Catherine Fuller: National Mooring Day, July 11, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 11, 2019

Weather Data from the Bridge

Latitude: 59° 00.823 N
Longitude: 148° 40.079 W
Wave Height: 1 ft, ground swell 3-4 ft
Wind Speed: 5.4 knots
Wind Direction: 241 degrees
Visibility: 5 nm
Air Temperature: 13.3 °C
Barometric Pressure: 1014.6 mb
Sky: Overcast


Science and Technology Log

At home, I regularly check information from the buoys that literally surround our islands.  They give me real time, relevant data on ocean conditions and weather so that I am informed about storm or surf events.  We also have buoys that track tsunami data, and the accuracy and timeliness of their data can save lives.  Deploying and monitoring these buoys is a job that requires knowledge of ocean conditions, electronics, rigging and computer programming. 

preparing buoy system
Pete (foreground) and Seth set up the buoy system in preparation for deployment
buoy anchors
The anchors for the buoys were made of train wheels

Pete Shipton is onboard as the mooring technician from UAF’s Seward Marine Center. This morning, he, Dr. Danielson and the crew deployed three moorings near oceanographic station GAK6i (about 60 miles offshore in the Northern Gulf of Alaska) at a depth of 230 meters. The search for the right depth required that R/V Sikuliaq do an acoustic survey of the area last night to find a kilometer-long area of the right depth and bottom slope.  The three moorings will be situated close enough to each other that for all purposes they are collecting a co-located set of readings representative of this site, yet far enough apart, with small watch circles, that they don’t overlap and foul each other.  The set of three is designed to have one surface buoy on either side with sensors at the surface and through the water column and a third buoy in the middle with sensors also distributed across all depths.

The first buoy, GEO-1, gives information on physics, optics, nutrient
chemistry and has a profiling instrument that will “walk” up and down the mooring wire from about 25 m above the seafloor to 25 m below the surface, collecting profiles four times a day. The mooring has many of the sensors that the ship’s CTD has, including an ADCP (Acoustic Doppler Current Profiler), a weather station with a GPS that measures wind speed, relative humidity, sea level pressure, and air temperature.  The buoy system was designed to withstand and operate in 8 m waves; in larger waves the surface buoy is expected to become submerged.  At one meter of depth, GEO-1 measures the temperature, salinity, chlorophyll fluorescence and photosynthetically available radiation. 

On GEO-2 (the center buoy), similar data is recorded at 22 m below the surface.  There will also be a sediment trap, mammal acoustics recorder, particle camera, and an AZFP (acoustic zooplankton fish profiler), which has four frequencies that can detect sea life from the size of fish down to the size of zooplankton. It records sound reflections from all sizes of creatures and can see fish migrations during day or night within a range of 100m (from 100m depth to the surface).

Buoy GEO-3 is the primary “guard” buoy, or marker for the whole set. It also has a real-time transmitting weather station and near-surface measurements.

Linking the mooring lines and the anchors are acoustic releases,
which are remotely controlled tethers whole sole function to listen for a “release” command that will tell them to let go of the anchor.  Since the limiting factor on the instruments is the life of the batteries, they will be picked up in a year and the acoustic release will allow the instruments to be brought back aboard Sikuliaq. These buoys will be providing real time information for groups such as the Alaska Ocean Observing System (www.aoos.org) about weather and ocean conditions, while also collecting
information about sea life in the area.

Pete and Seth on buoy
Pete (left) and Seth (right) test the stability of the buoy

Deploying the buoys was a lengthy process that required careful
coordination of parts, lines, chains and personnel.  Luckily everything
went off perfectly!  As the anchor weights for the two surface buoys deployed, they briefly pulled the buoys under, causing a bit of joking about whether the line length was calculated correctly. The brief “dunk test” was an excellent first trial for submergence during this coming winter’s storm conditions.

The second buoy briefly scares us by going under!


MarTechs:

There are opportunities for careers at sea in a wide variety of positions on board a research vessel.  One of the most interesting is the MarTech (Marine Technician), because of their dual role during a scientific cruise. 

The Marine Technicians are technically assigned to the science team although they are a part of the ship’s crew.  Bern and Ethan are the MarTechs on this cruise and both work specifically with R/V Sikuliaq. They are considered a part of whatever science team is on board at the time. The MarTechs are on 12-hour shifts, from 8:00 to 8:00.  Ethan is on at night, and Bern is on during the day, although there is some overlap.  The two men help to deploy and recover instruments for the science team and as well as helping the crew with any deck operations.  They also are responsible for the computer lab and overseeing the data displays and production from the various sensors, as well as maintaining the instruments on the ship that provide information.  Although they are always at hand to help when we need it, you will often find them also repairing and upgrading ship’s equipment and helping with engineering tasks.

Bern sets up camera
Bern setting up one of his cameras.

Bern has been a MarTech on R/V Sikuliaq since 2013, and had previous experience on other research vessels, both American and international.  Bern is also the ship’s unofficial documentation guy; he has a number of small cameras that he regularly uses to capture the action on board, whether from the vantage point of one of the cranes or on top of his own helmet. You can find examples of Bern’s camera work on R/V Sikuliaq’s Instagram site (@rvsikuliaq).

Ethan and Ana
Ethan helps Ana with the iron fish.

Like Bern, Ethan has also worked on other research vessels but has been on R/V Sikuliaq since it was built.  This is the only ship he’s been a MarTech on.  His interest in oceanography, especially marine acoustics, led him to this career.  Marine acoustics is more than just listening for large species such as whales.  There are acoustic sensors that “listen” to the ship and help ensure that it is functioning normally.  Other acoustic sensors, such as the ones based in the open keel of the ship use sound technology to map the ocean floor as we progress on our path.  Ethan was kind enough to show me the keel and explain the instrumentation. In addition, there are instruments that constantly record salinity, temperature, current strength, solar radiation and other measurements along the path we travel to provide a more complete picture of the environmental conditions existing at every point. 

open keel
The ship’s acoustic instruments are mounted in the open keel; it’s open to the sea!

The marine technicians manage the computer lab when they are not needed for operations.  This lab is the nerve center of the ship and allows the science team to work closely with the bridge to coordinate the movement of instruments and the speed of the vessel through the water to achieve optimum results.  You can find information on meteorology, navigation, engine performance, depth sounders, closed circuit monitors, ship acoustics and deck winch statistics by looking at specific screens.  In addition, the staterooms have monitors that also allow viewing of certain screens. 

computer lab
The screens in the computer lab provide all the information needed to make decisions about how and when to deploy data-gathering instruments.

