Joan Le, TowCam & Crew, August 13, 2014

NOAA Teacher at Sea
Joanie Le
Aboard NOAA Ship Henry B. Bigelow
August 5 – 16, 2014

Mission: Deep-Sea Coral Research
Geographic area of the cruise: Off the coast of Fenwick Island, Maryland
Date: August 13, 2014

Weather information from the Bridge
Air Temperature: 24°
Wind Direction: 294
Weather Conditions: Mostly Sunny
Latitude: 38° 33.1870′
Longitude: 73° 10.9734′

Science and Technology Log

Week 2 started for me as it has for the past few days, at midnight. The camera was already on the seafloor taking pictures of Wilmington Canyon off the coast of Ocean City, Maryland when I arrived. It was the longest dive we’ve completed, spanning almost 10 hours of tow time. TowCam took us through some interesting terrain, and I’m excited to take a look at the new images she’s caught for us.

Dr. Lizet Christiansen prepares TowCam for its first dive.
Dr. Lizet Christiansen prepares TowCam for its first dive.

In fact, I’ve spent quite a bit of time with TowCam these past few days. I’ve grown curious about where she’s been, where she’s going, and what she does when she’s not here on the Bigelow. Turns out, TowCam is well-travelled, and far from a one-trick pony.

TowCam’s Cam, Travels, and Talents

TowCam's camera is protected at depth by its sturdy casing.
TowCam’s camera is protected at depth by its sturdy casing.

This Nikon D7000 is a high-end off-the-shelf DSLR camera that has been modified to operate remotely. It can dive to depths of 6,000 meters thanks to its titanium casing made by Ocean Imaging Systems, which has a high strength-to-weight ratio. It streams low resolution images in real-time and can hold over 5,000 high resolution (16 MegaPixel) images to be retrieved after each tow.

TowCam has worked all over the world, at depths ranging from shallow coastal waters to 6,000 meters. Getting there requires a lot of planning and some interesting travel plans. TowCam arrived ready for deployment on the Bigelow by way of a flatbed truck from nearby Woods Hole, Massachusetts. But she is also no stranger to long journeys on freighter ships across the sea.

Besides taking beautiful pictures of deep-sea coral, TowCam can also “slurp” biological samples, take CTD data (salinity/conductivity, temperature, and depth), dissolved oxygen, turbidity (visibility), and collect water samples.

Click on each of the images below to learn more about each component of TowCam.

TowCam is owned by the Multidisciplinary Instrumentation in Support of Oceanography (MISO) which is a facility of Woods Hole Oceanographic Institution (WHOI). During the planning of this cruise, Senior Scientist Dr. Fornari, an expert in deep-sea imaging, was contacted to discuss using the TowCam on this expedition. WHOI contracted the TowCam engineers from Seafloor Investigations, LLC (SFI) to operate the system, bringing Mr. Kurras and Dr. Christiansen and out to the Bigelow.

TowCam Crew

The TowCam narrative could hardly be considered complete without a brief word on TowCam’s operators. Without them, we could only guess at the wildlife beneath our feet. Dr. Lizet Christiansen and Gregory Kurras of SFI joined us from California and Hawaii respectively, and are an incredibly important part of the research team. Both spend much of their careers at sea studying the ocean floor as geophysicists, and own businesses back home. Kurras owns SFI, and Dr. Christiansen owns Gear & Grind Cafe in Tahoe City, where customers are treated to pour-over coffee and locally-made ice cream.

Personal Log

I’m still having a tough time adjusting to the midnight-noon schedule, but I’ll tell you why. Any time I can’t sleep, I get up and see something beautiful like this:

 If you look closely, you can see two Pilot Whales swimming just below the surface. Who could sleep through that?

 

Joan Le, Rolling in the Deep, August 11, 2013

NOAA Teacher at Sea
Joanie Le
Aboard NOAA Ship Henry B. Bigelow
August 5 – 16, 2014

Mission: Deep-Sea Coral Research
Geographic area of the cruise: Southeast of Cape May
Date: August 11, 2014

20140810-042237-15757112.jpg

Weather information from the Bridge
Air Temperature: 24.2° C
Wind Direction: 140
Weather Conditions: Mostly Cloudy
Latitude: 38° 31.7′
Longitude: 73° 14.7′

Science and Technology Log

TowCam is back, and the deep sea pictures are in. The high resolution images from the last dive have been downloaded and many are stunning. We’ve spotted dozens of red crabs, flat fish, skates, eels, anemones, sponges and most importantly, coral. Clustered around the steeper rocky slopes, they greet us like tiny shrubs peeking around the corners of the rock.

But one of the reasons studying deep-sea coral is so important, is that they are part of a larger ecosystem. Documenting the diversity of organisms associated with the coral is equally as important and exciting as the coral sightings themselves. In fact, many conservation efforts have begun to shift their focus from single-species protection to focusing on the ecosystem as a whole. And now, without further delay, a few of TowCam’s high resolution images:

This slideshow requires JavaScript.

Brilliance Under Pressure

While gathered around the control room today marveling at the beautiful fauna that thrives under the extreme environmental conditions of the deep sea, the video feed for our winch control went out. Without it, Dr. Lizet Christiansen would have been unable to safely maneuver the TowCam around the steep and rocky cliffs.

Stuck right in the middle of one our best dives yet, Brian Kinlan stepped in with a quick and brilliant save. Using two cell phones, video chatting, and a whole lot of duct tape, we were able to rig a new video feed and the dive continued. It reminded me again how difficult research can be while at sea, when you can’t simply run to the hardware store to fix broken equipment.

Electronic Technician Mike Peperato quickly restores video feed.
Electronic Technician Mike Peperato quickly restores video feed.

Thanks to our equally brilliant crew and tech support, the video feed returned shortly and the dive continued as planned.

Personal Log

After 4 midnight-noon shifts, I am starting to find my rhythm on the ship. My daily workout has finally moved from the stationary bike to the treadmill, as I can now walk (and even run) without falling over as the ship bobs back and forth. Though I’d rather be running in the absolutely beautiful sunshine that has daily graced our ship, my outdoor time is filled quite nicely writing my blog or simply searching for dolphins off the flying bridge of the ship. In honor of some late-night (early morning?) conversations around the true definition of a “hipster”, I decided to throw in a few hipster-esque shots of the sights around the ship.

And for the record, I’d like to state that if a hipster is someone that is driven by their passions, dances to the beat of their own drummer, and has met no obstacle that can slow them down in their pursuit of an important and meaningful life, then field scientists are true hipsters–in the best sense of the word. Skinny jeans = optional.

