Jeff Peterson: The Work in the Western Gulf, July 15, 2018

 NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – July 20, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2018

 

Weather Data from the Bridge

Date: 2018/07/18

Time: 16:05:45

Latitude: 30 05.44 N

Longitude: 085 52.76 W

Speed over ground: 05.3 knots

Barometric pressure: 1015.62 mbar

Relative humidity: 81%

Air temp: 27.6 C

 

Science and Technology Log

At the time of writing, we’ve completed the “stations” (i.e., the appointed stops where we trawl to collect specimens) in the western Gulf of Mexico, and are headed to the Florida coast, where we’ll conclude the 3rd leg of the Summer Groundfish Survey. Sometime tonight we’ll arrive and resume work, trawling and identifying fish. What follows is my attempt to furnish a detailed description of where we are and what we’re doing.

Stations: Where We Stop & Why

As I explained in my previous blog post, “Learner at Sea: Day 1,” the survey work being performed on this cruise contributes to a larger collective enterprise called SEAMAP, the Southeast Area Monitoring and Assessment Program. The “sample area” of SEAMAP is considerable, ranging from Texas-Mexico border to the Florida Keys.

image 1 SEAMAP - coverage

Spatial coverage of SEAMAP Summer and Fall Trawl Surveys in the northern Gulf of Mexico

Fisheries biologist Adam Pollack tells me that the total trawlable area–that is, excluding such features as known reefs, oil rigs, and sanctuaries–consists of 228,943.65 square kilometers or 88,943.65 square miles. That’s a piece of ocean of considerable size: nearly as big as Louisiana and Mississippi combined.

SEAMAP divides the sample area into a series of statistically comparable “zones” (there are two zones within each of the numbered areas in the diagram above), taking into account a key variable (or stratum): depth. It then assigns a proportionate number of randomized locations to every zone, arriving at 360-400 stations for the sample area as a whole. Statisticians call this method a “stratified random design.”

While Louisiana, Mississippi,  Alabama, and Florida participate in the SEAMAP, the lion’s share of stations are surveyed by NOAA.

These are the 49 stations we sampled during the first half of the cruise, off the shore of Louisiana:

leg 3 west

Stations covered in the western Gulf during the 3rd leg of the Summer Groundfish Survey

The data from the Summer Survey is analyzed in the fall and available the following spring. NOAA’s assessments are then passed along to the regional Fisheries Management Councils who take them into account in setting guidelines.

The Trawl: How we Get Fish Aboard

NOAA Ship Oregon II brings fish aboard using an otter trawl. As described in “Mississippi Trawl Gear Characterization,” “The basic otter trawl is the most common type of trawl used in Mississippi waters to harvest shrimp. The otter trawl is constructed of twine webbing that when fully deployed makes a cone shape. Floats on the head-rope (top line) and chains on the foot rope (bottom line) of are used to open the mouth of the trawl vertically. To spread the mouth of the trawl open as large as possible, each side (wing) is attached to trawl doors” (http://www.nmfs.noaa.gov/pr/pdfs/strategy/ms_trawl_gear.pdf). Positioned by chains so that their leading edges flare out, those doors are sizable and heavy, 40 inches high and 8 feet long, and help not only to spread the net open (and ‘herd’ fish in) but also to keep it seated on the ocean floor.

An otter trawl deployed

An otter trawl deployed

To mitigate environmental harm–and, in particular, to help save inadvertently caught sea turtles—trawling time is limited to 30 minutes. The trawl is 40 feet wide and is dragged over 1.5 miles of ocean bottom.

Here are the trawl’s technical specifications:

Trawl schematic

Trawl schematic, courtesy of NOAA fishing gear specialist Nicholas Hopkins

It should not go without saying that deploying and retrieving gear like this is mission critical, and requires physical might, agility, and vigilance. Those tasks (and others) are performed expertly by the Deck Department, manned on the day watch by Chief Boatswain Tim Martin and Fisherman James Rhue. Fisherman Chris Rawley joins them on the swing shift, coming on deck in the evening.

The process of bringing the trawl aboard looks like this:

doors up

Trawl doors on their way up toward the starboard outrigger

separating

Seizing the “lazy line” with the hook pole

orange section

The “elephant ear” (orange section) secured

cod end at the rail

Chief Boatswain Tim Martin brings a catch over the rail

The bottom of the trawl is secured with a special knot that permits controlled release of the catch.

knot

Among other names, this piece of handiwork is known as the “double daisy chain” or “zipper knot”

 

The catch emptied into baskets

The catch emptied into baskets

CTD

Before every trawl, the CTD is deployed from the well deck (port side) to collect data on, as its acronym suggests: Conductivity, Temperature, and Depth. According to NOAA’s Ocean Explorer website, “A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists. When combined with temperature data, salinity measurements can be used to determine seawater density which is a primary driving force for major ocean currents” (https://oceanexplorer.noaa.gov/facts/ctd.html).

The CTD secured on deck

The CTD secured on deck

 

CTD in the water

The CTD suspended at the surface, awaiting descent

During daylight hours, a scientist assists with the deployment of the CTD, contributing observations on wave height and water color. For the latter, we use a Forel-Ule scale, which furnishes a gradation of chemically simulated water colors.

 

Forel-Ule scale

Forel-Ule scale

 

The Wet Lab: How We Turn Fish into Information

Once in baskets, the catch is weighed and then taken inside the wet lab.

the wet lab

The wet lab: looking forward. Fish are sorted on the conveyor belt (on the right) and identified, measured, weighed, and sexed using the computers (on the left).

Once inside the wet lab, the catch is emptied onto the conveyor belt

Fish ready for sorting

Fish ready for sorting

Snapper on the belt

A small catch with a big Snapper

Next the catch is sorting into smaller, species-specific baskets:

Emily McMullen sorting fish

Emily McMullen sorting fish

 

batfish face

Say hello to the Bat Fish: Ogecephalus declivirostris

Calico Box Crab, Hepatus epheliticus

Calico Box Crab, Hepatus epheliticus

 

Blue Crab, Callinectes sapidus

Blue Crab, Callinectes sapidus

At this stage, fish are ready to be represented as data in the Fisheries Scientific Computing System (FSCS). This is a two-step process. First, each basket of fish is entered by genus and species name, and its number recorded in the aggregate.

