Katie Gavenus: Just Around the Corner (or two!): April 22, 2019

NOAA Teacher at Sea

Katie Gavenus

Aboard R/V Tiglax

April 26 – May 9, 2019

Mission: Northern Gulf of Alaska Long-Term Ecological Research (LTER) Program.

Geographic Area of Cruise: Northern Gulf of Alaska (Port: Seward)

Date: April 22, 2019

Personal Introduction

Later this week, R/V Tiglax will depart the Homer Harbor in Homer, Alaska and begin the trip ‘around the corner.’  From the Homer Harbor, she will enter Kachemak Bay, flow into the larger Cook Inlet, and enter the Northern Gulf of Alaska and the North Pacific Ocean. Veering to the east, and then north, she will arrive in Seward, Alaska. That trip will take about 3 days, with stops along the way for some research near the Barren Islands. Meanwhile, I’ll be working in Homer for a few extra days before I begin my own trip to Seward. I will travel on the road system, first heading north and then jaunting southeast to Seward.  It will take me 3.5 hours to drive there.

However you get there, Seward and the Northern Gulf of Alaska Long-Term Ecological Research project area are just around the corner from Homer.  Homer is the place where I was born and raised, the place where I became inspired by science, the place where I now have the incredible privilege of working as an environmental educator for students participating in field trips and intensive field study programs from Homer, around Alaska, and beyond.  At the Center for Alaskan Coastal Studies (CACS), one of the highlights of my job is guiding youth and adults into the intertidal zone to explore the amazing biodiversity that exists there.

img_1918.jpg
A 4th grade student from West Homer Elementary explores a tidepool in Kachemak Bay

In my lifetime as a Homer resident, and over the past 12 years as an educator in Kachemak Bay, I have witnessed seemingly unfathomable changes in the Bay’s ecosystems.  These changes have been concerning to all of us who live here and are sustained by Kachemak Bay.  Most recently, we watched as many species of sea stars succumbed to sea star wasting syndrome, their bodies deteriorating and falling apart in the intertidal zone. By fall of 2016, only leather stars (Dermasterias imbricata) seemed to remain.  But over the past year, we’ve watched as true stars (Evasterias troschelii), blood stars (Henricia spp.), little six-rayed stars (Leptasterias spp.), and others have begun to reappear in the tidepools.

IMG_1959.JPG
Tidepooling in Kachemak Bay, this 4th grader found a healthy, large adult true star!

This past week, I was lucky enough to be the naturalist educator for students from West Homer Elementary as they spent 3 days in a remote part of Kachemak Bay.  This was particularly poignant for me, as many of my most treasured memories from my own elementary school experience come from a similar field trip with CACS in 4th grade.   That trip helped to inspire me towards a life of curiosity and wonder, passion for science and teaching, and commitment to stewardship of ecosystem and community.

So it was even more special that on this trip we observed a wonderfully diverse array of sea star species, including over a dozen sunflower stars (Pycnopodia helianthoides). I’ve only seen a couple of these magnificent sea stars since they all-but disappeared from Kachemak Bay in August 2016, leaving behind only eery piles of white goo.  Their absence hurt my heart, and the potential impacts of losing this important predator reverberated in my brain.  Though the future of these stars remains unknown, it was such a joy and relief to see a good number of apparently healthy sunflower stars in the intertidal this week!

IMG_1962.JPG
Finally, a healthy, good-sized sunflower star!

The Northern Gulf of Alaska Long-Term Ecological Research (LTER) site was created, in part, to develop an understanding of the response and resiliency of the Northern Gulf of Alaska to climate variability.  In a time when people, young and old, across Alaska and beyond are increasingly concerned about impacts of climate change, it can be challenging for educators to get youth involved in ways that aren’t overwhelming, saddening, or frustrating.  Part of my work at CACS has been thinking and working with teachers, community educators, and researchers about how we can engage youth in ways that are realistic but hopeful and proactive.  The idea that I’ll be learning about not just climate impacts but the potential resiliency of the Northern Gulf of Alaska is so cool!  I’m excited to find out more about the unique species, life cycles, and natural histories that make the Gulf of Alaska such a good place to study ecosystem resiliency, and I’m inspired to learn more about other ecosystems close to Kachemak Bay and their own potential resilience.

I am really looking forward to my time on R/V Tiglax in the Gulf of Alaska!

IMG_1721
A day kayaking with my partner Nathan and his 6-year old daughter, Johanna. I love spending time on the water, and am excited to get out in the Gulf on a much larger vessel!

 

Mark Van Arsdale: Modeling the Ocean, September 24, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 24, 2018

 

Weather Data from the Bridge

30 knot easterly winds, rain, waves to eight feet

60.20 N, 147.57 W (Prince William Sound)

 

Science Log 

Modeling the Ocean

During the last two weeks, scientists aboard the Tiglax will have done over 60 CTD casts, 60 zooplankton tows, measured over one thousand jellies caught Methot Net tows, and collected hundreds of water and chlorophyll samples. What happens with all of this data when we get back?   The short answer is a lot more work. Samples have to be analyzed, plankton have to be counted and measured, DNA analysis work has to be done, and cohesive images of temperature, salinity, and nutrients have to be stitched together from the five different transects.

Preparing for another CTD cast. More than 60 CTD casts were made during our cruise.
Preparing for another CTD cast. More than 60 CTD casts were made during our cruise.

Much of this data will eventually be entered into a computer model.  I’ve spent a great deal of time talking with one of the scientists on aboard about how models can be used to answer essential scientific questions about how the Gulf of Alaska works.  Take Neocalanus, the copepods we collected yesterday, for example.  A scientist could ask the question, what factors determine a good versus bad year for Neocalanus?  Or what are the downstream effects on a copepod species of an anomalous warming event like “the blob” of 2014-2015? A model allows you to make predictions based on certain parameters. You can run numerous scenarios, all with different possible variables, in very short periods of time. A model won’t ever predict the future, but it can help a scientist understand the “rules” that govern how the system works.  But a model is only as good as its baseline assumptions, and those assumptions require the collection of real world data.  A computer doesn’t know how fast Neocalanus grows under optimal or sub-optimal conditions unless you tell it, and to tell it, a scientist has to first measure it.

The fishing industry is a billion-dollar piece of the Alaskan economy.  The ocean is getting warmer and more acidic.  Food webs are shifting, and the abundance and distribution of the species we depend upon are changing as a result.  Using models may allow us to better predict what sustainable levels of fish catches will be as conditions in the Gulf of Alaska change.

I also asked the scientists on board about the future of oceanography in light of the advancements in autonomous unmanned vehicles.  Do you still need to send people out to sea when sending a Slocum Glider or Saildrone can collect data much cheaper than a ship filled with twenty scientists?  The answer I got was, “No, at best these technologies will enhance but not replace what we do at sea.  There will always be a place for direct scientific observations.”  We still need oceanographers at sea.