Joan Le, Touchdown for TowCam, August 8, 2014

NOAA Teacher at Sea
Joanie Le
Aboard NOAA Ship Henry B. Bigelow
August 5 – 16, 2014

Mission: Deep-Sea Coral Research
Geographic area of the cruise: Off the coast of Assateague Island, Virginia
Date: August 8, 2014

Weather information from the Bridge:
Air Temperature: 24° C
Wind Direction: 320° at 5 knots
Weather Conditions: Partly Cloudy
Latitude: 37° 49.460′
Longitude: 74° 03.380′


Science and Technology Log

Recording “zero winch” time (when TowCam splashes down). Photo credit Dr. Martha Nizinski.

After arriving at our first dive location yesterday at 16:00, we successfully completed our first dive. In the water for almost 8 hours, we collected 2,946 high resolution pictures and lots of data.

Deployment is a team effort, and everyone is on high alert. With steel toe shoes, hard hats, and life vests in place, the crew carefully raises TowCam off the deck by a winch wire and gently into the water below. Though I’m getting used to it, the bobbing of the ship while it holds position for deployment is noticeable. Keeping an eye on the horizon goes a long way to settle the stomach.

Because shorter wavelengths can’t reach our eyes through the moving water, you can see the yellow net on TowCam appear to turn green as it submerges.

As TowCam descends into the water, it is hard not to be impressed by the depth beneath us. For almost half an hour, the winch pays out cable at a rate of 35 meters per minute. Fuzzy images of the water column begin to arrive, and adds to the abyssal sensation of the water below.

Dr. Lizet Christiansen monitors the location of TowCam as images stream back to the lab

Finally, TowCam sends visual of the bottom, and logging of observations begins. At first, only a few images of soft sediment appear–one after the other, 10 seconds apart. And then, a red crab. Then a fish. I felt not unlike an astronomer receiving those first black and white images from Mars’s Curiosity. It was that exciting. We note the time, location, features of the seafloor, and tentative ids of the organisms we see. Later, we’ll match these up with the high-res images inside TowCam.

Chief Scientist Dr. Martha Nizinski monitors low resolution images as they stream from TowCam.

After about 8 hours, TowCam returns the way it arrived–slowly back up the water column. It’ll stay on deck just long enough to charge batteries and download the precious images while we make our way to the next dive location. Then, back to the drink it goes.

"Burping" TowCam's batteries.
“Burping” TowCam’s batteries to remove excess air. Photo credit Matt Poti.

An Unlucky Passenger

The TowCam is a pretty amazing instrument, but we didn’t know how alluring it might appear to the fish that come and go. Unfortunately for this little guy, he never did manage to leave until it was too late. Evolved to withstand life under pressure, this unlucky swimmer lost his innards while TowCam returned home.

Personal Log

The Moon rises over the water at the beginning of my shift at midnight.
The Moon rises over the water at the beginning of my shift at midnight.

The first watch was pretty exciting. It was strange to wake up at 11 PM and get ready for work, but the commute was sweet! Instead of my usual hour-long metro ride (okay, I usually just drive) I simply walked downstairs and greeted the folks that had just spent the previous 12 hours logging and monitoring the submerged TowCam. They were in surprisingly good spirits.

I also must say that not much can top the wonderfully eerie feeling of moving steadily along through the ocean in a moonlit night. The light from the deck makes the water a velvety blue, and if you’re lucky you can see dolphins slipping quietly by as the Sun begins to peek up over the horizon.

Joan Le, Getting Set to TowCam, August 5, 2014

NOAA Teacher at Sea
Joanie Le
Aboard NOAA Ship Henry B. Bigelow
August 5 – 16, 2014

Mission: Deep-Sea Coral Research
Geographic area of the cruise: 40 miles SE of Cape May, New Jersey
Date: August 5, 2014

In full survival gear during our first “abandon ship” drill.

Weather information from the Bridge:
Air Temperature: 25.5° Celsius
Wind Speed: 10 knots
Wind Direction: 330°
Weather Conditions: clear
Latitude: 37° 37.7′ N
Longitude: 74° 06.8′ W

Science and Technology Log

After almost a full day at sea, we are only hours away from the first watch and the first glimpse of data. Preparations commence, and anticipation is high.

For the next two weeks, we’ll study the deep-sea corals that occur in submarine canyons off the east coast. They have been found in every region of the United States, but for this mission we’ll target canyons in the Northeast region, investigating canyons east of New Jersey, Delaware, Maryland, and Virginia.

Deep-Sea Corals are similar to the familiar shallow-water corals, but cannot harness sunlight for energy through photosynthesis. Instead, they rely on nutrients from the water including detritus (non-living organic matter) and plankton. It is believed that Deep-Sea Corals find both shelter and bountiful grub on the steep-sided canyon walls where the faster-moving currents bring in the day’s meal. Surprisingly, many are just as beautiful and colorful as their shallow-water counterparts, like this bamboo coral photographed at Mytilus Seamount during the NOAA OER US Northern Canyons mission last year.

This image was taken at Mytilus Seamount during the NOAA OER US Northern Canyons mission last year. Photo credit NOAA.
Bamboo Coral (Jasonisis sp.) Photo credit NOAA.

Though not the hot snorkeling destination, the Deep-Sea Corals in this region are important habitat providers as well as sensitive indicators of ecosystem health. They are long-living but slow-growing and do not recover quickly. Both bottom trawling and possible energy harnessing (off-shore wind farms and oil and gas acquisition) are possible threats to their survival.

Because bottom trawling is so detrimental to the coral communities, we’ll use TowCam to survey the area. Deploying the TowCam is a delicate process, with sensitive and pricey equipment on the line. After a few test deployments yesterday, the team began picking our dive locations. There is plenty to consider when finding a dive spot, including the topography of the sea floor and slope of the canyon walls. We also use the results generated by a habitat suitability model that predicts where deep-sea corals are likely to occur. Scientists must strike a balance between the steeper, high-probability cliffs and the gentler slopes.

The crew prepares TowCam for the first test run.
The crew prepares TowCam for the first test deployment.
Brian Kinlan using Fledermaus to plan our first dive.
Brian Kinlan using Fledermaus to plan our first dive.