Andre entering data

Andre DeBose entering initial fish data in FSCS

Then, a selection individual specimens from each basket (up to 20, if there are that many) are measured and weighed and sexed.

Andre and Emily measuring

Andre and Emily measuring and sexing fish

Occasionally researchers from particular laboratories have made special requests for species, and so we label them, bag them, and stow them in the bait freezer room.

requests

Special requests for specimens

 

IMG_8214

Red Snapper, Lutjanus campechanus, for Beverly Barnett

Once every animal in the trawl has been accounted for and its data duly recorded, it’s time to wash everything down and get ready to do it all over again.

porthole

Late afternoon view from the wet lab porthole

 

Personal Log

The key to enjoying work in the wet lab is, as I see it, the enduring promise of novelty: the possibility of surprise at finding something you’ve never seen before! For me, that promise offsets the bracing physical rigors of the work and leavens its repetitiveness. (Breathtaking cloudscapes and gorgeous sunsets do, too, just for the record. Out here on the water, there seem to be incidental beauties in every direction.) Think of the movie Groundhog Day or Camus’s “The Myth of Sisyphus” and cross either of them with the joys of beach-combing on an unbelievably bounteous beach, and you’ll have a sense of the absurd excitement of identifying fish at the sorting stage. Life in the wet lab is a lot like Bubba Gump’s box of chocolates: “You never know what you’re gonna get.”

At the next stage, data entry, the challenge for the novice is auditory and linguistic. Between the continual growl the engine makes and the prop noise of the wet lab’s constantly whirring fans, you’ve got the soundscape of an industrial workplace. Amid that cascade of sound, you need to discern unfamiliar (scientific) names for unfamiliar creatures, catching genus and species distinctions as they’re called out by your watch-mates. The good news is that the scientists you’re working with are living and breathing field guides, capable of identifying just about any animal you hold up with a quizzical look. It’s a relative rarity that we have to consult printed guides for IDs, but when we do and that task falls to me, the shell-collector kid in me secretly rejoices.

IMG_7825

I found it! Ethusa microphthalma (female)

I’m enjoying the camaraderie of my watch, led by Andre DeBose, and, as my posts suggest, I’ve had some good opportunities to pick Adam Pollack’s brain on fisheries issues. My partner in fish data-entry, Emily McMullen–an aspiring marine scientist who’ll be applying to graduate programs this fall–did this cruise last summer and has been an easy-going co-worker, patient and understanding as I learn the ropes. I’ve also had some wonderful conversations with folks like Skilled Fisherman Mike Conway, First Assistant Engineer Will Osborn, and Fisheries Biologist Alonzo Hamilton.

It’s been a busy week, as you’ll have gathered, but I’ve still managed to do some sketching. Here’s a page from my sketchbook on the CTD:

CTD

Sketch of the CTD. The main upright tanks, I learned, are Niskin Bottles

And here’s a page from my journal that pictures three species we saw quite often in the western Gulf:

Longspined Porgy - Butterfish - Brown Shrimp

Longspine Porgy (Stenotomus caprinus), Butterfish (Peprilus burti), and Brown Shrimp (Farfanepenaeus aztectus)

Had I the time, I’d sketch the rest of my “Top 10” species we’ve seen most commonly in the western Gulf. That list would include (in no particular order): the Paper Scallop, Amusium papyraceum; Lookdown, Selene vomer; Blue Crab, Callinectes sapidus; Squid, Loligo; Lizardfish, Synodus foetens; Croaker, Micropogonias undulatus; and Red Snapper:

Red Snapper

Presented for your inspection: Red Snapper, Lutjanus campechanus

Did You Know?

Four of the species visible on the surface of this basket have been identified in the blog post you’ve just read. Can you ID them? And how many of each would you say there are here on the surface?

Basket of fish

Basket of fish

 

 Look for a key in my next blog post.

 

Samantha Adams: Day 6 – Testing… 1 – 2 – 3, July 29, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Saturday, 29 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o 45’N, 157o 56’W. Ship speed: 1.3 knots. Air temperature: 27.8oC. Sea temperature: 27.0oC. Humidity: 72%.Wind speed: 14 knots. Wind direction: 107 degrees. Sky cover: Few.

Science and Technology Log:

The most difficult part of Thursday’s buoy deployment was making sure the anchor was dropped on target. Throughout the day, shifting winds and currents kept pushing the ship away from the anchor’s target location. There was constant communication between the ship’s crew and the science team, correcting for this, but while everyone thought we were close when the anchor was dropped, nobody knew for sure until the anchor’s actual location had been surveyed.

blog.4.Day6.image1

Triangulation of the WHOTS-14 buoy’s anchor location. Look at how close the ‘Anchor at Depth’ location is to the ‘Target’ location — only 177.7 meters apart! Also notice that all three circles intersect at one point, meaning that the triangulated location of the anchor is quite accurate.

To survey the anchor site, the ship “pinged” (sent a signal to) the acoustic releases on the buoy’s mooring line from three separate locations around the area where the anchor was dropped. This determines the distance from the ship to the anchor — or, more accurately, the distance from the ship to the acoustic releases. When all three distances are plotted (see the map above), the exact location of the buoy’s anchor can be determined. Success! The buoy’s anchor is 177.7 meters away from the target location — closer to the intended target than any other WHOTS deployment has gotten.


After deployment on Thursday, and all day Friday, the Hi’ialakai stayed “on station” about a quarter of a nautical mile downwind of the WHOTS-14 buoy, in order to verify that the instruments on the buoy were making accurate measurements. Because both meteorological and oceanographic measurements are being made, the buoy’s data must be verified by two different methods.

