Dennis Starkey, July 29, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 29, 2006

“It Looks Like a Giant Milk Bottle” 

Science and Technology Log 

The MILLER FREEMAN’s next task was to aid two fisheries researchers conduct a trial attempt at catch and release salmon tagging.  A net system is employed to haze the salmon into the center of the net.  Salmon are fairly shallow surface feeders so the trawls would not be deep. In fact, our trolling regions were within two miles of Dutch Harbor.

What makes this trawl interesting is the device that gathers and stores the salmon at the end of the netting. It could accurately be described as a large old-fashioned milk bottle made of aluminum that serves as the retaining device and tank.  The flowing water and salmon are swept into a 724-pound portable live tank.  The ocean water is held in the confines of the tank with all kinds of surface fish and jellyfish.  After the fishermen crank it up, the back of the boat with a winch, we opened the door and had live salmon to measure, tag, take a scale sample, and sometimes put on a satellite-tracking device!

The need for such a device arose from the high mortality rate of netted, and hook and line tagging procedures. The more handling and scale loss incurred during a capture results in a dramatic decrease in immediate survival for the salmon.  The outcomes success rate and eventual retrieval of the tag becomes slim.  The scales on the sides of the salmon are a precious defense mechanism that needs to be retained to ensure a healthy immune system and this is why the “Box Trawl” device was made.  This tank system of netting was first developed by the Norwegians to further their studies of ocean fisheries.  This particular model was drawn up by the Biologists and manufactured locally in Dutch Harbor.

Unfortunately, the welder probably didn’t realize what the purpose of this device was.  It roughly built with sharp edges, aluminum slag pocking, and a heavy free-swinging fish door. After the first tow with these flaws, it was apparent modifications were needed to make this more fish “friendly”.  Fire hoses were slashed and wrapped to cover sharp edges as were rubber tubing to cover blunt surfaces.  A grinder was used to take the burs off the metal sheeting, and the door was removed to prevent added banging upon the fish.  Everyone on the fishing deck seemed to help out.  The results were amazing!  The first trawl saw some very banged up salmon with a high loss of scale coverage.  After the corrective measures, there was hardly a glitter from scale loss in the tank.

The six trawls over the two-day period resulted in an average capture of about 15 to 20 salmon per tow.  Other species of fish were caught as well.  Atka mackerel were numerous, and a 14-inch herring was in the tank as well.  The largest catch was estimated at having about 60 fish in it.  Fortunately, they all could be released unharmed due to the trawl tanks successful features.

The biologists, Jim and Jamal, are targeting Pacific King, Chinook, and Coho salmon for their study. They choose the highly commercial, or highly respected recreational varieties, because the success rate of a returned tag is higher for those particular types of salmon because of the desire for humans to obtain them.

Out of the Tank 

After the door was opened and we could see what we had caught, a hose with freshly pumped seawater was inserted into the tank to supply fresh water and oxygen.  Without this, fish in the tank would quickly use up their oxygen supply.  Then Jim brought over a fish hammock with two handles and a button that was about a meter long.  This was a “settling” device connected to a car battery.  The fish obviously don’t wish to cooperate when they are removed from the water, so they are zapped with some voltage that calms them for not more than a minute and a half.  Each fish is identified by species, measured for length, and plucked of a single scale sample.  A tag is then inserted by means of a hollow sharp probe that contains a small round red and white tag number and information on whom to return the tag to if found.  The tag itself is attached to a plastic bubble zip tie that holds the dime size tag in place.  About six of the fish were fitted with satellite tracking devices as well.  These state of the art clear plastic devices are about the size and shape of an average Lego block. Each one costs about $125. This technology allows the biologists to locate this particular fish for about 5 years.  These devices were installed in much the same way as the round tags.

Everyone on board enjoyed gathering around the big “milk bottle” to see what was in the tank. I especially enjoyed helping transport the fish out of the tank and helping measure them.  The most satisfying part of the process was taking them over to the side of the boat and releasing them!

