Germaine Thomas: Big Boats and Little Boats and How They Fish Differently, August 10, 2023

NOAA Teacher at Sea

Germaine Thomas (she/her)

Aboard NOAA Ship Oscar Dyson

August 7 – August 21, 2023

Mission: Acoustic Trawl Survey (Leg 3 of 3)
Geographic Area of Cruise: Pacific Ocean/ Gulf of Alaska
Date: Friday, August 10, 2023

Weather Data
Lat 59.47 N, Lon 149.36 W
Sky condition: Cloudy and rain
Wind Speed: 23.73 knots
Wind Direction: 72.22°
Air Temp: 14.47 °C

Science Log

Comparing Set Netting to Trawling

There are many different ways to catch fish. I am comparing set netting, in a little boat, a 24 ft. skiff to trawling on NOAA Ship Oscar Dyson, a big boat which is 208 ft. This is a little bit like comparing apples to oranges; set netting and trawling are different gear types used to catch fish very differently. Set netting targets mostly salmon, while trawling in Alaska targets mostly pollock. Both of these methods of fishing can be used by scientists to collect samples and to catch fish commercially to sell in global markets.

Set Netting:

I am a commercial set netter, which uses a gill net, specifically designed to catch salmon by the gills. Salmon will swim along the shoreline. Set netters place their nets perpendicular to the shore so salmon have to swim around the nets or try to swim through them. When they try to swim through the fish get caught by the gills. Watch the video below on how I pull the net in using a hydraulic roller and pick fish out.

Pulling in the net and picking a Sockeye salmon

[Transcript: Yup, here I am, picking a… Sockeye salmon! Yup, here it is, a beautiful, lovely, amazing Sockeye salmon that I picked. This is what I do in the summer! Yeah!]

When you watch the video you will see the net is a light color that matches the water. Again, salmon do not see the net and try to swim through it and then they are caught. At the end of the video I place the fish in a brailer bag filled with ice and sea water to keep the fish cool. The better the fish are cared for, the better the product that goes to market.

Trawling

Unlike set netting, which is done on a small skiff with just a few people, trawling is done on a large boat with a big crew. The Oscar Dyson has the ability to use echo-sounders to find out where fish are, and then they can lower a trawl net into the water specifically sampling at that depth for fish. A trawl net is like a big bag with are large opening that funnels fish into it.

The Scientists on NOAA Ship Oscar Dyson use a much smaller net than a commercial trawler does to catch fish. They compare what they see on their echo-sounders to what is caught in their net. They use this information to get a general idea of what kind of fish are present in a specific part of the ocean they are sampling. This helps scientists provide accurate information to both the federal and state government to help manage fisheries and keep intact healthy populations of fish.

A commercial trawler will try to catch a specific kind of fish, their target species. If they catch fish other than their target species this is known as bycatch. Large commercial trawlers can have nets up to 50 meters in length, so they can catch a lot of fish. They can only keep and sell their target species. The fish that the Oscar Dyson catches cannot be sold or eaten, but the data the collection provides scientists a great deal about what kind of fish, approximately how many, and at what stages of reproductive development, are located in specific areas of the ocean.

How trawling can impact salmon fisheries like set netting:

Knowing what is happening in a different part of the ocean is very important to other fisheries. Salmon initially develop in fresh water lakes or rivers and then migrate to the ocean. They spend most of their adult life migrating large distances in the ocean, and they depend on food that is present out where the trawlers are fishing. They also may be caught by trawlers as bycatch.

Below is a short sped up video of crew members retrieving a trawl net.

Crewmembers aboard NOAA Ship Oscar Dyson retrieve a trawl net. [No audible dialogue.]

In Alaska there is a bit of controversy over one gear type taking away fish from other gear types. Specifically there is concern about commercial trawling, picking up non-target species like salmon from local coastal fisheries and subsistence users. A lot of the answers may exist in the data that the science team is collecting.

Personal Log

At the beginning of the blog in the weather report you will notice that the wind speed is pretty high at 23.72 knots. A gale is heading towards our area in the Gulf of Alaska. We are finishing a transect line and then heading into a protected bay in the Kenai Peninsula to wait out the weather. While the ship is protected, the science team will work on recalibrating the echo-sounders below the ship. The science team has been experiencing a bit of unexplained noise in one of their lower frequencies. Hopefully, the opportunity to do this calibration will help.

Crew Member in the Spotlight

The Oscar Dyson has a science team and a crew that work together to collect the data for the acoustic trawl sampling and run the ship. Working for NOAA can provide exciting opportunities for young people to experience life on the ocean. When you are on board the ship, you have free lodging and food, which on this leg of the cruise is quite excellent, so you can save money while on board. So far everyone I met enjoys their job and is willing to let me ask them questions about how they got here.

Dee gives a slight smile for a portrait photo. She is wearing a black NOAA Ship Oscar Dyson hoodie, with the hood pulled up over a gray NOAA logo beanie (which also has the hull number of Oscar Dyson, R 224). She stands in front of a framed watercolor of the ship superimposed on a nautical chart of the waters around Kodiak Island. The frame is surrounded by gold garland.
Dee with a picture of the Oscar Dyson in the background

Meet Elvricka “Dee” Daniels from Jacksonville, Florida. She has been on NOAA Ship Oscar Dyson for about 2 months. She was originally temping for an agency in Florida when a friend told her about a subcontractor for NOAA, Keystone. She is currently working as a deckhand for the contractor Keystone.

What does she enjoy aboard the ship?

“Fishing! What kind of different fish come in the trawl net. There is always something different every time we fish.”

She also really likes being on whale watch on the bridge. The science team cannot set out the net if there are whales in the area, so there is always a crew member looking for whales.

As a high school teacher, I like to ask people what their school experience was like. Everyone has a different experience in high school some good some, perhaps not so good, but many go on be successful adults. What was high school like for Dee?

“It was good at first and then it got bad. I made poor choices that impacted my life, I had to go to summer school to make up for missed school. Doing well in school is very important to my family.”

So now here she is out in the Gulf of Alaska helping science happen and impacting others by what she does.

Susan Kaiser: Ready, Set, SCIENCE!! July 29, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: Friday, July 29, 2012

Weather Data from the Bridge
Latitude:  24 deg 36 min N
Longitude:  83 deg 20 min W
Wind Speed: 5.8 kts
Surface Water Temperature: 29.5 C
Air Temperature: 29.5 C
Relative Humidity: 67.0%

Science and Technology Log

Marine Scientist, Danielle Morley, ready for the signal to dive and retrieve a VR2.
Marine Scientist, Danielle Morley, ready for the signal to dive and retrieve a VR2.