Weather data from the buoy (air temperature, relative humidity, wind speed, etc.) is verified using measurements from the Hi’ialakai’s own weather station and a separate set of instruments from NOAA’s Environmental Sciences Research Laboratory. This process is relatively simple, only requiring a few quick mouse clicks (to download the data), a flashdrive (to transfer the data), and a “please” and “thank you”.

blog.4.Day6.image2

July 28, 2017, 5:58PM HAST. Preparing the rosette for a CDT cast. Notice that the grey sampling bottles are open. If you look closely, you can see clear plastic “wire” running from the top of the sampling bottles to the center of the rosette. The wires are fastened on hooks which, when triggered by the computer in the lab, flip up, releasing the wire and closing the sampling bottle.

Salinity, temperature and depth measurements (from the MicroCats on the mooring line), on the other hand, are much more difficult to verify. In order to get the necessary “in situ” oceanographic data (from measurements made close to the buoy), the water must be sampled directly. This is done buy doing something called a CTD cast — in this case, a specific type called a yo-yo. 

The contraption in the picture to the left is called a rosette. It consists of a PCV pipe frame, several grey sampling bottles around the outside of the frame, and multiple sets of instruments in the center (one primary and one backup) for each measurement being made.

blog.4.Day6.image3

July 28, 2017, 6:21PM HAST. On station at WHOTS-14, about halfway through a CDT cast (which typically take an hour). The cable that raises and lowers the rosette is running through the pulley in the upper right hand corner of the photo. The buoy is just visible in the distance, under the yellow arm.

The rosette is hooked to a stainless steel cable, hoisted over the side of the ship, and lowered into the water. Cable is cast (run out) until the rosette reaches a certain depth — which can be anything, really, depending on what measurements need to be made. For most of the verification measurements, this depth has been 250 meters. Then, the rosette is hauled up to the surface. And lowered back down. And raised up to the surface. And lowered back down. It’s easy to see why it’s called a yo-yo! (CDT casts that go deeper — thousands of meters instead of hundreds — only go down and up once.)

For the verification process, the rosette is raised and lowered five times, with the instruments continuously measuring temperature, salinity and depth. On the final trip back to the surface, the sampling bottles are closed remotely, one at a time, at specific depths, by a computer in the ship’s lab. (The sampling depths are determined during the cast, by identifying points of interest in the data. Typically, water is sampled at the lowest point of the cast and five meters below the surface, as well as where the salinity and oxygen content of the water is at its lowest.) Then, the rosette is hauled back on board, and water from the sampling bottles is emptied into smaller glass bottles, to be taken back to shore and more closely analyzed.

On this research cruise, the yo-yos are being done by scientists and student researchers from the University of Hawaii, who routinely work at the ALOHA site (where the WHOTS buoys are anchored). The yoyos are done at regular intervals throughout the day, with the first cast beginning at about 6AM HAST and the final one wrapping up at about midnight.

blog.4.Day6.image4

July 29, 2017, 9:43AM HAST. On station at WHOTS-13. One CDT cast has already been completed; another is scheduled to begin in about 15 minutes.

After the final yo-yo was complete at the WHOTS-14 buoy early Saturday morning, the Hi’ialakai traveled to the WHOTS-13 buoy. Today and tomorrow (Sunday), more in situ meteorological and oceanographic verification measurements will be made at the WHOTS-13 site. All of this — the meteorological measurements, the yo-yos, the days rocking back and forth on the ocean swell — must happen in order to make sure that the data being recorded is consistent from one buoy to the next. If this is the case, then it’s a good bet that any trends or changes in the data are real — caused by the environmental conditions — rather than differences in the instruments themselves.

Personal Log:

blog.4.Day6.image5

The Hi’ialakai’s dry lab. Everyone is wearing either a sweatshirt or a jacket… are we sure this is Hawaii?

Most of the science team’s time is divided between the Hi’ialakai’s deck and the labs (there are two; one wet, and one dry).  The wet lab contains stainless steel sinks, countertops, and an industrial freezer; on research cruises that focus on marine biology, samples can be stored there. Since the only samples being collected on this cruise are water, which don’t need to be frozen, the freezer was turned off before we left port, and turned into additional storage space.  The dry lab (shown in the picture above) is essentially open office space, in use nearly 24 hours a day. The labs, like most living areas on the ship, are quite well air conditioned. It may be hot and humid outside, but inside, hoodies and hot coffee are both at a premium!

Did You Know?

The acronym “CTD” stands for conductivity, temperature and depth. But the MicroCats on the buoy mooring lines and the CTD casts are supposed to measure salinity, temperature and depth… so where does conductivity come in? It turns out that the salinity of the water can’t be measured directly — but conductivity of the water can.

When salt is dissolved into water, it breaks into ions, which have positive and negative charges. In order to determine salinity, an instrument measuring conductivity will pass a small electrical current between two electrodes (conductors), and the voltage on either side of the electrodes is measured. Ions facilitate the flow of the electrical current through the water. Therefore conductivity, with the temperature of the water taken into account, can be used to determine the salinity.

Nichia Huxtable: Life on board, you won’t be bored!, May 6, 2016

NOAA Teacher at Sea

Nichia Huxtable

Aboard NOAA Ship Bell M. Shimada

April 28-May 9, 2016

Mission: Mapping CINMS                                                                                                           Geographical area of cruise: Channel Islands, California                                                 Date: May 6, 2016

Weather Data from the Bridge: 2-3 ft swells; storm clouds over land, clear at sea

Science and Technology Log

Dismantling the REMUS 600 AUV for its trip home

Goodbye, AUV. Until we meet again.

The AUV is no longer my favorite thing on Shimada. As I write this, it is being dismantled and packed into shipping boxes for its return trip home to Maryland. To keep a long, sad story short, the AUV had a big electrical problem that was fixed, but when the scientists turned it on for a test run, a tiny $6 lithium battery broke open and oozed all over the motherboard. Game over for the AUV. So now my favorite thing on Shimada is the ice cream.

Personal Log

Enough about science and technology for now. I bet you’re really wondering what it’s like day in and day out on board Shimada. Well, my intrepid future NOAA crew members, this blog post is for you! We’ll start what’s most important: the food.