Personal Log 

The scientific parts of my journey are now over.  We will head to Kodiak Island for the end of my stay at sea.  I have enjoyed the educational aspect of every mission I was able to observe and participate in. I also can appreciate the team effort that it takes to complete each mission.  The ship’s fishermen have to be versatile at all kinds of fishing techniques as well as be the deck hands. The ship’s officers are top-notch navigators and responsibility lingers in every decision they make.  The scientists visit the ship as a vehicle for their ideas and creations.  It becomes a portable platform for the fieldwork that is contrived in their offices. The mechanics and engineers man the power plant that gives the MILLER FREEMAN life and sustenance. The ship’s galley and the cooks give everyone a touch of home cook’n that we all miss out on when at sea.  A satisfied mind comes with a satisfied belly!

 

Dennis Starkey, July 21, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 21, 2006

Gathering Pollock Data and “Getting Slimed” 

The scale used to acquire data on the Pollock

The scale used to acquire data on the Pollock

Science and Technology Log 

My job on board is to work closely with the fisheries biologists to collect specific information from the sample of the fish we catch in our nets. The first step is to dress in boots and full rain-gear attire. They don’t call the area we process Pollock in the, “slime lab” for nothing! All the fish in the net are accounted for in some way.  Different species are separated at the sorting table first. Each kind of fish species we catch is also weighed and recorded even though they are not our target species. After separating the kinds of fish, we count off about sixty Pollock at a time into what look like heavy-duty laundry baskets. We then take them over to a scale that is networked with computer software program call FSCS. This program specializes in data collecting, coordinating, and reporting.  After the contents of the trawl are weighed, a workable representative of the sample is collected from the entire catch.  The biologists determine the amount of Pollock to be “worked up” based on the large or small volume of fish caught. The unneeded fish are deposited overboard to either swim away or return to the sea expired as potential energy for the food chain.

Roughly five baskets containing about sixty mature fish each are then checked for gender. We do this by making an incision into the abdomen and find either two yellow egg sacks on a female or a ribbon like vessel that is the testes on the male.  From personal experience, I’ll tell you this can get extremely difficult in the small immature Pollock.  The egg sacks almost become invisible and the testes become nearly non-existent!

The gender specific baskets are separated into separate containers and are moved over to the measuring device.  Again, this measurement technology is tied into the FSCS system for ease of data entry. We use a device called an Icthystick to enter this data.  It looks like a space aged metal tray that is about 90 centimeters long with blinking lights.  It works by using an electro magnetic current to mark the length of the fish in centimeters.  It has a stylus that attaches to a person’s finger that contains a small magnet.  When the stylus momentarily stops where you want it, at the fork of the fish’s tail, a tone is heard and the length is noted on the computer screen.  The software is set to record all of the males, and then the females, as we work toward processing them all.  At this point it may have taken an hour and a half to process about 400 fish.

Occasionally we catch different size and aged Pollock.  When this happens, a sub sample is collected.  This is pretty labor intensive because the three age classes are separated before being processed with the steps mentioned above.  “Ones” are first years, “seconds” are two-year growth, and “three” are mature and up.  Smaller fish tend to come in larger amounts and take twice as long to determine gender.  Each age class is also weighed to find a general ratio between ages found in the school.  When there are smaller fish it can take as long as three hours to perform all the required steps!

“Brain” Surgery 

After that, a representative number of fish of each age category are randomly selected to have their individual weight, length, gender, and age confirmed.  This is usually done by two people. One person weighs, determines length and gender, and then makes an incision on the top of the fish’s head near the brain to remove two otolith ear bones from each side of the brain.  The second person extracts them, washes them, and puts them in a capped vial. These two white half-crescent shaped bones are defining factors for determining the age of the fish.  Length of the fish is an estimated measurement for age.  The otolith bones are marked with microscopic growth rings that show if they are one or two years of age. After they are inserted into a specimen vial they are preserved with alcohol, and are brought back to a laboratory on land for final confirmation.  By this time the slime lab is very messy.  Scales and certain organ parts fall from the fish cavity during this process. Everything gets hosed off, even the “touch” monitors and people!  The sea birds that follow us love it when the big red fire hose comes out to blast the “slime lab” clean again.  They pick up tidbits and small fish when they get carried over the side of the ship.

