Spencer Cody: Fairweather in Transition – June 5, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

 

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 5, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 58˚ 17.882′ N

Longitude: 134˚ 24.759′ W

Air Temp: 15˚C (59˚F)

Water Temp: 8.9˚C (48˚F)

Ocean Depth: 9.7 m (31.8 ft. at low tide)

Relative Humidity: 67%

Wind Speed: 5.2 kts (6 mph)

Barometer: 1,025 hPa (1,025 mbar)

Science and Technology Log:

Fairweather
Yes, the Fairweather needs to be prepared for everything imaginable:  spare parts, lines, tanks, survey equipment, safety equipment, tools, and more.  Preparedness is key to successful mission completion.

Now that I have been on the Fairweather for a few days I have had the opportunity to see much of the ship and learn about how it operates.  If ever there were an embodiment of the phrase newer is not always better, it might be the Fairweather.  Even though the Fairweather is approaching 50 years old, one cannot help but to attain an appreciation for the quality of her original construction and the ingenuity behind her design.  Rooms, compartments, and decks throughout the ship are designed to be watertight and to maximize fire containment.  Multiple compartments can be flooded without putting the entire ship in danger.  The ship is also designed to withstand sea ice due to its densely ribbed construction and extra think hull.  This makes the hull remarkably strong allowing the ship to cut through ice and withstand the additional pressure of ice-covered seas.

 

155_3414 (2)
One of the two massive Detroit electro-motive diesel engines that propel the ship.  Credit Tommy Meissner for the photo.

The Fairweather is built on redundancy for safety and practicality.  If one system gives out, another can be relied upon to at least allow the ship to get back to port or depending on the system continue the mission.  There are redundant systems throughout the ship involving everything from communications to essentials for sustaining the crew to navigation.  There are even redundant servers in case one set of survey data is compromised or physically damaged the other server may remain untouched.  Storage space is a premium on a ship that needs to be self-sufficient for weeks at a time to address foreseeable and unforeseeable events.  Every free space has a purpose for storing extra equipment, tools, parts, and materials.  Utility and efficiency are running themes throughout the ship.

Personal Log:

152_3311 (2)
The incoming and outgoing commanding officers read off their orders to signify the official change of command of the ship.

Dear Mr. Cody,

Onboard our ship the captain is in charge of the entire crew and ship.  People follow his orders and the chain of command to take care of the ship and its passengers.  It takes a very large crew to take care of all the passengers on a cruise ship and on such a long trip to Alaska and back.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has a captain whose ultimately responsible for the fate of the crew and the ship. While we are in Juneau, the Fairweather is undergoing a change of command.  On Wednesday we had a change of command ceremony.  It was a day of celebration and reflection on Fairweather‘s accomplishments.  As high-level officials throughout NOAA and other organizations arrived, their arrival was announced or “piped” throughout the entire ship over the intercom system.  Later in the day we had the official change over in a special ceremony attended by all of these dignitaries and guests with NOAA Corps officers dressed in full uniform.

152_3289 (2)
The Fairweather welcoming dignitaries and guests to the Change of Command ceremony.

After everyone read their remarks on the occasion, the time of the official change over was at hand.  The Reading of Orders ceremony was carried out where both the outgoing and incoming commanding officers read their orders for their new assignments.  Insignia on each officer’s uniform was changed by the spouses officially indicating the new commanding officer and the outgoing commanding officer.  With that Lieutenant Commander Mark Van Waes replaced Commander David Zezula as the CO for the Fairweather becoming its 18th commanding officer.  As the new CO gave his arriving remarks, he reminded us that “Command of a ship is many things…it is an honor to know that the leadership of this organization places special trust in your skills and abilities to hold this position…command is a privilege; of the hundreds of those who have served aboard the Fairweather, only 18 have been the commanding officer…command is a responsibility…for the ship…to the mission…and to the people.”  The Dependents Day Cruise and Change of Command Ceremony made for an eventful week while in port in Juneau.  Now we prepare for our first hydrographic mission with our new CO.

Did You Know?

The Fairweather has a total tonnage of 1,591 tons, displacement of 1,800 tons, a length of 231 feet, and is A1 ice rated meaning it can safely navigate ice covered seas with the assistance of an ice breaker.

Can You Guess What This Is?

TrashA. power generator  B. heat sensor  C. an incinerator  D. RESON multibeam echosounder

The answer will be provided in the next post!

(The answer to the question in the last post was B. a speaking tube.  Speaking tubes or voice pipes were commonly used going back to the early 1800s to relay information from a lookout to the bridge or decks below.  They were phased out during the 20th century by sound-powered telephone networks and later communication innovations.  They continue to be used as a reliable backup to more-modern communication methods.)

Dana Clark: Alaskan Launches, Tides and Bears, Oh My! June 28, 2014

 NOAA Teacher at Sea

Dana Clark

Onboard NOAA Ship Fairweather

June 23 – July 3, 2014

Mission: Hydrographic Survey

Geographical area of cruise: South Coast of Kodiak Island

Date: June 28, 2014

Weather Data: Latitude – 51° 12.83′ N, Longitude – 152° 29.54′ W, Sky Condition – 1/8 clouds, Present Weather – clear, Visibility – 10 nautical miles, Wind – 8 knots, Temperature – 21° C

Science and Technology Log

Dana Clark with Primary Antenna
Dana Clark with Ens. Joe Brinkley repairing horizontal control station, Cape Kaguyak, Alaska

Each day when I participate in hydrographic surveys I always tell the boat that today we need to see a bear. Recently, one launch survey crew saw a bear swimming in the water and it stopped and looked at them before swimming off to the land. This was my ideal situation. So yesterday I participated in a hydrographic survey and the driver got real excited for me when in the middle of a transit, he yelled that he thinks he sees two bears on the shore. As we use binoculars to see them we confirm that we have now seen…two horses! This sighting was by all accounts very interesting to the crew since no one knew that there would be wild horses on an island in Alaska. However, the day’s sightings of wild cows and horses did nothing for this Texan.