By far the two displays that are followed most closely are the CTD cast screens and the AIS screen.  The AIS screen gives our course on a map, and shows our progress as well as future waypoints.  It also shows our speed and bearing to our next point as well as ocean depth and wind speed and direction.  The CTD screen shows real-time results in a number of categories such as salinity, oxygen, chlorophyll, temperature, nitrates and light as the CTD descends and ascends through the water column.  Based on the results of the down cast, the teams determine the depths from which they’d like water samples collected as the CTD rises. 

AIS screen
The OLEX or AIS screen shows our path as well as navigational information.
The CTD screen looks like spaghetti until you understand the color code for each line.


The Bridge:

The equipment on the bridge represents the pinnacle of technology as far as ship operations go.  The captain’s chair has been described by some members of the science team as the “Battlestar Galactica” or “Star Trek” chair, and it really does look like it fits in a science fiction movie.  Displays on the bridge show performance of the engines, radar returns and our bearing and range from them, and any other pertinent information to vessel performance.  Ship movement and waypoints are hand plotted by the second mate, who also oversees ship movement along with the captain, chief mate and third mate.  The ship’s officers work the bridge on a rotating watch schedule.  One of the cool features of this ship is that it operates two Z-drives, similar to what is used on tugboats.  These are propellers that can move independently of each other and turn in any direction.  They allow the ship to be maneuvered precisely, which is a great help when we need to stay on a station through multiple operations.  Various views of the bridge and the navigational instruments used by the ship’s crew are shown in the gallery below.

Captain Eric Piper
Captain Eric Piper shows off his new jacket


Personal Log

Happy Mooring Day!  It’s our self-declared “national holiday”! Because the process of deploying the moorings and buoys took up all of the morning and a part of the afternoon, most of the rest of the science team took the morning off and slept in.  So many of them ran on the treadmill that running might become a part of our “holiday” tradition.  My roommate even took bacon back to her room to eat in bed.  Gwenn brought out her Twizzlers…somewhat appropriate because they look like steel cable (even though the moorings did not use cable).  It was a nice breather for the science team, who have been working very hard to collect samples and run experiments.  Somewhere along the line, the idea of making Mooring Day a “holiday” caught on, and it’s become a bit of a joke amongst the team.  We’re down to a week to go, and everyone is beginning to think about what happens when we get in and when we all go home.  But… we’re not quite there yet, and there’s a lot of work left to do.


Animals Seen Today

stowaway
Our stowaway came to inspect today’s deployment.

We apparently have a stowaway…a small finch-like bird that flits about the ship.  It must have joined us when we were near land, and now we ARE the land. 

Erica Marlaine: Bear Onboard, July 12, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 12, 2019

Weather Data from the Bridge:

Latitude: 57º 9.61 N
Longitude: 152º 20.99W
Wind Speed: 15 knots
Wind Direction: 210 º
Air Temperature:  12º Celsius
Barometric Pressure: 1013 mb
Depth of water column 84 m
Surface Sea Temperature: 12º Celsius


Welcome to a tour of the NOAA Ship Oscar Dyson.

Your tour guide today is the Room 11 Bear.

Allow me to explain.

When I am not a Teacher at Sea on the NOAA Ship Oscar Dyson, I am the special education preschool teacher in Room 11 at Nevada Avenue Elementary School in Canoga Park, California. My classroom has a classroom bear (made of construction paper) that “hides” every night when the students go home. In the beginning of the year, he is sort of easy to find, but as the year progresses, he is harder and harder to find. By the end of the year, only a paw or an ear might be showing!

The first thing my students want to do every morning is look for the bear.  When they find it, they excitedly explain where it is. Speech and language are things we work on in class all the time, and the bear gives us something fun to talk about! For some students, a single word might be the goal. Other students may be working on putting a few words together, or even enough to make a sentence.  It’s also a great time for them to learn prepositional words or phrases to describe where the bear is hiding, such as next to, under, beneath, or on top of.

Now it’s YOUR turn.  I hope you have fun touring the NOAA Ship Oscar Dyson with the Room 11 Bear and finding him in the photos where he decided to hide in a tricky spot.   He is in EVERY picture.

bear in captain's chair
Commanding Officer Bear up on the Bridge (the part of the ship above the weather deck which houses the command center). I also spy a snack that is a favorite of some students in Room 11.
bear charting the course
Bear charting our course on the Bridge
bear steering
Steering the NOAA Ship Oscar Dyson (up on the Bridge)
bear lookout
Binoculars are used to check for whales or other boats before the trawl nets are put out.
bear in the galley
Food is cooked in the galley (the nautical term for kitchen)
bear in the mess hall
This is the mess (the nautical term for eating place) where all of the delicious meals are served.
bear in laundry
The laundry room
bear in gym
One of the two gyms onboard the NOAA Ship Oscar Dyson
bear in engine room
The engine room
bear at fire station
There are “fire stations” onboard in case of an emergency
bear in jackets
This is where we put on our waterproof rain gear and high boots before entering the fish lab
bear on rubber gloves
High rubber gloves are worn so that we stay somewhat clean and to protect our hands as we use sharp tools and touch jellyfish or pointy quills
bear in acoustics lab
Lastly, a visit to the acoustics lab, where the scientists read and analyze the data from the echo sounders and determine when and where to drop the trawl nets.

Brandy Hill: How to Mow the Lawn and Needle Gunnin’, July 3, 2018

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA Ship Thomas Jefferson

June 25, 2018 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 3, 2018

 

Weather Data from the Bridge

Latitude: 29° 17.5’ N

Longitude: 094° 27.7’ W

Visibility: 10+ NM

Sky Condition: 3/8

Wind: 10 kts

Temperature:

Sea Water: 29.5° C

Air: 31.1° C

 

Science and Technology Log

Radar

The ship is equipped with AIS or automatic identification system. AIS is the primary method of collision avoidance for water transport. It provides unique identification, position, course, and speed of ships equipped with AIS. All vessels with 300 or more gross tonnage and all passenger ships must be equipped with AIS.

In the beginning, it took me a little while to realize that we were passing by some of the same oil platforms and seeing the same ships on the radar screen (above). For example, today the Thomas Jefferson covered many nautical miles within the same 2.5 NM area. This is characteristic of a hydrographic survey. A sheet (area to be surveyed) is split into sections and a plan is devised for the ship to cover (using sonar) the area in a “mow the lawn” approach. In the photo below, you can see the blue lines clustered together. These are the main scheme lines and provide the majority of data. The lines going perpendicular in a loose “zig-zag” to the main scheme lines are called crosslines. While main scheme provides the majority of sonar data, crosslines provide validation. For every 100 nautical miles of main scheme, 4 NM of cross lines (4%) must be completed.

