, I was still on the night schedule and missed out on a chance to explore San Diego. However, we did go to dinner with the other science personnel that work the daytime shifts, which was nice.

Friday, June 9th

The repairs went well and we returned to the ocean. We arrived at a station just after midnight and worked on 3 trawls. Waves started picking up during the shift. It is supposed to be windy again, which means the waves action will increase too.

Saturday, June 10th

Did I mention the winds were going to pick up? Wow. They were right – and tomorrow won’t be any better. I put the patch back on, which is unfortunate because my major side effect is that it really makes me tired. Or it could be that I have a tendency to visit the Flying Bridge to watch the sun come up.

IMG_1736
View of sunrise from the Flying Bridge

Tonight we caught adult anchovies – and a lot of them. We ended saving a lot of the catch for other labs and for bait.

 

DID YOU KNOW?

At night, the officers piloting the ship keep all the lights off on the bridge. All displays are illuminated with red lights. In this way, the people on the bridge will keep their eyes adjusted to the dark and they will be better prepared to spot potential problems on the water.

IMG_1505
At night, bridge displays are illuminated with only red light, which keeps officers’ eyes better adjusted to the dark.

 

David Amidon: Science @ Sea, June 8, 2017

NOAA Teacher at Sea

David Amidon

Aboard NOAA Ship Reuben Lasker

June 2 – 13, 2017

Mission: Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean off the California Coast

Date: June 8, 2017

 

 

 

Science and Technology Log

The main scientific research being completed on the Reuben Lasker during this voyage is the Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey and it drives the overall research on the ship during this voyage. Rockfish are an important commercial fishery for the West Coast. Maintaining healthy populations are critical to maintaining the fish as a sustainable resource. The samples harvested by the crew play an important role in establishing fishery regulations. However, there is more happening than simply counting rockfish here on the ship.

How does it work? Let me try to explain it a bit.

 

First, the ship will transfer to a specific location at sea they call a “Station.”

IMG_1590
Collection stations off the California Coast that the Reuben Lasker trawls annually.

For a half hour prior to arrival, a science crew member will have been observing for Marine Mammals from the bridge area. When the station is reached, a new observer from the science crew will take over the watch outside on the deck. The fishermen on the boat crew will then unwind the net and launch it behind the boat. It must be monitored from the deck in order to ensure it is located 30 m below the surface. Once everything is set, then the ship trawls with the net at approximately 2 knots. Everything must be consistent from station to station, year to year in order to follow the standardized methods and allow the data recorded to be comparable. After the 15 minutes, then the crew pulls the net in and collects the sample from the net. This process is potentially dangerous, so safety is a priority. Science crew members can not go on the deck as they have not received the proper training.

 

 

Timelapse video of the fishermen bringing in a catch. 6/7/17 (No sound)

 

Once the sample is hauled in, the science personnel decide which method will be used to establish a representative sample. They pull out a sample that would most likely represent the whole catch in a smaller volume. Then we sort the catch by species. After completing the representative samples, they will eventually stop taking counts of the more abundant organisms, like krill. They will measure the volume of those creatures collected and extrapolate the total population collected by counting a smaller representative sample. Finally, we counted out all of the less abundant organisms, such as squid, lanternfish and, of course, rockfish. After the sample is collected and separated, Chief Scientist Sakuma collects all of the rockfish and prepares them for future investigations on shore.  

 

 

A selection of species caught off the coast of San Clemente. These include Market Squid, Anchovies, Red Crab, King-of-Salmon (the long ribbonfish), and Butterfish, among others.

NOAA has used this platform as an opportunity. Having a ship like the Reuben Lasker, and the David Starr Jordan before that, collecting the samples as it does, creates a resource for furtAher investigations. During the trawls we have catalogued many other species. Some of the species we analyzed include Sanddab, Salp, Pyrosoma, Market Squid, Pacific Hake, Octopus, Blue Lanternfish, California Headlightfish and Blacktip Squid, among others. By plotting the biodiversity and comparing the levels we recorded with the historic values from the stations, we gain information about the overall health of the ecosystem.

What happens to the organisms we collect? Not all of the catch is dumped overboard. Often, we are placing select organisms in bags as specimens that will be delivered to various labs up and down the coast.

IMG_1519
Collecting subsets for classification

This is a tremendous resource for researchers, as there is really no way for many of these groups to retrieve samples on their own. Rachel Zuercher joined the crew during this survey in part to collect samples to aid in her research for her PhD.

Along with the general species analysis, the team specifically analyzes the abundance of specific krill species. Krill forms the base of the marine ecosystems in the pelagic zone. They are a major food source for many species, from fish to whales. However, different krill species are favored by different consumers. Therefore, an extension of the Ecosystem Assessment involves determining the abundance of specific krill species. Thomas Adams has been responsible for further analyzing the krill collected. He counts out the representative sample and use microscopes to identify the species collected based on their physical characteristics.  

