Catherine Fuller: From Microplankton to Megafauna, July 13, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019

Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 13, 2019

Science and Technology Log:

Through the Microscope

Gwenn with microscope
Gwenn using one of the microscopes to look at phytoplankton.
Gwenn and labels
The Lady of a Thousand Labels, hard at work.

Dr. Gwenn Hennon will be starting as an Assistant Professor with the University of Alaska in the fall.  Her interest is in the types of microbes, especially phytoplankton, that are in the water and what they are doing. She is studying what limits them, whether it is nutrients, light or other factors.  She finds it interesting to try to find interactions between phytoplankton and other organisms, such as ciliates that are filled with chloroplasts that they steal, termed “kleptoplasts.”  She investigates what microbes they stole them from, how the ciliate steals the plastid and how they maintain it. While a lot of algae have photosynthetic genes and controls in the nucleus, ciliates wouldn’t be expected to have those controls, but they must have some in order to keep plastids alive, and these need to have specific genes in order to control specific plastids.  There is a trade-off between specificity of genes for certain plastids and being able to keep the plastids alive for a long time.  Ciliates can also live by just eating other organisms, so another field of investigation would be to look at which genetics are used when organisms are switching between strategies. One goal of this research would be that, when looking at samples from various stations, someone would be able to say what the ciliates are doing without having to do experiments. 

The NGA is a very complex ecosystem, and this cruise has shown me that any scientific investigation needs to have a very specific focus rather than a shotgun approach, in order to have productive results. There is so much to be studied that the potential amount of data that can be gathered is staggering.  

Because the LTER has been funded for many years, there are great sets of time series to look at for some studies, but molecular data is fairly new and adds a lot to the picture.  Gwenn’s work, and the work of others at the molecular level are just the beginning of an understanding of life at the microscopic end of the scale. 

observation deck
Dan and Gwenn on the observation deck. Dan’s always on the lookout!

Through the Binoculars:

Fin whale
Fin whales come fairly close to us out in the deeper Gulf waters.

Dan Cushing is the U.S. Fish and Wildlife seabird and mammal specialist and is here to investigate organisms at the large end of the size spectrum, compared to everyone else on board. His workstation is primarily the bridge of the ship, where he is on the lookout for birds and mammals. He records the species and number spotted, and the time and the GPS location of each sighting. He also logs environmental conditions such as fog and wave height that can affect visibility.

Dan comes from a small fishing town with a population of 3000. He wasn’t necessarily interested in birds specifically when he was young, but developed a gradual interest in them. He likes that working with seabirds combines aspects of being a wildlife biologist with aspects of being a marine biologist. Dan has done both land-based projects at seabird breeding sites and ocean-based surveys on small boats and large research ships. One project that he worked on included attaching sensors to diving birds to record water temperature, depth, and location. This provided information about water conditions as well as about the behaviors of the birds and their feeding patterns in those conditions.

The variation in distribution and feeding strategies of bird species make them a good indicator of what is happening to the environment at different levels in the ecosystem. For example, Dan used small-boat surveys to look at changes in marine bird populations in Prince William Sound. He found that, over a period of two decades, declines had occurred in almost half of the species he looked at. In general, species that occurred farther from shore and fed on zooplankton and fish had greater declines than those that fed on prey along the shoreline and the nearby seafloor.

Studying the changes in a bird population leads to investigations that connect down the food chain through fish species to plankton (which, of course, is the focus of this cruise) and finally to climate change. Dan sees changes in the availability of fish species having a direct effect on the economic health of Alaskan communities that depend on fishing to survive. Coming from a fishing community, this hits home for him. As smaller species respond to climate change, a ripple effect works its way up the food web and so human populations must also alter their survival strategies as well.

coming in for a landing
One of Dan’s feathered friends coming in for a landing off the working deck.
albatross
An albatross follows along behind us.
Gulls
Gulls watch the working deck with interest in hopes of food (not going to happen).


Personal Log:

The longer I’m on board, the more the pieces of the puzzle seem to come together.  On thing that really strikes me about the teams on board is the intensity of their research and the drive they have.  Each person here is making the most of their opportunity for data gathering. Gwenn, for instance, I have nicknamed “the lady of a thousand labels” because her work ethic and preparedness are so impeccable.  She is just one example of the discipline and passion I see on board. 

There is enough potential data to be gathered here to provide for years of research.  Each of these researchers is not only singularly focused on their specialty but also well aware of the underlying premise of their research, i.e. that what they’re studying will serve to document climate change.  Already, this year has brought anomalous weather to the Gulf, which, in a sense, makes conclusions about how and why changes occur a bit difficult.  Another thing that is noteworthy on this cruise is that, because there are PIs (Principal Investigators) on board, there is a lot of discussion of ideas and plans for collaboration.  Already, Gwenn, Suzanne, Hana and Clay have been talking about a potential project where their ideas intersect.  The amount of time we’re out allows for more interaction between people and more room for ideas to develop. 

Finally, as I ask each person what they want kids or the public to know from their research, the answers I am getting all focus on the same thing: change is happening and every organism on the planet is affected by it.

map of the shelf
An image of the shelf; the data station lines cross over this to get a complete range of samples from shallow to deep in order to understand the complexity of the ecosystem and the changes happening within it.


What do you want kids to know about your research?

Gwenn: All things are related to each other.  All species on earth developed from the same ancestral single-celled organisms.

Dan: If you don’t pay attention to what’s around you, you won’t see how it changes.

