Cecelia Carroll: A Busy Day Off the Coast of New Hampshire and Massachusetts, May 11, 2017

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 13, 2017  

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 11, 2017

Latitude: 42.45.719 N
Longitude: 282.18.6 W

Science and Technology

As soon as the day group’s shift started at noon we were right into sorting the catch and doing the work-up of weighing, measuring and taking samples.

It’s with a good bit of anticipation waiting to see what the net will reveal when its contents are emptied! There were some new fish for me to see today of which I was able to get some nice photos.  I was asked today if I had a favorite fish.  I enjoy seeing the variety of star fish that come down the conveyor belt as we sort through the catch even though they are not part of the survey.  The Atlantic Mackerel (Scomber scombrus) are beautiful with their blue and black bands on their upper bodies and their shimmering scales.  They are a schooling fish and today one catch consisted primarily of this species. I’m fascinated with the unusual looking fish such as the goosefish, the Atlantic wolffish (Anarchichas lupus) with its sharp protruding teeth, and some of the different crabs we have caught in the net.  Another catch today, closer to land where the seafloor was more sandy, was full of Atlantic Scallops. Their shells consisted of a variety of interesting colors and patterns.

Today I also had a chance to have a conversation with the Commanding Officer of the Henry B. Bigelow, Commander Jeffrey Taylor.  After serving as a medic in the air force, and with a degree in Biology with a concentration in marine zoology from the University of South Florida.  What he enjoys about his job is teaching the younger NOAA officers in the operation of the ship.  He is proud of his state-of-the-art ship with its advanced technology and engineering and its mission to protect, restore, and manage the marine, coastal and ocean resources.  Some things that were touched upon in our conversation about the ship included the winch system for trawling.  It is an advanced system that monitors the cable tension and adjusts to keep the net with its sensors open to specific measurements and to keep it on the bottom of the seafloor. This system also is more time efficient. The Hydrographic Winch System deploys the CTD’s before each trawl.  CO Taylor also related how the quiet hull and the advanced SONAR systems help in their missions.  What we discussed that I am most familiar with since I boarded the Henry B. Bigelow is the Wet Lab, which was especially engineered for the Henry B. Bigelow and its survey missions. This is where I spend a good bit of time during the survey.  The ergonomically designed work stations interface with the computer system to record and store the data collected from the fish samples 100% digitally. I was pleased to hear what thought, skill and fine tuning had gone into designing this room as I had earlier on the trip mentally noted some of the interesting aspects of the layout of the room. Commanding Officer Taylor also had high praise for his dedicated NOAA Corps staff and the crew, engineers and scientists that work together as a team.

 

Sea stars

 

Atlantic mackerel

 

TAS Cecelia Carroll holds a wolffish

 

Crab and sea star

 

Atlantic sea scallops

Leah Johnson: Fish Identification & Pisces Farewell, August 1, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Saturday, August 1, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 033.995650
Longitude -077.348710
Water Temperature 24.37 °C
Salinity 36.179 ppt
Air Temperature 27.4 °C
Relative Humidity 83 %
Wind Speed 15.95 knots
Wind Direction 189.45 degrees
Air Pressure 1012.3 mbar

Science and Technology Log:
I am still amazed at the wealth of data collected aboard the Pisces on this survey cruise. I am getting better at identifying the fish as they are hauled up in the traps, as well as when I see these fish on video. Because of light attenuation, many fish look very different in color when they are underwater. Light attenuation refers to the gradual loss of visible light that can penetrate water with increasing depth. Red light has the longest wavelength on the visible light spectrum, and violet has the shortest wavelength. In water, light with the shortest wavelength is absorbed first. Therefore, with increasing depth, red light is absorbed, followed by orange, then yellow. Fish that appear red in color at the surface will not appear red when they are several meters below the sea surface where they are captured on camera.

For example, we hauled in some blackfin snapper earlier this week. At the surface, its color is a distinct red like many other types of snappers, and it has a black spot near the base of its pectoral fin. When I looked at the videos from the trap site, I did not realize that all of the fish swimming around with yellow-looking tails were the very same blackfin snappers that appeared in the traps! When I remembered that red light is quickly absorbed in ocean water and noticed the black spot on the pectoral fin and shape of the dorsal fin, it made more sense.

Top: Blackfin snapper collected from trap.
Bottom: Video still of blackfin snappers swimming near trap.

