Susan Dee: From the Bottom of the Food Chain to the Top, June 3, 2018

NOAA Teacher at Sea

Susan Dee

Aboard NOAA Ship Henry B. Bigelow 

May 23 – June 7, 2018

Mission:  Spring Ecosystem Monitoring Survey

Geographic Area of Cruise: Northeastern Coast of U.S.

Date:  June 3, 2018

Weather From Bridge

Latitude: 43°47.1′
Longitude: 068°40.41′
Sea Wave Height: 4-6 ft
Wind Speed:  20 knots
Wind Direction:  NE
Visibility:  10
Air Temperature:  10°C
Sky:  few clouds

 

Science and Technology Log

Birds on water

Sea Birds

As the Henry B. Bigelow traverses the Gulf of Maine sampling the microorganisms at stations, another pair of scientists are observing bird and marine mammal populations. Much of my time between sampling stations, I head up to the flying bridge and join  Nicholas Metheny and John Loch, Seabird Observers, on the lookout for the seabird and marine mammals. The seabirds most commonly observed in the Gulf of Maine are the Wilson Storm Petrel and the Sooty Shearwater.  These two species account for 60% of the birds seen.  These pelagic seabirds live offshore and only return to land to breed, often on remote islands.

birders on deck

Seabird Observers on Observation Deck

 

South Polar Skua

South Polar Skua (photo by Nicolas Methany)

All the samplings taken with bongo nets are samplings of the producers and primary consumers, the small organisms in the food chain.  On the observation deck, the fish and marine mammals that rely on a healthy bottom food chain are observed.  Spotting  marine mammals adds much to the excitement of the day. The bridge will announce a sighting and if possible, one gets to the flying bridge to see the wildlife.   One of the first sightings was of humpback whales in the distance, followed by sperm whale and pilot whale sightings.

Sperm Whale

Sperm Whale (Photo by Nicholas Methany)

 

Short Beaked Common Dolphin

Short beaked Common Dolphins (Photo by Nicholas Methany)

 

The most fascinating sightings were of Mola Mola- Ocean Sunfish.  They were spotted often and very close to the ship.

Mola Mola  - Ocean Sunfish

Mola Mola – Ocean Sunfish (Photo by Nicolas Methany)

 

Blue Shark

Blue Shark (Photo by Nicholas Methany)

 

Personal Log

The science crew is kept busy sampling at each station.  There is some down time steaming from station to station at 12 knots but it is enjoyable. I spend the down time talking to crew and scientists.  Chief Scientist Jerry Prezioso has been an awesome mentor and photographer! I am learning so much and am so excited to bring it back into my classroom next year. The seas have been relatively calm but the forecast for the end of the cruise is not favorable for sampling due to high winds. If winds are over 30 knots, the crew has difficulty deploying the nets so sampling is suspended.  The science crew has taken samples from 114 stations.  These samples will be sent off to be analyzed at different labs.

Filled jar samples

Samples collected, boxed and ready to be shipped to analyze

work deck

Science Lab Work Deck

Deck Crew

Andrew and AJ helping deploy instruments

The deck crew and scientist party have been a pleasure to work with. I have learned so much from each of them

Science Party

Science Party Day Crew: Jerry P, Mark, and Chris T

Route map shows path of cruise

Final Day of Cruise Route map shows path of cruise

The cruise was cut short by two days due to high winds.  The last sampling station was in Cape Cod Bay. Tomorrow the ship will  head back to port through the Cape Cod Canal, ending a fantastic cruise.  I am so excited to see the data from  all these samples.  Thanks Teacher at Sea program for a great adventure!