CoastalExplorer

You can see the main scheme and cross lines in this image using the Coastal Explorer program.

You can also see the main scheme and crossline(s) in the Hypack viewer below. Hypack is a software program controlled from the Plot (Survey) Room and is duplicated on a screen on the Bridge (steering deck). This allows Bridge watch standers to see track lines and the desired line azimuth (direction). In this case the line azimuth is around 314°. Additionally, the bottom portion showing -0.0 means that the ship is precisely on track (no cross-track errors). Typically, during a survey from the main ship, there is room for up to 10 meters of error in either direction and the sonar data coverage will still be complete. Once the course is set, the ship can be driven in autopilot and manually steered when making a turn. The high-tech equipment allows the rudder to correct and maintain the desired course and minimize cross-track error. Still, at least two people are always on the bridge: an officer who makes the steering orders and maintains watch and a helmsman who steers the ship. I was fortunate to be able to make two cross line turns after a ship steering lesson from AB (able seaman) Tom Bascom who has been on ships his whole life.

HyPack

Hypack software is one point of communication between Survey and the Bridge Watch.

Communication between Survey and the Bridge Watch is critical. Every time the ship makes a turn, the side scan towfish and MVP must be taken in. The Bridge also notifies Survey if there are any hazards or reasons to pull in survey equipment.

At night, the ship is put into “night mode” and all lights are switched to red. The windows are covered with a protective tinted sheet and all computer screens switch over. The CO leaves a journal with posted Night Orders. These include important summary points from the day and things to look out for at night It also includes a reminder to complete hourly security rounds since most shipmates are asleep. A “Rules of the Road” section is included which serves as a daily quiz for officers. My favorite part of CO’s Night Orders are the riddles, but they are quite difficult and easy to over think. So far, I have guessed one out of five correctly.

Bridge Watch Night Vision

ENS Sydney Catoire explains how important it is to preserve your night vision while maintaining watch, thus the dimming and/or use of red lighting. Her favorite watch time is from 0800-1200.

CO Night Orders from June 28, 2018

CO Night Orders from June 28, 2018

With a lot of my time spent looking at computer screens in survey, I was happy to spend an afternoon outside with the Deck Crew. Their job is highly diverse. Rob Bayliss, boatswain group leader, explained that the crew is responsible for maintaining the deck and ship. This includes an ongoing battle with rust, priming, painting, and refinishing surfaces. Rob wiped his hand along the rail and showed the massive amount of salt crystals collected throughout the day. The crew has a PR event and will give public tours the day we arrive in port, so the ship is in full preparation!

Needle Gun

I was introduced to the needle gun- a high powered tool used for pounding paint and rust off surfaces to prepare them for the wire wheel and paint primer. CO thanked me for my contribution at maintaining the preservation of the TJ.

Revarnishing Deck Work

One of the Thomas Jefferson wooden plaques sanded and receiving a fresh coat of varnish.

I also spoke with Chief Boatswain, Bernard Pooser. He (along with many crew members) have extensive experience in the navy. Pooser enjoys life on the ship but says, “It’s not for everyone; you have to make it work for you.” He claims that the trick is to find a work and recreation balance while on the ship. He gave me some examples like being sure to take breaks and have fun. Pooser even pulled out a corn hole set that we may use one of these evenings.

Chief Boatswain Bernard Pooser

Chief Boatswain Bernard Pooser

 

Peaks

+ It’s been fun being on the bridge at night because all of the ships and platforms light up.

+ I was given my own stateroom which was nicely furnished by its usual occupant. She has even installed a hammock chair!

+I hadn’t realized how responsive the ship would be when steering. At 208 feet, I thought it would be a bit more delayed. The maximum turn angle is 35 degrees and we have usually been making turns around between 5-15 degrees.

+We saw two sea turtles and dolphins while taking bottom samples! (See future post.)

 

Jennifer Dean: Extra Operations and Daily Duties, May 19, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 19, 2018

Weather from the Bridge
Latitude: 29°55.8590’ N
Longitude: 80°16.9468’ W
Sea Wave Height: 2-4 feet
Wind Speed:  18.1 knots
Wind Direction: 210.6°
Visibility:  1 nautical mile
Air Temperature: 25.3°C
Sky: Overcast

Science and Technology Log

Extra Operations- Zodiac Hurricane Fast Rescue Boat:
Occasionally these Fast Rescue Boats are used for more than real emergencies and drills, practicing the pick-up of a man-overboard and rescue diver missions, in the case of day 2 of my trip on NOAA Ship Pisces, a camera replacement part became necessary.  When a small crew change is needed or to pick up a repair part for an essential item, instead of bringing the ship to dock, the FRB (Fast Rescue Boat)  is sent in.

coxswain

Lead Fishermen, Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat

The LF or Lead Fishermen,  Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat).  His navigation skills were developed by working in the hydrographic division that performs regular bathymetry readings using these vessels on NOAA Ship Thomas Jefferson, making him a very capable pilot of this small watercraft in the NOAA fleet.  The FRB has seating for 6, with 2 aft of console, 1 forward of engine cover, 2 sitting on foredeck on engine cover and 1 prone on deck by stretcher.

Some other specs on the boat includes the following:
Length overall=6.81 meters including jet
Beam overall=2.59 meters
Fuel capacity=182 litres (48 US Gal)
Bollard Pull ~600 kg/5884 N
Endurance (hours @ 20 knots)~6.75 hours
Max  Horse Power=235kW, 315 hp
At Light Load Operation Displacement = 2150 kg/4750 lbs
Full Speed ~32 knots
Fuel System =48 US gallon tank

 

Engine Room Tour Pictures and Learnings:

Daily Duties: Freshwater NeedsReverse Osmosis and Evaporators
Freshwater is necessary for a variety of reasons beyond drinking water for the crew.  It is used for laundry, cooking, showers and on NOAA Ship Pisces, to fill the ballast water tanks.  Approximately 31 gallons of freshwater is used on average per person per day, with 29 people on board for 12 days, totaling nearly 11,000 gallons by the end of the trip.   One method to supply this freshwater supply is through reverse osmosis.  Osmosis is the diffusion of water across a membrane.