I tell my geology students every year that when identifying minerals, color is the least reliable property. I realize now that this can also apply to fish identification. Therefore, I am trying to pay closer attention to the shape of the different fins, slope of the head, and relative proportions of different features. The adult scamp grouper, for example, has a distinct, unevenly serrated caudal fin (tail) with tips that extend beyond the fin membrane. The tip of the anal fin is elongated as well.

scamp grouper

Scamp grouper

Another tricky aspect of fish identification is that some fish change color and pattern over time. Some groups of fish, like wrasses, parrotfish, and grouper, exhibit sequential hermaphroditism. This means that these fish change sex at some point in their lifespan. These fish are associated with different colors and patterns as they progress through the juvenile phase, the initial phase, and finally the terminal phase. Some fish exhibit fleeting changes in appearance that can be caught on camera. This could be as subtle as a slight darkening of the face.

The slight shape variations among groupers can also lead groups of scientists to gather around the computer screen and debate which species it is. If the trap lands in an area where there are some rocky outcrops, a fish may be partially concealed, adding another challenge to the identification process. This is no easy task! Yet, everyone on board is excited about the videos, and we make a point to call others over when something different pops up on the screen.

warsaw grouper

We were all impressed by this large Warsaw grouper, which is not a common sight.

I have seen many more types of fish and invertebrates come up in the traps over the past week. Here are a few new specimens that were not featured in my last “fish” post:

Did You Know?

Fish eyes are very similar to those of terrestrial vertebrates, but their lenses that are more spherical.

lens from fish eye

Lens from fish eye

Personal Log:

I love being surrounded by people who are enthusiastic about and dedicated to what they do. Everyone makes an extra effort to show me things that they think I will be interested to see – which I am, of course! If an interesting fish is pulled up in the trap and I have stepped out of the wet lab, someone will grab my camera and take a picture for me. I continue to be touched by everyone’s thoughtfulness, and willingness to let me try something new, even if I slow down the process.

me, standing on the deck at the stern

Me, on the deck of the ship. We just deployed the traps off the stern.

As our cruise comes to an end, I want to thank everyone on board for letting me share their work and living space for two weeks. To the NOAA Corps officers, scientists, technicians, engineers, deckhands, and stewards, thank you for everything you do. The data collection that takes place on NOAA fishery survey cruises is critical for the management and protection of our marine resources. I am grateful that the Teacher at Sea program allowed me this experience of a lifetime. Finally, thank you, readers! I sincerely appreciate your continued support. I am excited to share more of what I have learned when I am back on land and in the classroom. Farewell, Pisces!

Leah Johnson: Career Spotlight: NOAA Corps Officer, July 30, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

 Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Thursday, July 30th, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 34.18282
Longitude -76.13712
Water Temperature 25.62 °C
Salinity 35.3592 ppt
Air Temperature 29.8 °C
Relative Humidity 71 %
Wind Speed 13.23 knots
Wind Direction 159.25
Air Pressure 1013.2 mbar

Science and Technology Log:
Career Spotlight: I would like to introduce everyone to Ensign Hollis Johnson, one of the Junior Officers on NOAA Ship Pisces. She was kind enough to let me ask her a few questions about life at sea.

Ens Hollis Johnson

Ensign Hollis Johnson

Q: What is the role of a Junior Officer (JO) on this ship?

A: The primary duty of a JO is driving the ship. We are also the eyes and ears of the Commanding Officer (CO). We carry out standing orders, ensure ship safety, and also make sure the scientists are getting what they need for their survey work.

Q: Does this job description vary depending on the ship?

A: This is a generic fleet-wide description, and some ships are a little different. On hydrographic ships, there is more computer-based work with data collection. On fisheries ships, collateral duties are split amongst the JOs; for example, we have an environmental compliance officer, a safety officer, a movie officer, and a navigation officer.

Q: What do you like best about your job and being at sea?

A: I really like driving the ship. Few jobs offer this kind of an opportunity! I also like the fact that no two days are ever the same, so my job is a constant adventure. The best things about being at sea in general are the sunrises and sunsets, and the dolphins, of course.

Q: What do you find to be the most challenging aspect of your job and life at sea?

A: This job requires long hours. We can easily work 12-16 hour days, and while in port we still have to work some weekends. Because of this time commitment, we have to make sacrifices. But, we get that time back with our land assignments because there is more flexibility.

Q: When do NOAA Corps officers go to sea, and for how long do they stay?

A: After a 5-month training period, JOs are sent straight to sea assignments for 2 year periods. This can be extended or shortened by 6 months depending on what you are looking for in your next assignment. I extended my assignment at sea for 5 months so I could get my upcoming land assignment in California to work with dolphins for 3 years. After the land-based assignment, NOAA officers typically return to sea as operations officers, then back to land, then sea as executive officers, and so on. That is how you move up.