Bear chewed solar panels
Bear chewed solar panels, Cape Kaguyak, Alaska

Today, I did something different. I went with a survey group out in an orange work boat called an Ambar. This boat is different than the launches because it is a jet boat, which means it has an impeller versus an exposed propeller. This way, it can bring us right up to shore.

We had a two-fold purpose, first to repair a horizontal control station, HorCon for short, and then to make tide observations. The HorCon station logs GPS (Global Positioning System) data. The station has a GPS atenna and recording unit, radio modem antenna for remote communications, car batteries to power everything, and solar panels to charge the batteries.The antennas are on a fixed tripod. For this piece of equipment, the higher the better! It allows us to achieve better horizontal and vertical positioning for our multi-beam data. It tracks the satellites overhead, the same as our survey launches do, but since it is in a known position we can use these data to remove any atmospheric interference.

We hike a large cliff and at the top is the HorCon station. As we crest the hill, it is Joe in the lead, then Joy, then me. Joe says stop, there’s a bear on the ridge, and it’s only about 200 feet away! We quickly gather together to look bigger to the bear and it decides to amble away over the ridge. Then, two baby cubs that we hadn’t seen go following behind her! My day is made perfect. When we get to the horizontal control station we find out it wasn’t working because the bear had chewed the solar panels and pulled a cord out of the primary antenna. Check out the huge bite mark in the picture above! Joe repaired the cord, made sure the other solar panels were still connected, and we had the station up and communicating.

Dana Clark Tide Observations
Dana Clark reading water level off the tide staff, Japanese Bay, Alaska

First mission accomplished then off to do tide observations. Mostly, this consist of sitting on the beach and recording the current water level every six minutes. It was a beautiful sunny day and Japanese Bay, Alaska was the ideal place to be. On shore there is a gauge, tripod and antenna with a wire that attaches to an orifice underwater. There also is a staff in the water with measurements on it. A constant flow rate of air is maintained in the orifice underwater so we can measure the pressure of the water column. More pressure = higher tide. Just think, at higher tide there is more water pushing down on it, hence more pressure. The gauge correlates pressure values with how much tide we are actually seeing. So we take staff observations over two hours and every six minutes we take a minute of readings of how high the water is on the staff. We then download the data from the gauges and compare it to our visual data. It’s important to go out every week to get readings and make sure no bear or storm has bothered it.

Why do tide observations every week? The scientists here often see tide ranges in Alaska from -5 feet to +25 feet. They need to know the correct tidal effects so when they take depth readings with the multi-beam sonar they can adjust those depths to remove tide and chart the soundings at MLLW (Mean Lower Low Water), which is the chart datum. This is because the water level is changing every day with tides and they need to be accurate. This is real important in shallow areas.

Scientist of the Day

Tami Beduhn
Tami Beduhn in Barrow, Alaska, 2012. Photo courtesy of NOAA Fairweather

Today I would like you to meet Tami Beduhn, a Chief Survey Technician for NOAA who is currently aboard the Fairweather. She is the head of the whole hydrographic  survey department here on the Fairweather! She is not in NOAA Corps but is a wage mariner, which means she is getting sea time assigned to the Fairweather in order to get her Able Seaman credentials and she is not part of the uniformed services.

She’s here because she wants to be on this ship doing the work she does and her CO, CDR Zezula, sure is glad she’s here. He says, “Tami is technically outstanding, incredibly dedicated, and has a strong work ethic. She is the bedrock of the science, especially with a lot of new people this year, and I rely on her leadership to guide and mentor as well as maintain the high quality Fairweather is known for.”

As the chief survey technician, she manages the survey department and is responsible for quality assurance and control of hydrographic data aboard the ship. The highlight of her job is training the new recruits. Tami believes the key to a good hydrographer is having a good attitude, good computer and math skills, and a willingness to learn. And they must enjoy teamwork since living on a ship is like having a family that works together. Tami graduated from North Carolina State University with a BS in Marine Science and a Concentration in Geology and came straight to NOAA. Here’s a woman who’s at the forefront of her field, all at the age of 27 years old!

Personal Log

What a great day I had today! I saw a bear with her two cubs, two orcas, and three bald eagles! Here is a poor quality shot of the bear with her cubs below her and a little to the left. Below that is a bald eagle. The third picture  is me on top of the hill after fixing the HorCon station. You can click on any picture in my blogs to see it full size. And after checking out the pictures, make sure to vote in the poll below. The weather is perfect and I even got a little sunburned today. Life is good being a hydrographer in Alaska in the summertime!

Brown bear and her cubs
Brown bear and her cubs, Cape Kaguyak, Alaska

 

Cape Kaguyak
Bald Eagle, Cape Kaguyak, Alaska
Dana Clark Cape Kaguyak, Alaska
Dana Clark on top of Cape Kaguyak, Alaska

 

Question: What is this? Plant or animal? Answer in the poll below.

Japanese Bay, Alaska

Dana Clark: Alaska’s Rocky Seafloor, June 26, 2014

NOAA Teacher at Sea

Dana Clark

Onboard NOAA Ship Fairweather

June 23 – July 3, 2014

Mission: Hydrographic Survey

Geographical area of cruise: South Coast of Kodiak Island

Date: June 26, 2014

Weather Data: Latitude – 56° 45.40′ N, Longitude – 154° 9.99 W, Sky Condition – 7/8 clouds, Present Weather – clear, Visibility – 10 nautical miles, Wind – 3 knots, Temperature – 14° C

Science and Technology Log

Dana Clark on the fantail
Dana Clark on the fantail of the Fairweather

Each morning there is a meeting of the launch crew on the fantail, which is aft, which means the back deck of the boat. You need to wear your hard hat and your PFD which stands for Personal Flotation Device. It is really great that the life-jacket is embedded into the jacket. Wednesday I went out on a launch, a 28 foot boat, and attempted to collect hydrographic data. However, the weather did not cooperate. We were tossed around by winds of 30 knots, which is approximately 34.5 mph, and 5 foot swells and waves. I found out that swells are large scale rollers of water and waves are choppy. Swells have more amplitude, a lot of energy, are larger, and are driven by far off (can be thousands of nautical miles away) weather storms or very high or low pressure systems. Waves are surface wind driven, choppy, smaller, and have more pitch. You can have either one by itself or you can have both together, either going the same direction or cross-ways. Well, we had both swells and waves from different directions at the same time! The waves had whitecaps and the swells were just big! I couldn’t even get out my camera to take a picture because I was holding on to the rail in the cabin with both hands, trying not to fall or get in the way of the scientists as we pitched about. And, can you believe, no seasickness! We were called back to the ship after the current we measured registered at 5 to 5.5 knots, much too fast for us to put our CTD (Conductivity, Temperature, and Depth) into the water. The professionals aboard the Fairweather put a premium on safety and knew it was time to call an inclement weather day and have the launches return. By the way, the picture at the left was taken on another day. How quickly the weather can change!