Breakfast, lunch, and dinner are all served at the same time everyday. The food is prepared in the galley and everyone eats in the mess. Beverages, cereal, yogurt, fruit, snacks, the salad bar, and ice cream are available 24 hours a day, so there is no need to ever be hungry. Not all ships are the same, however. In one of the many anecdotes told to me by master storyteller Fabio Campanella, an Italian research ship he once worked on served fresh bread and authentic pizza everyday…sign me up for that cruise!

DSC_0470[1]

Unlike the AUV, the ice cream freezer never disappoints

Next, you’re probably wondering where everyone sleeps. Sleeping quarters are called staterooms and most commonly sleep two people, although larger staterooms might sleep four. Each stateroom has its own television and a bathroom, which is called a head. As you can see in the photo, the bunks have these neat curtains that keep out the light in case your roommate needs to get up at 1 a.m. for the night-shift.

"Working

Working in the Acoustics Lab on Shimada

The Shimada has lots and lots of work and storage rooms, each serving a different function. There is a wet lab, dry lab, chem lab, and acoustics lab for doing SCIENCE (woohoo!), as well as a tech room for the computer specialist (called an ET), storage lockers for paint, cleaning supplies, and linens, plus other rooms full of gear and machinery. There’s also a laundry room, so you can take care of your stinky socks before your roommate starts to complain!

Trash on board is separated into recyclable bottles and cans, food waste, and trash. The food waste is ground up into tiny pieces and dumped in the ocean outside of the sanctuary, while the trash is INCINERATED! That’s right, it’s set on fire…a really, really, hot fire. Ash from the incinerator is disposed of onshore.

"<em

Shimada‘s incinerator

Another important part of the ship is the bridge. Operations occur 24 hours a day, so the ship never sleeps. Officers on the bridge must know what is happening on the ship, what the weather and traffic is like around the ship, and they must make sure to properly pass down this information between watches. The bridge has radar to spot obstacles and other ships, a radio to communicate with other ships, and a radio to communicate with the crew and scientists.

"Looking

Looking for wildlife on the NOAA Ship Bell M. Shimada

"Bride

Bridge on the Shimada

Last, but not least, is the lounge that comes complete with surround-sound, a big screen TV, super-comfy recliners, and about 700 movies, including the newest of the new releases.

"Lounge

Wish this was my living room!

Did you know? 

A female elephant seal was once recorded diving underwater for two continuous hours (they usually stay underwater for 1/2 hour); the deepest recorded dive was by a male and was 5,141ft.

Stay tuned for the next post: Multibeam? You Mean Multi-AWESOME!

Mary Murrian: Working at Sea on the Oscar Dyson! July 11, 2014

NOAA Teacher at Sea

Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4 – 22, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea North of Dutch Harbor

Date: Friday, July 11, 2014

Weather Data fro the Bridge:

Wind Speed: 17.02 kt

Air Temperature: 8.9 degrees Celsius

Barometric Pressure: 1004.3

Latitude: 5903.6745 N

Longitude: 17220..4880 W

noaa iphone pictures july 5 and 6 2014 1109

I’m sorting the jellyfish (Chrysaora Melanaster) from the pollock.

Science log:

I participated in my first live trawl, catch, sort and data collection survey. In my last blog, I talked about how we located and caught the pollock.  This blog will talk about what happens when the fish are unloaded into the wet lab and processed.  A wet lab is a science lab that is capable of handling excess water and houses the equipment need to to process the catch.

Fresh catch proceeding down the conveyor belt. Time to sort.

Fresh catch proceeding down the conveyor belt. Time to sort.

Once the crew off loads the fish, from the net to the short conveyor belt, into the wet lab or sometimes called the slime lab, (it really lives up to its name), I help the scientists sort the pollock from the other species caught in the net. A small sample of marine life, that is not a pollock, gets sorted, weighed and measured for data collection purposes. They are not the main target of our survey, however, they are interesting to see. Large quantities of jellyfish usually make the mix, but I have seen a variety of other animals, such as crabs, starfishes, clams, salmon, flatfishes, Pacific herring, Atka mackerel, and Yellow Irish Lord. The main character, the pollock, are weighed in batches and then placed on a small table to be sexed. In order to sex the fish, I had to cut across the side of the fish with a small scalpel. Next, I inserted my fingers into their guts and pulled out either the gonads (male) or ovaries (female). The gonads look like stringy romaine noodles and the ovaries look like whitish-pinkish oval sacs. Female pollock are placed in a bin labeled sheila’s and the male pollocks are placed in a bin labeled blokes. Sheila’s and blokes are Australian terms for female and male. Cute.

A female pollock full of eggs

A female pollock full of eggs

Sexing the pollock.  This one is a female.  You can see it oval shaped ovaries.

Sexing the pollock. This one is a female. You can see it oval shaped ovaries.

Once sexed and sorted, the fish are measured for their length. Two very ingenious scientists (one who is working on my trip, Kresimir Williams, and Rick Towler), invented an electronic measuring device. The device allows us to measure quickly and accurately while at the same time automatically recording the measurement on the computer. It looks like a cutting board with a ruler embedded in the center. Of course, all measurements used are metric, the primary form of measurement for scientists across the world.  I to place the fish’s mouth at the beginning of the board and line the back tail of the fish along the ruler. Next, a special tool (a stylus) embedded with a magnet (it’s small, white,and the front looks like a plastic arrowhead) is placed arrow side forward on the end of the tail fin. Once the tool touches the board (it makes a noise which sounds similar to “ta-da” to let you know it captured its measurement), it automatically records the length in the data program, on the computer. I wish I had one for my classroom. Oh, the fun my students could have measuring!  The device streamlines the data collecting process allowing scientists more precise data collection and more time for other research.

I’m measuring the pollock on the electronic scale called the Ichthy Stick

That was a lot to absorb, but there is more. If you tend to get squeamish, you might want to scroll past the next paragraph.