Q: What exactly will you be doing when you are on your next assignment in California?

A: The title of my position will be Cetacean Photo Specialist. I will be in La Jolla, CA, doing boat and aerial surveys, lots of GIS work and spatial surveys of marine mammal populations. I will participate in the center’s marine mammal stranding network. I will also be involved with outreach and education, which includes giving tours and presentations on scientific studies happening at the lab.

Q: Is life at sea different from what you expected?

A: Actually, it is easier than I thought it would be. I have always been a homebody and lived near my parents, I’m always busy here so time flies. I have internet and phone service so I still feel connected.

Q: Where did you go to college, and what degree did you earn?

A: I attended the University of Georgia, and earned a B.S. in Biology with a focus in marine biology.

Q: When / how did you decide to pursue a career in science?

A: When I was a kid I went to Sea World and fell in love with the whales and dolphins. I always loved animal planet. I also considered being a veterinarian for a while. I tried to be realistic because it is hard to land a career as a marine biologist, but I interned at a lot of places and made connections so I could do what I wanted to do.

Q: How did you find out about careers with NOAA?

In college, I took a summer course about marine mammals and toured a NOAA lab. About a year later, in June, my uncle saw the NOAA Ship Nancy Foster in port in Georgia, and I talked to someone on board about the work they were doing at sea. I immediately applied, interviewed, and was commissioned in January. It all happened very fast once I found out about it.

Q: You were one of the divers who recovered the missing trap this week. How long have you been diving?

A: I was certified to dive when I was 18. It is amazing, and something everyone should try. When I became an officer, the first thing I did was beg my command to send me to the NOAA Dive Center for training as a working diver.

Q: If a high school student is interested in a career like yours, what advice would you give?

A: Do a lot of volunteer work before you expect to get paid. You are investing in your future. If you want it bad enough you have to make sacrifices – but it will pay off. Make connections. If a marine biologist gives a presentation at your school, hang out after and talk with them. Ask for their email address and follow up. It’s a small world in marine research and networking is key.

Q: What is your favorite marine animal, and why?

A: I love thresher sharks and octopuses, but I’ll say Orcas. I’ve always found their species-wide diversity fascinating.

Personal Log:

There are so many people on this cruise who scuba dive and see amazing things below the sea surface. I have only snorkeled. I see dive certification in my future!

Did You Know?

The NOAA Commissioned Officer Corps is one of the seven uniformed services in the United States. Their motto is “Science, service, stewardship”.

map and control panel on the bridge

Chart and control panel on the bridge

Leah Johnson: Career Spotlight: Survey Technician, July 29, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Wednesday, July 29, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 033.707470
Longitude -076.827550
Water Temperature 25.8 °C
Salinity 37.1618 ppt
Air Temperature 29.2 °C
Relative Humidity 75 %
Wind Speed 16.08 knots
Wind Direction 25.88 degrees
Air Pressure 1013.2 mbar

Science and Technology Log:
Career Spotlight: I would like to introduce everyone to Danielle Power, the Survey Technician on NOAA Ship Pisces. She was kind enough to let me interview her today.

survey technician working in the acoustics lab

Editing map area coordinates in the acoustics lab

Q: What is the role of a survey technician (ST) on this ship?

A: The survey technician keeps track of scientific equipment and spaces. This includes calibrating sensors and maintaining and repairing equipment. When science parties are on the ship, the ST assists with data collection and oversees CTD operation.

Q: Does this job description vary depending on the ship?

A: Yes. On the Nancy Foster and other ships with big dive platforms, STs do a lot of diving and deck work. There are often two STs on board, each working a half-day shift. These STs do not work so intensively with fish. Hydrographic vessel STs deal with mapping and tide station installs.

Q: What do you like best about your job and being at sea?

A: My favorite thing about life at sea is that there are no bugs, and I don’t have to deal with allergies! I also meet awesome people on every cruise. Every trip is a little different, so I am always learning new things.

Q: What do you find to be the most challenging aspect of your job and life at sea?

A: Being at sea for a long time, all the time, is taxing.

Q: Is life at sea different from what you expected?

A: Yes. This job requires living with 20 other people in a confined space all the time, and it isn’t easy. I didn’t fully realize this back in college. I don’t have easy access to things I might want or need. I also have to give up certain aspects of social life. You can’t just take a day off, you have to take an entire leg of a cruise off (up to 2 weeks), which is a lot of money to not be making and a lot of work to be missing. So I have to miss some big events for important people in my life, like weddings and holidays.

Q: Where did you go to college, and what degree did you earn?

A: I graduated from Old Dominion University in Norfolk, Virginia. I earned a B.S. in biology with a concentration in marine biology.