Catherine Fuller: National Mooring Day, July 11, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 11, 2019

Weather Data from the Bridge

Latitude: 59° 00.823 N
Longitude: 148° 40.079 W
Wave Height: 1 ft, ground swell 3-4 ft
Wind Speed: 5.4 knots
Wind Direction: 241 degrees
Visibility: 5 nm
Air Temperature: 13.3 °C
Barometric Pressure: 1014.6 mb
Sky: Overcast


Science and Technology Log

At home, I regularly check information from the buoys that literally surround our islands.  They give me real time, relevant data on ocean conditions and weather so that I am informed about storm or surf events.  We also have buoys that track tsunami data, and the accuracy and timeliness of their data can save lives.  Deploying and monitoring these buoys is a job that requires knowledge of ocean conditions, electronics, rigging and computer programming. 

preparing buoy system
Pete (foreground) and Seth set up the buoy system in preparation for deployment
buoy anchors
The anchors for the buoys were made of train wheels

Pete Shipton is onboard as the mooring technician from UAF’s Seward Marine Center. This morning, he, Dr. Danielson and the crew deployed three moorings near oceanographic station GAK6i (about 60 miles offshore in the Northern Gulf of Alaska) at a depth of 230 meters. The search for the right depth required that R/V Sikuliaq do an acoustic survey of the area last night to find a kilometer-long area of the right depth and bottom slope.  The three moorings will be situated close enough to each other that for all purposes they are collecting a co-located set of readings representative of this site, yet far enough apart, with small watch circles, that they don’t overlap and foul each other.  The set of three is designed to have one surface buoy on either side with sensors at the surface and through the water column and a third buoy in the middle with sensors also distributed across all depths.

The first buoy, GEO-1, gives information on physics, optics, nutrient
chemistry and has a profiling instrument that will “walk” up and down the mooring wire from about 25 m above the seafloor to 25 m below the surface, collecting profiles four times a day. The mooring has many of the sensors that the ship’s CTD has, including an ADCP (Acoustic Doppler Current Profiler), a weather station with a GPS that measures wind speed, relative humidity, sea level pressure, and air temperature.  The buoy system was designed to withstand and operate in 8 m waves; in larger waves the surface buoy is expected to become submerged.  At one meter of depth, GEO-1 measures the temperature, salinity, chlorophyll fluorescence and photosynthetically available radiation. 

On GEO-2 (the center buoy), similar data is recorded at 22 m below the surface.  There will also be a sediment trap, mammal acoustics recorder, particle camera, and an AZFP (acoustic zooplankton fish profiler), which has four frequencies that can detect sea life from the size of fish down to the size of zooplankton. It records sound reflections from all sizes of creatures and can see fish migrations during day or night within a range of 100m (from 100m depth to the surface).

Buoy GEO-3 is the primary “guard” buoy, or marker for the whole set. It also has a real-time transmitting weather station and near-surface measurements.

Linking the mooring lines and the anchors are acoustic releases,
which are remotely controlled tethers whole sole function to listen for a “release” command that will tell them to let go of the anchor.  Since the limiting factor on the instruments is the life of the batteries, they will be picked up in a year and the acoustic release will allow the instruments to be brought back aboard Sikuliaq. These buoys will be providing real time information for groups such as the Alaska Ocean Observing System (www.aoos.org) about weather and ocean conditions, while also collecting
information about sea life in the area.

Pete and Seth on buoy
Pete (left) and Seth (right) test the stability of the buoy

Deploying the buoys was a lengthy process that required careful
coordination of parts, lines, chains and personnel.  Luckily everything
went off perfectly!  As the anchor weights for the two surface buoys deployed, they briefly pulled the buoys under, causing a bit of joking about whether the line length was calculated correctly. The brief “dunk test” was an excellent first trial for submergence during this coming winter’s storm conditions.

The second buoy briefly scares us by going under!


MarTechs:

There are opportunities for careers at sea in a wide variety of positions on board a research vessel.  One of the most interesting is the MarTech (Marine Technician), because of their dual role during a scientific cruise. 

The Marine Technicians are technically assigned to the science team although they are a part of the ship’s crew.  Bern and Ethan are the MarTechs on this cruise and both work specifically with R/V Sikuliaq. They are considered a part of whatever science team is on board at the time. The MarTechs are on 12-hour shifts, from 8:00 to 8:00.  Ethan is on at night, and Bern is on during the day, although there is some overlap.  The two men help to deploy and recover instruments for the science team and as well as helping the crew with any deck operations.  They also are responsible for the computer lab and overseeing the data displays and production from the various sensors, as well as maintaining the instruments on the ship that provide information.  Although they are always at hand to help when we need it, you will often find them also repairing and upgrading ship’s equipment and helping with engineering tasks.

Bern sets up camera
Bern setting up one of his cameras.

Bern has been a MarTech on R/V Sikuliaq since 2013, and had previous experience on other research vessels, both American and international.  Bern is also the ship’s unofficial documentation guy; he has a number of small cameras that he regularly uses to capture the action on board, whether from the vantage point of one of the cranes or on top of his own helmet. You can find examples of Bern’s camera work on R/V Sikuliaq’s Instagram site (@rvsikuliaq).

Ethan and Ana
Ethan helps Ana with the iron fish.

Like Bern, Ethan has also worked on other research vessels but has been on R/V Sikuliaq since it was built.  This is the only ship he’s been a MarTech on.  His interest in oceanography, especially marine acoustics, led him to this career.  Marine acoustics is more than just listening for large species such as whales.  There are acoustic sensors that “listen” to the ship and help ensure that it is functioning normally.  Other acoustic sensors, such as the ones based in the open keel of the ship use sound technology to map the ocean floor as we progress on our path.  Ethan was kind enough to show me the keel and explain the instrumentation. In addition, there are instruments that constantly record salinity, temperature, current strength, solar radiation and other measurements along the path we travel to provide a more complete picture of the environmental conditions existing at every point. 

open keel
The ship’s acoustic instruments are mounted in the open keel; it’s open to the sea!