Teacher at Sea Susan Dee

Teacher at Sea Susan Dee

Christopher Tait: Suburban Wilderness, March 27, 2017

 NOAA Teacher at Sea

Christopher Tait

Aboard NOAA Ship Reuben Lasker

March 21, 2017 to April 7, 2017

Mission: Spring Coastal Pelagic Species Survey

Geographic Area of Cruise: Pacific Ocean from San Diego, CA to San Francisco, CA

Date: March 27, 2017

Weather Data from the Bridge

Time 3:35 PDT,

Current Location: near San Nicolas Island, Latitude 33.3 N Longitude -119.2 W

Air Temperature 16.0 oC  (59.5 oF)

Water Temperature 14.9 oC  (58.6 oF)

Wind Speed 19 kts

Barometric pressure 1014.64 hPa

IMG_4674

San Nicolas Island from the Reuben Lasker

Science and Technology Log

Acoustic Trawl

There is a lot of advanced equipment that is used to do a survey of fish that spans the coast of California. The Reuben Lasker has been fitted with state of the art echo-sounders (Figure 1), which send out pulses of sound that bounce off objects and return to the ship in the form of backscatter.  Looking at the backscatter data you can create a profile of the water column and see a variety of organisms swimming beneath the ship.  The target species for the research is the Northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax).  The schools of fish are detected using a range of frequencies.  Looking at graphical representations of these data, or echograms, you can see the bottom as an area with strong echoes and, at times, you can see an area of high-intensity back scatter higher in the water column such as a school of fish or an aggregation of krill or plankton (figure 2).  This would be a school of fish, krill or other organisms.  The geographic location of the school is marked for a return by the ship at night for collection using a trawl.  To conduct a thorough survey, the ship travels back and forth between the coast and a predetermined distance out to sea across the predicted habitat of the target species (Figure 3.)  Scientists referred to this as “mowing the lawn.”

 Figure 1: Reuben Lasker Acoustic-Sampling Beams

Reuben Lasker Acoustic Sampling.png

©2014 Oceanography, Volume 27, number 4, Zwolinski et al.

Figure 2: An example echogram, showing the seabed and various sound scatterers in the water column.

Echogram

Figure 3 : Survey Map of the Spring Coastal Pelagic Species Survey 2017

California Sampling Map.png

Scientist Profile:

The Cruise Leader, Kevin Stierhoff, is a fisheries scientist who works for the Advanced Survey Technologies group at NOAA Southwest Fisheries Science Center (SWFSC) in San Diego, CA.  Not only has he been effectively managing this complex science expedition, he has gone out of his way to make me feel welcome and a part of this scientific endeavor.

 

How did you become a NOAA scientist?

I earned a B.S. in Biology, a Ph.D. in Marine Studies, and completed several postdoctoral research appointments prior to getting hired by NOAA. The work that my colleagues and I do at the SWFSC is very interdisciplinary, and the variety of educational and research experiences that I’ve had prepared me become a researcher at NOAA.

What do you like best about your career?

I consider myself lucky to have a job with a variety of duties. Not only do I spend time in the office analyzing data, but I also get to spend time at sea conducting survey and collecting data. When I’m not using acoustics to study pelagic fishes that migrate between Canada and Mexico, I use remotely operated vehicles (ROVs, or undersea robots) to survey endangered abalone that live on rocky reefs in the deep sea. When I’m not at sea, I’m analyzing the data that we collected at sea to communicate the results of our work.

What advice would you give to a student who would like to follow a similar career path?

Increasingly, a research career in marine biology requires a graduate degree to allow for maximal career advancement. If possible, take some time after undergrad to work in a job related to your career goals. This will allow you to focus your interests before choosing a graduate program, or perhaps discover that you don’t actually like that career path (better to find out sooner than later!) or that you don’t require a graduate degree to do the job that really interests you (which will save you lots of time and money). Most importantly, choose a job that you look forward to going to every day.

 

Personal Log

It is dark out, but as I look down from high atop the ship through an open window from the bridge, the lights of Long Beach reflect on the placid expanse of ocean and I come to a great moment of reflection.  One of the busiest ports in the world is just off in the distance and I am looking for marine mammals in this suburban wilderness.  Beside the glow of humanity, nature continues on.