In twenty-one years of teaching I have had lots students go on to be doctors, PA’s, nurses, micro-biologists, geneticists, and a variety of other scientific occupations, but no oceanographers.  I guess I still have some work to do.

Personal Log

The Weather Finally Gets Us

We have had a few showers, bits of wind and waves, but the weather has been remarkably good for a cruise through the North Gulf of Alaska in late September.  This morning, during the night shift the winds started to blow, it started to rain, and the waves came up. When I went to bed around six AM, the wind was blowing thirty knots, and when I woke up at eleven, it was pushing up some pretty rough seas.  Things got really crazy after lunch.  The winds were being channeled right down Night Island Passage and all work was put to a stop.  I retired to my bunk to read, unable to even go outside and take look.  They eventually battened down the hatches; and we changed course to go hide in a bay sheltered from the wind. (Yes, they really do say batten down the hatches.)

By dinner time decisions were made to not work for the night.  It looked better where we were, but the stations we needed to sample were exposed to winds that were still blowing.  No zooplankton sampling for the night meant that it was time to start washing, disassembling, and drying nets.  We used seventeen different nets to sample zooplankton during the course of this trip and all of them needed to be washed and cared for before they got packed up.

Plankton nets hanging to dry (oceanographer laundry.)
Plankton nets hanging to dry (oceanographer laundry.)

Tomorrow we will begin the journey home with two stations un-sampled.  The storm kept us from getting to the last stations, and another storm is just a few days away. Once the decision was made, I think we were all relieved to be heading in.  Doing oceanography is hard work, and being away from lives, work, and family for such extended periods of time is tough.  Some of the scientists on board have spent as much as six or eight weeks at sea this year.  Having been out here for two weeks, I now understand what commitment that takes.

Unless something really interesting happens tomorrow, this will be my last blog.  This trip has been personally challenging, but a rich experience, and I believe it will be formative to my teaching.  I have learned a great deal about oceanography in general, and the Gulf of Alaska in particular.  The Gulf of Alaska is a magical place.  There is life almost everywhere you look.  More than anything I will leave with a deep impression of the dedication that scientists give to the accuracy and integrity of their work.

[Postscript:  Zooplankton and jelly work was done, so I was able to spend the entire last day on the flying bridge.  There was a good amount of swell from the previous day’s storm, but the sun and scenery made it an enjoyable trip back to Seward.  As we left Prince William Sound we were greeted by an abundance of seabirds that had been blown into the Sound by the weather.  On that day, we documented almost as many species as the rest of the trip combined.  We also got to watch a large group of orcas patrolling the area around Danger Island at the entrance to the Sound.  We made our way back to GAK1.  If the weather allows, GAK1 is always sampled at the beginning and ending of any trip.  The weather was beautiful, Bear Glacier and the entrance to Resurrection Bay was alive with color, and I was going home.  It was a great day.]

Views of the southern coast of the Kenai Peninsula as we traveled from Prince William Sound back to Seward.
Views of the southern coast of the Kenai Peninsula as we traveled from Prince William Sound back to Seward.

Animals seen today

  • Sea otters
  • Fewer birds today, bald eagles, kittiwakes, gulls

Mark Van Arsdale: Waking up Copepods, September 23, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 23, 2018

Weather Data from the Bridge

Variable winds, partially cloudy, calm seas

60.20 N, 147.57 W (Prince William Sound)

 

Science Log

Waking Up Copepods

One of the scientists on board is interested in the life cycles of a particular species of Neocalanus copepod. Neocalanus is a remarkable looking copepod.  They have long antennae with feathered forks at the ends. They have striking red-orange stripes on their bodies and antennae that reminds you a bit of a candy cane. Neocalanus is an important copepod in the Gulf of Alaska ecosystem, and it typically makes up the largest portion of zooplankton biomass in the spring.

Neocalanus cristatus, photo credit Russ Hopcroft, UAF
Neocalanus cristatus, photo credit Russ Hopcroft, UAF

Its life cycle is interesting.  If zooplankton were cars, the Neocalanus might be a Toyota Prius.  It’s not fast or fancy, but it’s efficient.  Neocalanus copepods feast in the spring and early summer and then settle down several hundred meters below the surface to enter into a diapause state.  Diapause is a kind of dormancy that involves slowing basic metabolic functions to near zero.  It is a strategy used by other Alaskan arthropods, most notably mosquitos, to survive long winters.  As for why they travel deep into the water column, the answer seems to be that they use less energy in the dark, cold, high pressure waters at depth.  Inside the Neocalanus there is an unmistakable large, sausage shaped sack of oil that should provide the energy reserves needed to survive prolonged diapause.

When the Neocalanus females wake up, they have to restart their metabolism and begin meiotic development of their oocytes (egg cells.) They have previously mated and they store the male’s sperm within their bodies during diapause.  Each of these biological events involves turning on several dozen genes.  What our scientist wants to know is what genes get turned on, in what order, and what environmental clues tell the initial genes to start making RNA. To study all of this, she needs living copepods in diapause.  Our collection process inevitably wakes them up, but it gives her a time zero for observing this transformation.  For the next twelve hours, she separated and preserved copepods every hour for later genetic analysis that may give her insight into when genes turn on and in what order as the copepods wake up.

In order to get her copepods, the night team did a vertical Multi-net tow at four AM.  We dropped the Multi-net down to a depth of 740 meters. The work we were doing was sensitive, as she needed the copepods alive and undamaged.  I was glad to have slept a few hours as we were moving between sampling stations, because what came up in the tow was pretty amazing.  Along with the Neocalanus, there were many other types of zooplankton including the copepod MetridiaMetridia produce an intense bioluminescence when disturbed. When we brought the nets to the surface, the cod ends were glowing electric blue and individual copepods could be seen producing pinpricks of light that were remarkably bright.

Bioluminescence is ubiquitous amongst deep sea species.  Deep sea fishes, jellies, and plankton use it to attract prey, to camouflage their silhouette, to surprise and distract predators, and likely to communicate with members of the opposite sex.  The deep oceans make up 95% of biological habitat on Earth.  If you consider bioluminescence communication a kind of language, it may be the most commonly spoken language on the planet.

Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens. Michael Tessler et al (2018)

Personal Log

Protected Waters

Knight Island Passage, Prince William Sound
Knight Island Passage, Prince William Sound

Waking up in Prince William Sound today felt good.  I was closer to home this morning than at any time since leaving Seward.  The Sound feels comfortable and protected.  Should bad weather come up, and it sounds like it will tomorrow, there are hundreds of sheltered bays to hide in.