The marine technicians manage the computer lab when they are not needed for operations.  This lab is the nerve center of the ship and allows the science team to work closely with the bridge to coordinate the movement of instruments and the speed of the vessel through the water to achieve optimum results.  You can find information on meteorology, navigation, engine performance, depth sounders, closed circuit monitors, ship acoustics and deck winch statistics by looking at specific screens.  In addition, the staterooms have monitors that also allow viewing of certain screens. 

computer lab
The screens in the computer lab provide all the information needed to make decisions about how and when to deploy data-gathering instruments.

By far the two displays that are followed most closely are the CTD cast screens and the AIS screen.  The AIS screen gives our course on a map, and shows our progress as well as future waypoints.  It also shows our speed and bearing to our next point as well as ocean depth and wind speed and direction.  The CTD screen shows real-time results in a number of categories such as salinity, oxygen, chlorophyll, temperature, nitrates and light as the CTD descends and ascends through the water column.  Based on the results of the down cast, the teams determine the depths from which they’d like water samples collected as the CTD rises. 

AIS screen
The OLEX or AIS screen shows our path as well as navigational information.
The CTD screen looks like spaghetti until you understand the color code for each line.


The Bridge:

The equipment on the bridge represents the pinnacle of technology as far as ship operations go.  The captain’s chair has been described by some members of the science team as the “Battlestar Galactica” or “Star Trek” chair, and it really does look like it fits in a science fiction movie.  Displays on the bridge show performance of the engines, radar returns and our bearing and range from them, and any other pertinent information to vessel performance.  Ship movement and waypoints are hand plotted by the second mate, who also oversees ship movement along with the captain, chief mate and third mate.  The ship’s officers work the bridge on a rotating watch schedule.  One of the cool features of this ship is that it operates two Z-drives, similar to what is used on tugboats.  These are propellers that can move independently of each other and turn in any direction.  They allow the ship to be maneuvered precisely, which is a great help when we need to stay on a station through multiple operations.  Various views of the bridge and the navigational instruments used by the ship’s crew are shown in the gallery below.

Captain Eric Piper
Captain Eric Piper shows off his new jacket


Personal Log

Happy Mooring Day!  It’s our self-declared “national holiday”! Because the process of deploying the moorings and buoys took up all of the morning and a part of the afternoon, most of the rest of the science team took the morning off and slept in.  So many of them ran on the treadmill that running might become a part of our “holiday” tradition.  My roommate even took bacon back to her room to eat in bed.  Gwenn brought out her Twizzlers…somewhat appropriate because they look like steel cable (even though the moorings did not use cable).  It was a nice breather for the science team, who have been working very hard to collect samples and run experiments.  Somewhere along the line, the idea of making Mooring Day a “holiday” caught on, and it’s become a bit of a joke amongst the team.  We’re down to a week to go, and everyone is beginning to think about what happens when we get in and when we all go home.  But… we’re not quite there yet, and there’s a lot of work left to do.


Animals Seen Today

stowaway
Our stowaway came to inspect today’s deployment.

We apparently have a stowaway…a small finch-like bird that flits about the ship.  It must have joined us when we were near land, and now we ARE the land. 

Catherine (Cat) Fuller: An Introduction, June 18, 2019

NOAA Teacher at Sea

Catherine Fuller

(Not Yet) Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research (NGA-LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 18 June 2019

Weather Data

(From Honolulu, HI)

Latitude: 21.33 N

Longitude: 157.94 W

Wind Speed and Direction: NE 15 G 23

Wind Swell Height and Direction: NE 3-5 ft

Secondary Swell Height and Direction: SSW 2-4 ft

Humidity: 47%

Barometric Pressure: 1016.1 mb

Heat Index: 93 F (34 C)

Visibility: 10.00 nm

Weather: clear and sunny

(From Seward, AK)

Latitude: 60.12 N

Longitude: 149.45 W

Wind Speed and Direction: S 9

Swell Height: 2 ft

Humidity: 77%

Barometric Pressure: 1016.0 mb

Heat Index: 56 F (13 C)

Visibility: 10.00 nm

Weather: Overcast

Personal Log

Aloha kākou! Greetings everyone! In about a week, I will be exchanging currently very warm and sunny Honolulu for the vastly different climate and ecological zone in Seward and the Northern Gulf of Alaska.  I will be embarking on R/V Sikuliaq there to participate in one part of a long-term study of the variability and resiliency of species in the area, but I will get to that in a bit.

In August, I will begin my seventeenth year as a sixth grade social studies teacher at ‘Iolani School, an independent K-12 school that is academically competitive at a national level.  In sixth grade social studies, our students focus on the development of the modern world from ancient civilizations such as Mesopotamia, Egypt, Greece and Rome.  I enjoy challenging my students to broaden their worldviews, especially about the impacts ancient civilizations have had on today’s world. We cover those for three quarters, and in the fourth quarter we examine the choices these civilizations have made and whether or not they contribute to a sustainable society.  I want my students to understand that sustainability is more than just picking up trash and conserving water, but it is also about choices in government, society, culture, behavior and environment. The content of our fourth quarter is predicated on the reality that we live in Hawai’i, an island group that is roughly 2000 miles from any other major point of land.