Science is messy! Extracting DNA, observing animals in their native habitat or dissecting are just a few examples. On board NOAA Ship Nancy Foster it may even be stinky but only for a little while. That is because the divers are retrieving the Vemco Receivers also called VR2s for short. These devices have been sitting on the ocean floor quietly collecting data on several kinds of grouper and snapper fish. Now it is time to download the VR2s recorded information and give them new batteries before placing them at a new site. So, why are they stinky? Even though the VR2s are enclosed inside another pipe, sea organisms have begun to grow on the top of the VR2. They form a crust that is stinky but can be scraped away with a knife. Any object left in the ocean will soon be colonized by sea creatures such as oysters, algae, and sponges to name a few. These organisms will grow and completely cover the area if they are undisturbed. This crust smells like old seaweed drying on an ocean beach.

VR2 ready to download data and replace batteries.
Clean VR2 ready to download data and replace batteries.

Really, it isn’t too bad and after a while you don’t notice it so much. Besides this is the only way scientists can get the numbers out of the VR2. These numbers tell scientists which fish have been swimming by and how often. Some of the VR2s have collected over 21,000 data points but most have fewer. This information alone helps scientists understand which areas of the ocean floor each species of grouper and snapper prefer as their home or habitat. These data points can even paint a picture of how these fish use the habitat space over the period of an entire year.

Have you been wondering what the VR2s are listening for? You may be surprised to learn it is a signal called a ping from a tracking device that was surgically implanted while the fish is still underwater! The ping is unique for each individual fish. The surgeries were completed when the study began in 2008. First, the fish are caught in live traps. If the trap is in deep water (>80ft) divers descend to perform the surgery on the ocean floor. The fish’s eyes are covered and it is turned upside down. Then a small incision is made in their abdomen and the tag is inserted below the skin. Stitches that dissolve over time are used to close the incision. Once the fish has recovered a bit it is released. An external tag is also clipped into the dorsal fin so other people will know the fish is part of a scientific study. Fish caught in the upper part of the water column may be brought up to the surface slowly and kept in a holding tank while the surgery performed on the boat. Scientists have noted the fish are less stressed by being caught, handled and tagged using this method.  This is a factor for collecting enough data to gain a real understanding of these fishes behavior.

Scientists at the Florida Fish and Wildlife Conservation Commission (FWC) are able to conduct this study with support from a National Oceanic and Atmospheric Administration (NOAA) grant. They have also worked with other agencies on this research including the Florida Keys National Marine Sanctuary (FKNMS)  the area where the VR2s are positioned. Since 2008 they have learned a great deal to better understand how grouper and snapper use habitat. Both fish are good for eating and are found on the menu in many restaurants around the world. They are commercially harvested and fished by recreational fishermen like you and me. Fishing is a big industry in all coastal locations and especially in Florida. In fact, commercial fishing alone accounts for  between 5-8% of total income or jobs in the local economy of the Florida Keys.  Knowledge gained from this study will help FWC and FKNMS guide decisions about fishing and recreation in the FKNMS and be aware of negative impacts to these fish populations in the future. Stinky air is small sacrifice to help preserve populations of groupers and snappers.

Jeff Renchen describes the features of the ROV.
Jeff Renchen describes the features of the ROV.

Mrs. Kaiser wearing the virtual reality glasses. Photo by Jeff Renchen
Mrs. Kaiser wearing the virtual reality glasses. Photo by Jeff Renchen

You can see that exploring marine habitats takes time, trained people and resources. Luckily a device has been developed to help scientists explore the ocean floor in an efficient and safe way. This little gem is called a Remotely Operated Vehicle or ROV. It is a cool science tool operated with a joy-stick controller.  The ROV can dive and maneuver at the same time it sends images back to the operator who is using a computer or wearing virtual reality glasses. Yes, I said virtual reality glasses! The operator can see what the ROV can “see” in the depths of the ocean. I had the opportunity see the ROV in the lab and then ride with the ROV team as they tested the equipment and built their skills manipulating this tool in dive situations. The beauty of the ROV is that it can dive deeper than is allowed for a human diver (>130 feet) and it can stay down for a longer period of time without stopping to adjust to depth changes like a human. If a dive site has a potential risk due to its location or other factors, the ROV can be sent down instead. Scientists can make decisions based on the ROV images to make a plan for a safe live dive and save time and resources. Science is messy, sometimes, but it is cool too!

Personal Log

The weather has been simply amazing with calm crystal clear seas and very smooth sailing. Still, spending the day in the sun saps your energy. However, that feeling doesn’t last too long after a nice shower and a trip to the mess to enjoy a delicious meal prepared in the galley. There Chief Steward Lito Llena and 2nd Cook Randy Covington work their magic to cook some terrific meals including a BBQ dinner one evening on the upper deck. They have thought of everything, especially dessert! I will be paying for it later by running extra laps when I get back home but it will be worth it.

Mrs. Kaiser's stateroom on the NOAA Ship Nancy Foster.
Mrs. Kaiser’s stateroom on the NOAA Ship Nancy Foster.

My stateroom is a cozy spot with everything one would need and nothing more. A sink is in the room but showers and toilets are down the hall a few doors. One item that is missing is a window. It is so very dark when the lights are off you can’t see your hand in front of your face. It is easy to over sleep! Surprisingly noise has been minimal since the rooms are very well insulated. I share this space with three female scientists but we each have a curtain to turn our bunks into a tiny private space. I enjoy climbing up in my top bunk, closing my little curtain and reading my book Seabiscuit, An American Legend before being rocked to sleep by the ship.

NOAA Ship Nancy Foster officers and crew have been wonderful hosts on this cruise. All have patiently answered my questions and helped me find my way around to do what I need to do. I am curious about their life at sea and the opportunities it affords them to see new places, meet new people and engage in new experiences too. I hope to learn more about their careers as mariners before this voyage ends. The ship truly is a welcome place to call home for these two weeks.

John Schneider, July 18-20, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 18-20, 2009

Position
Shumagin Islands, in transit to Dutch Harbor

Weather Data from the Bridge 
Weather System:
(July 18th) Low system approaching from the South
(July 19th) Fog, gusty wind in the morning, clear afternoon, but getting windier; Wind: southwesterly at 4-6 kts; Sea State: 1-2 feet

Weather System:  Projected for the July 20-21 overnight
Barometer: falling rapidly (a warning sign of unsettled weather) Wind: sustained at 30-40 kts, gusting to 55 kts (This would qualify as a “gale”)
Sea State: Predicted wave height next 24-36 hrs – 18 feet!

Andy and lunch—a nice halibut!
Andy and lunch—a nice halibut!

Science and Technology Log 

On the 18th and 19th, the launches went out (including me on the 19th) to clean up some holidays and get more near-shore data.  When we got back on the 19th, we found out that a major low pressure system was building to the south and expected to be in our area within a day and a half.  A major low system can reach out a couple of hundred miles and the CO decided that we would leave the Shumagins about 18 hours earlier than originally planned.  I discussed this with him (he is remarkably approachable) and he reiterates to me what I had already believed: his responsibilities are in three priorities – 1. His crew.  2. His ship.  3. The mission. Our research in the Shumagins does not represent life-or-death, it represents the continuing quest for knowledge and the expansion of our understanding of the Earth.  I’m sure you’ve realized it already, but Captain Baird and his officers have earned my highest regard.