IMG_4638.JPG

Long Beach, California

I have been mostly helping with analyzing organisms that came up in the trawl at night, so my work schedule has moved to a 6 pm to 6 am.  I am struck by how hardworking, dedicated, and driven all members of this expedition are.  The crew, scientists, and NOAA Corps collaborate to continuously run surveys 24 hours a day, 7 days a week.  I am enjoying working at night now even though it took me a few days to get use to all of the adjustments in my schedule.  I particularly enjoy doing the marine mammal watch from the bridge.  It gives you this aerial point of view of all the action the NOAA Corps expertly navigating the ship and coordinating operations, the deck crew masterfully deploying nets and equipment, and the scientists excitedly exploring the organisms we collect.

Catch of the Day!

Haliphron atlanticusThis strange creature is a gelatinous octopus, whose body resembles a jellyfish, but when you look close, you see eyes looking at you!

Octipus Gelatinous.png

Haliphron atlanticus

Boreal Clubhook Squid (Onychoteuthis borealijaponicus)

IMG_4630.JPG

Boreal Clubhook Squid (Onychoteuthis borealijaponicus)

Ocean Sunfish (Mola mola) is the strangest fish I have ever seen! It is one of the heaviest bony fish, surprisingly from a diet high in jellyfish and salps. We caught a small and large sunfish.

IMG_4607.JPG

TAS Chris Tait holds an Ocean Sunfish (Mola mola)

IMG_4576

Measuring the ocean sunfish…

IMG_4579

Slide to Freedom!

Pacific Saury (Cololabis saira): This fast looking fish hunts plankton at night near the surface.

img_4573.jpg

Pacific Saury (Cololabis saira)

Curlfin Turbot (Pleuronichthys decurrens): This juvenile flatfish rises to the water surface at night to hunt zooplankton.  Flatfish have an eye that migrates from one side of their body to the other as they develop.

IMG_4618.JPG

Curlfin Turbot (Pleuronichthys decurrens)

Alexandra Keenan: Singing Whales, June 23, 2012

NOAA Teacher at Sea
Alexandra Keenan
Onboard NOAA Ship Henry B. Bigelow
June 18 – June 29, 2012

Mission: Cetacean Biology
Geographical area of the cruise: Gulf of Maine
Date: June 23, 2012

Weather Data from the Bridge:
Air temperature: 14.4° C
Sea temperature: 13.3° C
Wind speed: 10.5 knots
Wind direction: from the SW

Science and Technology Log:

Whales are social creatures with a remarkable ability to communicate with one another over long distances using sounds. Male humpback whales, for example, can sing for days on end over mating grounds to attract the ladies, or over feeding grounds such as the ones on Georges Bank (where we are!) The acoustic behavior of sperm whales may even provide for distinct cultures within the species.

Listen: Song of a humpback whale (courtesy Denise Risch)

Given these vocalizations, it is possible to monitor the distribution and behavior of acoustically active marine animals using special recording units called “marine autonomous recording units” (MARUs). For the past few days, we have been zig-zagging and loopty-looping around Georges Bank to retrieve several of these MARUs (track our ship’s course here).

MARUs are little buoys designed to sit on the ocean floor and record all sounds within a certain range of frequencies. The MARUs we retrieved during this cruise have been on Georges Bank since the March cruise on the Delaware II (see Chief Scientist Allison Henry’s blog post).

To retrieve a buoy:

1. An acoustic signal (a sound) is sent out from a speaker lowered into the water that basically says to the buoy, “Hello! Are you there?” Listen: Signal used to contact buoy

pop-up buoy retrieval

Bioacoustician Denise Risch sends a signal to the MARU.

2. The buoy can then respond with another acoustic signal, “Yup!”

listening for the pop-up buoy

Research analyst Genevieve Davis and intern Julia Luthringer listen for a response from the MARU.

3. Upon hearing confirmation that the buoy is indeed in the area, the bioacoustician can send another signal to the buoy telling it to burn the wire anchoring it to the sandbags on the ocean floor.

4. The buoy is free! It floats to the sea surface and is retrieved from the side of the ship.

Denise Risch, Genevieve Davis, and Julia Luthringer wait for the ship to approach the MARU (small yellow dot in ocean).

5. Data is retrieved from flash memory on the buoy for further analysis.

MARU

MARU ready for data retrieval.

What will these MARUs be able to tell bioacousticians (scientists that study sounds produced by living organisms)?

