Mission: Long Line Shark/ Red Snapper survey Leg 1
Geographic Area: Southeastern U.S. coast
Date: September 21, 2018
Watercolor painting of Thresher shark, Stephen Kade TAS 2018
Scientific Journal:
While aboard the NOAA Ship Oregon II, I was able to create some art, which is my absolute passion in life. I was able use my time before and after most shifts to draw and paint the fish and sharks with watercolor paint and water from the ocean. It was tricky to paint with the constant movement of the ship, but I was able to paint over 20 paintings of sharks, fish, and the Oregon II over the 16 days on board the ship.
various watercolor paintings done aboard Oregon II, by Stephen Kade, TAS 2018
Now that I’ve been home for a month, I’ve had some time to reflect on my NOAA Teacher at Sea experience. If I told you my NOAA Teacher At Sea experience was incredible, I would be understating it quite a bit. I knew the excitement of working on the mighty NOAA Ship Oregon II and participating in the shark survey would be a highlight of my lifetime for sure. The opportunity to work with NOAA scientists, fishermen, and the rest of the crew was the best learning experience a teacher and artist could ask for. But just a week after returning, it was back to school and I needed to find ways to convey what I learned to my students. I began by creating a digital infographic about Longline Fishing so they would have a visual to go along with my explanation.
Digital Longline Fishing infographic by Stephen Kade, TAS 2018
I wanted to inform my students to create awareness about the species of shark and other ocean inhabitants that are threatened and endangered. I also wanted them to learn science about the animals and incorporate some of that data into their art to make their images more impactful to those that see them. We want to compile related projects together until later in the year for our annual Night of the Arts- NOAA Edition.
Student Art from OL Smith Middle School, Dearborn, MIStudent Art from OL Smith Middle School, Dearborn, MI
We also created three life size Art Shark paintings and posted them in the hallways of our school to advocate for sharks through art and work to give sharks a more positive community image, and not the sensational, fearful media portrayal of sharks.
Student Art from OL Smith Middle School, Dearborn, MIStudent Art from OL Smith Middle School, Dearborn, MI3′ x 8′ painting of Great Hammerhead shark, Stephen Kade TAS 2018
As a fine artist painter, the Teacher At Sea experience has helped to make my artwork much more accurate for several reasons. Primarily the reason was proximity. I was able to see the sharks and fish first hand everyday, and take many reference photos of our catch each day. I could now see the beautiful colors of different sharks while out of the water, which I never had seen before. I was also able to speak to the fishermen and scientists each day about the behaviors and biology of the fish and I gained insight from listening to their vast experiences in the oceans all around the globe.
Since being home, I’ve begun to paint a series of scientifically accurate side views of my favorite sharks, and eventually I will digitally compile them into one poster after I get 15 to 18 completed. After that, I’ll begin a series of paintings with sharks swimming in their natural environment to bring more color and visual dynamics onto the canvas. This has been the most inspiring adventure of my life, and I will continue to advocate for my favorite ocean animals by using art to bring the respect and admiration that these beautiful sharks deserve to continue to thrive long into Earth’s distant future.
Watercolor painting of Great Hammerhead Shark by Stephen Kade, TAS 2018Watercolor painting of Great White Shark by Stephen Kade, TAS 2018
Mission: Long Line Shark/ Red Snapper survey Leg 1
Geographic Area: Southeastern U.S. coast
Date: August 29, 2018
Scientific Journal
“Shark On!” was the shout from the first person that sees a shark hooked to the long line that was being hauled up from the floor of the ocean. I heard this phrase often during the first leg of the long line Red Snapper/ shark survey on the NOAA ship Oregon II. We began fishing in the Northwest Atlantic Ocean, off the coast of West Palm Beach, Florida. We traveled north to Cape Hatteras, North Carolina, and back south to Port Canaveral over 12 days this summer.
Oregon II scientific crew, Chief Boatswain, and skilled fishermen hauling in the long line.
During our long line deployments each day, we were able to catch, measure, tag and photograph many sharks, before returning them to the ocean quickly and safely. During these surveys, we caught the species of sharks listed below, in addition to other interesting fish from the ocean. This blog has scientific information about each shark, and photographs taken by myself and other scientists on board the Oregon II. The following information on sharks, in addition to scientific data about hundreds of other marine wildlife can be found online at the NOAA Fisheries site: http://fisheries.noaa.gov.
Great Hammerhead Shark-Sphyrna mokarran Hammerhead sharks are recognized by their long, strange hammer-like heads which are called cephalofoils. Great hammerheads are the largest species of hammerheads, and can grow to a length of 20 feet. The great hammerhead can be distinguished from other hammerheads as they have a much taller dorsal fin than other hammerheads.
Great Hammerhead in cradle for data collection and return to sea.
When moving through the ocean, they swing their broad heads from side to side and this motion provides them a much wider field of vision than other sharks. It provides them an all around view of their environment as their eyes are far apart at either end of the long hammers. They have only two small blind spots, in front of the snout, and behind the cephalofoil. Their wide heads also have many tiny pores, called ampullae of Lorenzini. They can sense tiny electric currents generated by fish or other prey in distress from far distances.
Male Great Hammerhead 10. 5 ft.
Great Hammerhead cephalofoil
The great hammerhead are found in tropical and temperate waters worldwide, and inhabiting coastal areas in and around the continental shelf. They usually are solitary swimmers, and they eat prey ranging from crustaceans and squid, to a variety of bony fish, smaller sharks and stingrays. The great hammerhead can bear litters of up to 55 pups every two years.
Nurse Shark-Ginglymostoma cirratum Nurse sharks are bottom dwellers. They spend their life in shallow water, near the sandy bottom, and their orangish- pinkish color and rough skin helps them camouflage them. At night they come out to hunt. Nurse sharks have short, serrated teeth that can eat through crustaceans such as crabs, urchins, shrimp, and lobsters. They also eat fish, squid, and stingrays. They have two feelers, or barbels, which hang from either side of their mouth. They use their barbels to search for prey in the sand. Their average adult size is 7.5- 9 feet in length and they weigh between 160-230 lbs. Adult females reach a larger size than the males at 7- 8.5 feet long and can weigh from 200-267 lbs.
