Michael Gutiérrez Santiago: Newport Hydrographic Line, August 18, 2022

Lea esta publicación en español: Michael Gutiérrez Santiago: Línea Hidrográfica de Newport, 18 de agosto de 2022

NOAA Teacher at Sea

Michael Gutiérrez Santiago

 NOAA Ship Bell M. Shimada

August 12 – August 25, 2022


Mission: Pacific Hake Survey

Geographic Area of Cruise: Coasts of Washington and Oregon

Date: August 18, 2022


Weather conditions from the bridge:

Latitude: 4539.9725N
Longitude: 12422.9606W
Temperature: 63°F 
Wind Speed: 13 mph
Barometer:  1017.2mb

Michael poses for a photo to show off his gear: orange Grundens (rubber overalls) over a black sweatshirt, an orange life vest, a yellow hard hat, and sunglasses.
Ready for plankton sampling!

Science and Technology Log

Newport Hydrographic Line

One way scientists assess the health of our ocean’s ecosystems is to take samples of zooplankton and ichthyoplankton (fish eggs and larvae), both on the surface of the water and at depth. Observations of these plankton can inform us greatly about productivity at the bottom of the food chain, spawning location and stock size of adults, dispersal of larval fish and crabs to and away from nursery areas, and transport of ocean currents.

The Newport Hydrographic (Newport Line) is an oceanographic research survey conducted by NOAA’s Northwest Fisheries Science Center and Oregon State University scientists in the coastal waters off Newport, Oregon.

Researchers have collected physical, chemical, and biological oceanographic metrics along the Newport Line every two weeks for over 20 years. This twenty-plus year dataset helps us to understand the connections between changes in ocean-climate and ecosystem structure and function in the California Current.

Data from the Newport Line are distilled into ocean ecosystem indicators, used to characterize the habitat and survival of juvenile salmonids, and which have also shown promise for other stocks such as sablefish, rockfish, and sardine. These data also provide critical ecosystem information on emerging issues such as marine heatwaves, ocean acidification, hypoxia, and harmful algal blooms.

a map of the coast of Washington and Oregon. the land is shaded gray, while the water includes a few blue lines indicating underwater topography. Though there are not grid lines, labels mark the latitude lines from 43 degrees North to 47 degrees North and the longitude lines from 125 degrees West to 123 degrees West. Midway, between 44 and 45 degrees North, a short red line extends horizontally out from Newport to the 125th meridian. It's labeled "NH Line"
Newport line

Barometer of ocean acidification and hypoxia in a changing climate

Global climate models suggest future changes in coastal upwelling will lead to increased incidence of hypoxia and further exacerbate the effects of ocean acidification. The Newport Line time-series provides a baseline of biogeochemical parameters, such as Aragonite saturation state—an indicator of acidic conditions. Researchers can compare this baseline against possible future changes in the abundance of organisms (e.g., pteropods, copepods and krill) sensitive to ocean acidification and hypoxia.

Equipment used

  • a net, which includes long mesh tubing extending from a ring, hangs in the air from a point above the photo's frame. a crewmember, wearing hard hat and life jacket, grips the ring with his left hand and reaches toward a rope attached to the net with his right hand. three other crewmembers are visible around the net.
  • a net, which includes long mesh tubing extending from a ring, hangs in the air from a point above the photo's frame. a crewmember, wearing hard hat and life jacket, facing away from the camera, reaches over the rail of the ship to lower the end of the suspended net into the water.
  • an illustration of a research vessel with a vertical net deployed off its side. the net looks like a white cone, pointing downward, ending in a red cannister.

A vertical net is a ring net with a small mesh width and a long funnel shape. At the end, the net is closed off with a cylinder (cod-end) that collects the plankton. It is deployed vertically in the water from a research vessel. It is mostly used to investigate the vertical/diagonal stratification of plankton. This allows the abundance and distribution of mesozooplankton to be determined.

  • a cable lowers a bongo net onto the ship's deck. the bongo net, name for bongo drums, is actually a pair of nets: two rings side by side hold up the nets made of long mesh tubing that narrow until they end in attached cannisters. a crewmember, wearing a hard hat and a life vest, leans to look at something around the back of the net.
  • a crewmember, wearing a hard hat and life vest, hoses down the mesh tubing of one side of the bongo net. the top of the net hangs from a cable about 12 feet above the deck so the crewmember can rinse the tubing while standing.
  • an illustration of a research vessel with a bongo net deployed off its stern. the net looks like a pair of white cones, pointing horizontally away from the ship, ending in red cannisters.