 

Normally water moves, without an energy input from high to low concentrations.  In reverse osmosis, water is moved in the opposite direction of its natural tendency to find equilibrium.  The force at which water wants to move through the membrane is called its osmotic pressure.  To get water to move against the osmotic pressure another force must be applied to counteract and overcome this tendency.  Sea water is found in abundance and can be forced across a semi-permeable membrane leaving the ions on one-side and the freshwater to be collected into containment chambers on the other side.  Technology has impacted this process by discoveries of better semi-permeable membranes that allow for faster and larger amounts of sea-water to be moved through the system.  Pisces uses reverse osmosis and a back-up freshwater system of 2 evaporators.  When the temperatures are high (as they were in the first few days of the cruise) the evaporators are the go-to system and make for tasty drinking water.

Evaporators take in sea water and distill the liquid water using waste heat collected from the engines that raises the temperature of water in the pipes.  This temperature provides the energy that forces the liquid freshwater to vaporize and enter its gaseous phase, then under pressure this vapor is condensed and can be collected and separated from the brine that is removed and discharged.

 

Wastewater:  There are different types of water that can be used for different tasks aboard a ship.  Typically gray water (which is relatively clean wastewater from showers and sinks but may contain soaps, oils, and human hair/skin)  is placed in the MSD (Marine Sanitation Device), which is similar to a septic system.  Black water is wastewater from toilets, or any water that has come into contact with fecal matter and may carry potential disease carrying pathogens. Black water is also treated in the MSD.  This black water sewage is first subjected to a macerator pump that breaks the fecal matter into smaller pieces, enzymes are added to further decompose and before disposal a bit of chlorine is added to ensure no bacteria remain alive.  This water can be disposed of into the ocean if the ship is over 12 miles offshore.  If the ship is within 12 miles the sewage must be either stored in containment system on board the vessel or taken to dock and disposed of by an in-shore treatment facility. For more information on the regulations for wastewater disposal while at sea see the  Ocean Dumping Act.

Valves for ballast water tanks

Valves for ballast water tanks on NOAA Ship Pisces that are filled with freshwater to prevent the spread of nonnative species

Ballast Water and New Regulations:  Ballast water tanks are compartments used to hold water to provide stability for the ship.  This balance is necessary for better maneuverability and improved propulsion through the water.  It can allow the crew to compensate and adjusts for changes in the ships cargo load or fuel/water weight changes over the course of a trip.  Historically this water has been drawn up from the surrounding sea water to fill the tanks.  Unfortunately, in the not so distant past, the ballast water from one location on the globe has been deposited into another area along with it, all of it foreign plants, animals and microbiota.  This act led to the introduction of a host of exotic and non-native species to this new area, some of which became invasive and wreaked havoc on the existing ecosystems.  Today there are a host of case studies in my students’ textbook like the Zebra Mussels (Dreissena polymorpha) and the European Green Crabs (Carcinus maenas) that were introduced in this way that resulted in devastating impacts both environmentally and economically to the invaded area.

The International Maritime Organization (IMO) passed new regulations in September of 2017 calling for better management of this ballast water exchange.  Ballast Water Management Convention 2017.

Another high tech approach to this problem has been the development of a sea-water filtration systems, but these carry a heavy price tag that can range anywhere from  $750,000 to $5 million.

The engine room area is staffed by 7 crew members.  Back-up systems and  the amount of en route repair necessary to keep the ship running and safe was apparent in the engine room.  There were redundancies in the engines, HVAC, hydraulics, and fuel systems.  Spare parts are stored for unexpected breaks or other trouble-shooting needs.  The control panels throughout the tour had screens that not only allowed a check of every level of function on every system on the ship, there was another screen that demonstrated the electrical connections on how all these monitoring sensors were wired, in case a reading needed to be checked back to its source.

Engine 4

One of the 4 NOAA Ship Pisces CAT engines

Pictured here is a diesel engine on NOAA Ship Pisces. Pisces has 4 of these on board: 2 bigger engines that are CAT model 3512 vs. 2 smaller engines that are CAT 3508. When the ship is going at full steam they use 3 of 4 to provide power to turn the shaft, and when they need less power, they can modify their engine choices and power, therefore using less fuel.  CAT engines are models 3512 and 3508 diesel driven at provide 1360 KW and 910 KW, respectively.  There is also an emergency engine (CAT model 3306) on board as well providing 170 kw of power.

Control panels in engine room

Control panel of screens for monitoring and controlling all mechanical and tank/fluid functions

 

hydraulics

Steven Clement, first assistant engineer, is showing me some of the hydraulics in the engine room.

The pressurized fluid in these pipes are used to move devices.  Pisces is in the process of converting certain hydraulic systems to an organic and biodegradable “green” oil called Environmentally Acceptable Lubricants (EALs).

The Bridge

panopic bridge

NOAA Ship Pisces’ Bridge

This area is command central.  I decided to focus on only a few features for this blog from a handful of screens found in this room that monitor a variety of sensors and systems about both the ships conditions and the environmental factors surrounding the ship.   Commanding Officer CDR Nicholas Chrobak, NOAA demonstrated how to determine the difference on the radar screen of rain scatter vs. another vessel.  In the image the rain gives a similar color pattern and directionality, yet the ship appeared more angular and to have a different heading then those directed by wind patterns.  When clicking on the object or vessel another set of calculations began and within minutes a pop-up reading would indicate characteristics such as CPA (closest point of approach) and TCPA (Time of Closest Point Approach) as seen in the image.

 

These safety features let vessels avoid collisions and are constantly being calculated as the ship navigates.  GPS transponders on the ships send signals that allow for these readings to be monitored.    ECDIS (Electronic Chart Display and Information System) charts provide a layered vector chart with  information about the surrounding waters and hazards to navigation.  One screen image displayed information about the dynamic positioning system.

ECDIS

ECDIS (Electronic Chart Display and Information System)

Paths and positions can be typed in that the software then can essentially take the wheel, controlling main propulsion, the bow thruster and rudder to keep the ship on a set heading, and either moving on a desired course or hold in a stationary position.  These computer-based navigation systems integrate GPS (Global Positioning System) information along with electronic navigational charts, radar and other sailing sensors to ensure the ship can navigate safely while effectively carrying out the mission at hand.

The Mess Deck and Galley:

This location serves up delicious and nutritious meals.  Not only do the stewards provide the essential food groups, they provide vegetarian options and make individual plates for those that may miss a meal during shift work.

mess deck

The mess

Dana Reid, who I interviewed below, made me some amazing omelets on the trip and had a positive friendly greeting each time I saw him. I decided a few days into the cruise to start taking pictures of my meals as proof for the nature of how well fed the crew is on these adventures.

 

 

dana and ray

Steward CS Ray Mabanta and 2C Dana Reid in the galley of NOAA Ship Pisces

Each day a new screen of menus appeared on the ship’s monitors, along with other rotating information from quotes, to weather to safety information.