Nurse Shark- Ginglymostoma cirratum
Nurse sharks are common in the coastal tropical waters of the Atlantic and also in the eastern Pacific Ocean. This species is locally very common in shallow waters throughout the Caribbean, south Florida to the Florida Keys. Large juveniles and adults are usually found around deeper reefs and rocky areas at depths of 10-250 feet during the daytime and migrate into shallower waters of less than 70 feet deep after dark.
Nurse shark in cradle
Nurse shark in cradle
Juveniles up to 6 feet are generally found around shallow coral reefs, grass flats or mangrove islands in shallow water. They often lie in groups of forty on the ocean floor or under rock ledges. Nurse sharks show a preference for a certain resting site, and will repeatedly go back to to the same caves for shelter or rest after leaving the area to feed.
Tiger Shark-Galeocerdo cuvier Adult Tiger sharks average between 10 -14 feet in length and weigh up to 1,400 lbs. The largest sharks can grow to 20 feet and weigh nearly 2,000 lbs. They mature between 5 and 10 years, and their life span is 30 years or more. Tiger sharks are named for the brown stripes and patches they have on their sides when they are young. As they get older, they stripes eventually fade away.
juvenile tiger shark
juvenile tiger shark
They will eat almost anything they come across, and have been referred to as the “garbage cans of the sea”. Their habitat ranges from shallow coastal waters when they are young, to deep waters over 1,500 feet deep. They swim in shallow waters to hunt lobster, squid, fish, sea turtles, birds, and smaller sharks.
10.5 foot Tiger shark caught and returned by NOAA ship Oregon II. photo by Will Tilley
They migrate with the seasons to follow prey and to give birth to young. They swim in cool waters in the summer, and in fall and winter they migrate to warm tropical waters. Their young grow in eggs inside the mother’s body and after 13 months the sharks hatch. The mother gives birth to a litter of 10 – 80 pups. Their current status is currently Near Threatened.
TAS 2018 Stephen Kade returning sharpnose shark to ocean.
Sharpnose Shark-Rhizoprionodon terraenovae Atlantic sharpnose sharks are small for sharks and have a streamlined body, and get their name from their long, pointy snout. They are several different shades of gray and have a white underside. Atlantic sharpnose sharks can grow to up to 32 inches in length. Atlantic sharpnose sharks have been observed to live up to 18 years. Females mature at around 2 years old in the Atlantic when they reach approximately 24 inches in length. Atlantic sharpnose sharks are commonly found in the western Atlantic from New Brunswick, Canada, right through the Gulf of Mexico. They are commonly caught in U.S. coastal waters from Virginia around to Texas.
Sharpnose shark
Atlantic sharpnose sharks eat small fish, including menhaden, eels, silversides, wrasses, jacks, toadfish, and filefish. The lower and upper jaws of an Atlantic sharpnose shark have 24 or 25 rows of triangular teeth. Atlantic sharpnose sharks mate annually between mid-May and mid-July in inshore waters, and after mating, they migrate offshore to deeper waters. They also eat worms, shrimp, crabs, and mollusks.
Sandbar Shark on long line
Sandbar Shark in cradle
Sandbar Shark-Carcharhinus plumbeus. The most distinctive feature of this stocky, grey shark is its huge pectoral fins, and long dorsal fin that increases its stability while swimming. Females can grow between 6 – 8.5 feet, and males grow up to 6ft. Its body color can vary from a blue to a light brown grey with a pale white underside. The sandbar shark lives in coastal waters, living in water that is 20 to 200 feet deep. Rarely is its large dorsal fin seen above the water’s surface, as the sandbars prefer to remain near the bottom. It commonly lives in harbors, lagoons, muddy and sandy bays, and river mouths, but never moves into freshwater. The sandbar shark lives in warm and tropical waters in various parts of the world including in the Western Atlantic, from Massachusetts down to southern Brazil.
Sandbar shark tagged, measured, weighed and ready to go back after photo.
The sandbar shark spends the majority of its time near the ocean floor, where it looks continuously for prey, such as small fish, mollusks, and various crustaceans. Their main diet consists largely of fish. Sandbar sharks give birth to between 1 and 14 pups in each litter. The size of the litter depends on the size of the mother, with large females giving birth to larger litters. Pregnancy is estimated to last between 8- 12 months. Females move near shore to shallow nursery areas to give birth. The females leave coastal areas after giving birth, while the young remain in the nursery grounds until winter, when they move into warmer and deeper water.
remora sucker pad
remora being weighed
Fun Fact- Remoras, or shark suckers, live in tropical oceans around the world. They have a rigid oval- shaped sucker pad on top of their head that it uses to attach itself to sharks and rays. It is symbiotic relationship where both animals gain something from their temporary union. Remoras mouths are at the top front of the body so while attached to a shark’s body, they do their host a favor by nibbling off skin parasites. They can also eat scraps of leftover food the shark leaves behind while they also enjoy a free ride. The shark gains a day at the spa for a body scrub, and can rid itself of parasites in a way it couldn’t have before!
Personal Journal
It was certainly an unforgettable experience being able to work with the scientific and fishing team for this shark survey. The opportunity to see and handle these sharks up close for two weeks has informed me of so many interesting things about these wonderful and vital members of the ocean. I can now take this information and share it first hand with students in my classroom, and members of my community. I also want to work to bring a positive awareness to these vital members of the ocean food web so they can thrive well into the future. As an artist, this trip has been invaluable for me, as now I’ve seen the how colorful and varied sharks are and other various anatomy details you just can’t see in books or television. This new awareness will help to make my future paintings more accurate than before.