Lots!  Using passive acoustic monitoring (recording the sounds that marine mammals make), scientists can study the distribution of acoustically active mammals and can couple distribution data with environmental measurements of the area to identify relationships between conditions on the ocean and acoustic activity. Scientists can also distinguish whale species based on their sounds, so certain species of whale can be monitored.

Physics break: Why do you think whales have evolved to use sound rather than sight or smell to communicate underwater?

Personal Log:

I have been amazed by the amount of maintenance being done while we are underway. Even with a relatively new ship like the Bigelow, there is always something to be done, whether it be grinding away at the deck for subsequent repainting or fixing a malfunctioning pump.

Maintenance on the Bigelow

Deck crew member Tony repaints the deck after grinding off the old paint while we are underway.

We spend most of our days out on the fly bridge watching for whales, and mostly we see whales.

whale watching

Equipment used for watching for whales from the flybridge.

However, once in a while a shark, turtle, or mola mola floats by. I really get a kick out of the mola molas. They look like they could be the subject of a Pokemon trading card– a big flat fish head with fins sticking out. They eat jelly fish and have few natural predators. Adults weigh an average of 2200 lbs!

mola mola

The other-worldly mola mola.

A short video of one in action below:

Finally, I wanted to introduce everyone on the science team for this cruise:

aglow following a blue whale sighting

From left to right: Me, Scientist Pete Duley, Bioacoustician Denise Risch, Chief Scientist Allison Henry, Scientist Jen Gatzke, Research Analyst Genevieve Davis, and Intern Julia Luthringer (photo courtesy CO Zegowitz)

Jennifer Fry: March 14, 2012, “Pi Day” 3.14, Oscar Elton Sette

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship, Oscar Elton Sette
March 12 – March 26, 2012

Mission: Fisheries Study
Geographical area of cruise: American Samoa
Date: March 14, 2012

At Sea: Pago Pago, American Samoa

Science and Technology Log:

My current assignment aboard ship is helping the scientists with the “Nighttime Cobb Trawling”  We conduct two trawls in the night, the first one beginning around 9:00 p.m. and the second one at 1:30 a.m..  After each trawl which lasts 2 hours, the nets are brought up and we sort the catch.  The scientists are looking for migration patterns and types of sea life in this region.  Not much data has been collected  in American Samoa.

There are 3 other  scientists working on this project.

John Denton, is from the Natural History Museum in New York.

Aimee Hoover works for University of Hawaii.

Sione “Juice” Lam Yuen and Faleselau “House” or “Fale” Tuilagi are from the Fisheries Dept .in American Samoa.

The two trawls exaimine five species of fish:

  1. Myctophid fish
  2.  non-myctophid fish
  3.  crustaceans
  4.  gelatinous zooplankton
  5.  cephalopods

During one of the trawls the other night, they think they found a new species of myctophid fish. These fish have photophores which make them glow in the dark.  They are anywhere from 4-5 inches to very tiny, 1 inch.

Myctophids are among the most numerous fish in the sea. They have specific light producing organs called photophores.

After 4 days on the  night shift, I’m getting into the groove.  Going to sleep at 6 a.m. and waking up at 1:00 p.m.

It’s crazy.  Last night we did 2 trawls for fish.  We caught a huge fish, approx 4 feet in diameter, called a Sharptail mola, Masturus lanceolatus or Sunfish.  The scientists and crew were able to  free him and let him go back into the ocean. Click here to see the exciting video of the release of the Mola: Releasing the  Sharptail mola, Masturus lanceolatus/ Sun-fish

During tonight's Cobb trawl a sharp-tailed mola was caught in the net. The crew and scientists aided in freeing the fish allowing him to swim away. Mola can reach 100 years old.

When conducting a scientific experiment it is very important to maintain the same procedure or protocol.  This allows the scientist to measure only that which he/she is interested in, keeping all constants the same.

Here is the procedure or protocol for each Midwater Cobb Trawl:

1. Secure the TDR and Netminds tracking devices to  the trawl net Let out the trawl net, timing for 30 minutes at 350 meters of “wire out.”