Chenega Glacier, Icy Bay, Prince William Sound.
Chenega Glacier, Icy Bay, Prince William Sound.

Prince William Sound’s beauties are hard to describe without sounding cliché.  Most striking of all are the large tidewater glaciers.  In the evening, we made our way to Chenga Glacier, to do CTD cast.  It was a quite a sight, as were the three hundred harbor seals hauled out on the floating ice in front of the glacier.

These glaciers directly shape the ecosystem of the Sound.  They provide a large freshwater input that is high in trace minerals, while creating pockets of cold water, which serve as micro-climates within the larger area.  These glaciers are melting at incredible rates, and freshwater inputs are greater than they have been at any time since the last ice age.  Sampling stations that were once near the face of the Chenga and Columbia Glaciers are now miles away from their quickly receding faces. Click here to watch the satellite images of Columbia’s retreat.  This ecosystem is changing, and only through long term ecological monitoring will we know exactly how or what it means.

The completion of the road to the town of Whittier has also changed the Sound.  It’s late September, and most pleasure boaters have stowed their boats for the winter, but the number of boats and people coming into the sound to fish, hunt, and sight see has increased dramatically.  Many Alaskans have come to recognize the coastal gem that lays just seventy miles and one long tunnel through the mountain from Anchorage.

Columbia Glacier 1986 (left) 2011 (right). Image from https://visibleearth.nasa.gov/view.php?id=78657
Columbia Glacier 1986 (left) 2011 (right). Image from https://visibleearth.nasa.gov/view.php?id=78657

 

Animals seen today

  • Lots of harbor seals near Chenega Glacier
  • Sea otters
  • Fewer birds today, mergansers, Kittlitz’s murlets, mew gulls, goldeneyes,

 

 

Mark Van Arsdale: Marine Debris, September 22, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 22, 2018

Weather Data from the Bridge

Southeast wind to 20 knots, rain showers, 6-8 with occasional 12 feet seas

59.913 N, 144.321 W (Kayak Island)

 

Science Log

Marine Debris

The wind came up a bit today, and so did the waves, but we are far enough ahead of schedule that the captain and head scientist decided we should take a two-hour excursion to Kayak Island before taking the eighteen-hour trip into Prince William Sound.  The Tiglax has a pretty deep draft, and the waters surround Kayak Island are shallow, so the boat was anchored about a mile off shore.  The waves were pretty mellow when we departed and it was a pleasant zodiac ride to shore.

The ocean side of Kayak Island is as remote as you can get, but it is covered with human trash. Marine debris is not new, fishing lines, nets, and glass floats have been washing up on beaches for hundreds of years, but the issue changed with the advent of plastics in the 1950’s.  Plastic is buoyant, supremely durable, and absolutely ubiquitous in modern human society.

The beach we walked on faces the ocean and the intense energy of winter storms was obvious.  There were logs thrown up to the high tide of the beach that were nearly four feet in diameter.  The rocks on the beach were polished, rubbed free of their edges.  Driftwood pieces were sanded smooth by the energetic action of waves smashing against rocks.  There were all kinds of interesting things to discover, including fresh bear tracks and some rather large piles of scat.  But more than anything else, there was plastic.  Plastic bottles, plastic fishing floats, fishing line, and wide variety of other refuse.  Some of it below the high tide line, and much of it thrown far back into the dense alder and salmon berry bushes above the high tide line.  Labels and lettering indicated much of the debris was from Asia.  Some of it may have been debris from the large tsunami that hit Japan on March 11, 2011, but much of it was just fishing gear lost during ordinary storms or accidents.

The Kuroshio Current
The Kuroshio Current

So how does fishing gear from Taiwan or Japan end up on a remote Alaskan beach?  Currents is the simple answer, specifically, the Kuroshio Current that flows towards the northeast from Japan.  The Kuroshio Current is a swift moving, warm water current, and it pushes debris into the North Pacific Gyre.  A Gyre is clockwise moving merry-go-round of ocean moved by the rotation of the Earth around its axis and by the prevailing winds.  Much of the debris from Asia gets trapped in that Gyre and coalesces into a floating soup of trash known as the Great Pacific Garbage patch. Some of that debris ends up washing ashore on the islands of Northwestern Hawaiian Archipelago, and some of it takes a left-hand turn, getting caught up in the counterclockwise movements of the Gulf of Alaska Current.  Kayak Island sticks out into the Gulf of Alaska like a hitchhiker’s thumb, and does a good job of catching floating debris.

Kayak Island Alaska
Kayak Island Alaska

Marine debris is more than a problem of unsightly litter.  Fishing gear lost in the water keeps on fishing, catching fish, birds, and sea turtles.  Plastic breaks apart into smaller pieces and ends up in the bellies of seabirds, turtles, marine mammals, and fish.  It’s not uncommon to find dead sea birds in the Northwest Hawaiian Islands with bellies completely filled with human trash.  Seabirds don’t consciously eat plastic, but in lower light conditions floating plastic can look like squid or krill.  To a hungry sea turtle, plastic bags and bottles can look like floating jellies and may clog the digestive system of an animal that eats them.  Plastics also concentrate potentially toxic organic chemicals that can work their way up the food chain into the fish and seafood that we eat.

Much to the annoyance of the crew, we picked up some of the larger floats and brought them on board the Tiglax. Larger efforts have been organized to do summer clean-up work on the outer islands of the Prince William Sound, but their efforts are a drop in a very large bucket.  The problem of plastic debris is enormous and in desperate need of a global solution.

Marine debris, Kayak Island.
Marine debris, Kayak Island.
Marine debris, Kayak Island.
Marine debris, Kayak Island.
Marine debris, Kayak Island.
Marine debris, Kayak Island.
Marine debris, Kayak Island.
Marine debris, Kayak Island.

Personal Log

Big Wave Riders

A rainbow visible as we left Kayak Island.
A rainbow visible as we left Kayak Island.