A bongo net consists of two plankton nets mounted next to each other. These plankton nets are ring nets with a small mesh width and a long funnel shape. Both nets are enclosed by a cod-end that is used for collecting plankton. The bongo net is pulled horizontally through the water column by a research vessel. Using a bongo net, a scientist can work with two different mesh widths simultaneously.

  • Michael, at left, holds up the net while Toby, right, uses a hose to spray down the mesh tubing at the end. Both Michael and Toby wear rubber pants, rubber boots, life jackets, and hard hats.
  • three crewmembers, wearing hard hats and life vests, hold different portions of a large fishing net that is attached to cables extending out of frame. One steadies the net spreader, a horizontal metal bar. Another grasps the webbing. We can see a wide piece of metal toward the front that is bent like a wide "V". The belts of the crewmembers' vests are each clipped to brightly covered, stretchy tethers to prevent them from falling overboard.
  • a diagram of the shape and dimensions of the Isaacs-Kidd midwater trawl. labels identify the net spreader (horizontal metal bar), depresser (v-shaped metal plate), and bridle (short cables extending from the edges of the net opening, coming to a point). the net opening is 4 feet 8 inches wide by 5 feet 9 inches tall. the main portion of the trawl net extends 20 feet 6 inches long; it attached to a finer mesh net that is 5 feet 8 inches long.

Isaacs-Kidd midwater trawl collects bathypelagic biological specimens larger than those taken by standard plankton nets. The trawl consists of the specifically designed net attached to a wide, V-shaped, rigid diving vane. The vane keeps the mouth of the net open and exerts a depressing force, maintaining the trawl at depth for extended periods at towing speeds up to 5 knots. The inlet opening is unobstructed by the towing cable.

What we got?

  • a close-up (possible magnified) view of a petri dish containing organisms sampled by the Isaacs-Kidd net. mostly crustaceans and larval fish. The petri dish rests on a bright blue background that creates a sharp contrast with the somewhat translucent creatures.
  • close-up view of a pile of many, many krill. they look like clear pink tubes with black dots for eyes.

Personal Log

SHARK ATTACK!

That’s right, our underway CTD was attacked by a shark.

a view through a metal rigging of a pully with a cable extending down to the ocean's surface. there is no longer anything attached to the cable.
R.I.P.

On a bright and sunny day, the science team decided to launch the underway CTD, but things didn’t go as planned! Retrieving the uCTD back to the ship we saw a big dorsal fin zigzagging close to the uCTD, until we noticed that the uCTD was no longer attached to the line, therefore we had no choice that to cancel the uCTD. You should have seen all of our faces; we couldn’t believe what we saw. We think it could have been a:

view of a hand holding an underwater conductivity, temperature, and depth (uCTD) profiler. in the background is a painting on a cabinet door of a white ship sailing through waves and somewhat fantastical deep sea creatures swimming below.
underway CTD
(what the shark ate)

CTD stands for conductivity (salinity), temperature, and depth and it enables researchers to collect temperature and salinity profiles of the upper ocean at underway speeds, to depths of up to 500 m. Ocean explorers often use CTD measurements to detect evidence of volcanoes, hydrothermal vents, and other deep-sea features that cause changes to the physical and chemical properties of seawater.

Sunset on the Pacific Ocean, as seen from an upper deck of NOAA Ship Bell M. Shimada. The trawl net frame, davits, and other equipment on the fantail are visible in silhouette.
Sunset on board

Michael Gutiérrez Santiago: Welcome Aboard! August 16, 2022

Lea esta publicación en español: Michael Gutiérrez Santiago: ¡Bienvenidos a Bordo! 16 de agosto de 2022

NOAA Teacher at Sea

Michael Gutiérrez Santiago

Boarding NOAA Ship Bell M. Shimada

August 12 – August 25, 2022

Mission: Pacific Hake Survey

Geographic Area of Cruise: Coastal Washington

Date: August 16, 2022

Weather conditions from the bridge:

Latitude:  4539.9729N
Longitude:  12422.9606W
Temperature: 67.64°
Wind Speed: 12.62 mph
Barometer: 1017.2 mb

 

Michael stands in front of NOAA Ship Bell M. Shimada in port, around sunset. The angle is wide enough to see the entire vessel.
NOAA Ship Bell M. Shimada

Science and Technology Log

NOAA Ship Bell M. Shimada was built by VT Halter Marine, Inc. in Moss Point, Mississippi. The ship was commissioned on August 25, 2010 and is currently homeported at NOAA’s Marine Operations Center—Pacific in Newport, Oregon. The ship primarily studies a wide range of marine life and ocean conditions along the US West Coast, from Washington state to southern California.