 

 

 

 

 

 

 

 

 

 

Personal Log

Life aboard a ship is surely not easy. The constant rocking and clanging of cold metal will take a while to get used to, and I will sadly miss many daytime hours with our 12 hours on-12 hours off watch schedule. And while waking at 3 AM to greet a deathly dark ocean view may not seem like summertime fun to most, this first morning underway has convinced me that a couple weeks at sea is a treat I won’t soon forget.

photo (4)

Beverly Owens: Science on Board NOAA Ship Henry Bigelow, June 18, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 18, 2013

Weather Data from the Bridge:
Air temperature: 13.50 oC (56.3 oF)
Wind Speed: 20.05 knots (23.07mph)

Science and Technology Log

Teacher at Sea Beverly Owens, and Dewey the Dragon at the Helm
Teacher at Sea Beverly Owens, and Dewey the Dragon at the Helm

On a research vessel such as NOAA Ship Henry B. Bigelow, does the ship support the science? Or are the ship’s activities separate from those of the Science Crew?  I didn’t realize how much the Ship’s Crew and the Science Crew worked hand-in-hand until I toured the Bridge.

First off, the ship is what’s known as an FSV. What does FSV stand for? FSV stands for Fisheries Survey Vessel. The primary responsibility of the Henry B. Bigelow is to study and monitor the marine fisheries stocks throughout New England (the Northeastern section of the United States). There are many scientific instruments aboard the Henry B. Bigelow that allow crew members and visiting science teams to do this and other work.

The ship has multiple labs that can be used for many purposes. The acoustics lab has many computers and can be used for modeling data collected from multibeam sonar equipment.  The chemistry lab is equipped with plentiful workspace, an eyewash, emergency shower, and fume hood. Our TowCam operations are being run from the dry lab. This space has nine computers displaying multiple data sets. We have occupied the counter space with an additional eight personal laptops; all used for different purposes such as examining TowCam images or inputting habitat data. The wet lab is where the collection sorting, and filtering take place. It is used during fisheries expeditions to process and examine groundfish.  During our research expedition, the wet lab is used mostly for staging TowCam operations. We also process sediment and water samples that were collected from the seafloor.  Sediment is collected using a vacuum-like apparatus called a slurp pump; water is collected in a Niskin bottle.  The sediment is sieved and any animals are saved for later examination.  Water samples are also filtered there, to remove particulate matter that will be used to determine the amount of food in the water column.

Walking around the ship, I noticed a psychrometer set, which is used to monitor relative humidity, or moisture content in the air. There is also a fluorometer, which measures light emitted from chlorophyll in photosynthetic organisms like algae or phytoplankton. The CTD system measures physical properties of the ocean water including conductivity/salinity, temperature, and depth. Additionally, the ship has a thermosalinograph (therm = heat, salin = salt, graph = write). Saltwater is taken into the ship and directed toward this instrument, which records the sea surface salinity and sea surface temperature.

The crew of the Henry B. Bigelow not only supports the research efforts of the science team but is also actively involved in conducting scientific research. Their instrumentation, knowledge, and team work enable them to protect and monitor the western North Atlantic waters and its living marine resources.

 Personal Log

Dragon on the Bridge
Dewey the Dragon is plotting the course.

Dewey the Dragon, all the way from Crest Middle School, enjoyed getting a tour of the Bridge. Dewey the Dragon learned how to steer the ship, read charts, and monitor activity using devices such as the alidade. Thanks to Ensigns Katie Doster and Aras Zygas for showing us around.

Did You Know?

Teacher at Sea, Beverly Owens, using the Alidade on the FSV Henry B. Bigelow
Teacher at Sea, Beverly Owens, using the Alidade on the FSV Henry B. Bigelow

The alidade is a device that allows people on the ship to sight far away objects, such as land. The person on the ship spots three separate points on land uses these sighting to determine the location of the ship. Alidades can also be used as a tool when making and verifying maritime charts.

Beverly Owens: What Is That? June 23, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 23, 2013

Weather Data from the Bridge:
Air temperature: 17.23 oC (63.014 oF)
Wind Speed: 6 knots (6.90 mph)

Science and Technology Log:

We’ve seen amazing and beautiful animals living in these deep water canyons, many of which I did not recognize. During the progression of each tow I find myself asking the scientists around me, “What is that?” But that is what science is all about: being curious and trying to obtain the answers.

No matter how many hours I’ve sat on watch, or how many TowCam images I’ve looked at on the computer monitor, it’s still exciting to be one of the few people who get to see images directly from the ocean floor! It’s incredible that a large metal apparatus with a camera can send images and data thousands of meters through a tiny cable back to computers on the ship. As the pilots navigate TowCam through the water, images are sent back to the ship every 10 seconds.

Image Highlights taken using TowCam during the Canyons CSI research expedition.
Image highlights taken using TowCam during the Canyons CSI research expedition.

So what do we see in the images that are being sent back? I’ve gotten to see amazing things living more than a mile below the ocean. These include octopods and squids,  skates, sea pens, anemones, delicate brittle stars, bivalves, and lush colorful coral gardens. All these organisms live on the  bottom of the ocean in cold, dark water and under extreme amounts of pressure.

Morphology: The structure of a corallum.
Morphology: The structure of a corallum.

How many different kinds of deep-sea corals are living at the bottom of the ocean? At least 71 species are known to occur  off the northeastern coast of the U.S.; and new species are likely to be discovered.  Many of the deep-sea corals look similar in color or structure. How do scientists tell them apart? They use taxonomic keys and DNA analysis to identify species.  Dichotomous keys are a systematic way of identifying organisms by making a series of choices based on an  organism’s characteristics. These keys are particularly useful if you don’t have instrumentation to conduct a DNA analysis.

Earlier this week, marine ecologist Dave Packer from NOAA’s National Marine Fisheries Service taught me how to use a dichotomous key for deep-sea corals. Corals are actually animals, even though many of them look plant-like in shape, so they belong in the Kingdom Animalia, the Phylum Cnidaria, and the Class Anthozoa. We began by discussing animals in the four Orders of deep-sea corals within the Anthozoa that are found off our northeastern coast: Scleractinia (stony corals), Antipatharia (black corals), Alcyonacea (soft corals and sea fans), and Pennatulacea (sea pens). Compare  the corals shown below. You will notice that each group has a different style or appearance.

The Four Orders of Corals.
The Four Orders of Corals

Even though corals appear to be morphologically simple animals, they are highly detailed. Individual corals can be very small. Look at the image to the left to become familiar with some of the structures. Below are some additional features that may be found on different types of corals.