It doesn’t take long for waves to build in the Gulf of Alaska.  Within an hour and a half, the waves had risen to six feet with occasional ten foot monsters cresting just off the beach.  You could see white caps and even a mile away on the beach you could see the Tiglax bobbing up and down.  Marin, our ever-calm skiff driver, told us in a pleasant voice that the ride would be a little bumpy and that we might be “uncomfortable.”  In reality, it was a harrowing fifteen minutes that seemed to take much longer. I was sitting in front of the zodiac and was thrown several feet in the air more than once as we crested waves much larger than our boat. While on the beach I had discovered an intact 500-watt red lightbulb, used as a squid attractor by fishermen in Asia.  We had seen some of these floating on the surface the last few days, and to me it was the perfect piece of marine debris to take back to my classroom.  Unfortunately, that meant I was riding the bucking bronco that was our zodiac with a very fragile piece of glass in my left hand.  As I was getting air going over each wave, I was very conscious of the potential laceration I was risking to my hand or worse to the rubber zodiac.  Somehow we made it back to the boat, light bulb intact.  For the last two weeks, the Tiglax has grown to feel quite small, even confining, but as we approached the boat it seemed gigantic, dwarfing our skiff with its large steel hull crashing up and down in the waves like a giant hammer.  We tossed our bow line to the crew waiting on the back deck and they held us marginally in place as each of us timed our climb up a safety line with a rising wave.  “Don’t jump, take it slow, wait for the next wave if you need to,” said the captain.  The three other passengers on the zodiac did just as instructed.  The last passenger out, I grabbed the safety line with my right hand, but was unable to climb because of the glass treasure in my left hand. I jumped, skidding onto the back deck as if it was home plate, light bulb still in my left hand.

[Postscript: That lightbulb survived a trip across the Pacific Ocean, washing ashore on a rocky beach, and a trip to the Tiglax by a possibly foolish collector.  However, it only survived 24 hours in my classroom, smashed by an unknown student while I was visiting the bathroom.  Just so you know, high school students are rougher than the Pacific Ocean.]

Red Light Bulb Marine Debris
Red Light Bulb Marine Debris

We all managed to get back on board safely.  The experience and training of the crew really showed through.  When asked later if that was crazy, they answered with a casual dismissal, “just another day at the office.”

We got underway in large seas, six to eight feet, with the occasional twelve-footer.  I don’t know the techniques used to calculate such things, but some of those waves were huge.  As we positioned the boat perpendicular to the waves, each dip into a trough sent spray crashing over the bow of the boat.  I went up to the flying bridge, held on tight to a railing, and enjoyed the ride. The waves were wild and beautiful.  The sun occasionally peaked out from the clouds and the seas reflected a diverse assortment of blue and grey hues.

At the end of Kayak Island there stands the sharp cliffs of Point Elias, a lighthouse at its base, and a rock spire called Pinnacle Rock in front of it.  I’ve seen pictures of this place. It’s an iconic Alaskan image.   I felt lucky to be watching it as we rounded the point and headed into Prince William Sound for the last leg of our trip.

Did you know?

The size of a wave is determined by the multiplication of three variables.  The speed of the wind, the duration the wind blows, and the fetch (distance the wind blows.)  Increase any of those three and waves get bigger.  The size of waves can also be impacted by changing tides or currents and the specific topography of a shoreline.

Animals seen today

  • Stellar Sea Lions
  • Sea otter
  • Lots of birds including Haroquin ducks, double crested cormorants, gulls, common murres, and a blue heron

Mark Van Arsdale: Gelatinous Fireworks, September 21, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 21, 2018

Weather Data from the Bridge

Partially cloudy skies, variable winds, calm seas to three feet

59.27 N, 143.89 W (Cape Suckling Line)

 

Science Log

Gelatinous Fireworks

 

CTD (water chemistry) data visualized along the Cape Suckling Line.
CTD (water chemistry) data visualized along the Cape Suckling Line.

Last night, we traveled between the Middleton Island line and the Cape Suckling line, providing us with a change in pace from our regular routine of zooplankton and jelly collecting.  Still, it wasn’t a night off, and at midnight, while still in deep waters, we stopped to do a special Multi-net tow. At 800 meters (almost 2500 feet,) this was our deepest tow of the trip.  A tow that deep takes almost two hours to get down to depth and back up again.  This tow was looking for unique organisms for later genetic analysis, and most of the stuff that came up I had previously only seen in movies.  Deep red shrimp, giant copepods almost a centimeter in length, big-eyed lantern fish, comb jellies, and amphipods that looked straight out of the movie Aliens.

Lanternfish from a deep water (800 m) Multi-net tow.
Lanternfish from a deep water (800 m) Multi-net tow.

We had a couple of hours break until we reached the outermost Cape Suckling station, so naturally I slept.  We did our first Methot net jelly tow at five am. We were in deep water, 2500 fathoms (~15000 feet), and far enough off shore that the jellies were abundant.  In fact, as we were putting the net in the water we noticed that there were more jellies than we had previously seen at any sampling station.   After putting the net in, we turned off the ships lights and lay witness to a fireworks show in the water.  So many jellies, and each time one hit the net there was an explosion of blue green light.  Jellies, particularly the glass jellies, are super fragile with long delicate tentacles.  When they hit the net, their tentacles break apart and they release a plume of glowing bioluminescence.  The normal in-water time for this net is twenty minutes, but after seeing such dense concentrations of jellies we decided to pull it early.  As we pulled it out of the water, the net nearly bursting at its seams, we had to attach an extra line and bring the cod end out of the water with the crane.  We measured jellies for a long time, and watched the sky glow red as the sun came up over the rugged peaks of Cape St. Elias and the Bering Glacier.

The Scientists

Yesterday, I talked about the Crew of the Tiglax. Today I thought I would say a bit about the scientists on board.  Excluding myself, there are thirteen scientists on board.  Of those thirteen, ten are women and three are men.  The group includes four graduate students, three research technicians, two wildlife biologists, two primary investigators/professors from UAF, one investigator/professor from the University of Hawaii, and one semi-retired UAF research staff.  Aside from the wildlife biologists and the researcher from the University of Hawaii, they are all physical oceanographers.  Physical oceanographers look at the ocean almost as if it is an equation waiting to be solved.  If you have the right physical drivers, wind and currents may combine nitrates and iron at the surface.  If you have the right nutrients mixed with light near the surface, you get phytoplankton growth.  If you have oxygen and phytoplankton with the right physical conditions to stay near the surface, you can grow and sustain zooplankton. They build ecosystems as if by Lego blocks, each piece critical to the final outcome.

Ask any one of them how they get paid and you will inevitably get the response – it’s complicated.  Most of the salaries are funded through grants in what they describe as “soft money.”  Grants for research are funded by a variety of agencies, in this case, the largest being the National Science Foundation.  Writers of the grants list the number of positions required and the dollar figure attached to those positions.  Once the grant is awarded it gets managed by The University of Alaska accounting department.  For the grad students, these trips are certainly a learning opportunity, and one that a lot of schools could not offer.

Personal Log

Autonomy

The back and forth nature of the way we sample stations is at times dizzying.  We make progress slowly, sample four stations at night, drive back to where you started in the morning, then sample the same four stations during the day.  At sunset, start at the next station down the line.  Much of the conversation aboard revolves around what station we are on and what test is being run.   The acquisition of data is slow, tedious, and deliberate work.