We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.
We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.

On board the Fairweather is a phenomenal array of electronics.  Our positioning equipment is able to determine our position with just a couple of meters and when we are on a course it can tell if the course error is as little as a decimeter! Operating in Alaska, where fog is a way of life, RADAR (Radio Direction And Ranging) is an absolute must, and we have redundant systems in the event one breaks down. Probably the coolest thing about the radar is the use of ARPA technology. ARPA (Automated Radar Plotting Aid) is a system that not only identifies other vessels on the water, but diagrams their projected course and speed vectors on the screen. It does this from as far as 64 miles away!

The filleted tail of the halibut and some crabs found in its stomach
The tail of the halibut and some crabs found in its stomach

By looking at the screen, you can see the lines of other ships relative to your own and navigate accordingly. Furthermore, the system includes ECDIS, which is an Electronic Chart Display and Information System that identifies other ships as to their name, size, destination, and cargo!  So when you see on the radar that you are in a situation where you will be passing near to another vessel, you can call them on the radio by name! This technology is essential, especially going through Unimak Pass.  Unimak Pass is about 15 miles wide and is a critical point in commercial shipping traffic between the Americas and Asia. As we were transiting Unimak Pass, We were passed by an 800 foot long container ship that was en route to Yokohama, Japan and going the other way was a 750 foot ship going to Panama.  This is a critical area due to what is called “Great Circle” navigation.  I’ll address this point when in Dutch Harbor next week.

Eat your hearts out!
Eat your hearts out!

Personal Log 

Last night, after the beach party, Andy Medina (who has been on board for almost 200 days this year) was fishing off the fantail and caught a nice halibut. The crew who hail from Alaska all have fishing permits and when the day is done, if we’re anchored they get to use their free time for fishing.  They even got a freezer to keep their filets in.  Earlier in the cruise, we actually had halibut tacos made with about the freshest Alaskan halibut you can find (less than 12 hours from catch to lunch!)  Of course, with me being a bio guy, I asked for two things: 1 – to keep and freeze the head (I For the last night of the leg before making port in Dutch Harbor  (home of the World’s Deadliest Catch boats) the stewards, Cathy Brandts, Joe Lefstein and Mike Smith really outdid themselves.  I sure hope you can read the menu board, but if you can’t, dinner was Grilled NY Strip Steak and Steamed Crab legs with Butter! 

We went through about 10 trays like this!!!
We went through about 10 trays like this!!!

After dinner, everybody secured as much equipment as possible in the labs, galley and cabins as possible in anticipation of the run ahead of the weather into Dutch Harbor.  We ran through the night and got to Unimak pass in the middle of the day on the 20th. About half way through the pass was an unusual announcement, “Attention on the Fairweather, there are a lot of whales feeding off to starboard!” It’s the only time whales were announced and it was worth the announcement.  For about 2 to 3 miles, we were surrounded by literally MILLIONS of seabirds and a score or more of whales.  Comments from everybody were that they had never seen anything like it. I kept thinking of the old Hitchcock film The Birds and the scenes in Moby Dick where Ahab says to “watch the birds.” We were all agog at the sight.

Fifteen minutes of this! Incredible!
Fifteen minutes of this! Incredible!

With the collective 200-300 years of at-sea experience, no one had ever seen anything like it. After 2.5 weeks that seems like 2.5 days, we approach Dutch Harbor and are secured to the pier by 1700 hours. Tonight we’ll head into town, but if not for the news in the next paragraph, this would be the worst time of the trip, however . . .

The Best news of the trip: I’ve requested and been approved to stay on board the Fairweather for the next leg! WOO-HOO!!!  It’s called FISHPAC and deals with integrating bottom characteristics to commercially viable fish populations!  I’m going to the Bering Sea!!!

Questions for You to Investigate 

  1. When did the Andrea Doria and Stockholm collide?  Where?  In what conditions?
  2. What was the D.E.W. Line in the Cold War?
  3. Why did the Japanese want bases in the Aleutians in WWII?
  4. Why did we pass a ship going from North America to Yokohama well over 1000 miles north of both ends of the trip?
  5. What are Great Circles?

Did You Know? 

That almost 10% of all commercial fishing catch in the United States comes through Unalaska and Dutch Harbor?

Approaching Dutch Harbor
Approaching Dutch Harbor

Taylor Parker, April 21, 2009

NOAA Teacher at Sea
Taylor Parker
Onboard NOAA Ship Oscar Elton Sette
April 19-29, 2009 

Mission: Hawaii Bottom fish Survey
Geographical Area: South side of Oahu
Date: April 21, 2009

The crew does an incredible job of lowering these SAFE boats into the water with Kona coast in the background.
The crew does an incredible job of lowering these SAFE boats into the water with Kona coast in the background.

Weather Data 
Winds: 7-16 knots variable.
3-5 ft swells.
Water temp: 24 C.
Air temp: 70 F.

Science and Technology Log 

Oh man, I am so happy that we’re underway! The swells found us today and we’re finally rocking around – it is great! Today, the game-plan is that at 6am the 15ft SAFE boat runs out into the sapphire blue Hawaiian waters to study the slicks (areas of converging down-welling currents- the glassy parts in the ocean) while the 19ft boat tries to find juvenile bottom-fish. Good luck!

Retrieving the trawl
Retrieving the trawl

I, however, am helping three other scientists with trawling for billfish. We’re working with the Isaacs-Kidd trawl (I/K). This is a 10 meter long net with 5mm mesh that is connected to a detachable cod-end which collects the plankton. The I/K was named after the researchers from Scripps in La Jolla who developed the technology in the 60’s. We dropped the net bearing their names into the water by an A-Frame winch maintaining just below the surface for an hour. At this time the net is retrieved and the cod end is removed for study. It is replaced with a fresh end and the net is thrown back into the water for another hour.

The codend is replaced
The codend is replaced

The cod-end is brought into the hydro-lab and the contents are splayed out into a tray and analyzed. The marine organisms are then sorted, organized and labeled for any rare or special fish – my personal favorite is the long, skinny Lizardfish in the middle of the tray. The different fish in this photo are really interesting. The small one in the top left is a Slender Mola which as an adult lives in the open water, the longer Lizardfish lives on the bottom, the Blenny lives near shore in shallow water while the Lantern-fish grows up, lives in mid-water and develops light organs. As adults they grow into different sizes, scatter into different waters in the ocean and adapt accordingly. But as larvae they are all found together—in the slicks.

The contents of the cod-end are readied for analysis
The contents of the cod-end are readied for analysis

The target specimens for this trawl are Marlin, Swordfish and other billfish larvae. And you know what? We caught a couple; the one pictured is a baby Swordfish. From this photo it is hard to believe this creature grows up to be the extremely muscular fish in the same sub-Order as the one Hemingway writes about, but it is true. Not much is known about the life histories of these fish, that is why we’re here, but it is believed that it takes many years to reach adult. The specimen were photographed and then placed in a 32oz plastic jar with ethyl alcohol for further analyzing later. We repeated this process 6 times throughout the day.