Personal Log

Today a possible shipwreck is evident on the sonar maps from the previous night’s multibeam readings.  If weather permits, the science team plans to check out the unknown structure en route to the next MPA. This scientific study reminds me of one of the reasons I fell in love with science.  There is that sense of discovery.  Unlike pirates and a search for sunken gold, the treasure to be found here is hopefully a diversity of fish species and thriving deep coral communities.  I found myself a bit lost during the discussions of fishing regulations for these areas designated as MPAs (Marine Protected Areas).  I had always thought ‘protected’ would mean prohibitive to fishing.   So I did a little research and will share a little of the basics learned.  And I hope someday these regulations will become more restrictive in these fragile habitats.

The MPA , “marine protected area”  definition according to the implementation of an Executive Order 13158 is “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.” But what that actually means in terms of the size of the area and approach to conservation, or the level protection and the fishing regulations seems to vary from location to location.  The regulations are governed by a variety of factors from the stakeholders, agencies and scientists to the population numbers and resilience of the habitat to distances offshore.
For more information on MPAs visit
https://oceanservice.noaa.gov/facts/mpa.html

Did You Know?
Some species of coral, like Ivory Tree Coral, Oculina varicosa, can live without their zooxanthellae.

Oculina varicosa

Oculina varicosa

Very little is known about how they do this or how their zooxanthellae symbiotic partners return to their coral home after expulsion.

Fact or Fiction?
Oculina varicosa can grow to up to 10 feet high and have a growth rate of ½ inch per year. Check out the scientific validity of this statement at one of the following links:

http://www.sms.si.edu/irlspec/oculin_varico.htm

What’s My Story? Dana Reid
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

Dana in scullery

Dana Reid pictured here in the scullery, the ship’s kitchen area for cleaning dishes

What is your specific title and job description on this mission?  Second Cook. His job description includes assisting the Chief Steward in preparing meals and maintaining cleanliness of the galley (kitchen), mess deck (tables picture where crew eats), scullery (part of the kitchen where dishes get washed) fridge/freezer and storage areas.

How long have you worked for NOAA?  5th year

What is your favorite and least favorite part of your job? His favorite part of this job is getting a chance to take care of people, putting a smile on people’s faces and making them happy.  His least favorites are tasks that involve standing in the freezer for extended periods of time to stock and rotate foods.  In addition he mentioned that he isn’t too fond of waking up very early in the morning.

When did you first become interested in this career and why?  His initial food as a career-interest started when he was in high school working for Pizza Hut.  He later found himself working for 2 years cooking fried chicken for Popeyes.  His interest in the maritime portion of his career also began right after high school when he joined the Navy.  In the Navy he worked in everything from the galley to a plane captain and jet mechanic.  During his time in the Navy he worked on 5 different carriers and went on 9 different detachments including Desert Storm. After hurricane Katrina in 2006 he found himself interested in finding another job through government service and began working on a variety of NOAA’s vessels.

What is one of the most interesting places you have visited?  He found the culture and terrain of Oahu one of his most interesting.  He enjoys hiking and Hawaii, Alaska and Seattle have been amazing places to visit.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? He spends the majority of his time prepping  (washing and chopping)  vegetables and a majority of his time washing dishes.  In addition he is responsible for keeping beverages and dry goods stocked. 

Questions from students in Environmental Science at Camas High School

  • How is cooking at sea different from cooking on land?
    He said that he needs to spend more effort to keep his balance and if in rough weather the ship rocks. This impacts his meal making if he is trying to cook an omelet and if mixing something in keeping the bowl from sliding across the prep table.  He mentioned that occasionally when baking a cake that it might come out lopsided depending upon the angle of the ship and timing of placement in the oven.
  • What do you have to consider when planning and cooking a meal?
    He plans according to what meal of the day it is, breakfast, lunch or dinner.  The number of people to cook for, number of vegetarians and the part of the world the cruise is happening in are all factored in when planning and making meals. For example, when he has been in Hawaii he’d consider cooking something more tropical – cooking with fish, coconut and pineapple; if in the Southeast they tend to make more southern style cooking, sausage/steak lots of greens; if in the Northeast more food items like lobster and clam chowder make their way onto the menu.
  • What is the best meal you can make on the ship, and what is the worst? He said he makes a pretty good Gumbo. He said one of his weakness is cooking with curry and said that the Chief Steward is more skilled with dishes of that flavor.
  • How many meals do you make in a day? 3; In addition he hosts occasional special events like ice cream socials, banana splits or grilling party with smoker cooking steaks to hamburgers on the back deck.

————————————————————————————————————————————–

 

Victoria Cavanaugh: Navigating the Inside Passage, April 24, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16-27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 24, 2018

Weather Data from the Bridge

Latitude: 50° 10.002′ N
Longitude: 125° 21.685′ W
Sea Wave Height: 7 feet
Wind Speed: 5 knots or less
Wind Direction: Variable
Visibility: 14 km
Air Temperature: 9oC  
Sky:  Mostly Sunny

Science and Technology Log

NOAA Ship Fairweather has begun its transit to Alaska for the heart of the field season which means transiting the famous Inside Passagea roughly two day voyage through a stretch of nearly a thousand islands between Washington State and Alaska.  The more protected waterways of the Inside Passage provided a smooth, calm ride.  I took advantage of the transit to spend more time on Fairweatherbridge in order to learn a bit about navigation.

Magnetic North v. True North

Magnetic North v. True North

One thing that quickly became clear on the bridge of Fairweather is that for many navigational tasks, the crew has at least three ways of being able to obtain needed information.  For example, navigational charts (maps) show two compasses: magnetic and true north.  The inner circle represents the magnetic compass, which in reality points 17 degrees right of true North and is dependent upon the pull of the Earth’s magnetic core.  Because the magnetic compass can be offset by the pull of the ship’s magnetic fields (the ship is made of steel, after all), Fairweather’s compass is actually readjusted each year.  During our Inside Passage transit, a specialist came aboard near Lopez Island to reset the ship’s magnetic compass.

Magnetic Compass

The Ship’s Magnetic Compass Located on the Flying Bridge (Top Deck)

Mirrors

A Series of Mirrors Allows the Crew to Read the Magnetic Compass from the Bridge

The ship’s magnetic compass is located on the flying deck, just above the bridge.  So, to be able to read the compass from the bridge, the crew looks through a series of mirrors above the helm. Notice that next to the mirrors, is a digital display that reads “78.”  This is an electrical reading from the gyrocompass.  The gyrocompass reflects “true North” also referred to as geographical North.