Mark Bradley NOAA Fairweather
Mark Bradley using multi-beam sonar 3D imaging to confirm uncharted rock in navigational waters

Today, it was wisely decided that I would be exposed to the science on the ship while the launches went out and the weather system finished passing through. I was able to learn from Mark Bradley who is a hydrographic survey technician. Some days he goes on the launches and uses the multi-beam echo sounder to map sections of the seafloor. Other times he works on the ship processing the data that has been collected and preparing the descriptive report. Today he was comparing old charts to the new survey soundings that a launch had previously recorded while they were picking up holidays during a low tide. Remember, holidays are where there are gaps in the data. While resurveying this holiday they saw a rock sticking out of the water so they came back later in the day during high tide and used the multi-beam sonar to get a depth measurement for the top of it. Mark then took this data and compared it to the old charts. The old charts didn’t even have this rock recorded! He used his 3D imaging and measured the rock at 83 meters wide and 30 meters tall. It was huge! At low tide, it stuck a meter out of the water. This rock was in navigational water and easily could have damaged or sunk a boat. Mark confirmed another nearby rock was 3 feet under the surface so if you were in a boat you wouldn’t see it. This second rock was a known rock; however, on the old chart it was at 42 feet below the surface, not 3 feet! So there is a great need to update our navigational charts since the old ones can be over 100 years old. Eventually, this chart he’s updating will be revised and published by NOAA Charting Division.

Kristin Golmon NOAA Fairweather
Kristin Golmon on the bridge of the Fairweather

Scientist of the Day

Today I would like you to meet Kristin Golmon, a Junior Officer for NOAA who is currently aboard the Fairweather. This Texan is a woman who is in charge! She is an ODD which stands for Officer of the Deck. Because the CO, the Commanding Officer cannot be on the bridge (the space that you command the ship from) all the time, an OOD directs the bridge when he is below, and is the direct representative of the CO. She drives the ship, does survey work, does administrative duties and currently she’s also working towards her coxswain qualification. Today she is in charge of the bridge, working on charts, communicating with the hydrographic survey launches, and recording the weather. Kristin has always been curious about how stuff works. In elementary school she invented a t-shirt folding machine out of cardboard. You would put a t-shirt on it and it would fold the shirt and you would pull the cardboard out! She always did well in math and science and had her parents, a geologist mom and a mathematician dad, as her role models. She attended Trinity University in San Antonio, Texas and earned a BS in Engineering Science, a minor in Mathematics and another minor in Environmental Studies. She was a senior in college when she heard about NOAA Corps and liked their science mission. She also liked the idea of serving her country in a uniformed service.

Casey Marwine polar bear
Polar bear mom and her two cubs, Artic Ocean, 2012.
Photo courtesy of Casey Marwine.

Being a woman in charge has its challenges when working in a male dominated field but she has the respect of her peers and the CO. Currently, the head of NOAA is Dr. Kathryn Sullivan, a geologist and an astronaut who was the first American woman to walk in space. When asked what she liked best about her job, Kristin said that it’s a pretty cool experience being in charge of a ship, especially when going through narrow passages that take a lot of planning like the Inside Passage in Alaska. She also loved seeing polar bears, a mom and two cubs, while doing the Arctic Reconnaissance Survey!

Personal Log

Dana Clark Fairweather room
Dana Clark working in her stateroom on the Fairweather

Check out where I live on the ship.  This is my room, or as we call it aboard ship, my stateroom. Notice the hard hat and survival suit above the bed and the life jacket above the television! I also have a desk that folds up when I don’t need it.  It was a treat to have my own room. The shower and the head (what they call the bathroom) is across from my room. Also on the ceiling of the hallway outside my bedroom is an escape hatch! Then in the floor above is another hatch. This way I can safely get up to the upper decks if my hallway gets blocked or flooded.

Dana Clark Escape Hatch
Escape hatch in the hallway ceiling on the Fairweather

 

Question (or Answers): Today’s question will actually be answers! And speaking of polar bears, remember my question from my first blog when I asked you the question of what were the odds that I would see a polar bear? Well, the answer is none. The polar bears are much farther north and are found in the Artic region of Alaska, Canada, Greenland, and Russia. Unfortunately, I will not be seeing any polar bears. My poll last blog asked you to identify a picture as plant or animal. Many of you voted and it was a pretty split vote between the two! The picture is of bull kelp, a plant, and its scientific name is nereocystis. It can grow huge and I have seen some big ones here in Alaskan waters.

I will leave you with this shot of beautiful Kodiak, Alaska that I took from the ship. This is where we are anchored this week.

Kodiak, Alaska
Kodiak, Alaska, June 2014

Dana Clark: Alaska and the Launch, June 24, 2014

NOAA Teacher at Sea

Dana Clark

Onboard NOAA Ship Fairweather

June 23 – July 3, 2014

Mission: Hydrographic Survey

Geographical area of cruise: South Coast of Kodiak Island

Date: June 24, 2014

Weather Data: Latitude – 56° 45.35′ N, Longitude – 154° 10.0 W, Sky Condition – 7/8 clouds, Present Weather – clear, Visibility – 10 nautical miles, Wind – calm, Temperature – 13.8 C°

Science and Technology Log

Yesterday was my first day underway on NOAA Ship Fairweather. Before I could participate in all the cool science I had to complete all the safety training. I am now ready to survive any situation on ship since I have successfully completed a fire drill, abandon ship drill, donned my survival suit, and learned how to deploy a life raft. See how I look in my survival suit!