Personal Log 

My personal favorite, the lizardfish
My personal favorite, the lizardfish

The I/K collects a lot of very small marine organisms. It looks like gumbo. Luckily, this isn’t our dinner; we’re fed a lot better looking— and definitely tasting— food on this cruise. We collected numerous jellies, shrimp, fish larvae, debris, eggs, nudibranchs and crabs. All of it is relatively transparent so you don’t notice it while in the ocean. The I/K concentrates the gelatinous biota and truly illustrates what is in the water. And considering the warmer waters of the tropics are less productive than colder waters, this isn’t everything that could be there. Just don’t think about this when you open your mouth underwater!

A baby swordfish
A baby swordfish

The trawl was fun and definitely a new experience. It is truly incredible the amount of life that is in the water. Until you see you it pulled out, you don’t believe it. This is one of the paradigm-shifting results from being on this ship that I am only now beginning to realize. This entire vessel is designed to study the ocean; every facet of this boat is geared toward understanding the marine world. The researchers and crew on the Sette are actively embracing NOAA’s mission of stewardship.

Question of the Day 

"Gumbo" from the trawl
“Gumbo” from the trawl

Why are the fish we catch the colors they are—orange, yellow, red, etc? This was one of the questions I asked some of the expert marine biologists over dinner the other day and I was told that one of the reasons is that the colors makes the fish invisible. Red absorbs the spectrum of light that gets down around 100 fathoms and makes the fish look grey.

New Term/ Phrase/ Word 
New words: Vog –volcanic fog. Here the marine layer is normal condensation coupled with volcanic particulates. Kai – Hawaiian for the sea; Nalu – Hawaiian for waves; Kuliana— Hawaiian for responsibility. This can be responsibility for anything: your job, your family, etc. But as Ensign Norris says, it is also responsibility for the environment and it reminds us to protect what we have.

Animals Seen Today 
We saw a Laysan Albatross (Phoebastria immutabilis) today zooming the boat. It is a beautiful bird that I’ve never seen before and its wings were truly massive. We also caught a few billfish and fish larvae so tiny they look like they are just heads!

Taylor Parker, April 19, 2009

NOAA Teacher at Sea
Taylor Parker
Onboard NOAA Ship Oscar Elton Sette
April 19-29, 2009 

Mission: Hawaii Bottom fish Survey
Geographical Area: South side of Oahu
Date: April 19, 2009

Weather Data 
Calm winds of about 5 knots.
30% -50% Cloud cover.
80F degrees.

Science and Technology Log 

NOAA Ship Oscar Elton Sette
NOAA Ship Oscar Elton Sette

Welcome to my ship logs!  On our cruise we are studying bottom fish in the waters around the Hawaiian Islands. The purpose of studying bottom fish is because of their popularity by commercial interests. These animals are well fished by local boats and there is much to learn about them and their life histories for sustainable fisheries management. Better knowledge of life history traits, such as age, growth and size and age at maturity will help current efforts to assess the bottom fish fisheries in the main Hawaiian Islands.

This weekend was exciting. After our cruise being delayed about a week due to various generator problems, it was decided that we would begin some of the bottom fish research from the smaller SAFE boats. On Saturday, April 19th, two teams hauled two boats (a 15 ft and 20 ft SAFE boat) to a boat ramp near Diamondhead on Oahu. Both were deployed at approximately 8:00am with the smaller boat studying “slicks” for conductivity, salinity and temperature as well as phyto- and zooplankton. The other boat, the one I was on, studied the bottom fish we pulled up. The smaller boat concluded their operations around 2pm while our boat finished at 4:30pm. All together our boat spent about 8 ½ hours on the water; we ate several sandwiches, drank a lot of Gatorade and used about a bottle of sunscreen. The weather was incredible with very little wind and few clouds until 2pm. The winds around Oahu pick up in the early afternoon and create some challenging swells.

As for the work done on the boats, we studied “slicks” and bottom fish. Slicks are the visible trails created in the water due to converging water flow. This trail has less turbulence than surrounding current and many fish larvae are found within these mini-refuges. They are called slicks because of their resemblance to oil slicks and that is partially because of the accumulation of oils from the many marine species. The smaller boat worked with specially adapted collection devices and finished the day with a bucket worth of sample to analyze.

Our boat dropped lines in the water several times to depths ranging from 100 – 230 meters to hopefully catch different bottom fish species. The gear we used consisted of two motorized reels and several hundred meters worth of monofilament mainline on each reel. At the bottom of the mainline a “blood” line was connected. It is called so because of the red color of the stronger line. A “pigtail” connection is attached to the lower end of the blood line to easily connect the interchangeable hooks and weight.  Three or four hooks are then attached to an interchangeable line connected to the pigtail.

Finally, a two pound weight is attached to the end of the line of hooks to bring the whole rig to the bottom. The fish we are targeting remain at a depth of more than 100 meters on semi-hard to hard bottom (rock and crushed coral). Once an appropriate site was found, the coxswain maintained position while we fished. In total we caught 6 fish: 4 Ehu (Etelis corbunculus), a Gindai (Pristipomoides zonatus) and a kind of Large-headed Scorpion fish, Hogo (Pontinus macrocephalus). We released the scorpion fish because it is not part of the study and one of the Ehu because it was healthy enough to return after we took measurements.

Personal Log 

I’ve never caught fish before. The only challenge I had in applying for this position was in my ability to kill another animal but I believe in the importance of research and recognize the beneficial impacts this work has toward promoting better stewardship of our natural resources. Catching a few fish for this cause seems justifiable and studying these creatures and their physiology is fascinating. After pulling the Ehu and Gindai from the water and seeing their remarkable oranges, red and yellows contrast against the blue of the swirling Hawaii waters, it surprises me that we cannot see these fish at all swimming directly underneath us. If the waters were truly clear, visible to the bottom, I believe the amount of and variety of colors we would see would mystify us.

Speaking of mystifying: the behemoth Humpback whale (Megaptera novaeangliae) visited us on our day trip. Although it is late in the season for them –most are on their way to the plankton buffet outside Alaska – we saw several momma whales swimming with their calfs. One time, on the horizon, we saw two humpbacks slapping their pectoral fins on the surface and crashing around with each other playing.

Additional: New term/ phrase/ word 

I’m learning new Hawaiian words: Puka means a hole or divet of any size and Pau is a term that has traditionally meant dead but has come to mean finished.