Gyrocompass

The Gyrocompass is Secured in a Closet on D Deck Near the Galley

Auxiliary Compass

An Auxiliary Compass, Connected to the Gyrocompass, is Located Right Off the Bridge on Both Port and Starboard

When at sea, a crew member on the bridge takes “fixes” every fifteen minutes, both day and night.  To take a fix, the crew member uses an auxiliary compass and chooses three landmarks on shore as points.  The crew member then lines up the viewfinder and records the degree of the line formed between the ship and the given point.

Focusing the auxilliary compass

The Crew Focuses the Auxiliary Compass on a Landmark on Shore. This Allows for a Reading on the Gyrocompass.

Next, the crew member plots the three points on the chart using triangles (similar to giant protractors).  The point where the three lines intersect is the ship’s current location.  Though technically, the crew could just plot two points ashore and look for where the lines intersect, but as a way of triple checking, the crew chooses three points.  Then, if a line doesn’t intersect as expected, the crew member can either retake the fix or rely on the other two points for accuracy.

Plotting the Course

The Crew Use Triangles to Plot Their Course

Verifying location

A Crew Member Uses a Compass to Verify Our Current Location, Measuring and Checking Latitude and Longitude

In addition to using the two aforementioned compasses to determine the ship’s location, the open seas often mean majestic night skies.  Some of the crew members told me they  also look to the stars and find the Big Dipper and North Star.  A central theme on the bridge is being prepared: if both compasses malfunction, the crew can still safely guide Fairweather along its course.

Original Navigation System

The Original Navigation System: The Night Sky

Location display

The Ship’s Location Also Displayed Electronically above the Helm

In addition to being able to take fixes and locate constellations in the night sky, modern day technology can make the crew’s job a bit easier.  The ship’s latitude and longitude is continually displayed by an electronic monitor above the helm via GPS (Global Positioning System).  Below, the ship’s Electronic Navigation System (ENS) essentially acts as Google Maps for the sea.  Additionally, the ENS provides a wealth of data, tracking the ship’s speed, wind, and other contacts.

Electronic Navigation System

The Electronic Navigation System – Sort of Like Google Maps for the Ship!

Next to the ENS on the bridge is the ship’s radar, which shows other vessels transiting the area.  Similar to ENS, the radar system also provides information about the ship’s speed and location.

Radar screen

The Ship’s Radar Is Yet Another Navigational Tool

Electronic Wind Tracker

The Electronic Wind Tracker above the Helm

Wind matters in navigation.  The force and direction of the wind can affect both currents and the ship’s route.  Winds may push the ship off course which is why taking fixes and constantly monitoring the ship’s actual location is critical in maintaining a given route.  The wind can be monitored by the weather vane on the bow, the electronic wind tracker above, or on the ENS below.  Additionally, a crew member demonstrates a wheel, used for calculating and recalculating a ship’s course based on the wind’s influence.

Calculating Wind and Direction

A Crew Member Holds a Wheel for Calculating Wind and Direction

Speaker System

An Old-Fashioned Speaker System on the Bridge

On the bridge, multiple ways of being able to perform tasks is not limited to navigation alone.  Communicating quickly on a ship is important in case of an emergency. Fairweather is equipped with various communication systems: a paging system, an internal telephone line, cell phones, satellite phones, etc.

Phone Systems

A Collection of Bells and Phone Systems for Contacting Various Parts of the Ship

Personal Log

Just before leaving Puget Sound, I had the chance to go kayaking for a few hours with two of the crew members.  We had great luck; not only was the water placid, but harbor seals played for nearly an hour as we paddled around one of many coves.  It was neat to see Fairweather from yet another perspective.

Kayaks

Kayaks are Secured for Seas on the Flying Bridge – The Hardest Part Is Carrying the Kayaks Up and Down Several Docks to Be Able to Launch Them

Launching Kayaks

A Bit Tricky: Launching Kayaks from a Launch

Approaching Fairweather in Kayaks

Approaching Fairweather in Kayaks

Wide Open Waters of Puget Sound

Wide Open Waters of Puget Sound

Ready to Explore

Ready to Explore

Harbor Seals

Harbor Seals Played in the Water Around Our Kayaks

IMG_20180421_140958

Incredibly Calm Waters in Puget Sound Made for Picturesque Reflections

 

 

Did You Know?

The Inside Passage is a series of waterways and islands that stretches from Puget Sound, just north of Seattle, Washington on past Vancouver and British Columbia and up to the southeastern Alaskan panhandle.  In British Columbia, the Inside Passage stretches over more than 25,000 miles of coast due to the thousand or so islands along the way.  In Alaska, the Inside Passage comprises another 500 miles of coastline.  Many vessels choose the Inside Passage as their preferred coast as it is much more protected than the open waters of the Pacific Ocean to the immediate west.  Nonetheless, rapidly changing tidal lines, numerous narrow straits, and strong currents make navigating the Inside Passage a challenging feat.  In addition to frequent transit by commercial vessels, tugboats, and barges, the Inside Passage is also increasingly popular among cruise ships and sailboats.  On average it takes 48-60 hours to navigate.

IMG_20180424_131729

Approaching Open Waters as the Fairweather Leaves British Columbia and Enters the Alaskan Portion of the Inside Passage

Glassy Reflection

A More Protected Stretch of the Inside Passage Creates a Glassy Reflection

Crew on Anchor Watch

Crew on Anchor Watch on the Inside Passage as We Approach Seymour Narrows. Note the Weathervane on the Bow.

Snowy Peaks Along the Inside Passage

Snowy Peaks Along the Inside Passage

Late Afternoon View

Enjoying a Late Afternoon View from Fairweather’s Fantail

Islands

Some of the Many, Many Islands along the Inside Passage

Blackney Passage

Blackney Passage

tugboat and barge

A Tugboat Pulls a Barge Near Lopez Island

 

Late Afternoon

Late Afternoon on the Inside Passage as Seen from Starboard, F Deck

Mountain view

Impossible to Get Tired of These Views!

Challenge Question #4: Devotion 7th Graders – NOAA and NASA collaborated to produce the National Weather Service Cloud Chart which features explanations of 27 unique cloud types.  Clouds can tell sailors a great deal about weather.  Can you identify the type of clouds in the ten above pictures of the Inside Passage?  Then, record your observations of clouds for five days in Brookline.  What do you notice about the relationship between the clouds you see and the weather outside?  What do you think the clouds in the pictures above would tell sailors about the upcoming weather as they navigated the Inside Passage?  Present your observations as journal entries or a log.