Survival Suit
Dana Clark in her survival suit

Before I tell you about all the great science we’re doing, I want to address the earthquake and tsunami that hit Alaska and was widely reported yesterday. There was an 8.0 earthquake near Alaska’s Aleutian Islands, southeast of Little Sitkin Island that triggered a tsunami warning; however, only small waves hit the coastal communities. This was west of Kodiak Island and we were not affected by it. In speaking with the experts on the ship, they explained that we were safer on a ship than shore and a tsunami would roll under the ship. I wondered if it was normal to have these alerts since earthquakes happen everyday in Alaska, and veteran scientists on the Fairweather said that they had never had an earthquake with a tsunami warning before. What an exciting event on my first day!

NOAA Ship Fairweather
Launch boats returning to NOAA Ship Fairweather. Photo courtesy of Karen Hart

Today I was ready to go out on a launch. This is a 28 foot boat that uses a suite of hydrographic hardware and software, such as a multi-beam sonar to map assigned sections of the seafloor. I set out with Tim, who is a coxswain which means he is a small boat operator for commissioned vessels, Clint, who is a hydrographic senior survey technician and Joy, who is a hydrographic survey technician. And me, a Teacher at Sea! Our mission was to do cross lines of sonar mapping to check that there are no erroneous offsets between days of data. We also would pick up holidays, which are gaps in the data, and go over them with sonar. We are mapping South Kodiak Island this week and more specifically for today, we are mapping around Aiaktalik Island.

Lowering CTD
Dana Clark lowering the CTD in to the water

We begin by using a CTD which stands for Conductivity, Temperature, and Depth. This instrument measures conductivity, temperature, and pressure which can be used to derive the speed of sound throughout the water column. It will help to correct for refraction of the sound wave emitted from the sonar as it passes through varying layers of the water column. The multi-beam sonar sends out 512 beams at a rate of 4.5 pings per second. The number of beams is independent of water depth but the swath width is dependent on water depth. We then measure how long it takes for them to get to the bottom and back, which is called two-way travel time. The multi-beam sonar provides us with bathymetric data, which is simply a large density of depths used to generate a surface representing the seafloor. Then we record the measurements. In the picture below you will see Joy recording the data from the sonar.

Collecting Sonar Data
NOAA’s Joy Nalley collecting data aboard a launch

Scientist of the Day

Today I would like you to meet Joy Nalley, a Hydrographic Survey Technician for NOAA who is currently aboard the Fairweather. As a girl, she was always interested in science. She said she even spent most of her childhood playing in a large magnolia tree. Her love of nature continued as a teenager as she spent summers on the lake. She went to the University of Alabama where she earned a BS in Environmental Science, a Minor in Geology, and a Specialization in Hydrology. During school she earned experience in her field by working in a research position and an internship. After college she did another internship in order to gain experience. Her research participation along with the internships allowed her to get an interview and subsequent job with USGS which is the United States Geological Survey. There she was a hydrologic technician for two years. This meant that she studied the water and took data from the actual water. This job then lead to her current position with NOAA where she is a hydrographic survey technician. Now she takes data from the actual seafloor in order to map it. This is a relatively new field of science. There is a lot of seafloor to map since less than 5% has been mapped this way, hence making it a desirable career. Joy says that to go into her field you should be adventurous, want to work with cool people on a team, and have an interest in marine science; then this is the career for you!

Personal Log

I had a good first two days and survived rolling seas last night without feeling seasick. I think I have my sea legs on now! Since several of you are wondering, the food is very good. The cooks take good care of us here. I am also getting a lot of exercise going up and down the six decks on the ship and doing the survey work on the launch. I saw many animals while out on the launch today including a harbor seal, sea gulls, puffins, multiple giant jelly fish, and a bright purple jelly fish! What a great time I’m having doing science with such a wonderful group of highly trained, experienced, and interesting crew aboard the Fairweather! 

Question: What is this? Plant or animal? Answer in the poll below.

Bull Kelp

Dana Clark: Alaska Awaits, June 19, 2014

NOAA Teacher at Sea

Dana Clark

(Almost) Onboard NOAA Ship Fairweather

June 23 – July 3, 2014

Mission: Hydrographic Survey

Geographical area of cruise: Kodiak to Seward, Alaska

Date: June 19, 2014

Personal Log

Hello, I am Dana Clark and I am writing this from my home in Dallas, Texas as I prepare to leave hot temperatures behind for the cool waters off the coast of Alaska. I teach Science to 6th and 8th grade girls at Irma Rangel Young Women’s Leadership School. I can’t wait to share this experience with all the wonderful young ladies at our school. Our campus was the first all-girls public school in the great state of Texas. We have grades 6-12 and just celebrated our 10th anniversary. I have been fortunate to be one of the two original science teachers at Irma Rangel. Our students are trailblazers and are part of a group of six public all-girls schools in Texas that emphasize mathematics, science, and technology. In May, we graduated our sixth class of seniors and I’m proud to say we have had 100% of our students accepted to a four-year college or university. Go Panthers!

I was thrilled when I was selected as a NOAA Teacher at Sea and actually did a little shout and dance when I found out I was going to Alaska. (I know, the dance part is pretty scary to those who know me!) I love our oceans and the amazing ecosystem under the surface that many people don’t get to experience or know. I haven’t always been a science person. I never thought I could do science well and in college, I avoided taking a science class until my advisor told me I needed to take two science classes in order to graduate. She recommended an Oceans class for non-science majors and I was fascinated at this whole new world that opened up to me underwater. Check out what my children saw under the surface!

Stingray Grand Caymen
Christina and Will with very large stingray by Grand Cayman, Caribbean, 2005.