Living in Hawai’i can be just as idyllic as advertisements make it seem, with daily rainbows, colorful sunsets and blue ocean waves.  However, it also comes with challenges that we all have to face.  Our cost of living is among the highest in the nation, and we face constant struggles between maintaining culture and environment in a place with limited room for population growth.  We have a high homeless population, yet many of us joke that the (construction) crane is our state bird.  We are also braced to be at the forefront of climate change.  With a rise in sea level of 3 feet, most of Waikiki and much of downtown Honolulu is at risk of inundation.  In addition, changes in sea surface temperature affect our coral reefs and fish populations as well as minimizing or eliminating our trade winds through changes in weather patterns.  For these reasons, I hope to plant the awareness in my students that their generation is poised to make some major decisions about the state of the world.

My passion for sustainability and ocean health stems from the amount of time I spend in and on the water.  I have been a competitive outrigger canoe paddler for the last 30 or so years, and in the summers, I paddle five to six days a week.  I go to six-man team practices as well as taking my one-man canoe out with friends.  I also have coached high school paddling at ‘Iolani School for the last sixteen years. Being on the ocean so much makes me much more aware of the wildlife our waters shelter: monk seals, dolphins, sea turtles and humpback whales.  It also makes me aware of the trash, especially plastics that are more and more present in the ocean.  I’ve picked up slippers, coolers, bottles, bags and even pieces of cargo net out of the water on various excursions.  Being on the water so often also fuels my interest in meteorology; you need to know what weather and ocean conditions to expect when you go to sea.  One major impact that being on the water has is that it allows you to see your island from offshore and realize that it is an ISLAND, and not a very big one at that!

Cat on Canoe
Me on my one-man canoe off He’eia, O’ahu

Some of the biggest lessons about the ocean that I’ve learned have come from my experiences with the Polynesian Voyaging Society, a non-profit organization founded in 1973 to recreate the original settlement of Hawai’i by ocean voyaging canoes, as well as revive the ancient art of non-instrument navigation.  PVS is most well known for the voyaging canoe Hõkūlea, which sailed to Tahiti (and back again) in 1976 to prove the validity of these cultural arts.  I began working with the organization in 1994, helping to build a second voyaging canoe, Hawai’iloa, and have been there ever since.  As a part of this organization, I have sailed throughout the Pacific, to locations such as Tahiti, Tonga, Aotearoa (New Zealand), Mangareva, and the Marquesas.  With Te Mana O Te Moana, another voyaging canoe initiative, I sailed to the Cook Islands, Samoa, Fiji, Vanuatu and the Solomon Islands. I’ve seen many faces of the Pacific Ocean on my travels and I look forward to seeing another. 

Between 2012 and 2017, PVS sent Hõkūle’a on a journey around the world.  The name of the voyage was Mālama Honua (To Protect the Earth) and the goal was to visit with indigenous communities to learn what challenges they face and how they work to preserve their lands and cultures.  One of the founding principles for this voyage is a Hawaiian saying, “he wa’a he moku, he moku he wa’a”, which means “the canoe is an island and the island is a canoe”.  The saying refers to the idea that the choices we make about positive behavior, bringing what we need as opposed to what we want, and what we do with our resources and trash while living in the limited space of a voyaging canoe are a reflection of the choices we need to make living on the islands of Hawai’i as well as living on island Earth.  I strive every day to make my students aware of the consequences of their choices.

voyaging canoe
Hõkūle’a en route to Aotearoa, 2014


Science and Technology Log

I’m pretty excited to go to Alaska, first of all, because I’ve never been there!  Secondly, we have species in Hawai’i (birds and whales) that migrate between our shores and Alaska on an annual basis.  Although the two locations are distant from each other, there are connections to be made, as Hawai’i and Alaska share the same ocean. 

The Long Term Ecological Research (LTER) project is funded by the National Science Foundation (NSF). R/V Sikuliaq is an NSF ship working with the University of Alaska in Fairbanks.  LTER encompasses 28 sites nationwide, of which the Northern Gulf of Alaska (NGA) is one.  In this area, three surveys a year are made to monitor the dynamics of the ecosystem and measure its resilience to environmental factors such as variability in light, temperature, freshwater, wind and nutrients.  The origins of the NGA portion of this project have been in place since 1970 and have grown to include the Seward Line system (s series of points running southeast from Seward).

On our trip, we will be looking at microzooplankton and mesozooplankton as well as phytoplankton, the size and concentration of particles in the water, and the availability of nutrients, among other things.  Information gathered from our study will be added to cumulative data sets that paint a picture of the variability and resiliency of the marine ecosystem. I will be a part of the Particle Flux team for this expedition.  I have a general idea of what that entails and the kind of data we’ll be gathering, but I certainly need to learn more!  If you’re curious, more detailed information about ongoing research can be found at https://nga.lternet.edu/about-us/.

I always ask my students, after they complete preliminary research on any project, what they want to learn.  I want to know more about particle flux (as previously mentioned).  I would like to learn more about seasonal weather patterns and how they influence the NGA ecosystem.  I would like to find out if/how this ecosystem connects to the Hawaiian ecosystem, and I REALLY want to see the kinds of life that inhabit the northern ocean! For my own personal information, I am really curious to see how stars move at 60 degrees north and whether or not they can still be used for navigation. 

Mahalo (Thank you)

I’m spending my last week sorting through my collection of fleece and sailing gear to prepare for three weeks of distinctly cooler temperatures.  I’m going to be doing a lot of layering for sure!  My two cats, Fiona and Pippin are beginning to suspect something, but for now are content to sniff through the growing pile on the couch. While packing, I’m keeping in mind that this is just another type of voyage and to pack only what I need, including chocolate.  As departure gets closer, I’d like to thank Russ Hopcroft, Seth Danielson, and Steffi O’Daly for their information and help in getting to and from Seward.  I’m looking forward to meeting you all soon and learning a lot from each of you!  Thanks also to Lisa Seff for her on board life hacks and detailed information…much appreciated!