Personal Log 

Our shifts are broken up over a twenty-four hour period.  I am ready to work from 4 a.m. to 4 p.m. every day.  It is not like I must work that entire time but I need to be ready to process the fish. Sometimes there is a catch ready at 4 .am. and other days there are back-to-back hauls. I actually had one day where we didn’t have a trawl at all. I try to take a nap right after supper and wake up to catch a movie. Then it’s right back to sleep. My sleeping quarters are warm, I rarely use any covers!

Did You Know? 

Since the MILLER FREEMAN was commissioned as a government work ship it has been watched continuously for years! What this means is that an officer is on watch any time the ship is in the water. That includes out at sea or at port. Even when repairs are needed and the ship is dry-docked, there is a responsible person to administer to the ship at all times. How would you like that babysitting job? Actually, it is an act of ultimate respect and security for the ship affectionately called “SALLY” by the office staff on board.

Dennis Starkey, July 18, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 18, 2006

“Way Out There!” 

Science and Technology Log 

We are now 529 nautical miles out into the Bering Sea.  I thought there would be an occasional sea bird of some kind.  I was mistaken.  There are tons of sea birds to see!  The U.S. Fish and Wildlife Service is also conducting a survey of the density of bird life in the Bering Sea. Tamara, our bird Biologist, spends daily shifts on the Captain’s deck recording the birds that she sees in a 300-foot swath in front of the ship’s path.  She has been busy. She enters the species and numbers of birds on a computer program that works in conjunction with the ship’s radar. Some of the common species are, Northern Fulmars, Murres, Kittiwakes, and my favorite, Puffins.  The results give an impression of the density, or how many of each kind in a specific section, for the Bering Sea area. Tamara informed me that the last survey of this kind was in the 1980’s.  The weather looks calm and “beautiful sailing” conditions prevail.  There is a stratus cloud cover, but the sun has peeked out on occasion.  The temperature is currently 8 degrees Celsius.  The overall temperature range has been a bit warmer than this and has been comfortable to dress in a sweatshirt.

“How Do You Know There Are Fish Down There?” 

You see, we are not catching tons of fish. We do this on purpose.  In the past, fishermen would report catch amounts and that information would be analyzed and that was about all. This left speculation as to many variables that were not consistent.  Reports were not always accurate, locations were not disclosed, and weights weren’t reliable.  By having a research vessel conduct the survey, the results can have reliability and consistency measures.

To go out into the Bering Sea and drag nets all over the place does not make economic sense. A better solution is to find traditional fishery areas in the Bering Sea and survey those areas. Those areas happen to be along the continental shelf.  This is a comparatively shallow area of the ocean where currents of warmer and cooler water converge and circulate, allowing ideal conditions for life to flourish.  This is an area rich in phytoplankton (plants or algae) that are producers of food, which can feed lower end primary consumers (krill), that feed secondary and tertiary consumers and so on.  The Pollock find this area a favorable habitat for this reason.

So, you can’t catch them all, especially with one or two boats, so what do you do? Use technology! The computers, program software, and technology devices used make the survey possible. Echo sound is proving to be a fantastic way to find and quantify data.

Consider this scenario: It works sort of like this: You are in your bedroom reading when you hear a truck outside. You think, “It’s a big truck,” based on the type of sound and your experience listening to sounds. You knew it was a truck even though you never saw it. In order to confirm what you were hearing was a truck, you tell your mother to look out the window and let you know if it is a truck.  She might yell back, “It’s a fire truck at the neighbor’s house next door!” After she physically sees it, she can provide you with the details by providing color, length, and function of the truck.  The echo-scientists can’t exactly see each individual fish as we go by at 12 knots, but what they can do is be reasonably sure that different sound frequencies bounce back to the sonar equipment in a predictable fashion based on species. I’m informed that the fish’s swim bladders are the telltale sign. They do see a mass of colors and bunches on the computer monitor, but you can’t measure that information yet until confirmed.  Even jellyfish have their own particular patterns as do krill, and whales for that matter. The next step is to have a system to indeed find out for sure that the fish are there.