After that, I used all my elective classes for Earth Science classes and the rest is history. I am a science teacher that loves teaching about our dynamic Earth and the wonders from the oceans to the atmosphere. Being on a ship in Alaska doing hydrographic surveys sounds very exciting to me; first, because Alaska is a place I’ve never gotten to visit and second, because I’ve never gotten do any science with hydrography. Many of you are probably wondering, what are hydrographic surveys and why is she excited about them?

Hydrographic surveys basically means mapping the seafloor. We will use sonar, which is an acronym for sound navigation and ranging. The sonar we will use sends beams to the seafloor and measures the depth by interpreting the time it takes for the sound waves to go from the ship to the sea floor and back to the ship. It also shows lots of details of the sea floor. Click here to learn more about hydrographic surveys and sonar. Only a very small percentage (possibly less than 5%) of our ocean’s floor has been mapped this way. This work is important because we need to know depth for safe navigation for all the fishing boats, oil ships, and recreation cruises in Alaskan waters. We also want to know what makes up the seafloor. For example, when fishermen use trawl nets that go along the seafloor, their nets can get torn up if they are in a rocky area. I will not only participate in mapping the seafloor, but I’ll probably also survey shorelines on a small boat called a launch,  go on shore and set a tidal benchmark, and help navigate the ship! I will be on the large ship Fairweather. Stay tuned to my blog to find out what I do each day.

NOAA Ship Fairweather
NOAA Ship Fairweather with Mount Fairweather in the background. Photo courtesy of NOAA.

 

What am I doing to get ready for my trip? First, I celebrated my birthday with my two children, Christina and Will. Guess where we had dinner!

Birthday dinner with Dana Clark
Dana Clark celebrates her birthday with her children before leaving for Alaska as a NOAA Teacher at Sea.

I am checking off my packing list and trying to figure out if I will need thermal underwear or not, how to get more storage space on my iPhone, and where my winter gloves are. On second thought, do I even own a pair of winter gloves? I live in Dallas, Texas but next time I post it will be from Alaska! Off in two days to begin my scientific exploration of our oceans and map the seafloor. I’m looking forward to sharing much more with you soon.

Question: Most of my students wanted me to see and post a picture of a polar bear. What do you think the odds are that I will see a polar bear in the Gulf of Alaska by Kodiak Island? Let me hear from you below.

 

David Altizio May 24-26 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Dates: Monday, May 24 and Tuesday, May 25,
Wednesday, May 26

Weather Data from the Bridge

Position: Hassler Harbor
Time: 0800 on 5/24
Latitude: 550 13.06’ N
Longitude: 1310 27.15’ W
Clouds: Light drizzle
Visibility: 8 miles
Position: Inside Passage
Winds: Light with variable directions
Time: 0800 on 5/25
Waves: Less than one foot Latitude: 52024.5’N
Dry Bulb Temperature: 11.20C
Longitude: 128030.0’W
Wet Bulb Temperature: 10.00C
Clouds: Mostly Cloudy
Barometric Pressure: 1006.4 mb
Visibility: 10 + miles
Tides (in feet):
Winds: 10 knots from the NE
Low @ 0439 of 0.1
Waves: One to three feet
High @ 1055 of 13.1
Dry Bulb Temperature: 11.00C
Low @ 1637 of 2.2
Wet Bulb Temperature: 10.10C
High @ 2254 of 16.4
Barometric Pressure: 1009.1 mb
Sunrise: 0422
Sunset: 2105

Science and Technology Log

On Monday we were testing one of the multi‐beam sonar transmitters that had not been working properly on the Fairweather, in Hassler Harbor near Ketchikan, AK. In order to verify that the device is working properly the ship went back and forth over an area that has previously been mapped from all different directions. This is called patch testing. Ideally you are looking for no difference in the data from one test to another test.

Me,at the helm,driving the Fairweather.
Me, practicing using the line throwing device.

While on board Monday, we also practiced using a line throwing device. This piece of equipment can be used for ship to ship rescue operations, or to get a line onto a pier if needed, or for other rescue operations. The device is powered by 3000 lbs. of compressed air. Today we only fired a test line, but the real one can travel almost 200 meters. Being prepared and knowing what to do in the case of an emergency is extremely important while out at sea. Not only was I allowed to use the device, but so was anyone else on board who had not learning how to use it properly.

Marine aneroid barometer measures air pressure.
Digital anemometer showing wind speed and wind direction.

I have also been collecting and recording the weather data from the bridge of the ship. These observations are made every hour. There are many different meteorological instruments on the Fairweather. The atmospheric pressure is recorded using an aneroid barometer. The dry and wet bulb temperature readings were taken off of a sling psychrometer, just outside of the bridge. The wind direction and wind speed were taken from a digital anemometer and verified using the vectors of the wind direction and the heading of the ship. The visibility, wave height and the cloud cover are estimated visually by observing them from the bridge of the ship.

One of the ship’s officers, tracking our plot by hand on the chart.
Me taking the temperatures off of a psychrometer outside of the bridge.

I was also given the opportunity to man the helm and drive the Fairweather, for about 10 minutes as we headed south towards British Columbia, Canada. The bridge of the Fairweather has a many different screens, monitors, sensors and gauges. In order to see where we are going there are digital charts, which have our path projected on them. Also, some of the ship’s officers will verify our position along our course by hand. The depth to the bottom is determined by a fathometer, which works by using SONAR, not as complex as the multi‐beam mapping but more similar to a fish finder. In many maritime activities the depth is measured in fathoms. One fathom is approximately 1.8 meters or 6 feet. Knowing where you are and where other vessels are is extremely important.

Some of the Fairweather’s navigation systems.
Digital fathometer, measuring depth to the bottom using SONAR

The Fairweather has enough beds to hold a maximum of 58 crew members. The ships personnel is divided between: NOAA Corps officers, survey, deck, engineers, stewards,  electronics technician and visitors. There are almost 15 NOAA officers on the Fairweather, including the CO (commanding officer), XO (executive officer), FOO (field operations officer), and all the way thru captain lieutenant commander, 3rd mate, lieutenant, and ensigns. The survey group has approximately 10 people including the chief survey technician, senior, regular, and assistants.