Geographic Area: Papahānaumokuākea National Marine Sanctuary
Date: July 29, 2017
Location: 20 deg, 20.0 min N, 156 deg, 08.6 min W
Weather Data from the Bridge:
Scattered Clouds
Visibility: 10 nmi
Wind @ 23 kts from 65 degrees
Pressure: 1015.1 mb
Waves: 4 – 5 feet
Swell: 7-8 feet at 70 deg
Temp: 26.5 deg
Wet bulb: 23.5 deg
Dewpoint: 25 deg
Bonus Spiritual History Blog
On July 23, we briefly suspended our operations to help out fellow scientists camped out on the French Frigate Shoals (Lalo), located along the Northwest Hawaiian Island chain – about halfway between the northernmost main islands and Midway (Kuaihelani). The trip was brief, and we never set foot on terra firma, but with the help of the Big Eyes we could see something that we had not seen up close in 3 days – land.
Two nights prior, we finally crossed over to the Northwest Hawaiian Islands – a sacred and certainly mysterious (at least to me) area for the Hawaiian People. I was waiting with some anticipation for the moment we would cross into these waters. The entire Northwest Hawaiian Island chain and its surrounding seas are limited-access for the vast majority of seafarers; the waters are protected by a proclamation signed by President George W. Bush in 2006, and expanded by President Barack Obama in 2016. This Marine Sanctuary’s designated area begins near the start of the Northwest Hawaiian Island chain, and stretches all the way to the Kure Atoll (Hōlanikū), just past Midway Island (Kuaihelani). We were not permitted to cross into these waters until we had a permit, part of which included a component requirement of a briefing on the history of the area before we entered. ers Native Hawaiian Program Specialist Kalani Quiocho introduced us to this sacred ground during our pre-cruise training with this briefing on this Marine National Monument, Papahānaumokuākea. His presentation was so moving that I felt it necessary that the story of these waters (through my limited experience) must be told.
Mr. Quiocho’s presentation began with the name song for Papahānaumokuākea. His voice bellowed out in an ethereal chant – one in a smooth and haunting language with sound combinations like nothing I had ever heard before. His song was punctuated with ‘okinas and kahakōs, and accented with stunning photographs of ocean life, ritual, and artifact. The music moved me to a tear, though I couldn’t quite pinpoint the emotion that was supposed to accompany it.
The Name song for Papahānaumokuākea, reprinted with permission from Kalani Quiocho.
I realize now that I have traveled to this sacred place that it was one of simple reverence for the culture and its people who belong so fully to it. It was at that moment that I realized that this trip would be a whole other ball game – one that is sacred, cosmic, and mysterious.
Papahānaumokuākea (pronounced Papa-hah-now-mow-coo-ah-kay-a) is the first officially designated Mixed Cultural and Heritage site, and is the largest fully protected conservation area in the United States. Its name commemorates the union of two Hawaiian ancestors – Papahānaumoku and Wākea, who according to Hawaiian ancestry gave rise to the Hawaiian archipelago, the taro plant and the Hawaiian people. These two ancestors provide a part of the Genesis story for Hawaiʻi – land to live on, food to eat, and people to cultivate, commune, and thrive as one with the gifts of their ancestors. The namesake alone of this marine sanctuary highlights the importance of its existence and its need for protection. Many of the islands are ancient ceremonial sites, two of which we passed on the way to the Shoals (Lalo).
Crossing over to the Northwest Hawaiian Islands also marks a celestially significant line in the Hawaiian archipelago – the Tropic of Cancer. The Tropic of Cancer is the furthest north that the sun will reach a direct overhead path during the solar year – you might know this as the summer solstice. Right on the Tropic of Cancer lies the island Mokumanamana, a sacred place of cultural distinction for the Hawaiian people. The Tropic of Cancer divides the entire Hawaiian archipelago into two distinct sections, Pō and Ao – the Ao represents the more southern islands and spiritual daylight, and thePō representing the Northwest Hawaiian Islands and spiritual twilight.
This diagram shows the separation between the NWHI and the main Hawaiian Islands. The horizontal line through the center divides day (Ao) from night (Pō) and lines up with the Tropic of Cancer. The Island Mokumanamana lies directly on the boundary between the living and spiritual realms. Our destination was Lalo, or French Frigate Shoals, though our travels took us much further northwest than that. (Diagram Credit: Kalani Quiocho)
The crossing over as we passed Mokumanamana is significant in that we entered a different spiritual zone of the Hawaiian Islands. The Papahānaumokuākea Marine National Monument’s website (clickhere to read much more about it) describes the Northwest Hawaiian Islands as “a region of primordial darkness from which life springs and spirits return after death.” In this sense, transiting past Mokumanamana represented a “crossing over” into a different realm of ancient history. Mokumanamana is known for its high density of ancient ceremonial sites and is considered a center of Hawaiian religion and ideology. Mr. Quiocho expands on the geographical importance of the area to the Hawaiian people in his commentary stating that,
“Papahānaumokuākea encompasses the Northwestern Hawaiian Islands which is ¾ of the Hawaiian archipelago and includes high basalt islands and low-lying atolls, and surrounding marine environments. It stretches nearly 2,000 kilometers and straddles the Tropic of Cancer also known to Hawaiʻi as Ke Ala Polohiwa a Kāne – The sacred black glistening path of Kāne, the patron god of the sun. It is believed that the Hawaiian Archipelago is divided into two regions called Pō and Ao, which essentially means night and day. Most of the NWHI is within Pō, a place of creation and origin where ancestors return to after death. The region known as Ao includes the main Hawaiian Islands where man resides. The entire Hawaiian Archipelago represents the dualisms and cycles of the Hawaiian universe. From the east where the sun rises and the islands are volcanically birthed from the oceanic womb to the west where the sun sets and the islands return to the sea. And all of the extraordinary biology that is found in the Northwestern and main Hawaiian Islands are accounted for in our oral traditions. The Kumulipo, a creation chant with more than 2,000 lines expresses the cosmology of the Hawaiian Islands, beginning with the birthing of the coral polyp and eventually the Hawaiian people. Naturally this is an inspiring place that is the framework of our worldview and the knowledge systems that tell us we are people of place. Which is why many refer to this area as the kūpuna islands, kūpuna meaning elder or grandparent.”