2.  Ask the bridge and trawl net operator to raise the net line to 100 meters “wire out.”

3.  Time the trawling for additional 30 minutes.

4.  Once the trawl net has been hauled in:

5. Cut away the TDR and Netminds tracking devices: Their data is read on the computer.   Helping scientists determine temperature, depth   for each trawl.

6. Working together, scientist and crew members collect the specimens caught is the Cobb net.

7. The fish collected are taken to the wet lab and strained into a net that is in turn poured into examining trays.

8. Scientists then collect data including: weight (volume & mass), length (centimeters) ,  and count the number of each species recording the

minimum and maximum lengths.

9.   The scientists preserve each group of fish in ethanol/ ethyl alcohol  which eases transportation and preserves the fish for further study back in the lab.

Personal Log:

I’ve switched to working the night shift, tonight being the third night.  It’s getting a little easier, although we all still get punchy around 3-4 a.m.  I am scheduled to work nights until next Monday.  We will continue counting the fish, setting the trawl nets out, imputing the data, preserving the fish.  All very interesting work.

Animals Seen:

Sharptail mola, Masturus lanceolatus fish

Moorish Idol fish

Two Moorish Idol fish were caught in the Cobb Trawl net. Their colors were brilliant including their unique dorsal filament.

Caitlin Thompson: A Calm Day at Sea, August 9, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean off the Oregon and Washington Coasts
Date: August 9, 2011

Weather Data from the Bridge

Bringing in the net

Bringing in the net

Lat. 47 degrees 42.4 N
Long. 125 degrees 51.3
Present weather: cloudy
Visibility: 10 n.m.
Wind direction: 322
Speed 18 kts
Sea wave height: 3-4 feet
Swell waves – direction: 320
Swell waves – height: 4-5 feet
Sea water temperature: 16.7 degrees C
Sea level pressure: 1019.7 mb
Temperature – dry bulb: 14.9 degrees C
Temperature – wet bulb: 13.2 degrees C

Science and Technology Log

Mola Mola

A mola mola, like the one I saw from deck.

Today the ocean was crystal clear and the sky partly clear. I saw amazing creatures floating on the still surface of the water — salps, mola mola, and jellies. Mola mola, also called sun fish, are flat and float on the surface of the water, seeming to sun themselves, eating jellyfish. The water was speckled with salps, identifiable by their small, jelly-like bodies and dark center. When Jennifer saw the salps, she groaned, explaining that their presence suggests a relaxation in the winds that drive upwelling. Less upwelling means fewer nutrients for the whole marine system. I spent the whole day trying to wrap my head around the fact that the slight winds I feel every day drive such an enormous system as coastal upwelling, and that one peaceful day could cause so many salps to be floating on the surface.

Black-footed albatross, like the one I saw

Black-footed albatross, like the one I saw

Usually there are enormous black-footed albatross all around the ship. Albatross, one of the biggest birds in the world, spend most of their lives at sea, coming to shore only to breed. The albatross I see may be nesting on remote Pacific islands, traveling many days to gorge themselves on fish off the West Coast before returning to their nests. They come to our waters because of all the fish here due to upwelling. An albatross can be away from the nest as many as seven days, returning to regurgitate fish from its stomach, which the chicks will eat. Like many seabirds, albatross fly extremely efficiently. They rise and sink repeatedly as they fly to use the energy from the wind. They also use the rising air that comes off of waves for more lift. I see them soaring without moving their wings, so close to the water that they disappear from view behind small waves. Before flapping, they seem to tilt upward, and even so, their wings appear to skim the water. A windless day like today is a hard day for an albatross to fly, so they stay on the water. I saw very few, all in grounded groups.

Tufted Puffin

Tufted Puffin

Instead of albatross, I saw many small diving birds, especially when we came close to the beautiful, jagged coast of the Quillayutte River and La Push, Washington. I saw tufted puffins in bright breeding plumage, surfacing on the water for a few minutes before bobbing back under for surprisingly long times. The day before we set sail, Shelby and I visited the Newport Aquarium, where we saw tufted puffins in the arboretum. We saw the puffins swim through the water in the arboretum, wings flapping as if they were flying. We told a volunteer we were headed to sea. She said to look for single puffins close to shore. This time of year, puffins are nesting in pairs, making nests in burrows in cliff faces this time of year. While one puffin stays in the nest, its mate goes to sea, eats its fill of fish, stuffs about another seven fish in its beak, and returns to feed its chicks. The puffins I saw certainly looked like they were hard at work hunting for fish.