Some additional features that may be found in corals.
Some additional features that may be found in corals

Mr. Packer showed me a piece of coral that we would be “keying out.”  By looking at the surface of it, we could tell it was a stony coral and belonged to the Order Scleractinia. Stony corals are usually very hard to the touch.  Then, we examined its characteristics. Look at the picture to the right, and see if you can identify the characteristics that we examined on this coral:

Try your hand at Taxonomy
Try your hand at Taxonomy
  1. Is it solitary (grows alone) or is it colonial (grows with other coral polyps)?
  2. Are the septa (fins sticking out at the top) smooth or rough?
  3. Are the coral polyps only on one side, or scattered in a random pattern?
  4. Is the coenosteum (portion of the skeleton between the polyps that looks like tree branches) porous or smooth?
  5. Corals reproduce by “budding.” Do new corals bud inside an older coral (intratenticular) or are polyps added to the outside near older coral polyps?
  6. Does it have 24 septa?

Check your answers below to see if you got these questions correct!

Drum roll, please… This coral is Solenosmilia. Try pronouncing that one! Going through an actual dichotomous key requires answering many more questions and making more choices. Coral polyps and structures can be so small that often a microscope is necessary to look at some parts. Sometimes corals may look very similar, so DNA testing is conducted to confirm the identification.  Dichotomous keys can be used in identifying many other types of organisms as well, such as plants and fungi.

Want to try your hand at using a dichotomous key? Try this sweet activity using candy! Think about the characteristics of the candy pieces listed in the picture and key: Skittles, M & M’s, Gummy Bears, packaged Lemon Heads, unpackaged Lemon Heads, Dum Dum lollipops, Sugar Babies, Atomic Fireball, Mike and Ike’s, Tootsie Rolls, and Gobstoppers. What characteristics do they have in common? If you were going to sort them, how would you begin? We’re going to start with packaged versus unpackaged. Continue to follow along with the Candy Dichotomous Key until all the candy is sorted. How are the candy pieces similar? How do they differ?  You have now used  a dichotomous key to identify candy!

Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)

Check your answers to the Coral identification:

  1.  Colonial
  2. The septa are rough
  3. The coral polyps  appear to be randomly scattered
  4. The coenosteum is smooth
  5. These corals are intratenticular – notice how some appear to be budding off from one another.
  6. No.

    Beverly Owens, Teacher at Sea, with coral sample of Solenosmilia
    Beverly Owens, Teacher at Sea, with coral sample of Solenosmilia

Personal Log:

One of my favorite marine organisms is the starfish. We have seen many brittle stars during the course of our research expedition. There have been many large white brittle stars, and many tiny pink brittle stars that live symbiotically with certain corals.

Did You Know?

Corals are actually animals? They belong in the Kingdom Animalia. Corals can live colonially, with other coral animals, or can be solitary and develop alone.

Beverly Owens: What Skills Are Important in Becoming a Scientist or Engineer? June 17, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 17, 2013

Weather Data from the Bridge:
Air temperature: 17.60 oC (63.68 oF)
Wind Speed: 13.41knots (15.43mph)
Water Depth of current dive: approximately 1800 m (5905 ft)

Science and Technology Log

I have been amazed in watching the Science Crew (scientists and TowCam engineers) operate this week.  With any challenge that is presented, they work as a team to make minor adjustments, troubleshoot, and correct any issues that may arise. That got me thinking…what skills or characteristics are important in becoming an engineer or a scientist?

I surveyed the Science Crew, and based on their responses, have developed a list of skills important for scientists and engineers:

  1. Have a positive attitude.
  2. Be an excellent student. Learn to think independently.
  3. Be a good writer.
  4. Communicate well with others.
  5. Develop analytical thinking skills.
  6. Volunteer or become familiar with resources, like labs, museums, or other scientific institutions.
  7. Develop strong math skills.
  8. Develop computer skills or computer programming skills.
  9. Perseverance: If you make a mistake you can’t get down about it. You have to pick yourself up and try again.
  10. Curiosity: If you are curious, you’ll be passionate about what you’re studying, and will be able to communicate that to others. If you’re passionate, you will persevere and work through the challenges.

Personal Log

During my Teacher at Sea experience, I have had the opportunity to observe the Science Crew during many different activities. Below are some skills or characteristics that I have seen exhibited by the scientists and engineers involved in this research expedition.

  1. Work as a team.
  2. Cooperate: Get along with others.
  3. Be tenacious and persevere; be steadfast, never give up.
  4. Look at things from different perspectives; think “outside of the box.”
  5. Listen to and respect other people’s ideas.
  6. Focus on the task at hand.
  7. Think things through before jumping in.
  8. Come up with hypotheses or solutions and test them. If the solution doesn’t work, try another one.

As science teachers, we try to instill these traits in our students in the classroom. Whether it is completing a group project, conducting a lab, or taking notes, there is always opportunity to improve our science and engineering skills.

Did You Know?

One feature of the deep ocean is that this region of ocean is subject to very high pressure due to the tremendous weight of the water above. So, how about a demonstration?

Take one Styrofoam cup, decorate it, and send it over a mile deep in the ocean. What happens to the Styrofoam cup?

It shrinks! Why? Pressure in the ocean increases about 1 atmosphere for every 10 m increase in depth. The increased pressure compresses the air inside the Styrofoam, and the cup condenses. It’s the same reason why your ears start “popping” when you drive to an area of higher elevation, like the mountains, or fly in an airplane. In that case, increase in altitude means a decrease in pressure

Increased pressure at the bottom of the ocean caused the Styrofoam cup to shrink.
Increased pressure at the bottom of the ocean caused the Styrofoam cup to shrink.

Beverly Owens: Vacation Cruise – June 13, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013
 

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 13, 2013

Weather Data from the Bridge:
Air temperature: 16.70 oC (62.06 oF)
Wind Speed: 25.17 knots (28.96mph)

Science and Technology Log

Waypoints for TowCam expedition
Waypoints for TowCam expedition

“You get to go on a two-week cruise for vacation!”

This is the misconception that some people had, when I told them initially that I would be participating as a NOAA Teacher at Sea.  On a vacation cruise and a research cruise, participants stay an extended period of time on the ocean, and they receive three meals a day.  That is pretty much the end of the similarities between these types of cruises.  During a scientific research expedition, there is a mission to accomplish. For example, this trip is examining sites that are known or predicted to be deep-sea coral and sponge habitats.

Many multibeam bathymetric maps are consulted to find the most suitable sites to investigate. Bathymetric maps are similar to topographic maps with the exception that bathymetry applies to the topography of the ocean floor. Most of the major structure-forming deep-sea corals are found on hard substrate. Thus, areas of soft sediment are not the most likely places to find the majority of coral species, however many other organisms like brittle stars and anemones, may be found there.

There is a lot of preparation that goes into planning and coordinating a research “cruise.” The Chief Scientist must put in a request for a research vessel, and must assemble a science crew that has the skills and research interests that align with the research mission. In the months leading up to the research trip, the science party will discuss specific science objectives, protocols and potential study sites. Every participant must receive medical clearance, which includes having a TB (tuberculosis) test, and a recent tetanus vaccination.