Today, Native Hawaiians will travel by double-hulled canoes from the main islands all the way up to Nihoa and Mokumanamana during times of ritual importance and follow in the footsteps of their ancestors to honor the tradition and the spiritual practice. I’m sure the journey is both treacherous and fulfilling, one that would rival other more commonly known great expeditions, especially considering its spiritual significance.
Papahānaumokuākea is rich with history – both ancient and recent, and full of its own surprises!
Mr. Quiocho continues by expanding on the importance of the navigation of these waters to the Hawaiian people and how it honors their homeland connections:
“Native Hawaiians believe that the vast region that makes up the NWHI is an incredibly sacred place and is regarded as the construct of their cosmological genealogy. This region is rooted in creation and origin as a place where all life began and to which ancestors return after death. Native Hawaiians have historical connections to all parts of their homeland, which encompass all the islands, atolls, shoals, coral reefs, submerged seamounts and ocean waters that connect them. While the islands themselves are focal destinations for traditional voyages, the vast ocean is equally important. It is a cultural seascape that is imbued with immense value. The ocean is more than an unknown empty space that isolates islands, but rather a pathway for movement and potential.
A rare sighting of Tropical Pacific Orca – one of the first Cetaceans to welcome us to the Monument. What a gift!
Long-distance voyaging and wayfinding is one of the most unique and valuable traditional practices that Native Hawaiians have developed and continue to advance. It is an ancient way of interacting with the ocean that continues to inspire and create social change. The ocean region surrounding the NWHI is the only cultural voyaging seascape within the Hawaiian Archipelago. The main Hawaiian Islands are large enough for any novice navigator to find, but the ocean region throughout and surrounding Papahānaumokuākea provides challenging opportunities for apprentice navigators to excel. This expansive ocean environment was the setting for ancient Hawaiian chiefs to voyage back and forth between the main Hawaiian Islands and the NWHI over the course of 400 years.”
On our journey, we slipped passed Mokumanamana in the cover of night – through the invisible gates and into this ancient ancestral realm. Although we had been in the monument since the previous day, for some reason this crossing marked a distinction for me personally in an indescribable way. Since arriving on Oahu and in my travels since, I’ve known there was something special and different about this place, and I’ve known that part of the “different” was me. Walking through Ala Moana Park on the 4th of July revealed threads of a culture that formed a beautiful tapestry of family, community, and heritage as I strolled past hundreds of families camped out in anticipation of the upcoming fireworks over the ocean.
A volcanic neck stands high above the waters surrounding the shoals.
There was something communal and sacred about it, even though the time and event was modern. There was an “old” feeling of togetherness that buzzed through the park amongst strangers and friends. I knew I was an outsider to this energy, but I didn’t feel entirely left out of it. It’s one thing to feel like a foreigner on the “day” side of the Tropic of Cancer, but the “night” side held a spiritual distinction, as though I was trespassing in a dimension to which I did not belong. Knowing that the only passage of ships through this area would come with permits and regulations left a feeling of emptiness in an already vast ocean. Knowing the ocean is full beneath with life both current and past – fish and whale and ancient Hawaiian spirit alike gave back some reassurance that we were not entirely alone. For the first time I didn’t want to just know about Papahānaumokuākea, I wanted the ocean to tell me the story herself.
Nestled in the middle of Papahānaumokuākea was our target destination – French Frigate Shoals (Lalo). On this tiny island a small team of scientists have been camped out for a little over six weeks studying the endangered Hawaiian Monk Seal. We were tasked with delivering critical supplies to the scientific team – fuel, replacements of scientific gear, and a small care package with a few creature comforts they had not had access to in quite some time. (I mean, seriously. Who drops off fuel without dropping off chocolate? Not us!) We also picked up some specimens from them to take back to the lab in Honolulu. The Shoals are a special place – a World War II military outpost slowly decays on the far side of the island, providing some cover for the scientists as they work. The island hosts thousands upon thousands of terns, flying en masse around the island in huge swarms.
A closer view of the island. The dots in the air above the island are all birds.
The terns were in preparation of fledging, and in anticipation of that day, tiger sharks stalked the surrounding waters, waiting for their next meal. On the opposite side of the island a few hundred meters away from shore, a lone sandbar (formerly dredged up for use as a military runway) rose to the surface providing a quiet place for a monk seal and her two pups to lounge in the sand. One seal pup practiced swimming in the shallows as the mother casually glanced in its direction. The other pup would hobble a few feet away down the beach, only to run back to its mother and lie next to her for a time. It was a little reminiscent of a Norman Rockwell beach vacation painting, had Rockwell chosen an animal personification route as his medium. A turtle dotted the far edge of the landscape on the main island, basking in the rising sun as the waves gently rolled on to the beach behind him.
This flat strip of land is a dredged up runway, slowly returning back to the ocean after years of abandonment from use. A mother seal and two pups lounge on the sand, enjoying the sun.
The structures on the land from afar looked like a distant movie set for an apocalyptic storyline. The wind howled as we approached the atoll, and birds fought against the invisible currents in frantic circles around the island. Two boats lay destitute along the far side of the island while waves crashed merciless against the sea wall built to hold the atoll in place during the time the island was volunteered to serve in a wartime capacity. The island itself is a surreal duplicity – serving both as a protector of life and a vessel of war. I found myself taking stock of this history; watching from far away to learn the eternal evolution of this strange place – first a volcano, sunk beneath the surface, then to a primordial breeding ground for coral, fish, and shark – onto a pristine landscape, possibly used by ancestral Hawaiians for ceremony and stopover en route to Kure (Hōlanikū) – a military base as a refueling station and an outpost – and finally a protected home for hundreds of species, some hanging desperately onto the last strings of life but finally thriving under the care of a dedicated research team.