Deploying the Tow Fish

Deploying the Tow Fish

Today I helped deploy two sonar devices that I haven’t seen before, a sub-bottom profiler called a tow fish, and an Expendable Bathythermograph (XBT). The tow fish is a sub-bottom profiler, meaning that it sends a signal to map the bottom of the ocean. The scientists on the acoustics team are using it to look for fish. We backtracked over a section where we fished yesterday and dragged the tow fish alongside the ship. The data from the tow fish will be analyzed later, and proofed against the information from the haul and the other sonars. As usual, the goal is to be able to use the data to identify specifies with more and more accuracy.

XBT

Alicia showing me how to launch the XBT

The XBT is a probe that measures the temperature of the water. Falling at a known rate, it sends the temperature back through two small copper wires, which can be graphed as a function of temperature vs. depth in order to find the temperature profile of the water. Because the XBT looks vaguely like a gun, Larry left earplugs and a mask out for me, warning me about the explosion I was about to make. However, Alicia was in charge. She said, “There’s a hazing that happens with the XBT. I’m a bad liar. You don’t need this stuff.” So I went out on deck in just a life jacket and hardhat, which are required when doing any operation on deck. Once the technology tech radioed that the XBT had fallen to the necessary depth, I broke the copper wires. They were so thin I could cut them by rubbing them between my fingers.

Shelby

Shelby taking algae samples

Shelby, my roommate and a student Western Washington University, showed me her work measuring harmful algal blooms (HAB). While algae and other phytoplankton are essential to marine ecosystem because as primary producers, some algae produce domoic acid. Domoic acid is toxic to marine life and humans. Using surface water collected outside the boat and pumped into a hose in the chemistry lab, Shelby filters the water and saves the filter paper for further analysis of domoic acid and chlorophyll. A NOAA scientist will compile her data in an effort to map HAB along the West Coast. Shelby is a volunteer, one of four college students who each collect the data for one leg of the journey.

Personal Log

Fish Prints

Rebecca teaching me to make fish prints from the yellow-tails we had caught

Life aboard the Shimada seems to suit me very well. Every time I ask a question, which is often, I learn something new, and every time I look outside, I see something I never saw before. Yesterday, I ran into Rebecca in a hallway. Excited, she said, “There’s a P3 about to launch a sonobuoy!” I asked her to repeat. She said, “There’s a P3 about to launch a sonobuoy!” I stared at her. She said, “A plane is dropping stuff. Go outside and watch.” We both had to laugh about that one. Outside, I quickly learned that a marine ship had called the bridge to ask if we would help with a mission to drop a sonobuoy. A sonobuoy is a  listening device. With a parachute attached, it drifts into the ocean, where it floats, using passive sonar to report the location of objects like submarines. The day was shockingly beautiful, so a number of us stood on the very top deck of the ship, called the fly bridge or, jokingly, the beach. We watched the airplane circling us and watched the drifting clouds and diving birds. Several people declared it the flattest water they had ever seen in these parts.

I am happy to say that, with beginner’s luck, I won the first match of cribbage, placing me in semi-finals, and have started staying up in the evenings playing cards with other people on board.