Although, I did not work hands on with the next data collection, I closely observed and took pictures. I will try it before my trip ends. The next step is the aging process. Aging a pollock is a vital part of determining the health and welfare of the species. Aging a pollock is similar to the method of aging a tree.  The Russian scientist, Dr. Mikhail Stepanenko, who has been surveying pollock for over twenty years and is part of the NOAA science team, has it down to a science. First, he cuts the pollock’s head off exposing the ear bones called Otoliths (Oto–means ear; liths–means stone).  He removes the tiny ear bones (about the size and shape of a piece of a navy bean), rinses them, and places them in a small vial labeled with a serial-numbered bar code. The bar code gets scanned and the code is assigned to the specific fish in the computer data base, which also includes their sex, weight and length. Once back at the lab, located in Seattle, Washington, the otoliths can be observed under a microscope and aged based on the number of rings they have: pollock otoliths have one ring for every year of age.  Only twenty fish from each trawl have their otoliths extracted.

Looking inside the pollock.  The little white bones are the ear bones or otoliths.

Looking inside the pollock. The little white bones are the ear bones or otoliths.

Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.

Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.

Mikhail Stepanenko or we call him Meesha

Mikhail Stepanenko or we call him Meesha

Once all data are collected, there is still more work to be completed. All of the fish that we sampled, were thrown back into the ocean for the sea birds and other carnivores (meat-eaters) to enjoy. Who wouldn’t enjoy a free meal? Then the equipment and work space must be sprayed down to get rid of all the fish particles (slime). It’s important to clean up after yourself to ensure a safe and healthy environment for everyone. Besides, the smell would be horrible.  I also had to spray myself down, it gets very messy.  I had fish guts and jellyfish slime all over my lab gear (orange outer wear provided by NOAA). Unfortunately, the guts occasionally get splattered on my face and hair!  Yuck, talking about fish face.  Thankfully, a bathroom is nearby, where I can get cleaned up.

Starfish that fell from the net when being towed back on board.

Starfish that fell from the net when being towed back on board.

Part of the snail family

Whelks (snails) and anemones

When all is clean, the scientists can upload and analyze the data. They will compare the data to past and current surveys. The data is a vital step to determining the health and abundance of pollock in our ecosystem. I am amazed at all the science, math, engineering, and technology that goes on during a fish survey. It takes many people and numerous skills to make the survey successful.

Brittle Sea Star

This is one of many experiences, I have had trawling and collecting data at sea aboard the Oscar Dyson.  The process will repeat several times over my three week trip.  As part of the science crew, I am responsible to help with all trawls during my shift.  I could have multiple experiences in one day.  I cannot wait!

Personal Log:

What’s it like to be on a NOAA ship out at sea? 

The deck hands, NOAA Corps, and the people I work closest with, the science team, are wonderful and welcoming. I’m super excited and I have to restrain myself from overdoing my questions. They have a job to do!

The weather is not what I expected.  It is usually foggy, overcast, and in the high 40’s and low 50’s.  Once in a while the sun tries to peek out through the clouds. The Bering Sea has been relatively calm. The heaviest article of clothing I wear is a sweatshirt.  It is still early, anything can happen.

On my first day at sea, we had a fire drill and an evacuation drill. Thankfully, I passed.  With help from Carwyn, I practiced donning (putting on) my survival suit.  I displayed a picture of me wearing it in my last blog.  It makes for a hilarious picture!   All kidding aside, NOAA takes safety seriously. The survival suit will keep me alive for several days in case of an evacuation in the middle of sea until someone can rescue me. It will protect me from the elements like water temperature, heat from sun, and it has a flashlight attached. Hopefully, I will not have to go through the experience of needing the suit; but I feel safer knowing it is available.

Carwyn Hammond

Besides the people, the best amenity aboard the Oscar Dyson is the food. Food is available around the clock. That is important because we work 12 hour shifts from 4:00 to 4:00. That means I work the morning 12-hour shift and my roommate, Emily Collins, works the night 12-hour shift. Hungry workers are grumpy workers. For breakfast, you can get your eggs cooked to order and choose from a variety of traditional breakfast food: French toast, grits, cereal, bacon, sausage, fresh fruit, etc…Hot meal options are served for lunch and dinner including a delicious dessert . Of course, ice cream is available always!  I hope I can at least maintain my weight while aboard.

The Galley

The Galley

Food Bar

Food Bar

If I get the urge, there is workout equipment including cardio machines and weights available to use. Other entertainment includes movies and playing games with the other crew members.  The Oscar Dyson also has a store where I can purchase sweatshirts, sweatpants, t-shirts, hats, and other miscellaneous souvenirs advertising the name of the ship. Who would have thought you could shop aboard a NOAA fishing vessel?  I am definitely going shopping.  One of my favorite things to do aboard the ship is to watch for marine life on the bridge, it is peaceful and relaxing.  For anyone that does not know, the bridge is where the Chief Commanding Officer, Chief Executive Officer, and crew navigate the ship.  It is the highest point in which to stand and watch safely out at sea and in my opinion, it has the best view on board.

Did you know?

Did you know when a marine animal such as a seal is close by during a trawl, the trawl process stops and is rerouted?   

The crew is very respectful of sea life and endeavors to complete their mission with the least negative impact on wildlife.  Also, while the ship is on its regular course, the officers on the bridge, sometimes with a deck hand who is available, keep an eye out for seals, sea lions, whales, and sharks, in order to maneuver around them and keep them safe.

NOAA Corps LT Greg Schweitzer, Executive Officer or XO

NOAA Corps LT Greg Schweitzer, Executive Officer or XO

NOAA Corps Ensign Ben VanDine, Safety Officer

NOAA Corps Ensign Ben VanDine, Safety Officer

 

Did you know you can track the Oscar Dyson and its current location?

Check out this link: http://shiptracker.noaa.gov/

Make sure you find the Bering Sea and click on the yellow dot; it will tell you our coordinates!

 

Meet the Scientist:  Emily Collins

Emily holding a Yellow Irish Lord

Title: Fisheries Observer (4 years)

Education:  Bachelor’s Degree in Biology, Marine Science, Boston University

Job Responsibilities: As an observer, Emily works aboard numerous fishing vessels, including the Oscar Dyson.  She collects data to find out what is being caught so that we can send the information to NMFS (National Marine Fisheries Services), a division of NOAA.  They use the data she collects to complete a stock assessment about what type of fish are caught and how much.  She is helping, as part of the science team, survey the pollock for all three legs of the survey.  When I get back to port, she has a couple of days to rest up in Dutch Harbor and then she will complete the last leg of the trip.