As much as I desperately wanted to go on to the island to have a look at this former military operations base-turned-endangered-animal-sanctuary, none of us could go on shore – even those who shuttled supplies to the scientists. French Frigate Shoals marked the first time I had ever seen a coral atoll in anything other than a picture, and it seemed a natural part of my inner explorer to want to pop on to shore to have a look about, even for just a few minutes. Everything in French Frigate Shoals is protected under the Papahānaumokuākea permitting restrictions.
Supplies were hauled ashore by the small pulley system jutting up from the shoreline – visible on the left-middle portion of the island.
Had we wanted to explore the land, we would have needed to quarantine our clothing and ourselves for a minimum of 72 hours to protect the landscape from anything foreign taking foot on shore. Our ship couldn’t make it much closer than a mile or two from the island so as not to put it in danger of running aground. So, a team of four people shuttled supplies in the small boat, navigating the shallows and hauling the supplies on shore through a pulley system. Two quick trips out to the island, and we were soon on our way again in our search for cetaceans.
When Mr. Quiocho parted ways with us after our training, he made a casual but powerful statement in closing. He told us the whale dives deeply to commune with ancient wisdom commissioned to the deep ocean, bringing this deep knowledge from the ancestral depths to the surface so that it can become part our collective consciousness. Our trip, then, is a not merely a collection of data or a series of samples. Each time we interact with the whales, they are bringing us the knowledge of the ancients in hope that we will continue to pass that information on to anyone at the surface willing to listen. The responsibility of our work when described in this light brought a new reverence to the study – one that is not just a story for the present in hopes of preserving for the future, but that weaves ancient knowledge from the past into our work, as well.
Did you know?
Each day at noon, the ship’s alarms are tested to ensure they will work in an emergency situation. Guess who got to test the alarms?
Yup! I got to test the alarm. Thanks Lieutenant Commander Rose!
Ship safety is the height of the focus of everyone on board. Each Friday, we complete drills to make sure we are ready in the event of an emergency. Of the many dangers at sea, a fire can prove to be most catastrophic. It’s not like the fire department can come out to the middle of the Pacific at the first sign of burning bacon (which may or may not have happened to me two days before I left for Oahu). The entire Sette crew acts as the fire department, so it is important for them to practice in the event of an emergency. This week we simulated a live-fire scenario, complete with a fog machine. I got to call the drill up to the bridge! It was a little extra fun built into a very serious situation.
Classes are still continuing each afternoon on the bridge, Monday through Friday. Dr. Amanda Bradford gives the Wardroom a lesson on Hexacopter Operations (see blog #5 for more!)
ENS Tim Holland gives a lesson on MSDS chemical safety sheets.
Officers are in a friendly competition to see who is on watch when the most sightings occur, among other friendly battles. It is the topic of lively discussion at most meal times.
Officers can make a competition out of ANYTHING! Here are the tallys for the past 25 days.
Geographic Area: Near the Maro Reef, Northwest Hawaiian Islands
Date: July 24, 2017
Weather Data from the Bridge:
Location: 23 deg, 39.5 min N, 169 deg, 53.5 min W
Wind: 85 degrees at 12 kts
Pressure: 1017.0
Waves: 2-3 feet at 95 degrees
Swell: 3-4 feet
Temperature 27.5
Wet bulb temp: 26.2
Science Log
Most of us know the first rule of Fight Club – Don’t talk about Fight Club. In previous blogs, we’ve established that if acoustics hears a vocalization from the lab, they do not inform the observers on the flying bridge – at least not until all members of the vocalizations are “past the beam”, or greater than 90 degrees from the front of the ship. Once the vocalizations are past the beam, acoustics can elect to inform the observers based on the species and the specific protocols set for that particular species. The purpose of this secrecy is to control for bias. Imagine if you were a marine mammal observer, headed up for your last two hour shift on your ten hour day. If you stopped by the acoustics lab to say hello and found the acoustician’s computer screens completely covered with localizations from a cetacean, you might change the way you observe for that animal, especially if you had a general idea of what angle or direction to look in. One experimental goal of the study is to eliminate as much bias as possible, and tamping the chatter between acousticians and the visual team helps to reduce some of this bias. But what about the observers? Could they bias one another in any way? The answer to that question is yes, and marine mammal observers follow their own subset of Fight Club rules, as well.
Let’s say for example, a sighting of Melon-Headed Whales is occurring. On the flying bridge, available observers come up to assist in an abundance estimate for that particular group (more on how these estimates are made later). They also help with photographing and biopsy operations, when necessary. Melon-Headed Whales are known to travel in fairly large groups, sometimes separated into sub groups of whales. After spending some time following the group of whales, the senior observer or chief scientist will ensure that everyone has had a good enough opportunity to get a best estimation of the number of Melon Headed Whales present. At this point, it’s time for the observers to write their estimates. Each observer has their own “green book,” a small journal that documents estimation numbers after each observation occurs. Each observer will make an estimation for their lowest, best, and highest numbers. The lowest estimate represents the number of cetaceans the observer knows for certain were present in the group – for example they might say, “There couldn’t possibly be fewer than 30”. The highest estimate represents the number that says “there couldn’t possibly be any more than this value.” The best estimate is the number that the observer feels totally confident with. Sometimes these values can be the same. The point is for each observer to take what he or she saw with their own eyes, factor in what they know about the behavior of the species, and make a solid personal hypothesis as to the quantitative value of that particular group. In a sighting of something like our fictitious Melon Headed Whales, those numbers could be in the hundreds.
Marine Mammal Observer Allan Ligon records his cetacean estimates in his “green book” after a sighting.
Once the documentation is complete in the green books, the observers direct the ship to return back to the trackline, and begin observing again. They never discuss how many animals they saw. This is such an important part of what marine mammal observers do as professionals. At first glance, one would assume that it would be beneficial for all observers to meet following an observation to come to a consensus on the numbers sighted. But there are a lot of ways that discussion on numbers can turn sideways and skew overall data for the study. Let’s take an obvious example to highlight the point.