This is the part where mom is your eyewitness.  Fisheries scientists then return to the site by using satellite technology to where the characteristic patterns are detected.  Then a trawl net is lowered and dragged. What is caught is recorded.  My experience here in four trawls has shown 100% accuracy each time!  We take the collected specimens and put them on a 10ft x12ft x10-inch table for sorting.  We sort by species, gender, weight, and other collectable characteristics requested by the lead biologist. We now have the specifics of the truck, and the Pollock for that matter, based on circumstantial and physical evidence. Sounds a bit like CSI doesn’t it? A sample of less than four hundred fish is desired to make the data collection a success.  Often we get more.  The sorted data is entered in the computer and the information is combined with the cumulative data of the survey to demonstrate trends and density results for the Walleye Pollock.

Personal Log 

The MILLER FREEMAN doesn’t turn off the engine.  This diesel-powered ship runs all the time!  As we transect the grid course day in and day out, the boat maintains a rate of about 12 knots. The only time it slows is during trawl operations.  Trawling occurs when the chief scientist feels it would be good to get a sample of what she sees on the four sonar frequencies. The result to your ears is comparable to a commercial jet airliner from inside the coach.  I’d say the crew is totally used to it.  It actually seems to help me sleep!

I have participated in four Pollock hauls now.  They have all been successes!  It takes about two, to two and a half hours to conduct the scientific processing of a catch.  It is pretty slimy business!

Did You Know? 

British Scientists are researching the slime found on fish to develop a drug that would defend the body against diseases. The hope is to replicate the protection properties that fish provide to trout on our bodies. Could you imagine your roll on slime dispenser? I’m sure that’s not what they have in mind!

Dennis Starkey, July 17, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 17, 2006

Science and Technology Log 

We made a krill trawl today to check the sonar equipment.  It was a check on one of the primary food sources of the Pollock and it helps the echo-integration specialists hone their skills at identifying Pollock versus other schools of marine organisms.  The trawling device was designed to catch a small bucket of krill of which it did. The specimens were weighed and then photographed on a scanner for later base study analysis. The greatest thing about the cruise so far is the warm, helpful welcome I received on board and the willingness of everyone to spend some time with me to share conversation, and bring me up to speed on what is taking place.

Members of the fisheries biology staff begin to count out and weigh the Walleye Pollock from the sorting table.

Members of the fisheries biology staff begin to count out and weigh the Walleye Pollock from the sorting table.

Personal Log 

I had a few days to visit Dutch Harbor while the scientific staff rotated and the ship restocked. The most impressive observation for most people living in the lower forty-eight states must be the abundance of our national bird, the Bald Eagle.  They congregate here for the free fish that spill overboard at one of the many fishing plants. They are rather like pigeons here. The harsh climate does not suit trees well so the eagles perch on the hillsides and, more often, on the store rooftops and streetlights right in town.

Living on the 205ft MILLER FREEMAN takes some getting used to.  I am not accustomed to the small living quarters on board yet.  I am rooming with the two Russian scientists in a “cozy” 54 sq. ft. bunkroom. I sleep on the top bunk and have been pleasantly lulled to sleep by the drone of the engine the past two nights.  The sea has been calm but overcast.  I have had the chance to see Minke whales, Dall’s porpoises, fur seals, and incredible amounts of sea birds!  I have been getting used to the many hatches, decks, and stairways. I still find myself laughing out loud when I come to a dead end or the wrong deck just trying to get to my room.