Katie Turner, July 26, 2008

NOAA Teacher at Sea
Katie Turner
Onboard NOAA Ship Miller Freeman
July 10 – 31, 2008

Mission: Pollock Survey
Geographical Area: Eastern Bering Sea
Date: July 26, 2008

Rescue crew retrieves a dummy man overboard. It is a maritime custom to refer to the man overboard as “Oscar." This comes from an international regulation requiring the raising of the Oscar flag when a vessel is responding to a man overboard, warning other vessels to be on the lookout
Rescue crew retrieves a dummy man overboard. It is a maritime custom to refer to the man overboard as “Oscar.” This comes from an international regulation requiring the raising of the Oscar flag when a vessel is responding to a man overboard, warning other vessels to be on the lookout

Weather Data from the Bridge 
Visibility:  3 miles
Wind Direction:  050
Wind Speed:  8 knots
Sea Wave Height:  0-1 foot
Swell Wave Height:  2-3 feet
Seawater Temperature: 7.8˚ C.
Present Weather Conditions: cloudy

Science and Technology Log 

After leaving Captain’s Bay early Friday morning, the trip to the rendezvous point with OSCAR DYSON took nearly 20 hours. During that time we had our mandatory fire, abandon ship, and man overboard drills.  For our fire drill the Captain staged a mock fire, with smoke reported from the acoustics lab.  The fire fighting team had to respond, find the point of origin of the fire and figure out how to treat it. A debriefing was held afterward so that responders could discuss strategies and learn from the experience.

The rescue boat is brought back aboard the MILLER FREEMAN
The rescue boat is brought back aboard the MILLER FREEMAN

The abandon ship drill is regularly performed so all crew are ready to respond to a severe emergency by mustering at their assigned stations and getting into survival suits to be ready to board life rafts. It’s a good way for new crew members, such as me, to make sure they know where to go and what to bring. We made our rendezvous with OSCAR DYSON late Friday evening in the Bering Sea and immediately moved into position to run the first side by side transect. We are working on a comparison study to determine whether acoustic estimates of pollock (Theragra chalcogramma) abundance made by MILLER FREEMAN and OSCAR DYSON are comparable.  Pollock may have different behavioral responses to these vessels during surveys due to the differences in the amount of noise each vessel radiates into the sea from its propeller, engines, and other equipment.  These behaviors could affect the acoustic estimates of abundance.  OSCAR DYSON is taking over the task of acoustic pollock surveys in the Bering Sea and has been built under new specifications that require a lower level of radiated noise. MILLER FREEMAN has been doing the Bering Sea pollock surveys since 1977.  This study is important because it will ensure that future biomass estimates will be continuous with those done in the past. During this cruise the two ships will continuously collect acoustic backscatter data while traveling side by side along a transect line where pollock schools are known to occur. The distance between the two ships is maintained at 0.5 nautical miles (nm), while they travel at about 12 knots. Every 50 nm along the transect, the vessels switch sides.

OSCAR DYSON from the bridge of the MILLER FREEMAN in the Bering Sea
OSCAR DYSON from the bridge of the MILLER FREEMAN in the Bering Sea

For this to happen one vessel will slow down and cross behind the stern of the other vessel, then catch back up on the other side. The beginning and end of each transect section must be carefully coordinated between the scientific team in the acoustics lab The remainder of our time on this cruise will be spent working with the OSCAR DYSON to cover as much of the study area as possible before returning to the port of Dutch Harbor.  After the study is complete, the acoustic data collected by each vessel will be carefully compared to see if there is any consistent difference between them. At the same time officers on the bridge are in constant communication to coordinate navigation and maneuvering of the ships.

The figure above shows the final transect path of MILLER FREEMAN in the Bering Sea as straight lines in red. The parallel lines running nearly north and south were traversed from the east to the farthest westerly point. The zigzag red line across the parallel lines represents the path taken as we head back to the southwest on our return. Other colored lines on the map are depth contour lines.  Red lines indicate depths from -75 to -100 meters, yellow to -130 meters, green to -155 meters, and blue greater than  -160 meters.

Ship transect
Ship transect

Personal Log 

During these few days at sea the scientists onboard have taught me a lot about acoustic studies. It’s a complex science that requires both an understanding of the physical science of acoustics and the technology involved, but also the biology, behavior, and ecology of pollock.

One of the opportunities I have especially enjoyed has been watching and photographing the seabirds. They are an important part of this ecosystem and one that can be observed without acoustics. We have seen mostly northern fulmar (Fulmaris glacialis) and black-legged kittiwake (Rissa tridactyla), but also an occasional long-tailed jaeger (Stercorarius longicaudus), and flocks of thick-billed murre (Uria lomvia). Northern fulmar (Fulmaris glacialis) exhibit a lot of variation in color from very light, to light, and dark versions, with gradations in between. These different color morphs all mate indiscriminately. They are gull sized birds with moderately long wings, a short, stout, pale bill, and a short rounded tail. A key characteristic is their dark eye smudge.  They are common in the Bering Sea but also in the northeast Atlantic.

Northern fulmar, light morph
Northern fulmar, light morph

Northern fulmar, dark morph
Northern fulmar, dark morph

Fulmars are well known among commercial fisherman for scavenging waste thrown off fishing boats, which explains why they have been nearly constant companions to the MILLER FREEMAN on this cruise. Fulmars are members of the family Procellariiformes, also known as the “tube-nose” birds, along with albatrosses, petrels, and shearwaters. The term comes from the tubular nostril, a structure that looks like a tube on top of their beak.  Their beak, as you can see in the photo, is made up of many plates. This specialized nostril is an adaptation that enhances their sense of smell by increasing the surface area within to detect scent. They also have enlarged brain structures that help them process those scents. Learn more at the Cornell and U.S.G.S. websites.

Katie Turner, July 25, 2008

NOAA Teacher at Sea
Katie Turner
Onboard NOAA Ship Miller Freeman
July 10 – 31, 2008

Mission: Pollock Survey
Geographical Area: Eastern Bering Sea
Date: July 25, 2008

Bald eagles are abundant around the port in Dutch Harbor
Bald eagles are abundant around the port in Dutch Harbor

Weather Data from the Bridge 
Visibility: 10 nautical miles
Wind Direction: 075
Wind Speed: 13 knots
Sea Wave Height: 1-2 feet
Swell Wave Height: 3 feet
Seawater Temperature: 7.1˚C.
Present Weather Conditions: Cloudy, 9.3˚C, 94% humidity

Science and Technology Log 

After spending 3 weeks at the dock in Dutch Harbor, MILLER FREEMAN finally began the cruise with less than a week left to complete the study. We pulled away from the dock Thursday afternoon, 24 July, and sailed to nearby Captain’s Bay to calibrate the acoustic instruments.

A line diagram of MILLER FREEMAN showing the location of the centerboard below the hull
A line diagram of MILLER FREEMAN showing the location of the centerboard below the hull

Background 

Acoustics is the scientific study of sound: its generation, transmission, and reception.  Sound travels in waves at known rates, and the physical properties of the material the waves travel through affect the speed of sound.  These properties of sound waves enable their use in medical diagnosis, testing critical materials, finding oil-bearing rocks underground, and counting fish in the ocean. Sound travels through seawater of average salinity about 5 times faster than through air (~1,500 m/s, or about 15 football fields in one second).  Many animals that live in the ocean rely on sound more than vision for communication and survival. You are probably already familiar with echolocation and communication vocalizations in whales and porpoises.