A Bonus Challenge. . .

Just outside the bridge on both the Fairweather‘s port and starboard sides are little boxes with two thermometers each.  What is the difference between dry and wet temperatures?  Why would sailors be interested in both measurements?

Two thermometers

Two thermometers, labeled “Dry” and “Wet”, with different readings

 

 

Melissa Barker: Waiting out the Storm, June 22, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA ship Oregon II

June 22-July 6

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 22, 2017

Weather Data from the Bridge: In port at Pier 21, Galveston, TX waiting out Tropical Storm Cindy.

Latitude: 29 18.61 N

Longitude: 94 47.56 W

Air temp: 28.8 C

Wind: gusty

Sky: overcast

Science and Technology Log

There is not a lot of science happening yet on the Oregon II. We are waiting out Tropical Storm Cindy that has made landfall on the gulf coast, so the science team has not yet arrived. The ship is pretty quiet with a few folks taking care of odds and ends. LT Reni Rydlewicz and ENS Chelsea Parrish welcomed me and showed me around the ship. Both officers took me to the bridge, the command center for the ship, to look at charts of where we will be sailing once underway.

IMG_3112 2

The bridge on the Oregon II

I learned that we will be sampling at a set of randomly predetermined sampling stations in depths of 5-60 fathoms (fm). One fathom is equal to six feet, so we will be sampling at depths of 30-360 feet. We will use a 40-foot trawl and sample within 2.5 mile radius of the station locations. We will use paper and electronic charts to navigate our way from station to station. I’m looking forward to getting underway, hopefully on Friday evening.

Our sampling stations are highlighted in yellow on the electronic chart. All the dots are oil and gas locations. On the paper chart, the lines that look like roads are called fairways and are safe areas of navigation. The numbers are depths in feet. The Oregon II has a 15 foot draw, so we typically try to stay in water at least 35 feet deep. NOAA creates these charts and give frequent updates to the officers.

Personal Log

I’m making the most out of my time in Galveston and at port on the Oregon II. I spent some time learning my way around the ship. Take a tour of the Oregon II by watching my short video below. The video can also be accesses here.

While exploring around the downtown area, I realized that I am definitely not use to the 100% humidity that we are experiencing. It really makes me appreciate the dry heat at home, but I am glad that it stopped raining making my exploring slightly drier.

IMG_3131

Ocean Star Offshore Drilling Museum

I visited the Ocean Star Offshore Drilling Rig Museum.  The Ocean Star is an old jack-up rig that was decommissioned in 1984 and now serves as a museum to educate the public about exploring, drilling and producing offshore energy resources.

I had no idea how many rigs there are in the gulf and that much of the oil is transported back to the mainland via pipelines. As of 2008, there was over 27,000 miles of active oil and gas pipe in the gulf transporting nearly 200 million barrels of oil and 1 trillion cubic feet of gas. According to the U.S. Energy Information Administration, “the Gulf of Mexico federal offshore oil production accounts for 17% of total U.S. crude oil production.” And as of 2013, the oil production in the gulf exceeds 686 million barrels per year.

img_3137.jpg

Offshore wells in the Gulf of Mexico

IMG_3138

Map of pipelines in the Gulf of Mexico

 

IMG_3147

Replica of an underwater oil field

When rigs are decommissioned they can sometimes be converted into artificial reefs. According to the Bureau of Safety and Environmental Enforcement, as of July 2015, 470 platforms have been converted into permeant artificial reefs in the Gulf of Mexico. You can learn more about this program here and see a short video of how rigs are turned into reefs here.

 

Did You Know?

As we collect data, we will be transmitting realtime shrimp biological data to the Gulf States Marine Fisheries Commission (GSMFC) in Ocean Springs, MS. Often times it can take weeks, months and even years to process data from large scale scientific projects. The realtime data transmission allows the GSMFC to use the most current data to manage the fisheries effectively.

Dawson Sixth Grade Queries

What does your room look like? Where do you sleep? (Emma, Mia)

IMG_3111 2

My room or berth

You can check out my video above to see my berth or stateroom as well as the rest of the Oregon II. My room is compact and uses space efficiently like everything on the ship. If I stand in the middle of the room and stretch my arms out I can touch the wall and cabinets at the same time. The other dimension (bed to far wall) is longer, roughly 8 feet with a little entry for the door. There is about enough room to do downward dog or warrior one, but not much else. With our 12 hour shifts, there is little time for hanging out, so sleeping is the main concern when in our staterooms and the bed is very comfortable.

 

 

How many people are on the boat? (Sylvia, Maylei)

IMG_3104Right now there are not many people on the ship, but when we hopefully set off on Friday evening we should have about 28 people total, including 10 in the science party and 18 officers, crew, engineers, fishermen, and stewards. Look for more information about the folks who live and work on the Oregon II in future posts.

Sam Northern: Welcome Aboard NOAA Ship Gordon Gunter! May 29, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: May 29, 2017

Weather Data from the Bridge:

Latitude: 41°31.8’N

Longitude: -71°18.9’W

Sky: 8/8 (Fully Cloudy, Overcast)

Wind Direction: NE

Wind Speed: 13 Knots

Barometric Pressure: 1005 Millibars

Humidity: 88%

Air Temperature: 11.5°C

Personal Log

In Port in Newport, Rhode Island (Sunday, May 28)

IMG_8455.JPG

The 224-foot Gordon Gunter at Pier 2 at the Naval Station Newport on the morning of sailing Leg 2 of the Survey.

Greetings from NOAA Ship Gordon Gunter! On my flight into Providence, Rhode Island (the Ocean State) I was met with lengthy coastlines and beautiful blue skies. Jerry Prezioso, (one of NOAA’s oceanographers), picked me up from the airport. We made our way to the ship, Gordon Gunter, at Pier 2 at the Naval Station Newport. To get there, we drove 37 miles southeast of Providence and crossed the Jamestown Verrazzano Bridge and the Newport Bridge. Both bridges offered stunning scenes of shorelines that separated the picturesque sailboats from the majestic beach side houses. Newport, also known as City by the Sea, was a major 18th-century port city which is evident from the high number of surviving buildings from the colonial era.

2.JPG

NOAA Ship Gordon Gunter

Upon arrival at the pier, I passed two immense U.S. Coast Guard ships before laying eyes on what would be by new home for the next ten days—NOAA Ship Gordon Gunter. Several members of the crew were already there to welcome me aboard. The crew’s hospitality and Jerry’s tour of the ship eased my anxiety while at the same time, intensifying my excitement for the adventure that awaits.