Living Quarters:  As a full-time observer, her home is wherever the next assignment is located, mostly on the Bering Sea and the Gulf of Alaska.  She is from Dundee, New York, where her family currently resides.

What is cool about her work?

She loves working at sea  and working with the marine life.  She especially loves it when the nets catch a species of fish she has not seen before.  Getting to know new people and traveling is also a plus.

The weirdest and definitely not her favorite experience, while working on a smaller fisheries boats, was having to use a bucket for the toilet.

Emily had a wonderful opportunity her senior year in high school, the chance to go on a National Geographic Expedition with her mom and then later while in college while taking classes abroad. She went to the Galapagos Islands and Ecuador to study marine biology. These experiences and the fact that her mother is a veterinarian exposed Emily to the love of animals the ocean, and her career choice.

 

Nate is holding a snow crab.

A flat fish

Rock Sole (a type of flatfish)

 

Lots of crabs!

Lots of crabs!

Sorting through the bottom trawl

Sorting through the bottom trawl

Korean Horsehair Crab

Kresimir Williams holding a crab

Kresimir Williams holding a crab

Alex De Robertis working in the wet lab.

Alex De Robertis working in the wet lab.

Carol Schnaiter: Our First Day of Work, June 10, 2014

NOAA Teacher at Sea

Carol Schnaiter

Aboard NOAA Ship Oregon II

June 6 – 21, 2014

Mission: SEAMAP Summer Groundfish Survey

Gulf of Mexico

June 10-11, 2014

South wind  10 to 15 knots

Seas (waves) 3 to 4 feet

Partly cloudy

My home away from home for a few weeks!

My home away from home for a few weeks!

Science and Technology Log

On June 9th we arrived at our first station. There are over 120 stations on this survey in the Gulf of Mexico. Unfortunately I was not able to participate in the first station. (More on that later)

When we arrive at the station the ship’s crew is very busy. The deck crew put trawling nets into the water and down to the bottom to catch fish, shrimp, and other organisms. Once these nets are back at the surface the crew uses cranes to lift them to the deck where the scientists can work on the catch. When the nets are in the water the ship must slow down, so the nets do not rip.

After the nets are raised the organisms collected in the nets are emptied into buckets. The scientists then weigh the buckets on a scale. To make sure they are only weighing the organisms, they first weigh the bucket when it is empty.

Weighing the catch

The basket must be weighed before we sort it.

Next everything goes into the “wet” lab. It is called a wet lab because this area has water available and it is where the organisms are poured out on to a long conveyor belt, sorted, and washed off.

Catch on the conveyor belt

Everything is poured onto the conveyor belt to be sorted.

First, everything is sorted by species. Then everything is counted, measured, weighed, and sometimes the gender and maturity are calculated. All of this is recorded into computers.

Some of the species are very tiny and others are large, but everything is counted.  Many of them look alike so the scientists need to be careful when sorting everything.

The scientists on the Oregon II know many of the names of what they catch, but they also use books, charts, and the computer to look up information to make sure.

Sometimes someone in the lab back on shore may be doing research on a certain species and if that species is found it will be tagged, bagged and sent back to the lab.

The CTD’s and bongo net tows are conducted from the forward well deck (check the first blog if you forgot what those do).

The bongo nets are used to collect ichthyoplankton and so the mesh on these nets is very tight, sometimes as small as 0.333 millimeters. These samples are placed into jars and will be examined back in the lab on land later.

Material from bongo net

This is what we collect using the bongo nets. Photo by Chrissy Stepongzi

By time everything is finished, it is time for the next station and everything starts over again.

The work that the Oregon II does is very important. This survey has been conducted twice a year since the early 1970’s and the information collected can show the scientists what is happening under the surface of the water.

The survey helps to monitor the population and health of everything, plus shows any interactions with the environment that may be happening.

Personal Log:

You may have noticed that I mentioned I could not participate in most of the first day’s work, I was seasick and I spent a lot of time in my stateroom.

State Room

State Room

Thank goodness for the medics and Chief Steward on the ship. Walter, the Chief Steward, sliced up fresh ginger for me to suck on, while Officer Rachel Pryor gave me sugar coated ginger to chew on.

The two trained medics, Lead Fisherman Chris and Fisherman James, both were great help and were all very concerned. Kim, the lead scientist, and my bunk mate, Chrissy, checked in on me throughout the night. I am so grateful for everyone that helped. I am now drinking a lot of water and Gatorade to stay hydrated.

As soon as I felt better I was able to help in the wet lab by sorting, counting, weighing, and measuring organisms that were pulled up. We found some really cool things, like this Atlantic Sharpnose shark that Robin Gropp is holding.

Atlantic Sharpnose Shark

Atlantic Sharpnose Shark

The Atlantic Sharpnose Shark can grow to be 3.9 feet long and can live 10-12 years. It is a relatively small shark, compared to others.

The Common Terns (seabirds) follow the ship when we are trawling hoping to find a free meal. They sit on the ship’s rig that holds the nets waiting for food. The Common Tern is the most widespread tern and can be found by many large bodies of water. They are mostly white with a little black.

Common Terns waiting for dinner!

Common Terns waiting for dinner!

Taniya Wallace and Andre Debose are the two scientists on the night shift (midnight to noon) and they are extremely knowledgeable and explain everything to me. I am learning a lot of new words and I am even getting better at telling one fish from another.

Andre and Taniya holding the stingray.

Andre and Taniya holding the stingray.

The Southern Stingray that Andre is holding is just one of the amazing creatures we caught. We also brought up a Blackedge moray, a Texas Clearnose Skate, a sea hare, red snapper, jellyfish, pufferfish, sea horse, and many more. I can’t wait to share all of my photos next school year!

He may not look dangerous, but he could really hurt you!

He may not look dangerous, but he could really hurt you!