Picture of the transducers in the centerboard, which is lowered when the ship is at sea. Lowering the transducer away from the hull reduces the noise interference of bubbles running along the hull while underway.
Picture of the transducers in the centerboard, which is lowered when the ship is at sea. Lowering the transducer away from the hull reduces the noise interference of bubbles running along the hull while underway.

The speed of sound in water increases as temperature and salinity increase.  It also increases with depth due to the increase in pressure.  Therefore, in order to know the speed of sound at a given location in the sea, you need to know the temperature, salinity, and depth. There are other factors that are important to consider as well.  As sound travels through seawater it loses energy because of spreading, scattering and absorption.  When sound waves strike bubbles, particles suspended in the water column, organisms, the seafloor, and even the surface, some of the energy bounces off or is scattered. When the sound energy is scattered at angles greater than 90 degrees it is referred to as backscatter.

Fish Assessment 

Scientists use acoustics to measure fish abundance in the ocean by emitting sound waves at specific frequencies and then measuring the amount of backscatter.  Different organisms and other objects will have a characteristic backscatter that is dependent on many biological factors as well as the physical properties of the medium. The most important biological factor is presence and the size of a swim bladder, but also the organism’s size, shape and orientation.  If scientists know the backscatter signature of the target species (which can be determined experimentally or by mathematical models), they can use sound to identify and measure certain fish populations in the ocean. Onboard the ship, sound waves are emitted from an instrument called a transducer, which is located in the centerboard of the ship. The transducer generates sounds directly beneath the ship into the water column below (pings).  When these sound waves are backscattered from the fish below back to the transducer, they are converted to an electrical signal that is sent to the scientist’s computer.  There, a profile can be created that represents the fish in a graphical image.

Chief Scientist, Patrick Ressler, attaches calibration spheres to the line that will be lowered beneath the ship.
Chief Scientist, Patrick Ressler, attaches calibration spheres to the line that will be lowered beneath the ship.

Before making any actual measurements during this study, it is necessary to calibrate the acoustic instruments on board the ship. Calibrations of instruments and other measuring devices are done by using a known standard to compare the output of the instrument. So for example, if I wanted to calibrate a stick as a measuring device, first I would compare its length to a known standard such as a ruler. We anchored in Captain’s bay, on both bow and stern to keep the ship from moving much, and spheres with known acoustic properties were suspended beneath the ship at a known distance below the transducers. Acoustic data were then collected on backscatter from the spheres. Knowing the distance to the spheres, their acoustic qualities (how they will backscatter the sound), and the physical qualities of the medium (seawater temperature and salinity) allowed the scientists to standardize their equipment.   While acoustic calibrations were performed by the scientists, the survey technicians collected seawater temperature and salinity. The way these properties are measured is standard practice on research vessels.  An instrument package called a “CTD” measures conductivity (which is converted to salinity), temperature, and depth.  Sensors for each of these make up the package, and are mounted on a metal frame called a rosette. The rosette is lowered into the water column by a crane, and the data collected is transmitted via a cable to a computer on board. Once the calibration and CTD measurements were completed, we pulled anchor and headed northwest into the Bering Sea to meet up with NOAA Ship OSCAR DYSON.  We expect to reach our rendezvous point by late Friday to begin our study.

Survey Technician Tayler Wilkins monitors the CTD data transmission while communicating with the crane operator as the rosette is lowered through the water column. The computer automatically produces a profile of temperature and salinity with depth.
Survey Technician Tayler Wilkins monitors the CTD data transmission while communicating with the crane operator as the rosette is lowered through the water column. The computer automatically produces a profile of temperature and salinity with depth.

Personal Log 

The long stay in Dutch Harbor made the departure that much more exciting.  I am looking forward to what little time is left.  The crew of MILLER FREEMAN have all made me feel welcome, and have been helpful in answering my questions and educating me on shipboard operations.

New Terms 

acoustics, calibration, backscatter, centerboard, transducer, CTD rosette

Learn more here 

Katie Turner, July 18, 2008

NOAA Teacher at Sea
Katie Turner
Onboard NOAA Ship Miller Freeman
July 10 – 31, 2008

Mission: Pollock Survey
Geographical Area: Eastern Bering Sea
Date: July 18, 2008

The ship
The ship

Science and Technology Log 

Where is the Bering Sea?
Where is the Bering Sea?

The Vessel 

NOAA Ship MILLER FREEMAN is a 215 foot fishery and oceanographic research vessel, and one of the largest research trawlers in the United States.  She carries up to 34 officers and crew members and 11 scientists.  The ship is designed to work in extreme environmental conditions, and is considered the hardest working ship in the fleet.

She was launched in 1967 and her home port is Seattle, Washington. MILLER FREEMAN has traditionally been used to survey walleye pollock (Theragra chalcogramma) in the Bering Sea.  These surveys are used to determine catch limits for commercial fisherman.  In 2003 NOAA acquired a new fisheries research vessel, the NOAA Ship OSCAR DYSON. OSCAR DYSON is to eventually take over MILLER FREEMAN’s research in Alaskan working grounds, allowing MILLER FREEMAN to shift her focus to the west coast. OSCAR DYSON was built under a new set of standards set by the International Council for the Exploration of the Sea (ICES), which reduces the amount of noise generated into the water below, while MILLER FREEMAN is a more conventionally-built vessel which does not meet the ICES standards.  The assumption is that marine organisms, including pollock, may avoid large ships because of the noise they make, thus altering population estimates.  It is therefore important for scientists to know the difference between population estimates of the two ships. This is done through vessel comparison experiments, in which the two ships sample fish populations side by side and compare their data.  The primary purpose of this July 2008 cruise is to complete a final comparison study of the two ships and measure the difference in the pollock population data they collect.  

Image of the eruption of Okmok, taken Sunday, July 13, 2008, by flight attendant Kelly Reeves during Alaska Airlines flights 160 and 161.
Image of the eruption of Okmok, taken Sunday, July 13, 2008,
by flight attendant Kelly Reeves during Alaska Airlines
flights 160 and 161.

The Location 

The Bering Sea covers an area of 2.6 million square kilometers, about the size of the United States west of the Mississippi.  The maximum distance north to south is about 1,500 kilometers (900 miles), and east to west is about 2,000 kilometers (1,500 miles).  The International Date Line splits the sea in two, with one half in today and the other in tomorrow. The area is also bisected by a border separating the Exclusive Economic Zones (EEZ) of Russia and the United States. The EEZ is the area within a 200 mile limit from a nation’s shoreline; where that nation has control over the resources, economic activity, and environmental protection. More than 50% of the U.S. and Russian fish catch comes from the Bering Sea. It is one of the most productive ecosystems in the world.  The broad continental shelf, extensive ice cover during the winter, and the convergence of nutrient-rich currents all contribute to its high productivity. It is a seasonal or year round home to some of the largest populations of marine mammals, fish, birds, and invertebrates found in any of the world’s oceans.  Commercial harvests of seafood include pollock, other groundfish, salmon and crab.  The Bering Sea has provided subsistence resources such as food and clothing to coastal communities for centuries.