Julianne Mueller-Northcott, May 12, 2010

NOAA Teacher at Sea
Julianne Mueller-Northcott
Onboard R/V Hugh R. Sharp
May 11 – 22, 2010

NOAA Teacher at Sea: Julianne Mueller-Northcott
University of Delaware R/V Hugh R. Sharp
Mission:  Sea Scallop Survey: Leg III
Port of Departure: Lewes, Delaware
Location: Off the coast of Virginia
Date: May 12, 2010

Weather Data from the Bridge

Air temp: 13.72⁰C, 85% humidity, overcast

Science and Technology Log
When the dredge gets pulled up the ramp of the ship, I always strain to try to see past the chain and netting to see what amazing creatures might have gotten caught in the dredge.  I can see the pale-as–a-ghost face on the underside of skates and flounders.  The sea stars fall to the table in a big mound and you can see the crabs trying to climb the net.  And of course the scallops!  They get dumped out onto the table in a wave.  The pile of creatures undulates as organisms try to right themselves and seek cover.  Each dredge so far has been different.  Some are chock full of sea stars such as Asterias forbesii and Asterias vulgaris which we have at home, but by far the most abundant sea star species is Astropectin sp.   There was one dredge that was all sand dollars and they tumbled out onto to the deck, like hundreds of poker chips, hockey pucks and small frisbees.  I noticed that all of the fish in the dredge were green and then everything else started turning green. Apparently, sand dollars turn everything green! No one was quite sure why—this will be something to investigate once I get home.

So you can imagine how exciting it is to see hundreds (in some cases maybe thousands) of your sea friends, dumped out in front of you to examine!  I think about all the hours toiling at Odiorne Point with my students searching under rocks and peeling back algae in the intertidal zone looking for a hidden gem.  Here on the sorting table at the back of the boat there are so many species, so many things waiting to be discovered.  I think about my marine biologists at home and how excited they would be to have some of these critters for our tank!  (And while the thought has crossed my mind to try to kidnap some, that might be a difficult situation to explain going through security at the airport—a cooler full of crabs, sand dollars, sea stars and scallops!) The object here is not to study all the cool creatures for hours under a microscope which is what I would love to do (there isn’t even a microscope on the ship!) but instead, to sort.  My job, with 5 other people, is put out all the scallops and fish.  Those get measured and counted and everything else goes back into the water.  It all happens very quickly.  Because the goal is to do so many dredges in a relatively short amount of time, the faster you process everything the faster we can move on to our next sampling location, which means the more data that can be collected.  Also time is money on this high tech ship we are on.  For the scientists to use the R/V Hugh R. Sharp it costs $12,000 a day.  So it is imperative to work quickly to get the job done. But I am learning some tricks so that I can spend a little more time with the creatures I really want to check out.  I usually sneak a couple of neat things to photograph off to the side and after we are finished with the work at hand take a few minutes to study them.  And the scientists have figured out that when they have an organism that we haven’t seen yet, they have to show it to me before it gets tossed back overboard!

We were just pulling up a dredge last night when Ben pointed to the starboard side of the ship.  There in the starlight were about eight dolphins riding in the wake of the boat.  They were porpoising in and out of the water.  They were gray, with speckled black dots—we don’t have a mammal field guide on board—so I am not sure which species it was.  It was the first night that we could see stars, other than the sea star variety. I thought of Kat S. who was the first person who got me excited about the prospect of seeing stars at night from the boat.  Between the starlight and the spotlights on the ship, the sea below sparkled.  Even in the dark water you could see the water shimmer and change to a light green color, letting you know where the dolphins were just before they surfaced.  I have a list of top wildlife encounters in my life (swimming with whale sharks and eagle rays, saving stranded pilot whales in the keys, viewing humpbacks breech in a storm in the Bay of Fundy, nesting sea turtles Mexico, watching baby orcas play in the San Juan Islands, etc) but even with this list, watching the dolphins at night beneath the stars was pretty magical!

Captain Bill nonchalantly mentioned that he had seen an ocean sunfish (Mola mola) yesterday morning.  “What?!” I guess I hadn’t made it clear that I wanted to witness any such animal encounters.  I had told my students that the ocean sunfish was the one species I was really looking forward to seeing on this trip.  I had seen them in various aquariums but never in the wild. The ocean sunfish has always seemed to me a freak of natural selection.  How could something so big, clumsy and awkward looking have survived evolution?  Something about the way it lazes around without a care in the world has always appealed to me.  This morning, I took my usual watch on the bow of the boat (as I do every morning before my watch begins at 12:00). There, about 50 ft from the boat, I saw two large fins, flopping this way and that without an apparent purpose.  It was Mola mola! We didn’t get very close and our boat was traveling fast but through my binos I at least got a glimpse of its round, disc body.  And a couple of hours later, I saw another—this one a little further away.  So I know there are lots out there—now the goal is to get an up-close view and hopefully a photo!