Today we are closer to Canada than we are from the town of Seward where we left. When you are part of a research cruise one hundred miles off shore, you can’t just go home because you’re tired, or because something happens at home, or because you just want a break. If something breaks, you have a spare, or you try to fix it.  If a schedule gets altered because of waves or weather, you just sleep when you can and work later.  There is no phone and no internet, so you can’t call your kids to wish them goodnight.  There is just work, and I have found myself in many ways ill prepared for its single-minded focus.

I have come to realize how much I take for granted the autonomy I have to do or go where I want.  Out here, you have no autonomy.  You go where the boat goes, you eat what and when the chef says, you work when the chief scientist says to work, and you do exactly what they say.  This of course, is driven by the sheer expense of doing research at sea as well as the tremendous travel times it takes to get out this far.

Northern Fulmar, notice it's "tube nose."
Northern Fulmar, notice it’s “tube nose.” photo credit Callie Gesmundo.

Did you know?

Many seabirds have a structure on the tops of their beaks that looks like the air intake on a muscle car.  These birds are known as “tube-nosed” birds and they make up the order Procellariiformes.  The group includes albatross, fulmars, petrals, and shearwaters.   The tube hides two nasal glands that help them concentrate and remove excess salt from their blood.  The glads allow them to drink saltwater without suffering dehydration.

 

Animals seen today

  • Minke whale
  • Lots of sea birds including puffins, auklets, shearwaters, albatross, fulmars, petrels, and gulls

Mark Van Arsdale: The Tiglax, September 20, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 20, 2018

Weather Data from the Bridge

Partially cloudy skies, variable winds, calm seas to three feet

59.38 N, 146.3 W (Middleton Island Line)

 

Careers at Sea

The Tiglax

The R/V Tiglax  (TEKH-lah – Aleut for eagle) has been in operation since 1987.  During the 2018 field season, it traversed to Seattle, Nome, St. Mathew Island in the Bering Sea, and on multiple trips down the Aleutian Chain.  It supposedly logged enough miles in the Gulf of Alaska and Bering Sea this summer to circumnavigate the Earth. It is operated by the Alaska Maritime National Wildlife Refuge and U.S. Fish and Wildlife Service.  The North Gulf of Alaska Long Term Ecological Monitoring Project charters the boat for about $11,000 a day.

The Tiglax as seen from Middleton Island
The Tiglax as seen from Middleton Island

The boat itself is 121 feet long and 32 feet wide. It has two cranes for moving gear and a winch with 2000 meters of cable. The Tiglax has a front and back operating deck and a walk around on one side. Inside, the boat is equipped with a small science lab, bunks to accommodate sixteen passengers besides the crew, a galley, kitchen, a dry room for hanging rain gear and mustang suits, and a large hold for storing equipment at the bottom of the boat. The boat has its own water desalinization system, electrical generator, a huge fuel capacity, a walk-in fridge, and two walk in freezers. It can stay at sea for weeks, limited only by its supply of fresh food.

The Tiglax has a crew of six.  John Faris is the captain.   He has worked on the boat for eighteen years, the last three as captain.  John keeps tabs on all of the scientific work going on aboard the Tiglax and works closely with Russ Hopcroft, the chief scientist, to maximize what can get done on the boat with the time and equipment we have.  He’s always lighthearted and upbeat, unless you forget to wear your float coat while working on deck.  I appreciated that John seemed to have a genuine interest in the science understanding that his boat was contributing to.

Dan, Andy, and Morgan lowering a skiff for our trip to Middleton Island.
Dan, Andy, and Morgan lowering a skiff for our trip to Middleton Island.

Dan is the mate and back-up pilot, running the boat on the night shift. He is a recent addition to the boat, having previously worked in marine salvage.  He was full of great stories and we shared a common distaste for the night shift.

Andy is the ship’s engineer.  I never knew where he was, down in the engine room somewhere maybe, but when things broke, which they did, he was always on it.  Despite having blown a hydraulic line on the main crane, and having seriously taxed the aging winch, we only missed out on one tow in fourteen days.

There are two shifts on the Tiglax.  The night shift operates from 10 pm to 6 am, and then again from 2pm to 6 pm.  The dayshift runs on the opposite hours.   There are two deckhands to staff those shifts, Dave on the day shift and Marin on the nightshift. Dave and Marin have both been with the boat for a few years, and seemed to enjoy the life that an intensive six-month season provides.

Dave keeps a van in Arizona, and is looking forward to some desert therapy after a long season spent on the cold water of the Gulf.   He was patient when I lashed things down poorly and always offered up a smile when I reached zombie status at the end of the night shift. He also taught me that the phrase “make sure the dog is in the clover,” doesn’t have anything to do with a four-legged animal or a plant (my bad), but rather meant I was supposed to put the metal tie down hook (dog) in the clover-shaped tie down slot (clover) on deck.

Marin at the winch controls.
Marin at the winch controls.

Marin grew up commercial fishing and is pretty much super woman.  She could move heavy equipment as well as any man on board and run the crane with a delicate touch, all while making a float coat and Grundens rubber bibs look stylish.  Marin does some other gigs during the winter, including work as a professional climber cleaning tents for Cirque du Soleil.

This type of cruise is not the main function of the Tiglax. For much of the summer the Tiglax is bringing scientists to,  picking scientists up from, or resupplying study sights in the Aleutian Islands and Bering Sea. The Tiglax is really a scientific taxi service and hotel. Our work, by comparison, is certainly repetitious if not dull. Running a deep-water plankton tow or a deep cast of the CTD typically means two hours of standing at the winch controls.  The deck hands will run the winch for those casts and tows over one hundred and twenty times during the length of this cruise.

Hardworking oceanographers have got to eat, and Morgan is key to that. Morgan is the ship’s chef; three times a day, she plans and prepares meals for twenty.  She is amazingly efficient in the kitchen, and always playing great music.  The rest of the crew thinks she has the hardest job on the ship.  Although fresh vegetables got a little hard to find, the food was always excellent.  Working just six months a year on the boat, she runs a private catering company the rest of the year.   She talked to me about the challenges of running a growing small business when you are so remote for so much of the year.

The entire crew lives in the town of Homer, the boat’s home port. They seem to enjoy their jobs on board the Tiglax as well as the exotic places it took them.

Personal Log

What’s it really like being at sea?

Being on board a small research vessel at sea is a series of sharp contradictions.  The boat can go anywhere, but you can’t go anywhere. You are in an incredibly remote and exotic location, but your day is totally routine.  When working, you are constantly busy, but when you aren’t working, there are few distractions and time moves slowly.  Look out at the horizon for an hour and you may see nothing but water and sky, but then in an instant a fifty-ton fin whale surfaces right in front of the boat.  You are traveling though places completely devoid of human noise, but the ship itself is a constant cacophony of sound.  When the boat moves completely out of sight of land, there is a visual blandness that lays in contrast to the thrill of the living things that populate the absurd depths below you.