The ship’s design allows for quieter operation and movement through the water, giving scientists the ability to study fish and marine mammals without significantly altering their behavior.

Bell M. Shimada conducts acoustic and trawl surveys. For acoustic studies, the ship uses a multibeam echo sounder (MBES) that projects a fan-shaped beam of sound that bounces back towards the ship. The ship’s MBES, one of only three such systems in the world, acquires data from both the water column and the seafloor. Scientists can detect fish when the boat passes over them, measuring the signal reflected by the fish to estimate their size and number. The system can also create a map and characterize the sea floor.

  • a graphic depicting a ship underway, on top, and then a cutaway illustration of the topography underneath the ocean's surface. the illustration depicts a swath of light emanating from the hull of the ship and coloring a section of the underwater topography.
  • three scientists sit at laptops around a table in a room filled with additional computers and monitors.
  • scientists look up at a large computer monitor depicting acoustic readings.

The ship conducts trawl sampling with a standardized, three-flange, four-seam bottom survey net equipped with a skipping rock sweep: sweeps with large rubber discs that allow the nets to be towed over rocky and uneven seabeds. Trawls sample fish biomass in a given study area. This helps scientists learn what species are in observed schools of fish and collect other biological data.

a view from the fantail of two large, orange trawl nets spooled up on deck
Trawl system

The ship’s wet lab allows scientists to sort, weigh, measure and examine fish. Data is entered directly into the ship’s scientific computer network. The Bell M. Shimada Bird and Marine Mammal Observation Stations are equipped with sensors to help researchers identify and track protected species.

  • a view of the wet lab, not yet in use: metal countertops, hoses, scales, measuring boards.

Bell M. Shimada was named by a team of students from Marina High School in Monterey, California, who won a regional NOAA contest to name the ship. The ship’s namesake served in the Bureau of Fisheries and the Inter-American Tropical Tuna Commission. He was known for his contributions to the study of tropical Pacific tuna populations, which were important to the development of West Coast commercial fisheries after World War II. Bell M. Shimada’s son, Allen, is a fisheries scientist with NOAA Fisheries.

Personal Log

This has been an experience that I never imagined, on Thursday, August 11, when I entered the port and saw the ship in the distance, I felt a lump in my throat, it is much larger and more imposing than I imagined. The scientist in charge of the expedition, Beth Philips, welcomed me to the ship. She was extremely jovial and pleasant and gave me a tour of the ship, which let me tell you, this is a labyrinth. The crew has been excellent, all with a kind and respectful treatment towards me. On the other hand, I hope I can loosen up a bit more with everyone on the ship since I’m a bit in my head because of my English speaking.

I want to introduce you to the excellent team of scientists

  • group photo in front of a railing on the deck of NOAA Ship Bell M. Shimada, with the city of Seattle visible in the distance. it's a clear, calm day. Michael is wearing his Teacher at Sea hat and t-shirt.
  • Beth cuts into a birthday cake decorated with pink and white frosting.

In just a few days of meeting them, they have taught me a lot. They have all been patient and have explained and answered questions regarding the work they do on the high seas. Their knowledge and experiences have led me to create great admiration for them. In the next blogs you will learn more about each of them and you will see them in action!

Not Just One, But Two Puerto Ricans on the High Sea!

LT Erick Estela poses for a photo on the fantail of NOAA Ship Bell M. Shimada. He is wearing his blue NOAA Corps uniform and holding a small Puerto Rican flag.
LT Erick Estela

That’s right I’m not the only Puerto Rican on NOAA Bell M. Shimada, this is LT Erick Estela from Ciales, Puerto Rico. Erick is one of the NOAA Corps officers serving at sea, on land and in the air to support NOAA’s environmental science and management mission. Erick have been serving with NOAA Corps nine and a half years. We met in the middle of a drill and it was very exciting to know that there’s another Puerto Rican on board. Puerto Rico is proud to have Erick in such an important role within NOAA!

  • LT Erick Estela stands at the helm of NOAA Ship Bell M. Shimada and looks right at the camera.
  • A view of the bridge from the back, looking across the control panels and out the windows. LT Erick Estela is driving the vessel, with his right hand near the helm, leaning over to look at or adjust something on a control panel to his left.
  • a view of the bridge's control panels, with no one standing at them. helm, levers, buttons, monitors, phones.
  • close-up view of one monitor showing a navigation screen. the computer displays an electronic nautical chart and the positions of nearby vessels
  • radar screen with dots marking other vessels within a certain radius of the ship

Before I go, I want to share some photos taken by Teacher at Sea Alumni Association Manager Britta Culbertson, who met us at Whidbey Island to wave goodbye from shore. Thank you for the beautiful photos and for all your support. Thanks also to TAS Alumni Denise Harrington for your messages of support, much appreciated!