Q: When / how did you decide to pursue a career in science?

A: In 6th grade, I went on a family vacation to Disney world. I went to Sea World, and it ignited my love for all things ocean. I have stuck with it ever since.

Q: If a high school student is interested in a career like yours, what advice would you give?

A: Work hard, and get a college degree that is relevant. Make sure you know that this is a job you truly want to do. Find internships and experience life on a ship before you commit. If you enjoy it, then make the most of the career and all of the opportunities that come with it.

Q: What is your favorite marine animal, and why?

A: An Octopus! Cephalopods are very intelligent creatures, and I love that they can blend into environments so well that they cannot be seen. They can change not just their color, but their texture. They are so interesting! They can go into small spaces, because they can fit anywhere their beaks fit and they use parts of their environment as tools.

survey technician working in the wet lab

recording data in the wet lab

Personal Log:
I am blown away by all of the different jobs that need to be filled while out at sea. Working on a boat was something that I never even considered when I was in high school. The idea just never occurred to me, and I didn’t know anyone at the time who did anything like this. There are so many interesting career opportunities that exist, and new types of jobs will develop as needs and technology change over time.

Read all about career opportunities with NOAA here!

Did You Know?

NOAA stands for “National Oceanic and Atmospheric Administration”. It officially formed in 1970, but the environmental agencies that came together to form NOAA originated in the 1800s. Learn more about NOAA’s history here.

Leah Johnson: Trap Recovery, July 27, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Monday, July 27, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 034.384490
Longitude -076.576130
Water Temperature 23.75 °C
Salinity -No Data-
Air Temperature 30.8 °C
Relative Humidity 62 %
Wind Speed 10.15 knots
Wind Direction 88.23 degrees
Air Pressure 1014.8 mbar

 Science and Technology Log:
As I mentioned in an earlier post, flexibility is key. Things don’t always go according to plan. Originally, we were going to head northeast from Morehead City Port, but the weather did not cooperate with us. We headed south to avoid a large storm, and then moved closer inshore. This forced us to choose some different areas to sample. Most of our sample sites are situated over the continental shelf between Cape Fear and Cape Hatteras. Tomorrow we hope to move to deeper waters beyond the shelf break.

Pisces cruise pathway so far. Image from Shiptracker.

Map of Pisces route so far. Image from Shiptracker.

On July 23, we lost a trap. After one of the deckhands threw the hook out to catch the buoy rope and started the winch, the rope went taut and then snapped. Occasionally this happens because the traps can shift and become wedged under or hooked onto a rocky ledge on the seafloor. We do our best to avoid this, but it happens. This is why it is important to have extra traps, cameras, and camera housings on board.

Map showing locations of the two lost traps. Image from Shiptracker.

Map showing positions of two lost traps. Water depth is shown in feet.

We planned to retrieve our trap the following day, but the storm chased us out of the area. Two days later, we lost a second trap! Unfortunately, this one was too deep to recover on a dive. The traps we deploy have zinc clasps that dissolve after ~24 hours, so fish can eventually exit the traps on the off chance that we are unable to retrieve them. Still, we don’t want to simply abandon traps on the seafloor or run short on gear, so we made plans to retrieve the first trap. We just had to remain patient and hope for calmer seas. Finally, our window of opportunity opened up today.

Zodiac dive boat

The small boat is on a davit on the 01 deck.

A small boat is located on 01 deck near the stern of NOAA ship Pisces. The deck chief oversees operations as it is lowered for the divers, the dive master, and deckhands to board. They take an inflatable buoy and rope with them, and then head out to the coordinates of the trap. The divers descended ~20 meters to the shelf where the trap was indeed wedged on a rocky ledge. First, the divers removed the two GoPro cameras that were attached to the trap. Next, they secured a rope attached to a buoy on the trap. The ship will then be able to use this buoy to retrieve the trap as typically done. The divers ascended the line and were picked up with the small boat.

dive boat returns after successfully locating the trap

The small boat returns after successfully finding the trap.

The deckhands then attached our standard buoys to the rope, and returned to the Pisces. The divers climbed up a rope ladder on the starboard side of the ship, and the small boat was hoisted up. We then hauled up the missing trap like we would any other. The trap was empty, and all of the bait was gone – not surprising after a 4-day soak!

Personal Log:

I make a point to stand near the bow of the ship and watch the sea and sky for a while every day. I usually see some flying fish, which are fun to watch. They zip out of the water, dart across the waves, and then dive back under. One of them landed on deck after a storm, so I had a chance to see one up close.

flying fish found on deck

Flying fish

The skies are beautiful, too. I have seen some impressive clouds and gorgeous sunrises and sunsets. The view is completely unobstructed, so I can just take it all in without distraction. I find it all very peaceful.