Sunset on the Middleton Island Line
Sunset on the Middleton Island Line

Did you know?

If you want to open a door on a boat at sea you first have to unhook it.  All doors and shelves have hooks to keep them from flying open or closed.

Animals seen today

  • Fin whales
  • Dall’s porpoises
  • Lots of sea birds including puffins, auklets, shearwaters, albatross, fulmars, petrels, and gulls

 

Mark Van Arsdale: Estuaries, September 19, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 19, 2018

 

Weather Data from the Bridge

Clear skies, calm seas

 60.25N, 145.5 W (Middleton Island Line)

 

Science Log

Estuaries

Water chemistry for the Middleton Transect Line
Water chemistry for the Middleton Transect Line

Estuaries are semi-enclosed bodies of water where fresh and saltwater mix.  By this morning, we had moved into the Copper River Estuary and the salinity reading at the surface showed nearly fresh water.  Estuaries can be sites of incredible biological productivity, but in Alaskan high rates of water flushing due to rain and glacial melt along with low rates of plant decay (and almost zero use of agricultural fertilizers) mean that may not be the case.  Close to the Copper River, light may also become a limiting factor as the glacial sediments increase turbidity and decrease water clarity.  Along this line, we did see a narrow band of higher productivity (seen as Fluorescence on the graph above) about fifty kilometers out where water clarity had improved.

Estuaries tend to be shallow with lots of tidal movement.  This creates ideal conditions for plankton growth, and our nightly plankton tows did see more algae than we had in previous tows.  We also started to see juvenile pink shrimp and salmon smolt.  Much to our surprise, we were still catching jellies well into the freshwater area. For most oceanic species, fresh water is a stressor. Dealing with the constantly changing salinity is a challenge for any estuarine species.  An inflowing tide brings in denser saltwater, which moves along the bottom.  Freshwater flows in from rivers at the surface.   Depending on the conditions of the estuary, that can create either well mixed brackish water or distinct salt and freshwater wedges.

Bird biologist Dan Cushing entering data along the Middleton Line.
Bird biologist Dan Cushing entering data along the Middleton Line.

Estuaries across the world have historically been centers of intensive human development. In the U.S., New York, San Francisco, Baltimore, and Seattle are just a few examples of large urban areas sitting along large and important estuaries.  For historically developing cities, estuaries meant easy to access food and oceanic transportation, as well as the benefits of fresh water for drinking and the outflow of sewage waste.  Sixty percent of North America’s estuaries are considered to have significantly degraded habitat. However, the Copper River Estuary remains a largely undisturbed gem.  There are no dams on the Copper River and very little development along its watershed.   

Personal Log

Human Connections

When the sun came up in the morning we could see the heavy glacial silt of the Copper River.  There were sightings of ducks and other water fowl.  The water was grey and murky, but the peaks surrounding the Copper River water shed were sensational, and I found myself wishing I could stay awake.  As we get further east and into areas that I am completely unfamiliar with, there is so much to see, and I find myself wishing I did not have to sleep through the mornings.

Sunrise over the Copper River Estuary
Sunrise over the Copper River Estuary

At this point we were just a few miles away from the town of Cordova.  Although I did not, many people on board had cell service this morning.  When I woke up after five hours of sleep it was impossible to walk around the boat without seeing someone looking down at their phone.  Scientists at sea are very work focused, but even hard core scientists miss their human connections.  People wanted to talk to spouses or kids, and get updates on their friend’s social media.  There were also murmured discussions about what news we had missed over the last eight days, much of it ominous.  Our human connections are life sustaining points of encouragement, our twenty-four-hour news cycle maybe not so much.  By afternoon we were headed far back out to sea working on the Middleton line.  Because of the zig-zag nature of our day-night work, we have had a clear view of Middleton Island several times now.  Those who were here last year recall such torrential rains that they never saw the island once.  Our weather continues to be remarkably good.  We hope to complete the Middleton Line tomorrow and head further east to Cape Suckling after that.  Ironically, the good weather seems to be leaving the captain and crew slightly ill at ease.  It can’t last forever, and they seem to be wondering when the other shoe will drop.  I just hope that if and when the weather goes bad, it’s during the last leg of our trip when we have moved into the protected waters of Prince William Sound.

Mark Van Arsdale: Sightings from the Flying Bridge, September 18, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 18, 2018

 

Weather Data from the Bridge

Clear skies, calm seas

59.30 N, 146.15 W (Middleton Island Line)

 

Science Log

Sightings from the Flying Bridge

We finished up night work on the morning of the 17th in a bit of swell. Our last casts of the Methot and the Bongo nets were bumpy.  It was hard to stand up, and hard to keep objects from shifting dangerously.  But the swell didn’t last, and by time I woke up mid-morning it was a picture-perfect day, clear and calm. The day shift finished up sampling the Kodiak line by dinner, and we began a twenty-four-hour transit from the Kodiak line to Middleton Island east of Prince William Sound. I got the night off, and with it my first solid night of sleep since the trip started.  I felt like a whole new human.

Mola mola
Sunfish (Mola mola) with diver
© Tomas Kotouc
Tomas Kotouc
Sladkova 331/II, Jindrichuv Hradec, 377 01, Czech Republic

The transit allowed me to spend most of the day in the flying bridge and it was a good day for it.  We sighted fin whales in the morning, numerous sea birds, another Mola mola (ocean sun fish), and two pods of Risso’s dolphins in the afternoon.  The last two sightings are really interesting.  That was the third Mola mola spotted on the trip.   The Mola mola is the largest bony fish in the ocean.  They can grow up to four meters long and three thousand pounds, eating almost exclusively jellies. They are a bizarre looking fish.  They have no true caudal (tail) fin, thin elongated pectoral fins, and a body shaped like more like a giant head than a fish.   They also swim (if you can call it that) on their side.  The interesting thing is that the Mola mola is a sub-tropical fish and should not be seen in the North Gulf of Alaska – but here they are.

The Risso’s dolphins were another unusual sighting.  We saw them in groups of twenty or so.  Fast swimmers and acrobatic in their movements, you could see their characteristically white faces and scratched backs as they jumped out of the water.  None of the crew or scientists on board had ever seen them and we went through three books trying to get a solid ID.  Very little is known about this species, and confirmed sightings at sea are limited.  It’s likely that this will be the farthest north sighting of Risso’s dolphins recorded.

In the last few years, unusual sightings of species have become more common and not just on the surface.  Plankton tows are revealing copepod species more commonly associated with the California Current than the Gulf of Alaska.  It’s possible that these sightings represent observational bias – we are just paying more attention.  But it seems likely that species in the Gulf of Alaska are on the move.