I am working the midnight to noon shift and it is strange to “wake-up” at midnight and eat supper (the cooks save a plate if you ask) and then go to work. Again, the food is wonderful. Last night I had the best prime rib and mashed potatoes!

Everyone on the ship is so helpful and friendly. I enjoy listening to where everyone is from and why they decided to make the Oregon II their home.

On the Oregon II

Here I am enjoying the beautiful view from the bow. Photo by Rebecca Rosado

Suzanne Acord: Cetaceans Are Among Us! March 26, 2014

NOAA Teacher at Sea
Suzanne Acord
Aboard NOAA Ship Oscar Elton Sette
March 17 – 28, 2014

Mission: Kona Area Integrated Ecosystems Assessment Project
Geographical area of cruise: Hawaiian Islands
Date: March 26, 2014

Weather Data from the Bridge at 13:00
Wind: 6 knots
Visibility: 10+ nautical miles
Weather: Hazy
Depth in fathoms: 2,473
Depth in feet: 14,838
Temperature: 26.0˚ Celsius

Science and Technology Log

Cetaceans Are Among Us!

Our Marine Mammal Observation (MMO) crew was in for a treat today. Just after lunch, we spot a pod of sperm whales. We spotted them off the port side, off the starboard side, and eventually off the bow of the Sette. We frequently see Humpback whales in Hawaii, but sperm whales often evade us. Sperm whales can dive down to extreme depths and they feed on squid. These same squid feed on the micronekton that we are observing during the cruise. Sperm whales are the largest of the toothed whales. Their enormous size is obvious when they slap the ocean with their giant tails. Another unique characteristic of the sperm whale is their blow hole, which sits to the left rather than on top of the head. This feature allows our MMO team to easily identify them.

Our MMO lead, Ali Bayless, determines that we should take the small boat out for a closer examination of the pod. Within minutes, the small boat and three scientists are in the water following the pod. We think that a calf (baby) is accompanying two of the adult whales. Throughout the next few hours, our small boat is in constant contact with our flying bridge, bridge, and acoustics team to determine the location of the whales. We keep a safe distance from all of the whales, but especially the calf. While on the small boat, MMO scientists also identify spotted and spinner dolphins. We are essentially surrounded by cetaceans. The small boat is just one of the many tools we use to determine what inhabits the ocean. We also use an EK60 sonar, our Remotely Operated Vehicle, our hydrophone, and sonar buoys.

Our acoustics lead, Adrienne Copeland, is especially excited about our sperm whale sightings. Adrienne is a graduate student in zoology at the University of Hawaii. She earned her Bachelor’s of Science in biology with a minor in math and a certificate in mathematical biology from Washington State University. She has served on the Sette four times and is currently serving her third stint as acoustics lead. This is a testament to her expertise and the respect she has earned within the field.

Adrienne Copeland monitors our acoustics station during our 2014 IEA cruise.

Adrienne Copeland monitors our acoustics station during our 2014 IEA cruise.

Adrienne Copeland studies the foraging behavior of deep diving odontocetes (toothed whales). She shares that some deep diving odontocetes have been known to dive more than 1000 meters. Short finned pilot whales have been observed diving 600-800 meters during the day. During night dives we know they forage at shallower depths on squid and fish. How do we know how deep these mammals dive? Tags placed on these mammals send depth data to scientists. How do we know what marine mammals eat? Scientists are able to examine the stomach contents of mammals who are stranded. Interestingly, scientists know that sperm whales feed on histioteuthis (a type of squid) in the Gulf of Mexico. A 2014 IEA trawl operation brought in one of these squid, which the sperm whales may be targeting for food.

Notice the distinct blue and gray lines toward the top of the screen. These are the think layers of micronekton that migrated up at sunset. The number at the top of the screen expresses the depth to the sea floor.

Notice the distinct blue and gray lines toward the top of the screen. These are the thick layers of micronekton that migrated up at sunset. The number at the top of the screen expresses the depth to the sea floor.

Examine the acoustics screen to the left. Can you identify the gray and blue lines toward the top of the screen? These scattering layers of micronekton ascend and descend depending on the sun. Adrienne is interested in learning how these scattering layers change during whale foraging. Our EK60, Remotely Operated Vehicle, and highly prescribed trawling all allow us to gain a better understanding of the contents of the scattering layers. A greater understanding of whale and micronekton behavior has the potential to lead to more effective conservation practices. All marine mammals are currently protected under the Marine Mammal Protection Act. Sperm Whales are protected under the Endangered Species Act.

Interesting fact from Adrienne: Historical scientists could indeed see the scattering layers on their sonar, but they thought the layers were the ocean floor. Now we know they represent the layers of micronekton, but old habits die hard, so the science community sometimes refers to them as false bottoms.

Live Feed at 543 Meters! 

The ROV prior to deployment.

The ROV prior to deployment.

Our Remotely Operated Vehicle (ROV) deployment is a success! We deploy the ROV thanks to an effective team of crew members, scientists, and NOAA Corps officers working together. ROV deployment takes place on the port side of the ship. We take our ROV down to approximately 543 meters. We are able to survey with the ROV for a solid five hours. A plethora of team members stop by the eLab to “ooh” and “ahh” over the live feed from the ROV. Excitingly, the ROV is deployed prior to the vertical migration of the micronekton and during the early stages of the ascent. The timing is impeccable because our acoustics team is very curious to know which animals contribute to the thick blue and gray lines on our acoustics screens during the migration. In the ROV live feed, the micronekton are certainly visible. However, because the animals are so small, they almost look like snow falling in front of the ROV camera. Periodically, we can identify squid, larger fish, and jellies.

Did you Know? 

Kevin Lewand of the Monterey Bay Aquarium constructs a hyperbaric chamber for marine life on board the Sette.

Kevin Lewand of the Monterey Bay Aquarium constructs a hyperbaric chamber for marine life.