Katie Gavenus: Thinking Like A Hungry Bird, April 28, 2019

NOAA Teacher at Sea

Katie Gavenus

Aboard R/V Tiglax

April 26-May 9, 2019

 

Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently on the ‘Middleton [Island] Line’

Date: April 28, 2019

 

Weather Data from the Bridge

Time: 1715
Latitude: 59o 39.0964’ N
Longitude: 146o05.9254’ W
Wind: Southeast, 15 knots
Air Temperature: 10oC (49oF)
Air pressure: 1034 millibars
Cloudy, no precipitation

 

Science and Technology Log

Yesterday was my first full day at sea, and it was a special one! Because each station needs to be sampled both at night and during the day, coordinating the schedule in the most efficient way requires a lot of adjustments. We arrived on the Middleton Line early yesterday afternoon, but in order to best synchronize the sampling, the decision was made that we would wait until that night to begin sampling on the line. We anchored near Middleton Island and the crew of R/V Tiglax ferried some of us to shore on the zodiac (rubber skiff).

This R&R trip turned out to be incredibly interesting and relevant to the research taking place in the LTER. An old radio tower on the island has been slowly taken over by seabirds… and seabird scientists. The bird biologists from the Institute for Seabird Research and Conservation have made modifications to the tower so that they can easily observe, study, and band the black-legged kittiwakes and cormorants that choose to nest on the shelfboards they’ve augmented the tower with. We were allowed to climb up into the tower, where removable plexi-glass windows look out onto each individual pair’s nesting area. This early in the season, the black-legged kittiwakes are making claims on nesting areas but have not yet built nests. Notes written above each window identified the birds that nested there last season, and we were keen to discern that many of the pairs had returned to their spot.

Gavenus1Birds

Black-legged kittiwakes are visible through the observation windows in the nesting tower on Middleton Island.

Gavenus2Birds

Nesting tower on Middleton Island.

The lead researcher on the Institute for Seabird Research and Conservation (ISRC) project was curious about what the LTER researchers were finding along the Middleton Line stations. He explained that the birds “aren’t happy” this spring and are traveling unusually long distances and staying away for multiple days, which might indicate that these black-legged kittiwakes are having trouble finding high-quality, accessible food. In particular, he noted that he hasn’t seen any evidence they’ve been consuming the small lantern fish (myctophids) that generally are an important and consistent food source from them in the spring. These myctophids tend to live offshore from Middleton Island and migrate to the surface at night. We’ll be sampling some of that area tonight, and I am eager to see if we might catch any in the 0.5 mm mesh ‘bongo’ nets that we use to sample zooplankton at each station.

The kittiwakes feed on myctophids. The myctophids feed on various species of zooplankton. The zooplankton feed on phytoplankton, or sometimes microzooplankton that in turn feeds on phytoplankton. The phytoplankton productivity is driven by complex interactions of environmental conditions, impacted by factors such as light availability, water temperature and salinity as well as the presence of nutrients and trace metals. And these water conditions are driven by abiotic factors – such as currents, tides, weather, wind, and freshwater input from terrestrial ecosystems – as well as the biotic processes that drive the movement of carbon, nutrients, and metals through the ecosystem.

Scientists deploy CTD

This CTD instrument and water sampling rosette is deployed at each station during the day to collect information about temperature and salinity. It also collects water that is analyzed for dissolved oxygen, nitrates, chlorophyll, dissolved inorganic carbon, dissolved organic carbon, and particulates.

CTD at sunset

When the sun sets, the CTD gets a break, and the night crew focuses on zooplankton.

Part of the work of the LTER is to understand the way that these complex factors and processes influence primary productivity, phytoplankton, and the zooplankton community structure. In turn, inter-annual or long-term changes in phytoplankton and zooplankton community structure likely have consequences for vertebrates in and around the Gulf of Alaska, like seabirds, fish, marine mammals, and people. In other words, zooplankton community structure is one piece of understanding why the kittiwakes are or are not happy this spring. It seems that research on zooplankton communities requires, at least sometimes, to consider the perspective of a hungry bird.

Peering at a jar of copepods and euphausiids (two important types of zooplankton) we pulled up in the bongo nets last night, I was fascinated by the way they look and impressed by the amount of swimming, squirming life in the jar. My most common question about the plankton is usually some variation of “Is this …” or “What is this?” But the questions the LTER seeks to ask are a little more complex.

Considering the copepods and euphausiids, these researchers might ask, “How much zooplankton is present for food?” or “How high of quality is this food compared to what’s normal, and what does that mean for a list of potential predators?” or “How accessible and easy to find is this food compared to what’s normal, and what does that mean for a list of potential predators?” They might also ask “What oceanographic conditions are driving the presence and abundance of these particular zooplankton in this particular place at this particular time?” or “What factors are influencing the life stage and condition of these zooplankton?”

Euphausiids

Euphausiids (also known as krill) are among the types of zooplankton we collected with the bongo nets last night.

Copepods in a jar

Small copepods are among the types of zooplankton we collected with the bongo nets last night.

As we get ready for another night of sampling with the bongo nets, I am excited to look more closely at the fascinating morphology (body-shape) and movements of the unique and amazing zooplankton species. But I will also keep in mind some of the bigger picture questions of how these zooplankton communities simultaneously shape, and are shaped by, the dynamic Gulf of Alaska ecosystem. Over the course of the next 3 blogs, I plan to focus first on zooplankton, then zoom in to primary production and phytoplankton, and finally dive more into nutrients and oceanographic characteristics that drive much of the dynamics in the Gulf of Alaska.