The Chief Scientist, with input from the science team, determines which areas of the ocean to examine, and what type of technology to use to explore the ocean. Weather and waves may prevent some of the “dives” from taking place. Safety first – the conditions must be safe enough for the TowCam operators and deck crew to be outside during deployment as they lower TowCam safely into the ocean.

This bathymetric map displays the topography of the ocean floor.
This bathymetric map displays the topography of the ocean floor.

During TowCam deployments, many things must be done to make the dive successful. The Chief Scientist selects several points (waypoints) along a survey line within a canyon. These points help guide the ship during the TowCam deployment.  To get TowCam into the water requires a lot of communication and coordination of efforts. The winch operator and deck crew are responsible for getting TowCam into the water. The winch operator is in constant contact with the TowCam pilot and  controls the wire that lowers TowCam into the water. At a certain depth, the control is passed to the TowCam pilot in the lab who uses a joystick to lower the camera to the ocean floor.  The pilot and the Bridge are in constant communication during the dive. The Bridge controls the ship and follows the track for the survey. The TowCam pilot analyzes data displayed on several computer monitors in order to make the most informed decisions as they guide the camera through the water column by moving TowCam and up and down in the water column.  In addition, a variety of data are collected during the deployment.  I have been logging data during the night shift deployments. I help keep track of variables  such as depth, winch wire tension, latitude, longitude, and altimeter readings along the survey track.  All this information will be invaluable to scientists examining the data collected during this research cruise.

 Personal Log

At Crest Middle School, we try to teach our students critical thinking skills: think for themselves, make informed decisions, gather data, predict, and draw conclusions. This research trip is a prime example of how skills that students acquire in school will be beneficial for them in the future. When completing a task such as logging data, I have to decide what the important events are that have occurred in the TowCam dive, and to phrase those items in a way that others will understand.

TAS Beverly Owens logging data
TAS Beverly Owens logging data

 Did You Know?

TowCam is about the size of a refrigerator. It has one large high-resolution camera that takes pictures every 10 seconds. It also has a CTD, which records conductivity (salinity), temperature, and depth. TowCam also carries several Niskin bottles, used for water collection at depth and a slurp pump that pulls sediment from the ocean floor into a container for later analyses.

.

Beverly Owens: The Tenacity of a Scientist, June 13, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission: Sea Corals and Benthic Habitat: Ground-truthing and exploration in deepwater canyons off the Northeast
Geographical Area: Western North Atlantic
Date: June 11, 2013

Weather Data from the Bridge:
Air temperature:18.4 oC (65.12 oF)
Wind Speed: 24.56 knots (28.26 mph)

 

Science and Technology Log

The Tenacity of a Scientist

The science crew has been divided into two teams – the day watch (noon to midnight), and the night watch (midnight to noon). Those who are on “watch” are expected to be around the science labs while on duty. When TowCam is deployed, members of the science party on watch should be in the Dry Lab to monitor images and record data.

My watch is midnight to noon. Did I mention that my normal bedtime is 9:00? It will take a little while to get adjusted to this new schedule.

While the TowCam is in the water, the “Dry Lab” is bustling with activity. The TowCam operators, and some of the ship’s crew, ensure that the equipment is safely deployed. After lowering TowCam to a specified depth, control of TowCam is passed from the Bridge to the TowCam pilots. It is interesting to see how this large piece of machinery is operated. The pilot uses a joystick to raise or lower TowCam to the correct depth just above the ocean floor. In addition to the joystick controller, the pilot must also interpret data that is being recorded by TowCam or the ship. Knowing the wind speed, tension of the winch wire, altimetry, and depth are all variables that help the pilot to make the most informed decisions about the placement of TowCam.

Even with the best planning and most precise implementation, sometimes things go awry. For example, a cable may break, or the altimeter may not be registering correctly. During a research cruise such as this, spare parts, tools, and other materials must be packed for the voyage. There are no trips to the hardware store when you’re out in the middle of the ocean!

After yesterday’s practice dive, the engineers made some adjustments to TowCam so that it could work to its optimum capability. After adjustments have been made, a series of tests are run on TowCam to ensure that everything is working properly. After testing is complete, TowCam will be deployed again, allowing us another glimpse of the ocean floor.

Beverly Owens: Scientist Spotlight – Dr. Liz Shea, June 11, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission: Sea Corals and Benthic Habitat: Ground-truthing and exploration in deepwater canyons off the Northeast
Geographical Area: Western North Atlantic
Date: June 11, 2013

Weather Data from the Bridge:
Air temperature: 18.4 oC (65.12 oF)
Wind Speed: 24.56 knots (28.26 mph)

Science and Technology Log

Dr. Liz Shea, recording data during the first TowCam dive
Dr. Liz Shea, recording data during the first TowCam dive

Dr. Shea is from Wilmington, Delaware, where she is the Curator of Mollusks at the Delaware Museum of Natural History. In this role, Dr. Shea manages collections and conducts research. There are over 250,000 mollusks in collections including snails, clams, and cephalopods. She received her Bachelor’s degree from William and Mary, her Master’s from the Virginia Institute of Marine Science, and her Ph.D. from Bryn Mawr College.

While working on her Master’s degree, Dr. Shea conducted her research on squid paralarvae (very small hatchlings), but recently has been more involved in collecting deep-sea squids and octopods. Her recent work includes using Magnetic Resonance Imaging (MRI) technology to examine morphological characters that will help distinguish between species.   Through Dr. Shea’s research, scientists are now able to identify cirrate octopod hatchlings to the genus level.

Dr. Shea has always been interested in the ocean. While at the beach as a child, she enjoyed looking at creatures from the ocean. As an undergraduate student, Shea held an internship at the Smithsonian Institution, and worked with several scientists who studied cephalopods, mollusks such as octopus, squid, and Nautilus. During her internship, her mentors impressed upon her that there is still much left to learn about cephalopods, and plenty of research still to be done.

Additionally, Dr. Shea has volunteered in the past to lead 5th grade students in a squid dissection. One unique thing Dr. Shea liked to teach the children is that there are many ways in which an organism’s body might be organized.

Dr. Shea tries to go on one research cruise per year. For Dr. Shea, these types of cruises are, “Always the highlight of my year.”