Dennis Starkey, July 16, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 16, 2006

“On Land to Off Shore” 

Executive Officer Sean Cimiculla oversees the operations of an on-board firedrill. The sailing crew trains regularly for fire scenarios on the ship.

Executive Officer Sean Cimiculla oversees the operations of an on-board firedrill. The sailing crew trains regularly for fire scenarios on the ship.

Science and Technology Log 

Hello to all!  I welcome you, and myself, aboard the good ship MILLER FREEMAN in the Bering Sea. I am a sixth grade classroom teacher from Wildhorse Plains, Montana. I will be aboard the ship from July 16 to August 4.  This is the MILLER FREEMAN’s third tour this summer of 2006 surveying the Walleye Pollock. My goal is to keep you informed of the importance of this scientific endeavor and share with you the experience of being a “land lover” at sea while drawing observations of the uniqueness of spending time in a self-contained salt-water vessel, also known as a ship!

The NOAA task is to survey the density and population of a very valuable commercial fish called the Walleye Pollock.  The results of this survey will be forwarded to fishing regulatory agencies that will look at the data collected to make decisions that may affect the catch limit, areas that are fishable, and length of the walleye Pollock season.  You may have never have heard of the walleye Pollock, but I bet you have tasted it!  This fish is commonly used in the United States as a generic fish entry.  Frozen food companies often use this species as the main ingredient in fish sticks, imitation crab, and fish sandwiches. Fast-food chain restaurants like McDonald’s and Burger King offer it in their fish selections on the menu.  Other countries also have high stakes in the profitability and abundance of this fish in Bering Sea waters.  Japan, and especially Russia, both have a great interest in the success of the catch and population trends for these cold-water schooling fish.  Russian fishermen harvest the Pollock from the waters in their coastal territory along the Bering Sea as well.

Near the end of this leg of the survey, the MILLER FREEMAN is scheduled to cross into Russian waters to continue the study to get a truly encompassing sample of the entire cross-section of the Bering Sea.

International and Domestic Implications 

Aboard the ship are two Russian Biologists that are working in conjunction with the NOAA fisheries biologists to record the sampling results of our work here.  They hope to use this information in their country to relay the same boundaries and limits as mentioned above. The success of the Pollock harvest in northern Bering Sea has the potential to make or break the profitability of the small family owned fisheries as well as the larger corporate fishing plants. A large part of the annual harvest is exported to counties all over the world. You might say this species is the “bread and butter” of the annual fishing season. The location and prediction of a sustaining population of Pollock in the Bering is paramount to the livelihood of many stakeholders.  Nearly 72 percent of all the schooling groundfish taken from this area in 2004 were Pollock!

Survey Update to July 16, 2006 

Leg I and Leg II 

The preliminary findings have been consistent in finding the Pollock thus far.  The MILLER FREEMAN has been systematically plotting a course that has traditionally been a good source for Pollock harvest and study. The technology survey instruments and sampling devices have worked well, and the density of Pollock has been measured.

Leg III 

The MILLER FREEMAN speeds out to sea to pick up where it left off doing the study.  It is stocked with fisheries biologists setting up and checking instruments.  It will take us a full day’s and a night’s travel to reach our starting point. As of July 16, formal permission has not been granted to enter the international waters of Russia. The crew is hoping this can be rectified or alternative studies and revisions will need to be incorporated on this third leg.

As of July 16, The Ship OSCAR DYSON remains at port in Dutch Harbor, Alaska.  This other NOAA vessel is similarly equipped to study Pollock but is undergoing some repairs on its generating plant.  It is hoped that it will meet up with us in the Bering Sea to coordinate some surveys maneuvers with the MILLER FREEMAN.