 

Personal Log 

Life on the night shift requires a pretty abrupt change in sleep patterns. Last night, we started sampling around 10 pm and finished close to 4 am. To get our bodies more aligned with the night schedule, the four of us working night shift tried to stay up for another hour or so. It was just starting to get light outside when I headed to my bunk. Happily, I had no problem sleeping until 2:30 this afternoon! I’m hoping that means I’m ready for a longer night tonight, since we’ll be deploying the bongo nets in deeper water as we head offshore along the Middleton Line.

WWII shipwreck

While on Middleton Island, we marveled at a WWII shipwreck that has been completely overtaken by seabirds for nesting.

Shipwreck filled with plants

Inputs of seabird guano, over time, have fertilized the growth of interesting lichens, mosses, grasses, and even shrubs on the sides and top of the rusty vessel.

 

Did You Know?

Imagine you have a copepod that is 0.5 mm long and a copepod that is 1.0 mm long. Because the smaller copepod is half as big in length, height, and width, overall that smaller copepod at best offers only about 1/8th as much food for a hungry animal. And that assumes that it is as calorie-dense as the larger copepod.

 

Question of the Day:

Are PCBs biomagnifying in top marine predators in the Gulf of Alaska? Are there resident orca populations in Alaska that are impacted in similar ways to the Southern Resident Orca Whale population [in Puget Sound] (by things like toxins, noise pollution, and decreasing salmon populations? Is it possible for Southern Resident Orca Whales to migrate and successfully live in the more remote areas of Alaska? Questions from Lake Washington Girl’s Middle School 6th grade science class.

These are great questions! No one on board has specific knowledge of this, but they have offered to put me in contact with researchers that focus on marine mammals, and orcas specifically, in the Gulf of Alaska. I’ll keep you posted when I know more!

Katie Gavenus: Just Around the Corner (or two!): April 22, 2019

NOAA Teacher at Sea

Katie Gavenus

Aboard R/V Tiglax

April 26 – May 9, 2019

Mission: Northern Gulf of Alaska Long-Term Ecological Research (LTER) Program.

Geographic Area of Cruise: Northern Gulf of Alaska (Port: Seward)

Date: April 22, 2019

Personal Introduction

Later this week, R/V Tiglax will depart the Homer Harbor in Homer, Alaska and begin the trip ‘around the corner.’  From the Homer Harbor, she will enter Kachemak Bay, flow into the larger Cook Inlet, and enter the Northern Gulf of Alaska and the North Pacific Ocean. Veering to the east, and then north, she will arrive in Seward, Alaska. That trip will take about 3 days, with stops along the way for some research near the Barren Islands. Meanwhile, I’ll be working in Homer for a few extra days before I begin my own trip to Seward. I will travel on the road system, first heading north and then jaunting southeast to Seward.  It will take me 3.5 hours to drive there.

However you get there, Seward and the Northern Gulf of Alaska Long-Term Ecological Research project area are just around the corner from Homer.  Homer is the place where I was born and raised, the place where I became inspired by science, the place where I now have the incredible privilege of working as an environmental educator for students participating in field trips and intensive field study programs from Homer, around Alaska, and beyond.  At the Center for Alaskan Coastal Studies (CACS), one of the highlights of my job is guiding youth and adults into the intertidal zone to explore the amazing biodiversity that exists there.

img_1918.jpg

A 4th grade student from West Homer Elementary explores a tidepool in Kachemak Bay

In my lifetime as a Homer resident, and over the past 12 years as an educator in Kachemak Bay, I have witnessed seemingly unfathomable changes in the Bay’s ecosystems.  These changes have been concerning to all of us who live here and are sustained by Kachemak Bay.  Most recently, we watched as many species of sea stars succumbed to sea star wasting syndrome, their bodies deteriorating and falling apart in the intertidal zone. By fall of 2016, only leather stars (Dermasterias imbricata) seemed to remain.  But over the past year, we’ve watched as true stars (Evasterias troschelii), blood stars (Henricia spp.), little six-rayed stars (Leptasterias spp.), and others have begun to reappear in the tidepools.

IMG_1959.JPG

Tidepooling in Kachemak Bay, this 4th grader found a healthy, large adult true star!

This past week, I was lucky enough to be the naturalist educator for students from West Homer Elementary as they spent 3 days in a remote part of Kachemak Bay.  This was particularly poignant for me, as many of my most treasured memories from my own elementary school experience come from a similar field trip with CACS in 4th grade.   That trip helped to inspire me towards a life of curiosity and wonder, passion for science and teaching, and commitment to stewardship of ecosystem and community.

So it was even more special that on this trip we observed a wonderfully diverse array of sea star species, including over a dozen sunflower stars (Pycnopodia helianthoides). I’ve only seen a couple of these magnificent sea stars since they all-but disappeared from Kachemak Bay in August 2016, leaving behind only eery piles of white goo.  Their absence hurt my heart, and the potential impacts of losing this important predator reverberated in my brain.  Though the future of these stars remains unknown, it was such a joy and relief to see a good number of apparently healthy sunflower stars in the intertidal this week!

IMG_1962.JPG

Finally, a healthy, good-sized sunflower star!

The Northern Gulf of Alaska Long-Term Ecological Research (LTER) site was created, in part, to develop an understanding of the response and resiliency of the Northern Gulf of Alaska to climate variability.  In a time when people, young and old, across Alaska and beyond are increasingly concerned about impacts of climate change, it can be challenging for educators to get youth involved in ways that aren’t overwhelming, saddening, or frustrating.  Part of my work at CACS has been thinking and working with teachers, community educators, and researchers about how we can engage youth in ways that are realistic but hopeful and proactive.  The idea that I’ll be learning about not just climate impacts but the potential resiliency of the Northern Gulf of Alaska is so cool!  I’m excited to find out more about the unique species, life cycles, and natural histories that make the Gulf of Alaska such a good place to study ecosystem resiliency, and I’m inspired to learn more about other ecosystems close to Kachemak Bay and their own potential resilience.