The North Gulf of Alaska changes seasonally, it changes based on your depth and location, and it changes with weather and currents, but it seems obvious that it is also experiencing long term climactic change.  How will that change affect the stability of this rich ecosystem?  How will it affect the large slice of the Alaskan economy that depends on the wealth of fish brought out of the Gulf?  Already this summer, the Gulf of Alaska cod fishery closed due to lack of fish.  A disaster to some of fishermen in Kodiak, and a heavy hit to the Kodiak Island economy. By tomorrow morning we will be at the outflow of the Copper River.  Copper River salmon are famous for their rich flavor, high prices, and dependable arrival, but this summer, fishing for Copper River king and sockeye salmon was also closed for much of the summer. Fish were coming back small or not at all.

Middleton Island, the kittiwake tower in the background.
Middleton Island, the kittiwake tower in the background.

Personal Log

Middleton Island

Good weather has left us a bit ahead of schedule, and the captain and chief scientists decided we could make an excursion to Middleton Island.  When I get home I plan to do some more research on the Island, but it seems to have an interesting, albeit short history.  The island is just a few thousand years old, brought up out of the ocean by the tectonic movements of the Pacific and North American plates.  Much of the island is a flat plateau, surrounded by a series of shelves descending down to the water.  Some of the shelves are quite new, the latest edition came during the 1964 Alaska Good Friday Earthquake, as the island was force 12 feet up from the ocean.

Abandoned air force buildings and the newly remodeled kittiwake tower.
Abandoned air force buildings and the newly remodeled kittiwake tower.

The island was once home to a World War II Air Force base.  It was believed that its moderate climate would make an ideal early warning site, but the base was abandoned some time ago. Middleton is currently home to an FAA weather station and an immense number of nesting seabirds.   At some point the disintegrating air force buildings were taken over by those nesting sea birds.  Scott Hatch, a U.S. Fish and Wildlife biologist, saw an opportunity and over the years has turned the old Air Force tower into an observation and study center for nesting black legged kittiwakes.  Over a thousand birds have nests on the outside of the tower, and each one now has a one-way glass window at its back.  The nesting birds can be observed and studied by budding biology students from inside the tower. Studies have been done on their diets, metabolism, behaviors and numerous other details of their private lives. We got to meet Scott and his wife, who were just finishing up some end of the season work on the sight.  They gave us a bit of a tour and showed us where they had built facilities for students and observation sites for nesting common murres, as well as burrow digging sea birds like rhinoceros auklets and puffins. The sea birds were all gone, having fledged their young and returned to the ocean a few weeks before, but it was fun to imagine what the island looked and sounded like with thousands of sea birds on it.

View from inside the kittiwake tower.
View from inside the kittiwake tower.

The day off and a shore excursion seemed to leave everyone more relaxed that they have been for the last week.  People smiled and joked and enjoyed the unusually warm September day.  Feeling recharged, I was even looking forward to my night shift.

Cool Moment of the Day

We start working most nights just after the sun goes down.  Last night I noticed there was a bird following us just overhead.  It was an osprey, and it followed us for more than two hours as we worked through the night.  The bird undoubtedly thought we were a fishing vessel and was looking for handouts, but in the middle of the night it was an amusing distraction to look up at the rapture silhouette against the clouds.

Animals seen today

  • Fin whales
  • Harbor porpoises
  • Risso’s dolphins
  • Another Mola mola
  • Lots of sea birds including puffins, auklets, shearwaters, cormorants, fulmars, petrels, a merlin, an osprey

Mark Van Arsdale: Kodiak, September 17, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 17, 2018

Weather Data from the Bridge

This morning 25 knot winds from the NE, waves to 8ft, tonight calm seas variable winds, light rain

58.14 N, 151.35 W (Kodiak Line)

Science Log

Kodiak  

CTD (water chemistry) data visualized along the Kodiak line.
CTD (water chemistry) data visualized along the Kodiak line.

My wife and I have traveled to Raspberry and Kodiak Islands twice.  The island’s raw beauty, verdant colors, and legendary fishing make it one of my favorite places on Earth.  Its forests are dense, with huge hemlocks and thick growths of salmon berries.  The slopes are steep and covered with lush grasses.  Fish and wildlife abound.  As we moved our way down the Kodiak line, getting closer and closer to land, that richness of life was reflected in waters surrounding the Island.  In just fifty nautical miles we moved from a depth of a few thousand meters to less than one hundred.  Seabirds became more abundant, and we saw large groups of sooty and Buller’s shearwaters, some of them numbering in the thousands.  Sooty shearwaters nest in the southern hemisphere and travel half way across the planet to feed in the rich waters surrounding Kodiak.  Fin whales were also abundant today, and could be seen feeding in small groups at the surface. Our plankton tows also changed.  Deep sea species like lantern fish and Euphausiids disappeared and pteropods became abundant. We caught two species of pteropods that go by the common names – sea butterflies and sea angels.  Sea butterflies look like snails with clear shells and gelatinous wings.  Sea angels look more like slugs, but also swim with a fluttering of their wings.  Pteropods are an important part of the Gulf of Alaska Ecosystem, in particular to the diets of salmon.

Sooty shearwaters as far as you can see.
Sooty shearwaters as far as you can see.

In the last decade, scientists have become aware that the ocean’s pH is changing, becoming more acidic. Sea water, like blood, is slightly basic, typically 8.2 on the pH scale.  As we have added more and more CO2 into the atmosphere, about half of that gas has dissolved into the oceans. When CO2 is dissolved in sea water if forms carbonic acid, and eventually releases hydrogen ions, lowering the waters pH.  In the last decade, sea water pH has dropped to 8.1 and is predicted to be well below 8 by 2050.  A one tenth change in pH may not seem like much, but the pH scale is logarithmic, meaning that that one tenth point change actually represents a thirty percent increase in the ocean’s acidity.   Pteropods are particularly vulnerable to these changes, as their aragonite shells are more difficult to make in increasingly acidic conditions.


A nice introduction to Pteropods

Personal Log

I chose teaching

We have been at sea now for one week. I feel adrift without the comforts and routines of family, exercise, and school. There are no distractions here, no news to follow, and no over-scheduled days.  There is just working, eating, and sleeping. Most of the crew and scientists on board seem to really enjoy that routine.  I am finding it difficult.

There was a point in my twenties where I wanted nothing more than to become a field biologist. I wanted to leave society, go to where the biological world was less disturbed and learn its lessons. I see the same determination in the graduate students aboard the Tiglax. When working, they are always hyper focused on their data and the defined protocols they use to collect it.  If anything goes wrong with tow or sampling station, we repeat it. You clearly need that kind of focus to do good research. Over time, cut corners or the accumulation of small errors can become inaccurate and misleading trends.