Imagine if you were a new scientist in the field, coming to observe with far more senior observers. Let’s assume you’ve just spotted a small group of Pygmy Killer Whales and although you are new on the job, you know for an absolute fact that you counted six dorsal fins – repeatedly – through the course of the sighting. If the sighting ends, and the more senior observers all agree that they saw five, the likelihood that you are going to “cave” and agree that there were only five could be higher.
Scientist Paula Olson recording her numbers after a sighting, keeping her information separate from others.
If you never talk about your numbers, you never have to justify them to anyone else. The question often comes up, “What if an observer consistently over or underestimates the number of cetaceans?” It’s much better for the scientists to consistently over or underestimate their counts than to spend time trying to fine tune them against the rule of another’s estimate. If counts skew high or low for a scientist each leg of the trip as the co-workers change, that can create a problem for those trying to analyze the abundances after the study is complete. Further, not discussing numbers with anyone at all ever gives you a very reliable estimation bias over time. In other words, if you consistently over estimate, the people who complete the data analysis will know that about you as an observer and can utilize correction factors to help better dial in cetacean counts. It is because of this potential for estimation bias that all marine mammal observers must never talk numbers, even in casual conversation. You’ll never hear a marine mammal observer over dinner saying, “I thought there were 20 of those spinner dolphins, how many did you think were there?”
Where do these data go after the study is over? Data from each sighting gets aggregated by the chief scientist or other designee and the group size for each sighting is determined. Then, via many maths, summations, geometries, and calculuses, population abundance estimates are determined. This is a dialed-in process – taking the number of sightings, the average sighting group size, the length of the transect lines, the “effective strip width” (or general probability of finding a particular cetacean within a given distance – think smaller whales may not be as easy to see from three miles away, and therefore the correction factor must be taken into account), and finally the probability of detection – and combining those values to create a best estimate for population density within the Hawaiian EEZ.
Scientist Kym Yano on the bow of the ship, trying to get an up-close ID photo.
The probability of detection is an interesting factor in that it used to always be considered as a value of 1 – meaning that if a cetacean shows his friendly (or ferocious) mug anywhere on the trackline (the predetermined path the ship is taking in the search) the value assumes that a mammal observer has a 100% chance of spotting it. This is why there is a center observer in the rotation – he or she is responsible for “guarding the trackline,” providing the overlap between the port and starboard observers in their zero to ninety degree scans of the ocean. Over time, this value has created statistical issues for abundance estimates because there are many situations when a 100% detection rate is just not a realistic assumption. Between the HICEAS 2002 study and the HICEAS 2010 study, these detection factors were corrected for, leading to numbers that were reliable for the individual study itself, but not reliable to determine if populations were increasing or decreasing.
Other factors can play a role in skewing abundance estimates, as well. For example, beaked whales often travel in smaller-sized groups and only remain at the surface for a few minutes before diving very deeply below the surface. Sightings are rare because of their behavior, but it doesn’t necessarily mean that they are declining in population. In HICEAS 2002, there was an unusual sighting of a large group of these whales. When the statistical methods were applied for this group as a whole, the abundance numbers were very high. In 2010, the sighting frequency was more “normal” than finding the anomalous group, and the values for the numbers of these whales dropped precipitously. There wasn’t necessarily a decline in population, it just appeared that way because of the anomalous sighting from 2002. Marine mammal observer Adam Ü assists on a sighting by taking identification photos.
Marine mammal observer Adam Ü assists on a sighting by taking identification photos.
Statistical analysis methods have also changed over the years once scientists took a harder look at some of the variables that the marine mammal observers must contend with in their day to day operations. At the start of every rotation, mammal observers make general observations about the sea conditions – noting changes in visibility, presence of rain or haze, wind speed, and Beaufort Sea State. Observers will go “off effort” if the Beaufort Sea State reaches a 7. To give you an idea of how the sea state changes for increasing numbers, a sea state of Zero is glass-calm. A sea state of 12, which is the highest level on the Beaufort scale, is something I’m glad I won’t see while I’m out here. Come to think of it, we have gone “off effort” when reaching a sea state of 7, and I didn’t care for that much, either.
Most of our days are spent in at least a Beaufort 3, but usually a 4 or 5. Anything above a 3 means white caps are starting to form on the ocean, making it difficult to notice any animals splashing about at the surface, especially at great distances – mainly because everything looks like it’s splashing. Many observers look for splashing or whale blows as changes against the surrounding ocean, and the presence of waves and sea spray makes that job a whole heck of a lot more difficult. Beaufort Sea States are turning out to be a much bigger player in the abundance estimate game, changing the statistical probabilities of finding particular cetaceans significantly.
Everyone loves a cetacean sighting! Corps officers Maggied and Frederick on the bow looking at a dolphin sighting.
One species of beaked whale has a probability of sighting that drops off exponentially with increasing sea state. As sea state goes up, the chances of seeing any cetacean at all decreases. Other factors like sun glare play a role in decreased sightings, as well. When a beaked whale “logs” at the surface in glass calm waters, chances are higher that it will be spotted by an observer. When the ocean comes up, the wind is screaming, and the waves are rolling, it’s not impossible to see a whale, but it sure does get tough.
The good news is that for most species, these abundance estimates account for these variables. For the more stealthy whales, those estimates have some variation, but overall, this data collection yields estimate numbers that are reliable for population estimates.
Personal Log
It is darn near impossible to explain just how hard it is to spot mammals out in the open ocean. But, being the wordy person I am, I will try anyway.
I had some abhorrently incorrect assumptions about the ease at which cetaceans are spotted. These assumptions were immediately corrected the first time I put my forehead on the big eyes. Even after reading the reports of the number of sightings in the Hawaiian EEZ and my knowledge of productivity levels in the tropical oceans, I had delusions of grandeur that there would be whales jumping high out of the water at every turn of the ship, and I’d have to be a blind fool not to see and photograph them in all of their whale-y glory.
I was so wrong.