More of the Fairweather’s navigation systems.

Digital readout of ship’s GPS (global positioning system) for precise latitude & longitude, speed in knots, and heading in degrees.

The deck group has 12 people and they help to maintain the deck areas, drive the launch boats, and help out in the anchoring and docking processes. There are 10 engineers who  make sure the ship is running properly. There are three stewards (cooks) who are amazing and make sure everyone is fed very well. There are 2 electronics technicians, and anywhere from two to five visitors, such as teachers at sea, technology support, mission/NOAA related personnel.

My stateroom on the Fairweather’s.
Fairweather’s store.

The Fairweather was originally commissioned in October 1968, deactivated in 1989 but a critical backlog of surveys for nautical charts in Alaska was a motivating factor to reactivate it in August 2004. The home port for the Fairweather is Ketchikan, AK and it operates mostly in Alaskan coastal waters. It is designed and outfitted primarily for  conducting hydrographic surveys in support of nautical charting, but is capable of many other missions in support of NOAA programs. The ship is equipped with the latest in hydrographic survey technology – multi‐beam survey systems; high‐speed, high‐resolution side‐scan sonar; position and orientation systems, hydrographic survey launches,  and an on‐board data‐processing server. It is 232 feet long, with a beam of 42 feet. It weighs 1,591 tons and the hull is made of welded steel. The Fairweather has a range of 6,000 autical miles, can stay at sea for 30 days, and has an average cruising speed of 12 knots.

The galley (kitchen) on the Fairweather.
Dish washing station on the Fairweather.
Mess hall (dining area) on the Fairweather.
One of the food storage areas on the Fairweather.

The staterooms on the Fairweather are fine for two people to live in. There is a bunk bed, dresser/desk area, closets, sink, small refrigerator, and a TV. The food on the Fairweather is really good, not just for being at sea, but really good with a lot of different options. There is also a small store where you can buy candy, soda and clothing with logos and images of the ship. There is a small workout room that people do use to keep active. There are three different food storage areas, one for dry goods, a refrigerated area, and a freezer. The Fairweather also has laundry facilities and a sick bay.

Laundry room on the Fairweather.
Fairweather at Customhouse Cove.

Personal Log

It is hard to believe that we are already heading south towards Seattle, WA. I have really enjoyed my time onboard the Fairweather and will never forget these experiences. Being a Teacher at Sea is amazing and I highly recommend it. I have seen so many different and new things that I can now add to my “teacher toolbox”.

On Monday, being able to learn how to use the line throwing device was very cool, but that was not the highlight of my day. I was also given the opportunity to man the helm, and drive the Fairweather for about 10 minutes. It is amazing that a ship this big is so responsive to small changes in the angle of the rudders. It was sort of like driving a really big car, in the sense that when you turn the wheel right the ship goes right and turning left makes the ship go left. There is a lot to do when at the helm. You have to make sure that we are following the correct heading, going the proper speed, not heading towards any other vessels or obstructions such as logs or other debris, and in water that is deep enough for the ship. As much fun as it was it was a little nerve racking, my palms were definitely sweaty.

Along the Inside Passage

I did have the help of four other NOAA officers to assist me and help me know what to do. It is not only up to the person at the helm to make decisions about what to do or which course to follow. The Fairweather is definitely a place where the junior officers are being trained and learning what to do in all types of situations. This aspect of helping and learning was prevalent in many aspects of what I observed while onboard the Fairweather and was great to see.

A while after I manned the helm, the seas got a little rougher as we went through Dixon entrance which marks the boundary between SE Alaska and British Columbia Canada. Here we were exposed to ocean swell from the Pacific Ocean/Gulf of Alaska. I was very glad this did not go on for too long. I made the mistake of trying to write this log while the ship was rocking and rolling a little bit. Not such a good idea. One of the officers told me to put down the computer, go out on the stern (back) of the ship, and look at land along the horizon. Being outside in the fresh air, while looking at land made me feel much better.

The sick bay on the Fairweather.

The rest of the trip towards Seattle has been very nice. The seas have not been too rough, and I am really enjoying the scenery as we go through the inside passage of British Columbia, Canada. Coming home and going back to New Rochelle High School will definitely be a change from the last two weeks. I will never forget the places, people and the science I have been exposed to in my time on the Fairweather in SE Alaska. We are now in the Puget Sound, and Seattle is almost in sight and I am ready to be home, back in New York.
Signing out, David Altizio Teacher at Sea

David Altizio, May 22 – 23, 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Dates: Saturday, May 22 and Sunday, May 23

Me standing on the rocks, making tidal observations.

Weather Data from the Bridge

Position: Customhouse Cove                  Position: Customhouse Cove
Time: 0800 on 5/22                                   Time: 0800 on 5/23
Latitude: 550 56.01’ N                              Latitude: 55006.5’N
Longitude: 1310 13.75’ W                       Longitude: 131013.7’W
Clouds: Mostly Cloudy                               Clouds: Mostly Cloudy
Visibility: 10 miles                                      Visibility: 10 miles
Winds: 6 knots from the NW                     Winds: 6 knots from the SE
Waves: Less than one foot                         Waves: Less than one foot
Dry Bulb Temperature: 12.20C         Dry Bulb Temperature: 11.00C
Wet Bulb Temperature: 10.20C        Wet Bulb Temperature: 9.80C
Barometric Pressure: 1015.0 mb     Barometric Pressure: 1010.0 mb
Tides (in feet):                                             Tides (in feet):
Low @ 0224 of 2.8                                         Low @ 0335 of 1.5
High @ 0828 of 12.2                                      High @ 0943 of 12.4
Low @ 1436 of 1.6                                          Low @ 1537 of 2.0
High @ 2105 of 14.6                                      High @ 2159 of 15.4
Sunrise: 0424                                               Sunrise: 0423
Sunset: 2100                                                 Sunset: 2101

Science and Technology Log

On Saturday morning I went out and made observations at a tide gauge in Customhouse Cove. We took measurements over a three hour period every six minutes for a one minute interval. We used a pair of binoculars to read the tide staff, which was about 20 feet away, to the nearest millimeter. The purpose of taking this reading over a period of one minute is because the water is constantly moving both toward the shoreline and away from it. This interval ensures that you can get the most accurate reading as possible.