Kate DeLussey: Studying Deep Water Corals – The Work Continues, July 17, 2012

NOAA Teacher at Sea
Kate DeLussey
Onboard NOAA Ship Henry B. Bigelow
July 3 – 18, 2012

Mission:  Deep-Sea Corals and Benthic Habitat:  Ground truthing and exploration in deepwater canyons off the Northeast
Geographical area of cruise: Atlantic Ocean, Leaving from  Newport, RI
Date: Tuesday , July 17, 2012

Kate DeLussey
Teacher at Sea on the Henry B. Bigelow

 

Location:
Latitude:  40.3456 °
Longitude: -68.2283°

Weather Data from the Bridge:
Air Temperature: 21.90° C
Wind Speed: 12 Kts
Relative Humidity:  102.00%
Barometric Pressure: 1,008.83 mb
Surface Water Temperature: 21.63° C

Science and Technology Log

TowCam returned to the ship for the last time this cruise.  The components have been stored, batteries have been charged, and data logged in ten minute increments has been saved in excel files for others to read.  The last pictures have been upload from the camera for a grand total of over 35,000 photos. Yes, the images of corals, sponges, and fish have been celebrated, reviewed, and annotated, but the real learning work is just beginning.

The scientific team will spend years studying, thinking, comparing, wondering, and hypothesizing about corals and coral habitat.  They will compare what they have learned with what they already know. They will read what other scientists have written about corals and talk to one another about what they see.  They will write papers explaining their findings, and make presentations to share their learning with others.

These scientists will do this hard learning work because they are curious, because coral habitats are unique and special, and because they care about our  planet’s oceans and the creatures living there.

As earth citizens we are should be grateful and supportive of the research these scientists do.  They work to care for and protect ocean life that very few people even know about.  Hopefully, we all will learn from their work.

The Science Team led by Dr. Martha Nizinski aboard the Bigelow. July 2012

Thank you to NOAA and to:  Chief Scientist Dr. Martha Nizinski

Thanks also to: Dr. T. Shank, Dr. D. Packer, Dr. V. Guida, Dr. E. Shea, Dr. B. Kilan, Dr. M. Malik, Dr. G. Kurras, and Dr. L Christiansen.

Through your dedication and work we all get to learn about the wonders of our planet.

Personal Statement

I have been able to share in this amazing coral research.  Don’t get me wrong.  This is not all fun and games.  There were many challenges, and the hours on shift were long and sometimes difficult.  This is getting down and dirty with real science.  BUT… this is different, usually teachers say the good stuff first:)

Pay close attention to this next statement:  Many of the corals seen in the photos collected by TowCam have never been seen in these locations before. Never!   Some of the corals might even be new discoveries.

Only eleven people have seen corals in the canyons of the Mid- and North Atlantic.  I am one of those people.

I will never be the same, and if you are in my class next year, well, you will never be the same either. You are going to love the Oceans.  You will be surprised to find yourself choosing to watch NOAA videos over video games.   You will read non-fiction to find answers to your questions, and you will write to be a persuasive voice for corals because some of them only know 11 people and they need more friends.

Perhaps you will be amazed and wonder about bioluminescent sea creatures lighting up the sea like lightning bugs.  (I am still waiting to see them Dr. Packer! )  It is possible you will develop a passion for cephalopods like Dr. Shea, or maybe you are simply thinking that you could do this ocean science research.   You can prepare by reading the writings of Dr. Nizinski and others.  It is all possible- you just need to wonder, think, hypothesize, and try.

I may look like Kate DeLussey, but the experience of researching Deep Sea Corals has changed me.    Learning will do that to you !

Next Time:  You could be a scientist at sea.   The corals and other sea creatures will thank you!

Kate DeLussey: TowCam Anyone? July 11, 2012

NOAA Teacher at Sea
Kate DeLussey
Onboard NOAA Ship Henry B. Bigelow
July 3 – 18, 2012

Mission:  Deep-Sea Corals and Benthic Habitat:  Ground truthing and exploration in deepwater canyons off the Northeast
Geographical area of cruise: Atlantic Ocean, Leaving from Newport, RI
Date:  Wednesday, July 11, 2012

Everyone works at sea. Here I am helping with the pre-deployment checklist.   (See how wet Lowell is!  He has been to the ocean floor many times.)

Location:
Latitude:  39.8493°
Longitude: -69.5506 °

Weather Data from the Bridge:
Air Temperature: 19.30° C
Wind Speed: 20.74 knots  5  on the Beaufort  wind scale
Relative Humidity:  88.00%
Barometric Pressure: 1,020.80 mb
Surface Water Temperature: 21.39° C

Science and Technology Log

High winds, moderately rough seas, and difficulties with the ship’s positioning system all contributed to the delay of the first scheduled launch of TowCam on our midnight shift.  Even though the necessary decision meant a loss of precious underwater time, it is better to delay than risk losing  expensive equipment.

When the seas calmed down we were able to launch TowCam, but first we had to go through the pre-launch checklist.  I helped Lizet as she prepared TowCam.

Did you guess that Batteries power the components of TowCam?          Lizet must test the batteries  before and after each launch.

The batteries are under very high pressure when TowCam goes to the ocean floor so we have to push out the air before each trip.   I help by tightening the battery caps.  Every time I am on deck I must put safety first.  I always wear a hard hat and the life vest.

One of my jobs is to help with TowCam.

When everything has been checked and double checked, the operator gives the signal, and the deck crew of the Bigelow use the winch and tag lines to launch TowCam on its next mission.

The winch swings TowCam off the deck and lowers it into the ocean.

Look at the picture carefully.  The deck crew always wear their safety equipment too!  They hook themselves to the ship by their belts, and they wear safety vests and hardhats.  The deck crew on Bigelow also make sure everyone follows the safety rules.

As soon at TowCam is in the water, everyone wants to view the images sent by the camera, but the TowCam operator must keep an eye on the monitors.

These are six of the monitors used to control and guide TowCam.

TowCam operators watch eight different computer monitors to control TowCam’s movements.  With the help of mathematic modelers and previously collected data about the structure of the ocean floor, the scientists choose  locations where they think they will find corals. These locations are called “stations.”

This map from the NOAA web site shows the track of the Bigelow. The places where the lines cross over one another are some of the stations where the scientists looked for coral

The ship must make very small movements to get the camera in the correct place on station. The operator will say something like, “Lab to Bridge- move 10 m to the North please.”… Then they watch the camera and the monitors to see if TowCam moves to the correct position.   Sometimes TowCam floats right past the spot scientists want to see, and then the operators have to try to get it back into position to take the pictures.  Not every station has the corals the scientists hope to find.  But even knowing where corals are not is important information.  After several hours of picture taking, we move on the next station.

I sit next to the TowCam operator and keep the logs.