Imagine trying to find this:
Try spotting this from two miles away. There is a Steno Dolphin under that splash!
In this:
Sun Glare. It’s not easy to find mammals in these conditions.Beaufort 6 sea conditions: When you’re looking for splashes…and it’s all splashes…
Here’s the long and short of it – there were times when we were in pretty decent conditions, and marine mammal observers were “on” a sighting, and I trained the big eyes in exactly the direction and my eyes at the exact distance and I still couldn’t see them. There were times when the mammals pretty much had to be launching themselves out of the water and onto the ship before I was like, “Oh, hey! A whale!” I can think of at least four sightings where this happened – whales were out there, everyone else could see them…and I couldn’t find them if they were pulled out of the water and handed to me in a paper bag. Which is extra disappointing because a) a whale doesn’t fit in a paper bag, and 2) if it did, it would likely soak the bag so that it fell out of the bottom and now I’d have a whale that I couldn’t see anyway who now has a headache and is ornery because someone shoved him in a paper bag that he promptly fell face first out of. And as I’ve learned over the time I’ve been on the ship and through many forays into the wilderness – don’t anger things with teeth.
I have had the good fortune of watching our six marine mammal observers as they do their work and I am continually floored at the ability and deftness in which they do their jobs. I have done a few independent observation rotations – I try to get in at least three each day – and I have only once been able to complete a rotation in the same way the observers do. Looking for forty minutes through the port side big eyes, sitting and guarding the trackline for 40 minutes, and looking for forty minutes through the starboard side big eyes is exhausting. Weather conditions are constantly changing and sometimes unfavorable. The sun could be shining directly in the path of observation, which turns the whole ocean into the carnage that could only be rivaled by an explosion at a glitter factory. While the canopies protect the observers from a large majority of incoming sunlight, there’s usually a few hours in the day where the sun is below the canopy, which makes it blast-furnace hot. Today the winds are blowing juuuuust below the borderline of going off effort due to sea state conditions. Sometimes the wind doesn’t blow at all, or worse – it blows at the exact speed the ship is traveling in – yielding a net vector of zero for wind speed and direction. Out on the open ocean, Beaufort Sea States rarely fall below a 3, so observers are looking through piles of foam and jets of sea spray coming off the waves, searching for something to move a little differently. Trying to look through the big eyes and keep the reticle lines (the distance measures on the big eyes) on the horizon during the observation while the ship moves up and down repeatedly over a five foot swell? I can say from direct experience that it’s really, really hard.
The animals don’t always play nice, either. It would be one thing if every animal moved broadside to the view of the observers, giving a nice wide view of dorsal fin and an arched back peeking out of the water. A lot of cetaceans see ships and “run away.” So, now as an observer, you have to be able to spot the skinny side of the dorsal fin attached to a dolphin butt. From three miles away. Some whales, like sperm whales, stay at the surface for about ten minutes and then dive deep into the ocean for close to an hour. We’re lucky in that if we aren’t on the trackline and spot their telltale blows when they are at the surface, the acoustics team knows when they are below the surface and we can wait until they do surface, so that’s a benefit for everyone on the hunt for sperm whales.
But overall? These things are not easy to find. We aren’t out here on a whale watching tour, where a ship takes us directly out to where we know all the whales are and we have endless selfie opportunities. The scientific team couldn’t bias the study by only placing ourselves in a position to see cetaceans. In fact, the tracklines were designed years ago to eliminate that sort of bias in sampling. Because we cover the whole Hawaiian EEZ, and not just where we know we are going to see whales (looking at you, Kona) there could be times where we don’t see a single cetacean for the whole day. As an observer, that can be emotionally taxing.
And yet, the marine mammal observers persevere and flourish in this environment. Last week, an observer found a set of marine mammals under the surface of the water. In fact, many observers can see mammals under the water, and it’s not as though these mammals are right on the bow of the ship – they are far far away. Most sightings happen closer to the horizon than they do to the ship, at least initially. The only reason why I even have pictures of cetaceans is because we turn the ship to cross their paths, and they actually agree to “play” with us for a bit.
Over the last three weeks, I’ve tried to hone my non-skill of mammal observation in to something that might resemble actual functional marine mammal observation. I have been thwarted thus far. But I have gotten to a certain point in my non-skill – where at first, I was just in glorious cod-faced stupor of witnessing cetaceans, and trying to get as many photos as possible – now, a sighting for me yields a brief moment of awe followed by an attempt to find what the observers saw in order to find the animal. In other words, I “ooh and ah” for a few moments at first, but once I can find them, I start asking myself, “Ok, what do the splashes look like?” “How do the fins look as they come out of the water?” “What does the light look like in front or behind the animal, and would I be able to see that patterning while I’m doing an observation?” So far, I’ve been unsuccessful, but I certainly won’t stop trying. I have to remember that the marine mammal observers who are getting these sightings have been doing this for years and I have been doing this for hours comparatively. Besides, every sighting is still very exciting for me as an outsider to this highly specialized work, and the star-struck still hasn’t worn off. I imagine it won’t for quite some time.
Ship Fun!
Being at sea for 28 days has its advantages when it comes to building strong connections between scientists, crew, and the officers. Everyone pitches in and helps to make life on this tiny city a lot more enjoyable. After all, when you spend 24 hours a day on a ship, it can’t all be work. Take a look at the photos below to see:
Chief Bos’n Chris Kaanaana hosts a shave ice party (a traditional Hawaiian treat) on a Monday afternoon
The scientific team gets fiercely competitive when it comes to cribbage!
The Doc and I making apple pie after hours for an upcoming dessert!Chief Bos’n Chris Kaanaana fires up the smoker for a dinnertime pork shoulder. Yum!
Husband and wife team Scientist Dr. Amanda Bradford and Crewmember Mills Dunlap put ice on a freshly caught Ono for an upcoming meal.Commanding officer CDR Koes makes a whale shaped ice cream cake to “call the whales over” and aid in our search effort.