Additionally, at most stations a Conductivity, Temperature and Depth cast (CTD) is conducted. Basically, bottles are sent overboard and are opened at a specified depth.

IMG_1589
The apparatus for collecting water during CTD casts

Then they are collected and the contents are analyzed. Often these happen during the day prior to the Night Shift taking over, with final analysis taking place after the cruise is complete. This data is then connected with the catch numbers to further the analysis. Ken Baltz, an oceanographer on the ship, uses this information to determine the production of the phytoplankton based on the amounts of chlorophyll detected at depth. This is an important part of the food web and by adding in this component, it makes the picture below the surface clearer.

 

 

img_1488.jpg
NOAA Corps’ Ryan Belcher completing the CTD collection for a station.

Finally, there are two more scientific investigations running as we cruise the open seas during the daylight hours. Michael Pierce is a birdwatcher from the Farallon Institute for Advanced Ecosystem Research who is conducting a transect survey of Seabirds and Marine Mammals. He is based on the Flying Bridge and catalogs any birds or marine mammals that pass within 300 meters of the ship’s bow. Although difficult, this study attempts to create a standardized method for data collection of this nature. As he explained, birds are more perceptive than we are – what looks like open ocean really varies in terms of temperature, salinity and diversity below the surface. Therefore, birds tend to favor certain areas over others. These are also important components of the food web as they represent upper level predators that are not collected in the trawl net. Also, on the bottom of the ship transducers are installed that are able to gather information through the EK60 Echosounder. This sonar can accurately identify krill populations and schools of fish underwater. Again, adding the data collected from these surveys help create a much more complete understanding of the food web we are analyzing out on the open sea.

 

IMG_1591
Sonar data from the EK60

Personal Log

 

Sunday, June 4

The waves were very active all day. Boy am I glad I’m wearing the patch. There was so much wind and the waves were so high, there was a question if we were even going to send the net out. High wind and waves obviously add an element of concern, especially for the safety of the boat crew working the net.

I spent some of the day up on the Bridge- the section of the boat with all of the navigation equipment. The Executive Officer (XO) gave me an impromptu lesson about using the map for navigation. They have state-of-the-art navigation equipment, but they also run a backup completed by hand and using a compass and straightedge just like you would in math class. Of note – the Dungeness Crab season is wrapping up and many fishermen leave traps in the water to catch them. When the boat is passing through one of these areas, someone will act like a spotter so the boat can avoid getting tangled up. When I was looking with him, we saw some whale plumes in the distance.

We did launch the net twice Sunday night, collecting a TON of krill each time. In the first batch, we also caught some squid and other small prey species. The second trawl was very surprising. Despite cutting it down to a 5 minute trawl, we caught about the same amount of krill. We also caught more squid and a lot of young salmon who were probably feeding on the krill.  

IMG_1493
That is a ton of krill!

 

Monday, June 5

I am getting used to the hours now – and do not feel as guilty sleeping past 2PM considering we are up past 6 in the morning. It will make for a tricky transition back to “the real world” when I go home to NY!

During the day, spent some time just talking with the science folks and learning about the various tasks being completed. I also spent some time up on the Flying Bridge as they said they had seen some Mola, or Giant Ocean Sunfish (although I did not see them). I did have a chance to make a few videos to send to my son Aiden’s 3rd grade teacher back in NY. It did not work out as well as I had hoped, but considering we are out in the middle of the ocean, I really can’t complain about spotty wi-fi.

Once we started the night shift, we really had a good night. We completed work at 5 stations – which takes a lot of time. We saw a LOT of biodiversity last night – easily doubling if not tripling  our juvenile rockfish count. We also saw a huge variety of other juvenile fish and invertebrates over the course of the night. We finally wrapped up at 6:30 AM, what a night!

Tuesday, June 6th

We found out today that we will need to dock the ship prematurely. There is a mechanical issue that needs attention. We are en route straight through to San Diego, so no fishing tonight. However, our timing will not allow us to reach port during the day, so we will get a chance to sample the southernmost stations Wednesday night. Thus is life at sea. The science crew is staying on schedule as we, hopefully, will be back on the water this weekend.

Wednesday, June 7th

After a day travelling to San Diego, we stopped at the stations near San Clemente to collect samples. Being much farther south than before, we saw some new species – red crabs, sardines and A LOT of anchovies. Closer to shore, these counts dropped significantly and krill showed up in numbers not seen in the deeper trawl. Again, I am amazed by the differences we see in only a short distance.

 

More from our anchovy haul- the bucket contains the entire catch from our second trawl, the tray shows how we analyzed a subset. Also on the tray you find Red Crab, Salps, Mexican Lanternfish and Krill.