I am really looking forward to my time on R/V Tiglax in the Gulf of Alaska!

IMG_1721

A day kayaking with my partner Nathan and his 6-year old daughter, Johanna. I love spending time on the water, and am excited to get out in the Gulf on a much larger vessel!

 

Mark Van Arsdale: Modeling the Ocean, September 24, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 24, 2018

 

Weather Data from the Bridge

30 knot easterly winds, rain, waves to eight feet

60.20 N, 147.57 W (Prince William Sound)

 

Science Log 

Modeling the Ocean

During the last two weeks, scientists aboard the Tiglax will have done over 60 CTD casts, 60 zooplankton tows, measured over one thousand jellies caught Methot Net tows, and collected hundreds of water and chlorophyll samples. What happens with all of this data when we get back?   The short answer is a lot more work. Samples have to be analyzed, plankton have to be counted and measured, DNA analysis work has to be done, and cohesive images of temperature, salinity, and nutrients have to be stitched together from the five different transects.

Preparing for another CTD cast. More than 60 CTD casts were made during our cruise.

Preparing for another CTD cast. More than 60 CTD casts were made during our cruise.

Much of this data will eventually be entered into a computer model.  I’ve spent a great deal of time talking with one of the scientists on aboard about how models can be used to answer essential scientific questions about how the Gulf of Alaska works.  Take Neocalanus, the copepods we collected yesterday, for example.  A scientist could ask the question, what factors determine a good versus bad year for Neocalanus?  Or what are the downstream effects on a copepod species of an anomalous warming event like “the blob” of 2014-2015? A model allows you to make predictions based on certain parameters. You can run numerous scenarios, all with different possible variables, in very short periods of time. A model won’t ever predict the future, but it can help a scientist understand the “rules” that govern how the system works.  But a model is only as good as its baseline assumptions, and those assumptions require the collection of real world data.  A computer doesn’t know how fast Neocalanus grows under optimal or sub-optimal conditions unless you tell it, and to tell it, a scientist has to first measure it.

The fishing industry is a billion-dollar piece of the Alaskan economy.  The ocean is getting warmer and more acidic.  Food webs are shifting, and the abundance and distribution of the species we depend upon are changing as a result.  Using models may allow us to better predict what sustainable levels of fish catches will be as conditions in the Gulf of Alaska change.

I also asked the scientists on board about the future of oceanography in light of the advancements in autonomous unmanned vehicles.  Do you still need to send people out to sea when sending a Slocum Glider or Saildrone can collect data much cheaper than a ship filled with twenty scientists?  The answer I got was, “No, at best these technologies will enhance but not replace what we do at sea.  There will always be a place for direct scientific observations.”  We still need oceanographers at sea.

In twenty-one years of teaching I have had lots students go on to be doctors, PA’s, nurses, micro-biologists, geneticists, and a variety of other scientific occupations, but no oceanographers.  I guess I still have some work to do.

Personal Log

The Weather Finally Gets Us

We have had a few showers, bits of wind and waves, but the weather has been remarkably good for a cruise through the North Gulf of Alaska in late September.  This morning, during the night shift the winds started to blow, it started to rain, and the waves came up. When I went to bed around six AM, the wind was blowing thirty knots, and when I woke up at eleven, it was pushing up some pretty rough seas.  Things got really crazy after lunch.  The winds were being channeled right down Night Island Passage and all work was put to a stop.  I retired to my bunk to read, unable to even go outside and take look.  They eventually battened down the hatches; and we changed course to go hide in a bay sheltered from the wind. (Yes, they really do say batten down the hatches.)

By dinner time decisions were made to not work for the night.  It looked better where we were, but the stations we needed to sample were exposed to winds that were still blowing.  No zooplankton sampling for the night meant that it was time to start washing, disassembling, and drying nets.  We used seventeen different nets to sample zooplankton during the course of this trip and all of them needed to be washed and cared for before they got packed up.

Plankton nets hanging to dry (oceanographer laundry.)

Plankton nets hanging to dry (oceanographer laundry.)

Tomorrow we will begin the journey home with two stations un-sampled.  The storm kept us from getting to the last stations, and another storm is just a few days away. Once the decision was made, I think we were all relieved to be heading in.  Doing oceanography is hard work, and being away from lives, work, and family for such extended periods of time is tough.  Some of the scientists on board have spent as much as six or eight weeks at sea this year.  Having been out here for two weeks, I now understand what commitment that takes.

Unless something really interesting happens tomorrow, this will be my last blog.  This trip has been personally challenging, but a rich experience, and I believe it will be formative to my teaching.  I have learned a great deal about oceanography in general, and the Gulf of Alaska in particular.  The Gulf of Alaska is a magical place.  There is life almost everywhere you look.  More than anything I will leave with a deep impression of the dedication that scientists give to the accuracy and integrity of their work.

[Postscript:  Zooplankton and jelly work was done, so I was able to spend the entire last day on the flying bridge.  There was a good amount of swell from the previous day’s storm, but the sun and scenery made it an enjoyable trip back to Seward.  As we left Prince William Sound we were greeted by an abundance of seabirds that had been blown into the Sound by the weather.  On that day, we documented almost as many species as the rest of the trip combined.  We also got to watch a large group of orcas patrolling the area around Danger Island at the entrance to the Sound.  We made our way back to GAK1.  If the weather allows, GAK1 is always sampled at the beginning and ending of any trip.  The weather was beautiful, Bear Glacier and the entrance to Resurrection Bay was alive with color, and I was going home.  It was a great day.]