Aleutian Island volcaneos
Aleutian Island volcaneos

Repairs and Delays 

Anchorage high school teacher, Katie Turner, arrives at the pier in Dutch Harbor, Alaska
Anchorage high school teacher, Katie Turner,
arrives at the pier in Dutch Harbor, Alaska

While all aboard were anxious to begin this Bering Sea Cruise, the ship could not sail until crucial repairs could be made.  During the previous cruise a leak was discovered in the engine cooling system that brought the ship in from that cruise early.  The location of the leak was the big mystery.  After days of testing and a hull inspection by divers the leak was located.  It was in a section of pipe that runs hot water from the engine through the ship’s ballast tanks and into a keel cooler on the outside of the ship’s hull, where it is cooled before circulating back to the engine. This turned out to be a very labor intensive job and workers spent days draining and cleaning the tanks before the leak could be repaired.

In the meantime, a repair to one of the engine’s cylinders required a part that had to be shipped from Seattle via Anchorage (about 800 miles northeast of Dutch Harbor). To complicate the arrival of this part, a nearby volcano erupted, spewing ash 50,000 feet into the path of flights to and from Dutch Harbor.   Alaska has many active volcanoes. The Aleutian Island arc, which forms the southern margin of the Bering sea, comprises one of the most active parts of the Pacific’s “ring of fire”. This tectonically active area has formed due to the subduction of the Pacific plate beneath the North American plate. So far we do not have a definite departure schedule.  Each day spent at the dock is one day less for the scientific team to complete the goals of the cruise.  Meanwhile, OSCAR DYSON is completing its survey in the Bering Sea, and anticipates the arrival of MILLER FREEMAN to complete the comparison study.

NOAA Teacher at Sea, Katie Turner, gets a tour of the bridge and quick navigation lesson from Ensign Otto Brown
NOAA TAS, Katie Turner, gets a tour of the bridge and quick navigation lesson from Ensign Otto Brown

Personal Log 

I arrived in Dutch Harbor on July 9th with a forewarning that repairs to the ship would be necessary before heading out to the Bering Sea, and that I would have some time to explore the area. I have managed to keep busy and take advantage of opportunities to interview the crew, hike, and find my way around town. The weather in Dutch Harbor has been exceptional with many sunny days. It’s uncommon for a NOAA research ship to spend so much time at the dock, and we attracted the attention of a newsperson from the local public radio station. Commanding Officer Mike Hopkins and Chief Scientist Patrick Ressler were interviewed by KIAL newsperson Anne Hillman while MILLER FREEMAN was delayed for repairs in Dutch Harbor. Unalaska Island has few trees and along with other islands on the Aleutian chain is known for its cool and windy weather. There are no large mammals such as bear on the islands but small mammals, such as this marmot, are common along with many species of birds and a wide variety of wildflowers, which are in bloom this time of year.

Chief Scientist Patrick Ressler explains how he uses acoustic equipment to study pollock in the Bering Sea.
Chief Scientist Patrick Ressler explains how he uses acoustic equipment to study pollock in the Bering Sea.

A marmot spotted on a ridge alongside the road up Mt. Ballyhoo on Amaknak Island
A marmot spotted on a ridge alongside the road up Mt. Ballyhoo on Amaknak Island

A Bald Eagle guards the crab pots stored near the pier
A Bald Eagle guards the crab pots stored near the pier

The view from Mt. Ballyhoo on Amaknak Island. Lupine, a common plant found on the island, is in bloom in the foreground
The view from Mt. Ballyhoo on Amaknak Island. Lupine, a common plant found on the island, is in bloom in
the foreground

Black Oystercatchers take flight over the harbor
Black Oystercatchers take flight over the harbor

Learn more about the Bering Sea ecosystem at these Web sites: 

http://www.avo.alaska.edu/volcanoes/aleutians.php http://www.worldwildlife.org/what/wherewework/beringsea/index.html http://www.nature.org/wherewework/northamerica/states/alaska/preserves/art19556.html http://www.panda.org/about_wwf/where_we_work/europe/what_we_do/arctic/what_we_do/marine/bering/index.cfm

Dennis Starkey, July 29, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 29, 2006

“It Looks Like a Giant Milk Bottle” 

Science and Technology Log 

The MILLER FREEMAN’s next task was to aid two fisheries researchers conduct a trial attempt at catch and release salmon tagging.  A net system is employed to haze the salmon into the center of the net.  Salmon are fairly shallow surface feeders so the trawls would not be deep. In fact, our trolling regions were within two miles of Dutch Harbor.

What makes this trawl interesting is the device that gathers and stores the salmon at the end of the netting. It could accurately be described as a large old-fashioned milk bottle made of aluminum that serves as the retaining device and tank.  The flowing water and salmon are swept into a 724-pound portable live tank.  The ocean water is held in the confines of the tank with all kinds of surface fish and jellyfish.  After the fishermen crank it up, the back of the boat with a winch, we opened the door and had live salmon to measure, tag, take a scale sample, and sometimes put on a satellite-tracking device!

The need for such a device arose from the high mortality rate of netted, and hook and line tagging procedures. The more handling and scale loss incurred during a capture results in a dramatic decrease in immediate survival for the salmon.  The outcomes success rate and eventual retrieval of the tag becomes slim.  The scales on the sides of the salmon are a precious defense mechanism that needs to be retained to ensure a healthy immune system and this is why the “Box Trawl” device was made.  This tank system of netting was first developed by the Norwegians to further their studies of ocean fisheries.  This particular model was drawn up by the Biologists and manufactured locally in Dutch Harbor.

Unfortunately, the welder probably didn’t realize what the purpose of this device was.  It roughly built with sharp edges, aluminum slag pocking, and a heavy free-swinging fish door. After the first tow with these flaws, it was apparent modifications were needed to make this more fish “friendly”.  Fire hoses were slashed and wrapped to cover sharp edges as were rubber tubing to cover blunt surfaces.  A grinder was used to take the burs off the metal sheeting, and the door was removed to prevent added banging upon the fish.  Everyone on the fishing deck seemed to help out.  The results were amazing!  The first trawl saw some very banged up salmon with a high loss of scale coverage.  After the corrective measures, there was hardly a glitter from scale loss in the tank.

The six trawls over the two-day period resulted in an average capture of about 15 to 20 salmon per tow.  Other species of fish were caught as well.  Atka mackerel were numerous, and a 14-inch herring was in the tank as well.  The largest catch was estimated at having about 60 fish in it.  Fortunately, they all could be released unharmed due to the trawl tanks successful features.