Tide staff, used for measuring rising and falling tides

On Sunday, I again went out on a small launch boat. This time we needed to complete a few more holidays using the multi‐beam sonar, then we went to two small islands, Smeaton and South Twin, to recover the GPS (global positioning systems) base stations.

Computer screen,showing live acquisition of multi-beam SONAR data from one of the holidays.

The GPS base station data is recorded daily, while the survey project is underway. The data is then uploaded during the processing phase and used to correct the precise position of the Fairweather and its launches to within a few centimeters of accuracy. This allows the survey technicians to know the exact horizontal position when all of the data was collected by the multi‐bean sonar. Sunday was the last day that data was collected on this project, and that is why we recovered both of the GPS bases stations.

Me,in the process of removing one of the GPS base

When the tide gauge was established for measurements, during April of 2010, a three hour period of observations was made, similar to what I did on Saturday morning. In the time since April, observations are to be made each week for at least 1‐2 hours. Due to the remote nature of some of the tide gauge locations this is not always possible. The purpose of the observations of the rising and falling tide is to establish the vertical location of the tide gauge sensor, which is submerged below the surface, in relation to the tide staff. These observations help in correlating the height observed on the tide staff, with benchmarks that were previously installed by the Fairweather crew along the beach.

Maritime activities throughout the world depend on accurate tidal and current information for safe operation. NOAA’s National Ocean Service collects studies and provides access to thousands of historical and real‐time observations as well as predictions of water levels, coastal currents and other data.
Ocean tides move in response to gravitational forces exerted by the moon and sun. Since the moon is much closer to the Earth it is the dominant force that affects Earth’s tides. Whichever side of the Earth is facing the moon experiences a greater gravitational attraction, and the oceans get pulled towards it causing a bulge.

Me, holding the rod for leveling measurements (with the Fair weather in the background).

When the highest part or crest of the wave reaches a particular location, high
tide occurs; low tide corresponds to the lowest part of the wave, or its trough. The difference in height between the high tide and the low tide is called the tidal range. Here, in SE Alaska there is almost a 15 feet difference between high and low tide.

Me,reading the level off of the leveling rod(again with the Fairweather in the background).

Most coastal areas, experience two high tides and two low tides every lunar day. Almost everyone is familiar with the concept of a 24‐hour solar day. A lunar day is the time it takes for a specific site on the Earth to rotate from an exact point under the moon to the same point under the moon the next day.

One of the benchmarks on the beach.

On Saturday afternoon, we went back to the tide gauge to take elevation levels of five benchmarks on the beach. The purpose of these measurements is to establish a vertical height of the tide gauge with five existing benchmarks. When the gauge was started in April 2010, the same measurements were made. We verified that the opening and closing measurements were within an acceptable range. After taking height measurements, I helped take out one of the prototype tide gauges since the data was not needed anymore. The regular gauge was later removed on Sunday.

Part of the tide gauge instruments, solarpanel, GPS transmitter.

I was able to help out with these height measurements by holding a rod on top of the benchmarks, while another member of the crew looked through a scope and read the levels off of the rod. We also documented the entire site by taking photographs.

A humpback whale tale.

Personal Log

The weather on Saturday was probably the best I have had in SE Alaska so far. It was sunny and in the low 60’s. I learned a few days ago, that when you are out at sea and it is sunny you need sunscreen and a baseball hat in order to not get sunburn. As I told you, on Saturday morning I was dropped off by a small boat to observe the level of the tide. Nothing too exciting, but the weather made it just fine. Since we were very close to the ship, I was able to come back on and have “hot” lunch rather than sandwiches and stuff. In the afternoon, we went back to the same tide gauge and I helped out with elevation studies is the easiest way to say it. This was better than the morning for me.

In the morning one other guy and I were literally dropped off on a barely exposed rock just offshore from the tide gauge. When we started there was water between the two of us, but we knew the tide was dropping so we were fine. However, we were sort of stranded there until the small boat picked us up for lunch. We had to take levels of the water every six minutes. Sounds boring but it went by rather quickly. As the tide dropped small tidal pools were exposed and I was able to explore. There was tons of sea life. It reminded me of Point Loma near San Diego, where I vacationed once. While we were there, of course there were bald eagles and even a few seals.

In the afternoon we actually went onto the beach and I got to explore a little. First time on land since Ketchikan; which we are still very close to. I was in my full on geologist mode, breaking and smacking rocks to see what they looked like on the inside. I saw some cool stuff, possibly some small flakes of gold, garnet crystals, and maybe some silver flakes. The captain (CO) also came along with us, which was pretty cool.

Dinner was good. Baked potato bar, some interesting tofu dish (most people ate prime rib, very rare, uncle Jerry style), salad, and coconut lemon cake for dessert. I am getting spoiled from all this good food. I watched another amazing sunset from Customhouse Cove on Saturday (that makes 3 from the same anchor spot).

Sunset on Saturday 5/22

Sunday, the weather was not as nice as Saturday; at least it did not rain. However I really did enjoy the day. The crew that I was with was great. We all got along very well. I was able to get onto land three times and explore and climb around on the rocks. Also we saw two humpback whales, a bunch of seals, more Dall’s porpoises, and yes more bald eagles.

Being able to go onshore was really special for me. I was not sure this was something I would be able to do. From here we will start making our course to Seattle. We were just told that we WILL be going through the “inside passage” which is supposed to be absolutely spectacular. I can’t wait.

For now the project is almost complete. There is only a small amount of data and bottom samples that need to be collected. I am enjoying my time onboard the Fairweather. Everyone has been very nice. I have developed a routine. I get up at 0640, breakfast begins at 0700, there is a safety meeting on the bow of the ship at 0800, then if you are on a launch you leave and come back in the late afternoon. Dinner is served at 1700, then after dinner we have a debriefing meeting to discuss the day’s work and any problems that may have been encountered.