Personal Log
It is pretty awesome now that the weather is brightening and we are seeing some beautiful species!  I love being on the top decks watching the sunlight dance on the water.  I love that everywhere I look all I see is ocean.  Yesterday we saw many other ships on the water—but today it is really just us steaming along. At first it was a little hard to get used to seeing lots of dead fish in the dredge and lots of animals that don’t survive the sampling.  There is a lot more by catch than I would have expected. It is going to take a little more time for me to process my thoughts about it all, but I am starting to understand that for now this is the best way for the data to be collected.  While it might not be the best thing for individual organisms, these sampling techniques are important for protecting the fisheries and ultimately the ecosystem.

Ruth Meadows, July 11, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 11, 2009

Waiting to see what animals we can spot off the bow

Waiting to see what animals we can spot off the bow

Weather Data from the Bridge 
Temperature 18o C
Humidity 61%
Wind speed 4.2 knots

Science and Technology Log 

Today is our last day at sea and the weather is certainly cooperating with us. We have beautiful blue skies, warm temperatures and calm waters.  It is a perfect day for observing marine life.  Several of us spent most of the day on the bow of the ship looking for any type of marine life.  Throughout the day, we spotted three Mola mola fish, which is a very large ocean sunfish that can be found in temperate oceans.

A humpback whale breaches the water off the bow of the Bigelow.

A humpback whale breaches off the bow.

One went right by the ship so we were able to see the entire body of this fish through the water.  Another one was just lying on its side but we were too far away to see it very well. Finally it was suppertime and we all went to the galley eat, somewhat disappointed that we had not seen more sea life. During supper, the call we had all been hoping to hear came, “Humpback whale off the bow.”  We all left the galley and quickly ran up to the deck afraid we would miss seeing this majestic creature.  We were in for a treat.  It was as if the whale knew we were watching and performed for us.  For over 40 minutes, the humpback whale slapped its pectoral fins, slapped its tail and even breached out of the water twice.  It was an amazing sight.

The fluke of the humpback

The fluke of the humpback

As the whale slowly swam around, the ship carefully followed at a safe distance giving us an amazing opportunity to observe this massive mammal in its natural habitat. At one point, the whale was floating on its back and slapping both of its pectoral fins in the water at the same time.  We were close enough to actually hear the sound of the fins hitting the water.  Many members of the ship’s crew came to the bow to watch also. While we were watching, the chief engineer standing next to me looked down at the water next to the ship in time to point out a Mako shark swimming just below the surface moving slowly toward the rear of the ship. The afternoon turned into an amazing good bye present to the entire crew of the Bigelow. After the humpback whale made its final dive deep into the ocean, many of us stayed outside to enjoy our last sunset over the Atlantic Ocean.

Personal Log 

The past four weeks on board the NOAA ship, Henry B. Bigelow, have been an amazing experience for me.  We traveled over 5,000 nautical miles to search for rare and unusual animals that live in the deep ocean along the Charlie-Gibbs Fracture Zone in the Mid-Atlantic Ridge.  I was truly fortunate to have been selected for this particular scientific cruise.  The scientific crew, NOAA corps and crew were second to none. Everyone worked around the clock to make sure the goals of the cruise were accomplished.  In addition to the professionalism of all the members of this cruise, everyone seemed to truly enjoy working together to complete all parts of the mission. Everyone, from the captain of the ship, the engineers, the deck hands, the cooks and the scientific crew, made me feel welcome and included in all the activities on board. I will take many things with me from this opportunity I was lucky enough to be selected for.

A beautiful sunset on the Atlantic

A beautiful sunset on the Atlantic

I knew I would learn a lot about the ocean and the organisms that live there.  What I didn’t know before I left was how much I would enjoy getting to know the people that were a part of the MAR-ECO cruise. Thank you for allowing me to be a small part of this wonderful experience.