See you in my next blogs where I will be talking about our study of hake populations and the data received from the echo sounder. I’m gone fishing, see you next time!

Michael, wearing a Teacher at Sea hat, shows off the albacore tuna he caught. He holds it up by the fishing line.
Albacore Tuna!

Michael Gutiérrez Santiago: An Adventure on the High Seas Awaits! August 4, 2022

Lea esta publicación en español: Michael Gutiérrez Santiago: ¡Una aventura en alta mar me espera!, 4 de agosto de 2022

NOAA Teacher at Sea

Michael Gutiérrez Santiago

NOAA Ship Bell M. Shimada

August 12 – August 25, 2022

Mission: Pacific Hake Survey

Geographic Area of Cruise: Coastal Washington

Date: August 4, 2022

Introduction

A close-up photo of Michael in front of a Puerto Rican flag. He's wearing a straw hat, sunglasses, and a backpack.
Greetings from Puerto Rico!

Greetings to all from Isabela, Puerto Rico! I am so glad you are joining me on this journey on the high seas. My name is Michael Gutiérrez Santiago and, in a week, I will be aboard the NOAA Bell M. Shimada in an expedition with NOAA scientists on the Pacific Hake Survey. I will travel to Washington, which is approximately 10 hours to begin this journey. I hope you will join and be a part of this expedition with me.

I am very happy and grateful to be part of this experience. I remember in 2019 that I learned about the Teacher at Sea program, I was amazed that educators could have the opportunity to be on an expedition on the high seas with NOAA scientists and crew members. Without hesitation I applied and was accepted in 2020. As you all know COVID-19 put the world on pause, but after two years here we are, ready to board!

Living in Puerto Rico made me fall in love with the beaches, forests, caves, rivers along with its flora and fauna. That is why I decided to do a Bachelor Degree on Environmental Sciences, to learn more about what surrounds us and how to conserve it. This passion for the environment has led me to share my knowledge with people around me and I realized that there is no better way to conserve our environmental resources than through education. Therefore, I decided to get certified as a high school science teacher.

close-up view of a hand holding a sea star underwater
Starfish in Mosquito Pier, Vieques P.R.

My early beginnings

At the beginning of 2017 I joined the EcoExploratorio: Science Museums of Puerto Rico, where I was an informal educator teaching science and and environmental conservation to the entire Island. It was here that I learned how to be an educator, I had the opportunity host workshops, webinars and be part of other exhibitions. The EcoExploratorio receives an annual visit of 300,000 people, having the opportunity to educate about what surrounds us and how to conserve it. On the other hand, the EcoExploratorio focuses on preparing for atmospheric events such as hurricanes and natural events such as earthquakes.

I am currently a 12th grade Environmental Science teacher at the Abelardo Martínez Otero School in Arecibo, Puerto Rico. This year we managed to carry out various activities, laboratories, and experiments thanks to the excellent quality of students I had. Despite the limitations we had due to COVID-19, these students gave their best, thus having an excellent Environmental Science class.

this is a collage of four panoramic photos of different classes of students standing outside, all holding up or trying to hold up a long black balloon
Solar energy laboratory with solar balloon

Science on the high seas

My time at sea will be in the Pacific Ocean, aboard the NOAA Bell M. Shimada in the second leg of the Pacific Hake Survey where I will be working and learning from chief scientist Beth Phillips, biologist at NOAA Fisheries, and rest of the research team. Some of my goals on this expedition are to share what I am going to learn on this expedition with you via blogs, provide vital data to help manage the migratory coastal population of Pacific hake, conduct an Inter-Vessel Calibration with Canadian Coast Guard Ship Sir John Franklin in coordination with DFO scientists to ensure data is comparable in 2023 and can be combined for population assessment, collect water and plankton samples at the Newport Hydrographic Line, euphausiid sampling , collecting oceanographic data, and collecting broadband acoustic data.

For me it is an honor and a privilege to be part of the Teacher at Sea program. Being able to be part of this expedition is a dream come true. I will put all my efforts to make Puerto Rico, my family, teachers, students, and the Teacher at Sea program proud. I would love for you to be part of this expedition; my blogs will be in English and Spanish to reach all of you. It would be great to send your questions or let me know what has caught your attention the most.

Let the adventure begin!