As I said I have a little routine. Even the breakfast steward (cook) knows me by now. I come into the mess hall (dining area) and ask for my usual. Three scrambled eggs with scallions and cheese. I also have one piece of toast, three strips of bacon, some hash browns and fresh fruit, some coffee and orange juice. Not too bad. If you are doing survey work from the ship there is hot lunch at 1200, otherwise on the launches it is a bag/picnic style lunch. Yes I know I am getting spoiled with all of this good food.

Me enjoying my time on shore.
Sunset on Sunday 5/23

David Altizio, May 21, 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA teacher at Sea: David Altizio
NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Date: Friday May, 21

Weather Data from the Bridge

Position: Behm Canal to Customhouse Cove,
Shoalwater Pass and Princess Bay
Time: 0800 on 5/21
Latitude: 550 23.26’ N
Longitude: 1300 57.13’ W
Clouds: Overcast
Visibility: 10 miles
Winds: light with variable directions
Waves: Less than one foot
Dry Bulb Temperature: 10.00C
Wet Bulb Temperature: 8.50C
Barometric Pressure: 1016.5 mb
Tides (in feet):
Low @ 0111 of 3.7
High @ 0713 of 13.1
Low @ 2011 of 1.0
High @ 2011 of 14.4
Sunrise: 0421
Sunset: 2058

Dall’ porpoises racing along side the Ambar launch boat

Science and Technology Log

I spent the morning on the smallest and most maneuverable of the launch boats on the Fairweather called an Ambar. Unlike the other launch boats that I was previously on, this one does not have a sheltered area so full cold weather/rain gear was needed. Our task was to collect sediment samples from the bottom of Shoalwater Pass and Princess Bay. We were the first of four launches to go out on this day. As we were being lowered down from the ship everybody started to notice porpoises all around us.

Me getting ready to lower the bottom sampler to determines edimentsizes of the channel floor.

Once the Ambar was deployed the porpoises began racing alongside the boat. They stayed with us for a few minutes.It was an awesome sight and an experience that I will never forget. Later, at lunch I was talking with the CO (commanding officer) and he told me that he had never quite seen so many porpoises ride alongside a launch boat for such a long time.

What I saw were Dall’s porpoises (Phocoenoides dalli)a species that is only found in the North Pacific; from the Bering Sea and the Gulf of Alaska (spring to summer) and in coastal waters as far south as Baja California (fall to winter). Their unique body shape makes them easy to distinguish from other porpoise species. They have a very thick body and a small head. Their coloration is much like an Orca (killer whale), with their bodies being black with white patches on their underside. Dall’s Porpoises are hugely active and playful creatures. They will often zigzag around at great speed on or just below the surface of the water creating a spray called a “rooster tail”. They often appear and disappear quite suddenly. They will approach boats and ride alongside, but may lose interest, unless the boat is travelling quickly.

Here is one of the Dall’s Porpoises surfacing for air.

Dall’s are usually larger than other species of porpoises, growing up to 2 or 3 meters in length and weighing between 280 to 450 lbs. This species of porpoise can live as long as 15 to 20 years. They feed mostly on squid and a variety of fish. They are the fastest of all porpoises; they can swim at or up to 35 miles per hour. They often appear in small groups. Today, I would say there were at least 15 to 20 of them, but they were so fast and difficult to count.
After the excitement, we drove over to Shoalwater Pass and began collecting our first of eight bottom samples. The information gathered from these samples is very helpful to ships that might be anchoring in a particular area. For example, if you anchor in deep mud, the anchor could become trapped or stuck in the mud, or if the bottom is very rocky the anchor would not be able to set into the bottom at all.
In order to collect the bottom sediments we had to lower down a heavy sampler and allow it to hit the bottom. In deeper water this was definitely more difficult. As you can see, we had to pull the sampler up by hand and hope that it had closed and collected sediments. It did not close every time we lowered it, so some of the site required more than one drop which made the task even harder.

Here I am pulling up the bottom sampler.Not as easy as it looks.

Of the eight bottom samples we collected, they ranged from sticky mud to angular stones, to pebbles. The classification system used for bottom samples includes the following names: mud, clay, silt, sand, stones, gravel,boulders, lava, coral, and shells. After they are named, if they are sediments they are then classified by size range and then adjectives are added to specifically describe the sample, such as: fine, medium, coarse, broken, sticky,
soft, stiff, volcanic, calcareous, hard, soft, light, dark, small, medium, and large.

Here is one of the bottom samples that we collected.

After each sample was taken we used a laptop (that can get wet) with a GPS receiver attached to it to log our exact positions. This information will be part of the charts that will be made when the area is completely surveyed.

Chart of sediment size ranges.
Tough notebook laptop,yes it can get wet.

Personal Log

As already stated one of the highlights of my trip so far has been the Dall’s porpoises that raced alongside us. That is something that I will never forget. This was not the only wildlife sighting of the day. When we were transiting from one sample area to another, I spotted a bald eagle and pointed it out to two of the other guys on my boat. What happened next was awesome.
Once we saw the eagle, which as I have told you are all over the place, we noticed another smaller bird in front of it. The eagle was chasing him and was hot on his tail. Suddenly the smaller bird had nowhere to go and did a nosedive into the water. This was so cool. Then the eagle proceeded to circle the smaller bird from above so as to say stay down there. I also saw numerous whale spouts from a distance, too far to tell what type. While back on the Fairweather for lunch a stellar sea lion was swimming right along the starboard side of the ship. When I went outside to see him, he surfaced, came out of the water about chest high looked right at me and swam away, never to be seen again.
SE Alaska is truly a special and magical place. Not just for wildlife, the scenery is absolutely spectacular. I can’t wait to see what another day brings with it.

Animals Seen Today

Dall’s porpoises Bald eagle chasing smaller birds A few stellar sea lions along the starboard side of the Fairweather Whale spouts from a distance