When I was in graduate school hoping to become a marine biologist, I was asked to be teaching assistant to an oceanography class for non-science majors. Never having considered teaching, the experience opened my eyes to the joys of sharing the natural world with others, and changed my path in ways that I don’t regret. I am a teacher; over the last twenty years it has come to define me. On this trip, they call me a Teacher at Sea, yet the title is really a misnomer.  I have nothing to teach these people, they are the experts.  Really, I am a student at sea, trying to learn all that I can about each thing I observe and each conversation I have.

Bowler's shearwater, photo credit Callie Gesmundo.
Buller’s shearwater, photo credit Callie Gesmundo.

 

Animals seen today

  • Fin whales
  • Lost of shearwaters (mostly sooty but also Buller’s), along with puffins, auklets, skua

Mark Van Arsdale: What Makes Up an Ecosystem? Part IV – Jellies, September 16, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 16, 2018

Weather Data from the Bridge

Mostly cloudy, winds variable 10 knots, waves four to six feet during the day, up to eight feet at night

57.27 N, 150.10 W (Kodiak Line)

Science Log

What Makes Up an Ecosystem? Part IV Jellies

Ever seen a jellyfish washed up on the beach? Ever gotten stung by one?  Most people don’t have very favorable views of jellyfish.  I’m getting to spend a lot of time with them lately, and I am developing an appreciation. We have a graduate student on board studying the interactions between fish and jellies.  Her enthusiasm for them is infectious.

Graduate student Heidi photographing a phacellophora (fried egg) jelly
Graduate student Heidi photographing a phacellophora (fried egg) jelly

Jellyfish really aren’t fish.  They belong to a group called Cnidarians, along with corals, sea anemones, and hydras.   It’s one of the most primitive groups of animals on the planet.  Ancient and simple, Cnidarians have two tissue layers, a defined top and bottom, but no left and right symmetry and no defined digestive or circulatory systems.  Jellies have simple nerves and muscles.  They can move, but they are unable to swim against oceanic currents and therefore travel at the whim of those currents.  Jelly tissue is made of a collagen protein matrix and a lot of water.  I have heard one scientist call jellies “organized sea water.”  That’s really not too far off.  Seawater has a density close to one kilogram per liter, and when you measure jellies, their mass to volume ratio almost always approaches one.

Despite their simplicity, jellies are incredible predators.  When we scoop them up with the Methot net, they often come in with small lantern fish paralyzed and dangling from their tentacles.  Jellies possess one of the more sophisticated weapons in the animal kingdom. Located in their tentacles are stinging cells, called cnidocytes. These cells contain tiny, often toxic harpoons, called nematocysts. The nematocysts are triggered by touch and can deploy as fast as a rifle bullet, injecting enough venom to kill small fish or to give the person weighing the jellies a nasty sting.

Me holding a Chrysaora (sea nettle) jelly.
Holding up a Chrysaora (sea nettle) jelly.

Jellies have not been thoroughly studied in the Gulf of Alaska, and the work onboard the Tiglax may take us closer to answering some basic questions of abundance and distribution.  How many jellies are there, where are they, and are their numbers increasing in response to increasing ocean temperatures?

In order to sample jellies each night, four times a night we deploy a Methot net. The Methot net is a square steel frame, two and a half meters on each side and weighing a few hundred pounds.   It is attached to a heavy mesh net, ten meters long. Even in relatively calm seas, getting it in and out of the water takes a lot of effort.  We have already deployed it in seas up to eight feet and winds blowing 20 knots, and that was pretty crazy. The net is attached by steel bridle cables to the main crane on the Tiglax.  As the crane lifts it, four of us guide it overboard and into the water.  We leave it in the water for 20 minutes, and it catches jellies – sometimes lots of jellies.  On still nights, you can sometimes see jellies glow electric blue as they hit the net.

As we retrieve the net there are a few very tense moments where we have to simultaneously secure the swinging net frame and lift the jelly-filled cod end over the side of the boat. A few of the hauls were big enough that we had to use the crane a second time to lift the cod end into the boat.

Smaller ctenophores (comb jellies) caught in the Methot net.
Smaller ctenophores (comb jellies) caught in the Methot net.

Once on board, the jellies have to be identified, measured, and weighed.  Assuming catches stay about the same, we will measure over one thousand jellies while on this cruise.  I don’t know how all of this data compares with similar long-term ecological projects, but on this trip the trend is clear.  Jellies are true oceanic organisms, the further we go offshore the larger and more numerous they get.  Go much beyond the continental shelf and you have entered the “jelly zone.”

Personal Log

Seasick teacher

Last night was tough.  During our transit from the Seward line to the Kodiak line, things got sloppy.  The waves got bigger, and their periods got shorter.  To make things more uncomfortable, we were running perpendicular to the movement of the waves.  I retreated to my bunk to read, but eventually the motion of the ocean got the better of me and I made my required donations to the fishes.  The boat doesn’t stop for seasick scientist (or teacher) and neither does the work; at 11:00 last night I dragged myself from bed and reported for duty.

The work on the Tiglax is nonstop.  The intensity of labor involved with scientific discovery has been an eye-opener to me.  We live in a world where unimaginable knowledge is at our fingertips. We can search up the answer to any question and get immediate answers.  Yet we too easily forget that the knowledge we obtain through our Google searches was first obtained through the time and labor of seekers like the scientists aboard the Tiglax.

The goal of this project is to understand the dynamics of the Gulf of Alaska ecosystem, but one of the major challenges in oceanography is the vastness of its subject.  This project contains 60-70 sampling stations and 1,800 nautical miles of observational transects, but that is just a few pin pricks in a great wide sea. Imagine trying to understand the plot of a silent movie while watching it through a darkened curtain that has just a few specks of light passing through.

 

Transect lines for the North Gulf of Alaska Long-term Ecological Research Program.
“Pinpricks in the ocean,” Transect lines for the North Gulf of Alaska Long-term Ecological Research Program.

Did You Know?

Storm petrels periodically land on ships to seek cover from winds or storms.  They are one of the smaller sea birds, at just a few ounces they survive and thrive in the wild wind and waves of the Gulf of Alaska.

Last night we had a forked-tailed storm petrel fly into the drying room as I was removing my rain gear between zooplankton tows.  A softball-sized orb of grey and white feathers, it weighed almost nothing and stared at me with deep black and nervous eyes as I picked it up, wished it well, and released it off the stern of the boat.  It was a cool moment.

Animals Seen Today

  • Fin whales
  • Lots of seabirds including Storm Petrels, tufted puffins, Laysan and black-footed and short-tailed albatross, flesh footed shearwater, and an osprey that followed the boat for half the night
  • Mola mola (ocean sunfish), which was far north of its normal range