Views of the southern coast of the Kenai Peninsula as we traveled from Prince William Sound back to Seward.

Views of the southern coast of the Kenai Peninsula as we traveled from Prince William Sound back to Seward.

Animals seen today

  • Sea otters
  • Fewer birds today, bald eagles, kittiwakes, gulls

Mark Van Arsdale: Waking up Copepods, September 23, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 23, 2018

Weather Data from the Bridge

Variable winds, partially cloudy, calm seas

60.20 N, 147.57 W (Prince William Sound)

 

Science Log

Waking Up Copepods

One of the scientists on board is interested in the life cycles of a particular species of Neocalanus copepod. Neocalanus is a remarkable looking copepod.  They have long antennae with feathered forks at the ends. They have striking red-orange stripes on their bodies and antennae that reminds you a bit of a candy cane. Neocalanus is an important copepod in the Gulf of Alaska ecosystem, and it typically makes up the largest portion of zooplankton biomass in the spring.

Neocalanus cristatus, photo credit Russ Hopcroft, UAF

Neocalanus cristatus, photo credit Russ Hopcroft, UAF

Its life cycle is interesting.  If zooplankton were cars, the Neocalanus might be a Toyota Prius.  It’s not fast or fancy, but it’s efficient.  Neocalanus copepods feast in the spring and early summer and then settle down several hundred meters below the surface to enter into a diapause state.  Diapause is a kind of dormancy that involves slowing basic metabolic functions to near zero.  It is a strategy used by other Alaskan arthropods, most notably mosquitos, to survive long winters.  As for why they travel deep into the water column, the answer seems to be that they use less energy in the dark, cold, high pressure waters at depth.  Inside the Neocalanus there is an unmistakable large, sausage shaped sack of oil that should provide the energy reserves needed to survive prolonged diapause.

When the Neocalanus females wake up, they have to restart their metabolism and begin meiotic development of their oocytes (egg cells.) They have previously mated and they store the male’s sperm within their bodies during diapause.  Each of these biological events involves turning on several dozen genes.  What our scientist wants to know is what genes get turned on, in what order, and what environmental clues tell the initial genes to start making RNA. To study all of this, she needs living copepods in diapause.  Our collection process inevitably wakes them up, but it gives her a time zero for observing this transformation.  For the next twelve hours, she separated and preserved copepods every hour for later genetic analysis that may give her insight into when genes turn on and in what order as the copepods wake up.

In order to get her copepods, the night team did a vertical Multi-net tow at four AM.  We dropped the Multi-net down to a depth of 740 meters. The work we were doing was sensitive, as she needed the copepods alive and undamaged.  I was glad to have slept a few hours as we were moving between sampling stations, because what came up in the tow was pretty amazing.  Along with the Neocalanus, there were many other types of zooplankton including the copepod MetridiaMetridia produce an intense bioluminescence when disturbed. When we brought the nets to the surface, the cod ends were glowing electric blue and individual copepods could be seen producing pinpricks of light that were remarkably bright.

Bioluminescence is ubiquitous amongst deep sea species.  Deep sea fishes, jellies, and plankton use it to attract prey, to camouflage their silhouette, to surprise and distract predators, and likely to communicate with members of the opposite sex.  The deep oceans make up 95% of biological habitat on Earth.  If you consider bioluminescence communication a kind of language, it may be the most commonly spoken language on the planet.

Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens. Michael Tessler et al (2018)

Personal Log

Protected Waters

Knight Island Passage, Prince William Sound

Knight Island Passage, Prince William Sound

Waking up in Prince William Sound today felt good.  I was closer to home this morning than at any time since leaving Seward.  The Sound feels comfortable and protected.  Should bad weather come up, and it sounds like it will tomorrow, there are hundreds of sheltered bays to hide in.

Chenega Glacier, Icy Bay, Prince William Sound.

Chenega Glacier, Icy Bay, Prince William Sound.

Prince William Sound’s beauties are hard to describe without sounding cliché.  Most striking of all are the large tidewater glaciers.  In the evening, we made our way to Chenga Glacier, to do CTD cast.  It was a quite a sight, as were the three hundred harbor seals hauled out on the floating ice in front of the glacier.

These glaciers directly shape the ecosystem of the Sound.  They provide a large freshwater input that is high in trace minerals, while creating pockets of cold water, which serve as micro-climates within the larger area.  These glaciers are melting at incredible rates, and freshwater inputs are greater than they have been at any time since the last ice age.  Sampling stations that were once near the face of the Chenga and Columbia Glaciers are now miles away from their quickly receding faces. Click here to watch the satellite images of Columbia’s retreat.  This ecosystem is changing, and only through long term ecological monitoring will we know exactly how or what it means.

The completion of the road to the town of Whittier has also changed the Sound.  It’s late September, and most pleasure boaters have stowed their boats for the winter, but the number of boats and people coming into the sound to fish, hunt, and sight see has increased dramatically.  Many Alaskans have come to recognize the coastal gem that lays just seventy miles and one long tunnel through the mountain from Anchorage.

Columbia Glacier 1986 (left) 2011 (right). Image from https://visibleearth.nasa.gov/view.php?id=78657

Columbia Glacier 1986 (left) 2011 (right). Image from https://visibleearth.nasa.gov/view.php?id=78657

 

Animals seen today

  • Lots of harbor seals near Chenega Glacier
  • Sea otters
  • Fewer birds today, mergansers, Kittlitz’s murlets, mew gulls, goldeneyes,