Even in calm seas controlling TowCam is a challenging process.  Remember, TowCam hovers over the ocean floor  attached to the ship by a wire.   Fully loaded it weighs over 800 pounds in the air.  Since the ship moves TowCam by pulling it, it is not easy to follow the scientists’ plan.

However, when the perfect coral images appear on the screen, no one thinks about how hard they were to find.  We all crowd around the monitors and watch in amazement.  The scientists try to figure out  types of corals in the picture, and then they wait for the next picture to see if there are even more!  We have found corals at lots of stations!

Think about a time you tried to pull something tied to the back of  a rope.  Was it easy to steer?  Did it get stuck?  

Personal Log

We have talked a bit about how scientists find and try to study corals using the underwater camera and other sensors on TowCam.  On other missions scientists  sometimes use remote control underwater vehicles ROVs.   Unlike TowCam which is dragged behind the ship, these vehicles are more versatile because they are driven and controlled remotely using a joy stick similar to the ones you use for computer games.    Sometimes scientists even go to the ocean floor and drive themselves around using submersibles.  One thing is certain,  you have to get under the water to study corals.

Scientists go to all this trouble because corals are important to our Earth’s oceans. They are very old, and they provide habitat for other animals. 

As you grow, it will be your job to find ways to study and protect corals and all other living things in the oceans. 

Who knows how corals could help us in the future!

Polyps are extended from deep-sea coral colony.
Photo from NOAA Undersea Research Program.

Kate DeLussey: Lowell Searches Beneath the Ocean, July 8, 2012

NOAA Teacher at Sea
Kate DeLussey
Onboard NOAA Ship Henry B. Bigelow
July 3 – 18, 2012

Mission:  Deep-Sea Corals and Benthic Habitat:  Ground truthing and exploration in deepwater canyons off the Northeast
Geographical area of cruise: Atlantic Ocean, Leaving from Newport, RI
Date:  Sunday, July 8, 2012


Location:
Latitude:  38.9580 °
Longitude: -72.4577 °

Liz thought we needed our school mascot on the mission. When she went to the store, she brought back Lowell the Lion.

Weather Data from the Bridge:
Air Temperature: 24.60° C
Wind Speed: 4.5 knots
Relative Humidity:  88.00%
Barometric Pressure: 1,010.30 mb
Surface Water Temperature: 24.49° C

 

Science and Technology Log

Look who went to the bottom of the ocean on TowCam.  No you silly students…not me!  TowCam is exploring the deep ocean between the twilight zone and the midnight zone, and it is not possible for people to travel in deep water without very special equipment.

Our mascot Lowell Lion accompanied TowCam as it was deployed for Tow 2.

At this location, TowCam reached a depth of over 1900 meters below the surface of the ocean.  That is more than one mile-straight down!  It was a good mission.  The camera was sending some very interesting images back to the ship.  As I was doing my job logging, I was watching these first images.  I was able to see hard bottom- the best habitat for corals.  I also saw fish and sea stars, and then I saw the corals! They looked like little fuzzies on the rocks. The scientists had the ship hold position right over of the corals so they could take lots of pictures.  The TowCam operator used controls on the ship to raise and lower TowCam to get close to the corals without touching the cliffs where the corals were living.

Students:   Can you imagine using remote controls to move the TowCam?  I bet you would be good at it.  Perhaps the video games you play will help prepare you to fly TowCam when you finish college. 

Doesn’t Lowell look proud?  He survived his first dive and brought some interesting friends back with him.

Well, when TowCam came back on the ship, Lowell was very wet, but he handled the cold, dark high pressure very well.   Thanks to Greg and Lizet, Lowell stayed on the TowCam Sled!

Once TowCam was secured on the deck. We went out to take care of TowCam.   What a big surprise to find other creatures hitchhiking on TowCam.   Lowell the Lion must have made some friends.

This sea star was hidden on TowCam

The first deep sea visitor was a spiny orange sea star.

The orange sea star was found on TowCam deployment #2.

Isn’t it beautiful?  We all rushed to see it.  Dr. Nizinski carefully examined and measured the sea star.   She used her tweezers to pick up a tiny sample the sea star leg, and she put the sample into a little bottle with a label.  She will use the sample to test the DNA to help classify the sea star.  She will find the sea star’s “family.”

It was exciting to find the sea star, but when we looked further one of the scientists saw a piece of coral tucked in a hiding place on TowCam.   Dr. Martha took care of the coral also.  The coral will become a permanent record that reminds us that this type of coral lives here.

   These corals were hidden in the batteries after Tow 2. July 8, 2012

 

Do you see how carefully the sample is documented?  Some of the things we do in school like labeling and dating our illustrations and our work prepare you to be a scientist.  

Many years from now someone can look at the coral in this picture and see that the sample was collected on the Bigelow TowCam #2, on July 8th.  The ruler in the picture helps everyone know the approximate size.

One of the components on TowCam we have not talked about yet is the slurp.  

 

TowCam slurp

Try to find the Slurp on TowCam.              

The “slurp” is really an underwater vacuum cleaner that sucks up water, sediment, and sometimes small creatures.  When TowCam is in deep water, the scientists watch the images to decide when it is a good time to trigger the slurp.   They have to choose carefully because the slurp can be done only once on each trip to the bottom.

The scientists used the slurp on Tow #2.  The collection container looked like it just had “mud” and water.   It was emptied through a sieve to separate the “mud” and other things from water.  The scientists carefully examined what looked like regular mud but tiny organisms like bivalves, gastropods, and small brittle stars were found in the sieve.  These animals were also handled very carefully.

This brittle star was found with mud and sediment slurped from the ocean bottom.

This brittle star was found with mud and sediment that was slurped from the ocean bottom.

Can you find any other living things in this picture?

 

You never know what is hiding in the mud.  I bet we could do this kind of exploring right in our school’s courtyard.  What do you think we could find if we examined our mud?

 

Kate DeLussey on the Bigelow July 12


Personal Log

I think we should talk about the ocean today.  Many of us have had some experience with the ocean.  Maybe you have been to the beach, and maybe you have even seen some of the cool creatures that can be found on the beach.  I have seen crabs, horseshoe crabs, clams, and plenty of jellyfish, but the scientists on Bigelow are working in a very different part of the ocean.

If you visit the beach, you are only swimming in a teeny tiny part of the ocean.  Maybe you are allowed in the ocean up to your knees to a depth of 20 inches (about 1/2 a meter), or maybe you are brave and are able to go in the ocean with an adult up to your waist to a depth of 30 inches (about 3/4 a meter).  Even if you have been crabbing or fishing in the Delaware Bay where the average depth is 50 feet (15.24 meters) you have been in only the most shallow part of the ocean.  TowCam has been down as far as 1.2 miles (2000 meters).  That is not even the deepest ocean!  The ocean is divided into zones according to depth and sunlight penetration.  I learned about the top three zones.