After the tour, Jerry showed me to my stateroom. I was surprised to find out that I have my own cabin! There is a refrigerator, closet, desk, recliner, my very own sink, and a shared bathroom with the room next door. It also has a TV to watch any of the movies available on the ship.

After unpacking my luggage, I decided I would spend some time exploring the ship. I took photographs and captured 360-degree images of the ship’s many spaces. I intend to use my footage as a way to give my students a virtual tour of Gordon Gunter. When Jerry showed us the ship, he effortlessly moved from one place to the next. I, on the other hand, could not…at first. I felt as if I was stuck in a labyrinth. Yet, with the amount of time I will be spending on board Gordon Gunter, I am sure it will not take long to get the “lay of the land”.

This slideshow requires JavaScript.

IMG_8509

The Galley (Kitchen)

Getting lost is not always a bad thing. I can admit that I was not too upset when I took a wrong turn and ended up in the galley (the kitchen). I could tell right away from the appetizing aroma and the fresh fruits and vegetables that the meals were going to be amazing.

After Leg 1 of the Spring Ecosystem Monitoring (EcoMon) Survey which concluded on Friday, May 26. Prior to the ship’s departure at 1400 hours on Memorial Day, the crew was busy with important maintenance and upkeep. With the adventure of a lifetime so close at hand, I could only hope that my excitement would give me at least a few hours of sleep.

Preparing for Departure (Monday, May 29)

img_8507.jpg

My first dinner on board ship Gordon Gunter.

To keep everyone happy when they are living in such close quarters, working strange shifts, and so far from home, good food is vital. Isn’t it always? Gordon Gunter is well known in the NOAA community for its fantastic food. The person responsible for our delicious and abundant food is Margaret Coyle, Chief Steward and her trusted comrade, Paul Acob, Second Cook. I first experienced their culinary skills at my first 6:30 a.m. breakfast. Remarkable! I could not wait for the meals to come.

Margaret has worked on NOAA Ship Gordon Gunter for 13 years! Before NOAA, Margaret was in the Coast Guard for four years and her husband retired from the Coast Guard with 21 years of service. Margaret makes almost every dish from scratch—from juices to hummus. She is dedicated to providing a variety of meals that not only fill bellies but satisfy taste buds. You never quite know what to expect one meal to the next, and that my friends is the spice of life! Paul has spent 14 years with NOAA and 20 years in the Navy—that’s 34 years at sea! I greatly admire both Paul and Margaret for their service and continued commitment.

IMG_8493.JPGAs a Teacher at Sea, I am an active member of the science team. I have been assigned the day shift, which means I work from 12 noon to 12 midnight. I am happy with this shift because it is a little more of a regular schedule compared to beginning work at midnight and then sleeping during the daylight hours. However, it will definitely take time for me to adjust my eating and sleeping schedules with that of my work shift.

In preparation for our work at sea, we spent the afternoon reviewing guidelines and proper procedures. Safety is crucial on any ship, and I feel much better having gone through the welcome orientation. Now, I am prepared when it is time to perform any of the three emergency drills: fire, abandon ship, and man overboard. One can never be too cautious.

Gulf of Maine Pic

The Gulf of Maine. Photo courtesy of NOAA.

The second leg of the 2017 Spring EcoMon Survey consists of research at oceanography stations in the Georges Bank and the Gulf of Maine. These stations are randomly distributed and progress of the survey will depend on transit time, sea state, and water depth of the stations. Our research will calculate the spatial distribution of the following factors: water currents, water properties, phytoplankton, microzooplankton, mesozooplankton, sea turtles, and marine mammals.

IMG_6333 - Copy

NOAA Flag

At 2:07 p.m. (our scheduled departure time), Gordon Gunter cast off from Coddington Cove at the Naval Station Newport. As we approached the Newport Bridge I took photos of the NAVY War College, Herring gulls nesting on a small island, passing ski boats, and the ocean view cottages. On the flying bridge an expert in magnetic compasses calibrated the ship’s mechanism and cleared the compass of excess debris.

IMG_6341.JPG

Compass Adjustment/Calibration

During a personnel transfer using the Fast Rescue Boat (FRB), a mechanical issue was identified and the ship needed to head back to the pier. The Commanding Officer, Lieutenant Commander Lindsay Kurelja, informed us that we would begin our journey at 9:00 a.m. the next day, May 30.

Science and Technology Log

My head has been spinning with the different types of equipment and technology on board Gordon Gunter. I have a lot to learn! I would like to share a small bit of information about two important pieces of equipment that will be essential to our research in the coming days.

IMG_6286.JPG

Bongo Nets

1.) Since the majority of plankton is too small to see with the naked eye, these organisms must be viewed through a microscope. To do this, plankton must be collected from the ocean. You might be thinking, “But how? They are too small to catch.” That’s why we use bongo nets! Bongo nets allow scientists to strain plankton from the water using the bongo’s mesh net. Plankton and other matter from the sea will be deposited into a bucket at the end of the net which is called a cod-end. Different sized nets are used to capture different types of plankton. The bongo nets will be towed slowly through the water at each oceanography station we come to. I am looking forward to using the ship’s bongo nets to investigate marine life in Georges Bank and the Gulf of Maine.

IMG_6285

CTD (Conductivity, Temperature, and Depth)

2.) At each station of this leg of the EcoMon survey, we will use a CTD device to determine the Conductivity, Temperature, and Depth of the ocean. On Gordon Gunter, the CTD is incorporated into a rosette, or carousel. This allows us to collect water samples from various depths at the same location. The CTD will give scientists a broad picture of the marine environment in the Northeast Atlantic.

New Terms/Phrases

Parts of a Ship (Source — Macmillan Dictionary):

  • Aft Deck: the part of the deck towards the back of the ship.
  • Bow: the front of the ship.
  • Bridge: the part of the ship from which it is controlled. (This is where the captain controls the ship.)
  • Deck: the outside top part of the ship that you can walk on.
  • Forward Deck: the part of the deck towards the front of the ship.
  • Port: the side of the ship that is on your left when you are looking forwards.
  • Starboard: the side of the ship that is on your right when you are looking forwards.
  • Stern: the back part of the ship.

Did You Know?

IMG_8444.JPGAt Pier 2 at Naval Station Newport were gigantic buoys the Coast Guard had recently cleaned and re-painted. Do you know why some are green and some are red? The colors help aid the navigation of ships. The red buoys are on the right/starboard side of the ship, and the green buoys should be on the left/port side of the vessel when heading upstream. I guess ships have their own rules of navigation just like vehicles on the road.