The biologists, Jim and Jamal, are targeting Pacific King, Chinook, and Coho salmon for their study. They choose the highly commercial, or highly respected recreational varieties, because the success rate of a returned tag is higher for those particular types of salmon because of the desire for humans to obtain them.

Out of the Tank 

After the door was opened and we could see what we had caught, a hose with freshly pumped seawater was inserted into the tank to supply fresh water and oxygen.  Without this, fish in the tank would quickly use up their oxygen supply.  Then Jim brought over a fish hammock with two handles and a button that was about a meter long.  This was a “settling” device connected to a car battery.  The fish obviously don’t wish to cooperate when they are removed from the water, so they are zapped with some voltage that calms them for not more than a minute and a half.  Each fish is identified by species, measured for length, and plucked of a single scale sample.  A tag is then inserted by means of a hollow sharp probe that contains a small round red and white tag number and information on whom to return the tag to if found.  The tag itself is attached to a plastic bubble zip tie that holds the dime size tag in place.  About six of the fish were fitted with satellite tracking devices as well.  These state of the art clear plastic devices are about the size and shape of an average Lego block. Each one costs about $125. This technology allows the biologists to locate this particular fish for about 5 years.  These devices were installed in much the same way as the round tags.

Everyone on board enjoyed gathering around the big “milk bottle” to see what was in the tank. I especially enjoyed helping transport the fish out of the tank and helping measure them.  The most satisfying part of the process was taking them over to the side of the boat and releasing them!

Personal Log 

The scientific parts of my journey are now over.  We will head to Kodiak Island for the end of my stay at sea.  I have enjoyed the educational aspect of every mission I was able to observe and participate in. I also can appreciate the team effort that it takes to complete each mission.  The ship’s fishermen have to be versatile at all kinds of fishing techniques as well as be the deck hands. The ship’s officers are top-notch navigators and responsibility lingers in every decision they make.  The scientists visit the ship as a vehicle for their ideas and creations.  It becomes a portable platform for the fieldwork that is contrived in their offices. The mechanics and engineers man the power plant that gives the MILLER FREEMAN life and sustenance. The ship’s galley and the cooks give everyone a touch of home cook’n that we all miss out on when at sea.  A satisfied mind comes with a satisfied belly!

 

Dennis Starkey, July 21, 2006

NOAA Teacher at Sea
Dennis Starkey
Onboard NOAA Ship Miller Freeman
July 16 – August 4, 2006

Mission: Pollock Survey
Geographical Area: Bering Sea
Date: July 21, 2006

Gathering Pollock Data and “Getting Slimed” 

The scale used to acquire data on the Pollock
The scale used to acquire data on the Pollock

Science and Technology Log 

My job on board is to work closely with the fisheries biologists to collect specific information from the sample of the fish we catch in our nets. The first step is to dress in boots and full rain-gear attire. They don’t call the area we process Pollock in the, “slime lab” for nothing! All the fish in the net are accounted for in some way.  Different species are separated at the sorting table first. Each kind of fish species we catch is also weighed and recorded even though they are not our target species. After separating the kinds of fish, we count off about sixty Pollock at a time into what look like heavy-duty laundry baskets. We then take them over to a scale that is networked with computer software program call FSCS. This program specializes in data collecting, coordinating, and reporting.  After the contents of the trawl are weighed, a workable representative of the sample is collected from the entire catch.  The biologists determine the amount of Pollock to be “worked up” based on the large or small volume of fish caught. The unneeded fish are deposited overboard to either swim away or return to the sea expired as potential energy for the food chain.

Roughly five baskets containing about sixty mature fish each are then checked for gender. We do this by making an incision into the abdomen and find either two yellow egg sacks on a female or a ribbon like vessel that is the testes on the male.  From personal experience, I’ll tell you this can get extremely difficult in the small immature Pollock.  The egg sacks almost become invisible and the testes become nearly non-existent!

The gender specific baskets are separated into separate containers and are moved over to the measuring device.  Again, this measurement technology is tied into the FSCS system for ease of data entry. We use a device called an Icthystick to enter this data.  It looks like a space aged metal tray that is about 90 centimeters long with blinking lights.  It works by using an electro magnetic current to mark the length of the fish in centimeters.  It has a stylus that attaches to a person’s finger that contains a small magnet.  When the stylus momentarily stops where you want it, at the fork of the fish’s tail, a tone is heard and the length is noted on the computer screen.  The software is set to record all of the males, and then the females, as we work toward processing them all.  At this point it may have taken an hour and a half to process about 400 fish.

Occasionally we catch different size and aged Pollock.  When this happens, a sub sample is collected.  This is pretty labor intensive because the three age classes are separated before being processed with the steps mentioned above.  “Ones” are first years, “seconds” are two-year growth, and “three” are mature and up.  Smaller fish tend to come in larger amounts and take twice as long to determine gender.  Each age class is also weighed to find a general ratio between ages found in the school.  When there are smaller fish it can take as long as three hours to perform all the required steps!

“Brain” Surgery 

After that, a representative number of fish of each age category are randomly selected to have their individual weight, length, gender, and age confirmed.  This is usually done by two people. One person weighs, determines length and gender, and then makes an incision on the top of the fish’s head near the brain to remove two otolith ear bones from each side of the brain.  The second person extracts them, washes them, and puts them in a capped vial. These two white half-crescent shaped bones are defining factors for determining the age of the fish.  Length of the fish is an estimated measurement for age.  The otolith bones are marked with microscopic growth rings that show if they are one or two years of age. After they are inserted into a specimen vial they are preserved with alcohol, and are brought back to a laboratory on land for final confirmation.  By this time the slime lab is very messy.  Scales and certain organ parts fall from the fish cavity during this process. Everything gets hosed off, even the “touch” monitors and people!  The sea birds that follow us love it when the big red fire hose comes out to blast the “slime lab” clean again.  They pick up tidbits and small fish when they get carried over the side of the ship.

Personal Log 

Our shifts are broken up over a twenty-four hour period.  I am ready to work from 4 a.m. to 4 p.m. every day.  It is not like I must work that entire time but I need to be ready to process the fish. Sometimes there is a catch ready at 4 .am. and other days there are back-to-back hauls. I actually had one day where we didn’t have a trawl at all. I try to take a nap right after supper and wake up to catch a movie. Then it’s right back to sleep. My sleeping quarters are warm, I rarely use any covers!

Did You Know? 

Since the MILLER FREEMAN was commissioned as a government work ship it has been watched continuously for years! What this means is that an officer is on watch any time the ship is in the water. That includes out at sea or at port. Even when repairs are needed and the ship is dry-docked, there is a responsible person to administer to the ship at all times. How would you like that babysitting job? Actually, it is an act of ultimate respect and security for the ship affectionately called “SALLY” by the office staff on board.