  • The sunlight zone– the upper 200 meters of the ocean are also called the euphotic zone.  Many fish, marine mammals like dolphins and whales, and sea turtles live in this band of the ocean.  At these depths there is light, plants, and food for creatures to survive.  Not much light penetrates past this zone.
  • The twilight zone– this middle zone is between 200 meters and 1000 meters and is called the disphotic zone.  Because of the lack of light, plants cannot live in this zone.  Many animals like bioluminescent creatures with twinkling lights do live in this zone.  Some examples of other creatures living in this zone includes: crabs, gastropods, octopus, urchins, and sand dollars.
  • The midnight zone– this zone is below 1000 meters and is also called the aphoticzone has no sunlight and is absolutely dark.  At these depths the water pressure is extreme, and the temperature is near freezing.  90% of the ocean is in the midnight zone.So you can see that when you are at the beach, you are never in the “Deep Ocean.”  You are still in a great place to find many amazing creatures.  Keep your eyes open!  Be curious! Make sure you do some exploring the next time you visit this important habitat.  Then write and tell me about the things you find. Try to draw and label the three zones of the ocean.  Be sure to draw the living things in the correct zone.
  • Next time:  Someone will be working on deck getting TowCam ready for deployment.  Hint:   It will not be Lowell. : )

Kate DeLussey: Underway and Under the Sea, July 7, 2012

NOAA Teacher at Sea
Kate DeLussey
Onboard NOAA Ship Henry B. Bigelow
July 3 – 18, 2012

Mission:  Deep-Sea Corals and Benthic Habitat:  Ground truthing and exploration in deepwater canyons off the Northeast
Geographical area of cruise: Atlantic Ocean, Leaving from  Newport, RI
Date:  Monday, July 7 , 2012

Location:

Here I am on the bridge of Henry B. Bigelow.  ENS. Zygas put me to work looking up changes for navigational charts.

Latitude:  39.29 °
Longitude: -72.25°

Weather Data from the Bridge:

Air Temperature: 23.40° C
Wind Speed: 15 Kts
Relative Humidity:  90.00%
Barometric Pressure: 1,011.99 mb
Surface Water Temperature: 23.66° C

Science and Technology Log

At 7:00 pm last night the Henry B. Bigelow left Pier 2 from the Newport Naval Base.  Narragansett Bay was crowded with sailboats, yachts, and even a tall ship, but once we passed under the bridge, we knew we were really on our way.  Now that we are at sea, everyone onboard will begin his or her watch.  I will be working 12 am to 12 pm along with some of the scientists.  Even though I never worked night work before, I was excited to learn about my jobs!

One of our jobs is to keep track of the “TowCam” when it is in the water.  Every ten minutes while the TowCam is deployed (sent underwater) we log the location of the ship using Latitude and Longitude. We also have to keep track of other important data like depth.  The information is logged on the computer in a spreadsheet and then the points are plotted on a map.  A single deployment can last 8 hours.  That is a lot of data logging!  These documents provide back up in case something were to happen to the data that is stored electronically.   I will have other jobs also, and to get ready for those duties, Lizet helped me get to know the TowCam better by explaining each component.

Students:  See if you can find each part Lizet showed me on the picture of the TowCam in my last blog.

 

The camera on TowCam faces down to capture images in the deep ocean

Camera– The camera is the most important part of the TowCam.  You need a very special camera that will work in cold deep water.  When the TowCam is close to the ocean floor this digital camera takes one picture every 10 seconds. The thumbnails or samples of the pictures are sent to computers on the ship by the data link. The camera operator described the thumbnails like the picture you see when you look at the back of your camera. When I look at the thumbnails I don’t usually see much in the picture.  The scientists know what they are looking for, and they can recognize hard bottom on the ocean floor and corals.  They see fish and other sea creatures too, and when they see a picture they like, they will ask the ship navigator to “hold the setting” so they can take more pictures.  Remember, the scientists are trying to find corals, or places where corals might live.  If they have a picture, they have proof that these special animals live in a certain habitat that should be protected.

Strobe light– There are two strobe lights on the TowCam.  The deep ocean does not have

Strobe light illuminates the darkness of the deep ocean

natural lighting because the sunlight does not reach down that far.  The strobe light flashes each time a picture is taken.  If the TowCam did not have these special lights, you would not be able to see any of the pictures from the camera.  These lights are tested every time the TowCam is deployed.

The CTD measures Conductivity, Temperature, and Depth

      CTD- The CTD is an instrument that has sensors to measure Conductivity, Temperature, and Depth in a certain water column.  It is attached to the TowCam and the information from the CTD is sent to the computers through the datalink.  This information gives the scientists a better understanding about the ocean water and the habitat for the creatures they are looking for.  Look for more components on the TowCam.  How do you think the TowCam gets its power?

 

Personal Log

I am getting adjusted to life at sea.  For the first few days, when we were still on the dock I did not have much to do.  ESN Zygas gave me a job and let me find updates for the navigational charts that are stored on the bridge.  The charts are maps of the oceans and waterways that help the NOAA Corps team steer the boat, and these charts get updated when markers like buoys are moved or when the water depths and locations change.  Up-to-date charts keep the ships safe.  I was glad to do a job that helped keep us safe.  Now that we are at sea, I have been working my watch.  The work varies.  We have hours of watching TowCam on the bottom of the sea and charting the positions of the ship. Then we have the excitement when the camera comes on-board with pictures and samples that need to be processed.

One of the best things about this experience is that I am the student just like my students at Lowell.  I am excited to learn all of the new things, but I am frustrated when I don’t understand.  Sometimes I am embarrassed when I have to ask questions.  Yesterday I was working with some of the images and I was looking for fish. All I had to do was write “yes” there is a fish in this photo.  Well, I had to ask Dave (one of the scientists) for help.  I had to ask, “Is this a fish?”  Can you imagine that?  A teacher like me not knowing a fish!  It was like finding the hidden pictures in the Highlight magazine!

So instead of being frustrated, I am open to learning new things.  I keep practicing and try not to make mistakes, but when I do make those mistakes, I just try again. By the time we go through the thousands of pictures I may not be a pro, but I will be better.  I can see that I am improving already.  I can find the red fish without zooming in -the red color probably helps!

Next time:  Wait until you see who went to the bottom of the ocean on TowCam.  You won’t believe what they brought back with them.

Until next time:)