Mini hyperbaric chambers can be used to save fish who are brought to the surface from deep depths. These chambers are often used to assist humans who scuba dive at depths too deep for humans or who do not effectively depressurize when returning to the surface after SCUBA diving. The pressure of the deep water can be life threatening for humans. Too much pressure or too little pressure in the water can be life threatening for marine life, too. Marine life collector, Kevin Lewand, constructed a marine life hyperbaric chamber aboard the Sette. He learned this skill from his mentor. Be sure to say Aloha to him when you visit the Monterey Bay Aquarium in Monterey, California.

 

 

 

 

Personal Log

Daily Life Aboard the Sette

There is never a dull moment on the ship. Tonight we have ROV operations, squid jigging, acoustics monitoring, and a CTD deployment. We of course can’t forget the fact that our bridge officers are constantly ensuring we are en route to our next location. Tonight’s science operations will most likely end around 05:00 (tomorrow). Crew members work 24/7 and are usually willing to share their expertise or a good story. If they are busy completing a task, they always offer to chat at another time. I find that the more I learn about the Sette, the more I yearn to know. The end of the cruise is just two days away. I am surprised by how quickly my time aboard the ship has passed. I look forward to sharing my new knowledge and amazing experiences with my students and colleagues. I have a strong feeling that my students will want to ask as many questions as I have asked the Sette crew. Aloha and mahalo to the Sette.

 

Sarah Boehm: Plankton, July 6, 2013

NOAA Teacher at Sea
Sarah Boehm
Aboard NOAA Ship Oregon II
June 23 – July 7, 2013

Mission: Summer Groundfish Survey
Geographic area of cruise: Gulf of Mexico
Date: July 6, 2013

Weather at 21:21
Air temperature: 27°C (81°F)
Barometer: 1016 mb
Humidity: 82 %
Wind speed: 5 knots
Water temp: 26°C
Latitude: 30.13° N
Longitude: 87.96°  W

Science and Technology Log

cleaning up

The daily ritual of cleaning up the wet lab

We are steaming our way to port now after 14 days at sea. We will pull in to Pascagoula, Mississippi tomorrow morning. Research has finished and our last task today was to clean up the wet lab. Even though we haven’t had fish in the wet lab in days, a slight fishy smell lingers there and on the stern deck where the nets are stored. My nose must be fairly used to it by this point though, because it was far more noticeable the first days on the boat. A few students asked if the boat was smelly – I think at this point my shoes are the smelliest things on board, despite my efforts to wash off the fish slime and salty crust.

We finished all our trawling stations a few days ago and switched to plankton stations. So instead of pulling up big fish, we used smaller nets to pull up the tiny organisms that float about on ocean currents. We sample with two types of nets: the Neuston net skims the surface of the water and the bongo nets have a weight that pulls them down into deep water.

Neuston Net

The Neuston net gathering plankton at the surface

bongo nets

The bongo nets being lowered into the water.

jar of plankton

This batch of plankton has a lot of tiny shrimp and a few little fish

A lot of plankton is microscopic algae and protists that are the base of the ocean food web. This study is more interested in ichthyoplankton – baby fish. Most fish and marine invertebrates actually start life as plankton, floating about until they are big and strong enough to swim against the current. We collect plankton in the nets, transfer them over to glass jars and preserve them in alcohol. Back in the lab scientists will use microscopes to identify and study the little guys.

plankton

Tiny planktonic critters

sargassum

Sargassum floating by

Sometimes the Neuston goes through sargassum, a free floating seaweed. The sargassum sometimes floats as small clumps, and sometimes vast mats cover the water. I watched a few pieces float by with fish seeking protection by carefully positioning themselves directly underneath the seaweed. The sargassum is great refuge for little critters and we have to pick through it carefully to pull out all the plankton, many of which are well camouflaged in the tangle of orange.

sargassum critters

Tiny fish living in the protection of floating sargassum. Notice how well they camouflage with the orange/brown of the sargassum.

Personal Log

The folks on board the Oregon II are knowledgeable, professional, and a whole lot of fun. I’d love to introduce you to everyone – but I’m out of time, so let’s go with the day watch science team.

Day watch

The science day watch team – Mara, Joey, Andre, Sarah, and Caitlin

Andre and the sting ray

Andre measures a sting ray.

Andre, our watch leader, is a biologist with the groundfish survey at the NOAA Pascagoula lab. He can identify and give the scientific names for an impressive amount of fish and invertebrates we pull up in the nets. Joey is also a biologist at the labs and while he works mainly with reef fish, he also knows a lot about everything from plankton to sharks. Andre and Joey are also good teachers who helped us learn those scientific names through lots of jokes and nicknames (Celine Dion, Tom Hanks, and Burt from Sesame Street each are now associated with a specific species of fish in my mind, and Mel Gibson is a lovely crab with purple legs).

Mara and Caitlin

Mara and Caitlin filling a jar with plankton

Also on our watch are two interns. Caitlin graduates at the end of the summer from University of Texas at Corpus Christi and is on the groundfish survey as part of her summer internship with the Center for Coastal Studies.  As part of her internship she dissected a few larger fish to examine their stomach contents, determining if that partially digested thing was a squid, crab, fish, etc.  The other member of our team is Mara Castro, from Puerto Rico where she is a graduate student at the University of Puerto Rico in San Juan working on her Environmental Health Masters degree. She is doing an internship at the Pascagoula labs this summer and came out for this leg of the groundfish survey. Her favorite part of being on the boat is working with the fish, especially trying to identify them. She also loves the unusual fish we pull up, from transparent plankton to large shark suckers.

I have loved being out at sea for two weeks, but sometimes I felt a little trapped in such a small space. Then I would go up to the top deck, the flying bridge, and enjoy the view and the wind. It is a great place to watch the water and clouds and look for dolphins and birds. On a regular day on land I would move my body a lot more through normal activities like walking around the grocery store or climbing the stairs to the 3rd floor office at school. When I found myself with pent up energy I’d drag out the rowing machine or yoga mat that are stored up on the flying bridge to get some exercise. I have mixed feelings about reaching port tomorrow. I am ready to be on land again, but will miss all the people I have gotten to know and the beauty of the sea.

CDCPS Science Students

Where do you think the bongo nets got their name?

What does ” ichthyo” mean? Two words that use this root are ichthyoplankton and ichthyologist.