Susan Just, June 26, 2006

NOAA Teacher at Sea
Susan Just
Onboard NOAA Ship Oregon II
June 15 – 30, 2006

Mission: Summer Groundfish Survey
Geographical Area: Gulf of Mexico
Date: June 26, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 144 ◦
Wind speed: 2.5
Sea wave height: 0-1
Swell wave height: 1
Seawater temperature: 28.0
Sea level pressure: 1013.2
Cloud cover: 3/8 Altostratus

Science and Technology Log 

Today we had stormy weather around us during the night.  This caused the moon, if any, and the stars to be obscured and increased the intensity of darkness both above and below the surface. This may have been a factor which contributed to the amazing catch we made shortly after sunrise.

When the net was pulled in, it was obvious that it was very full.  As it was lifted out of the water, it became clear that it contained many small fish, mostly Croker, approximately 4-5 inches in length. The unloaded catch was too much to be held in the fish box on deck.  When they came along the conveyor belt, there were no snapper to be seen and very few shrimp.  It appeared as if we had captured an entire school of fish.  The final catch weight was 985 Kilos. Out of this, there were approximately four gallons of shrimp, all varieties included.

Interview

Alonzo Hamilton:  Watch Leader for the Midnight to Noon scientific watch on the OREGON II summer fisheries survey of the Gulf of Mexico.

What is the title of your position?
Research Fishery Biologist

Were you a good student in school?
Average

In what school year did you make up your mind to become serious?
Community College

Did you go to College?
Yes.

What kind?
Two years at Community College then a BS in Biology at Jackson State University, Jackson Mississippi

Do you have any scientific degrees?
Masters Degree in Marine Environmental Science

Why do you enjoy about this work?
I like everything about it. I like the freedom of being out in the field and then I like the finished product that comes from what we do, in terms of data analysis.

What percentage of your work year is spent at sea?
125 days per year

When you are ashore, what kind of work do you do?
I’m analyzing data, editing data and being the Safety Officer at the laboratory. It’s a desk job

Is your family comfortable with this lifestyle?
They’re more comfortable with it than I thought they would be. Do they like when I’m away, no. But they also don’t like the disruption that I cause when I’m at home. So it’s a trade-off. I think they’ve adjusted to the lifestyle itself. They know that when I’m home I’m there and they know that when I’m away, I’m at work and they accept that.

If you could be anything you want, what would you be?
A fishery biologist.

What advice would you give to young people who are interested in this career path?
Do it because you enjoy it. Don’t do it for any other reason. Regardless of what you are doing, do it because you enjoy it.

Personal Log 

Today I worked at the beginning of the line instead of the end.  All this time I have been primarily looking for shrimp and the select species which, on this cruise, is mainly red snapper. However, when I dug into the sample rather than the full catch, I had a great time.  There were lots of terrific looking crabs that I’ve never seen.  There were some interesting fish. I was surprised that I am actually able to decipher the differences between the species.

Question of the Day 

Why are the conductivity, temperature and depth measurements important?

Answer: These pieces of data are used to compute salinity.

Susan Just, June 25, 2006

NOAA Teacher at Sea
Susan Just
Onboard NOAA Ship Oregon II
June 15 – 30, 2006

Mission: Summer Groundfish Survey
Geographical Area: Gulf of Mexico
Date: June 25, 2006

Weather Data from Bridge 
Visibility: 10 nautical miles (nm)
Wind direction: 205 ◦
Wind speed: 10
Sea wave height: 1
Swell wave height: 1
Seawater temperature: 27.8
Sea level pressure: 1015.0
Cloud cover: 3/8 Cumulus

Science and Technology Log 

At this point in the survey, the stations are not far apart but they are up, down, in and out.   We are actually steaming back to one of the day stations in order to do the same area as a night station.  All of this activity is taking place in the general vicinity of Corpus Christi.  This area receives a great deal of fishing pressure year around, both commercially and recreationally.

Our last night catch pulled in a beautiful collection of shrimp.  The total for the catch was about 25 Kilos and we ended up with more than 18 Kilos of shrimp.  When you account for the trash that was included, that left a very small volume of fish other than the shrimp.  When the net came up and spilled out into the baskets it was a lovely golden color.

Question of the Day 

What do the letters CTD stand for?

Answer: Conductivity, temperature and depth.