The skies at sea are stunning.

Did You Know?

After otoliths and tissue samples are collected from the fish we keep, the fish are filleted, frozen, and donated to local food banks.

removing tissue samples from a fish

Collecting tissues from a fish.

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

Leah Johnson: The Sampling Begins, July 22, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Wednesday, July 22, 2015

Weather Data from the Bridge:
Time 12:20 PM
Latitude 034.242730
Longitude -076.394350
Water Temperature 24.99 °C
Salinity 36.5532 ppt
Air Temperature 29.5 °C
Relative Humidity 80%
Wind Speed 15.45 knots
Wind Direction 229.54 degrees
Air Pressure 1012.5 mbar

Science and Technology Log:
As a fishery-independent survey, our task is to monitor the population of fish – mostly those of commercial value – at a wide variety of locations. While commercial operations provide some information based on their annual catch, a fishery-independent survey is able to conduct a broader assessment in a given area of the ocean, even though fewer fish are caught. Because there is no limitation on fish size and a wider array of locations are sampled, these surveys can be used in conjunction with reports from commercial fishing vessels to provide a better picture of changing fish populations over time.

I am on the second leg of the sampling survey in the Southeast Atlantic, and I am working the 6:00 AM – 6:00 PM shift. We will be setting traps and cameras in waters between Myrtle Beach, SC and Hatteras, NC. NOAA Ship Pisces left port at 2:00 PM on Tuesday, July 22. I stood near the bow of the ship as we headed out to sea, and watched flying fish zip through the spray. Once we left the sheltered waters near Morehead City Port, the seas became rough. High winds led to high swells, and we were unable to set any fish traps that afternoon. Because of these conditions, we changed our plans so that we could shelter behind a cape overnight. Flexibility is key!

Map of Pisces route upon departure on Tuesday, July 22.

Map of Pisces route upon departure on Tuesday, July 22. Source: Shiptracker

Today, skies were clear and the water was calm. We deployed a total of 18 traps in three areas over the course of the day. I helped to bait the chevron traps and line them up on the deck. Once the ship was over the chosen location, the traps and buoys were pushed overboard. Most of the traps today were deployed at a depth of ~25 meters. Six traps are deployed in an area, and are set at least 200 meters apart. The traps soak for 90 minutes, and then the ship circles back for the first trap. It is hauled up on the starboard (right) side, and the fish fall into a large tray placed beneath the trap opening.

The crew pulls up a trap.

The crew pulls up a trap.

We collected a variety of fish which had to be sorted, measured, and either kept for further sampling or returned to the sea based on the species. The bulk of the fish were black sea bass, but there was also a wide range of small fish (including scup, pinfish, and tomtate), red snapper, gag grouper, toadfish, and triggerfish. A small octopus came up with the second trap, which was exciting for the whole crew! One trap line snagged during retrieval, so a couple people may try to collect it on a future dive. The camera footage has been interesting too, as there are many fish that may swim near the trap but never enter. Therefore, the cameras provide additional data for the survey. Just today, a tiger shark was caught on tape!

A variety of fish in a chevron trap

A wide variety of fish are brought up in a chevron trap.

Personal Log
I have only spent one full day at sea so far, but I am enjoying every second of it. I am fascinated by all of the fish and other marine life. I spent some quality time watching dolphins jumping alongside the ship in the afternoon, and just looking out over the water. Sometimes the horizon is completely empty. Occasionally, I can see a lighthouse on a cape or another ship. Most of the time, we are surrounded by only sea and sky. The color of the water varies with weather conditions and water depth.

I have not experienced any sea sickness, and I am grateful for that. It was a little difficult getting used to the movement of the ship. I was definitely wobbling all over the place on day one. The swells were big though, so everyone was wobbling around with me. Putting food on my plate during dinner was especially challenging – and keeping it on my plate while walking to a table was more challenging still! However, my sea legs are improving, and I managed to do some yoga at sunset on the fly deck with a couple of the crew members! I didn’t fall over…. much. It was great way to wrap up the day. Keeping up with regular activities, like exercise, is really important while at sea. I am also growing used to the sensation of being rocked to sleep at night.

Did You Know?
The triggerfish earned its name because of its dorsal fin. If you press down on the first spine (a long, thin bone) at the front of the fin, it won’t budge. However, if you place your finger on a lower, shorter spine (the “trigger”), you can collapse the fin. Cool!

I love triggerfish!

I love this gray triggerfish!