Current Location: Impatiently waiting to sail in Centennial, Colorado
Date: June 20
Weather Data from the “Bridge” (AKA My Sun Porch):
Here’s the weather data from the “Bridge” in Centennial. (In Station Model format, of course. How else would we practice?)
Personal Log – An Introduction
Hello! My name is Staci DeSchryver and I will be traveling this upcoming July on the Oscar Elton Sette as part of the HICEAS program!
I am an Oceanography, Meteorology, and Earth Science teacher at Cherokee Trail High School in Aurora, CO. This August will kick off my 14th (yikes!) year teaching. I know you might be thinking, “Why Oceanography in a landlocked state?” Well, the reason why I can and do teach Oceanography is because of Teacher At Sea. I am an alumna, so this is my second official voyage through the Teacher At Sea program. It was all of the wonderful people I met, lessons I learned, and science that I participated in on the
This is my husband, Stephen, and I, at the game that sent the Broncos to the Superbowl!
Oscar Dyson in 2011 that led me to encourage my school to put an Oceanography course in place for seniors as a capstone course. This past year was the first year for the Oceanography and Meteorology courses, and they were very well received! I have three sections of each class next year, as well! (Shout out to all my recent senior grads reading this post! You were awesome!) We study our World’s Ocean from the top of the water column all the way to the deepest parts of the Marianas Trench, and from the tiniest atom all the way up to the largest whale. I believe it is one of the most comprehensive courses offered to our students – incorporating geology, chemistry, physics, and biology, but then again, I’m a bit biased.
Apart from being a teacher, I am a wife to my husband of 8 years, Stephen. We don’t have children, but we do have two hedgehogs, Tank and Willa, who keep us reasonably busy. Willa only has one eye, and Tank is named Tank because he’s abnormally large for a hedgie. They are the best lil’ hedgies we know. We enjoy camping, rock climbing, and hiking – the typical Coloradans, though we are both originally from Michigan. When we aren’t spending time together, I like to dance ballet, read, write, and I recently picked up a new weightlifting habit, which has led me to an entire new lifestyle of health and wellness with an occasional interjection of things like Ice Cream topped with caramel and Nachos when in the “off” season (hey, nobody’s perfect).
I will be leaving for Honolulu, Hawaii on July 4th to meet up with the fine scientists that make up the HICEAS team. What is HICEAS? Read below to find out more about HICEAS and the research we will be doing onboard!
Science Log
The HICEAS (Hawaiian Islands Cetacean and Ecosystem Assessment Survey) is a study of Cetaceans (Whales, Dolphins, and Porpoises) and their habitats. Cetaceans live in the ocean, and are characterized by being carnivorous (we will get along just fine at the dinner table) and having fins (since I am a poor swimmer, I will humbly yield to what I can only assume is their instinctive expertise). This means that the study will cover all manners of these majestic creatures – from whales that are definitely easily identifiable as whales to whales that look like dolphins but are actually whales to porpoises that really look like whales but are actually dolphins and dolphins that look like dolphins that are dolphins and… are you exhausted yet? Here’s some good news – porpoises aren’t very common in Hawaiian waters, so that takes some of the stress out of identifying one of those groups, though we will still be on the lookout. Here’s where it gets tricky – it won’t be enough to just sight a whale, for example and say, “Hey! We have a whale!” The observers will be identifying the actual species of the whale (or dolphin or possible-porpoise). The observers who tackle this task are sharp and quick at what is truly a difficult and impressive skill. I’m sure this will be immediately confirmed when they spot, identify, and carry on before I say, “Wait! Where do you see it?”
There are 25 cetacean species native to Hawaiian waters, so that’s a big order to fill for the observers. And we will be out on the water until we locate every last one. Just kidding. But we will be looking to spot all of these species, and once found, we will do our best to estimate how many there are overall as a stock estimate. Ideally, these cetacean species will be classified into three categories – delphinids (dolphins and a few dolphin-like whales), deep diving whales (whales with teeth), and baleen whales (of the “swim away!” variety). Once identified in this broad sense, they will then be identified by species. However, I do have a feeling these two categorizations happen all at once.
Once the data is collected, there is an equation that is used to project stock estimates for the whole of the Pacific. More on this later, but I will just start by saying for all you math folk out there, it’s some seriously sophisticated data extrapolation. It involves maths that I have yet to master, but I have a month to figure it out, so it’s not looking too bleak for me just yet. In the meantime, I’m spending my time trying to figure out which cetaceans that look like dolphins are actually possible-porpoises, and which dolphins that look like dolphins are actually whales.
Goals and Objectives of the HICEAS
The HICEAS study operates as a part of the Pacific Islands Fisheries Science Center (PIFSC) and the Southwest Fisheries Science Center (SFSC), both under the NOAA umbrella. Our chief scientist is Dr. Erin Oleson, who will be the lead on this leg of the cruise. HICEAS last collected data in 2010, and is now ready for the next round of stock assessments. HICEAS is a 187-day study, of which we will be participating in approximately 30 of those days for this particular leg. Our research area is 2.5 million square kilometers, and covers the whole of the Hawaiian Archipelago and it’s Exclusive Economic Zone, or EEZ! The HICEAS study has three primary goals:
Estimate the number of cetaceans in Hawaii.
Examine their population structure.
Understand their habitat.
Studies like the HICEAS are pretty rare (2002, 2010, and now 2017), so the scientists are doing their best to work together to collect as much information as they possibly can during the study. From what I can gather in lead-up chats with on board scientist Kym Yano, we will be traveling along lines called “transects” in the Pacific Ocean, looking for all the popular Cetacean hangouts. When a cetacean is sighted, we move toward the lil’ guy (or gal) and all his friends to take an estimate, and if it permits, a biopsy. There is a second team of scientists working below deck listening for Cetacean gossip (whale calls) as well. Acoustic scientists will record the whale or dolphin calls for later review and confirmation of identification of species, and, of course, general awesomeness.
But that’s not all!
We will also be dropping CTD’s twice per day, which is pretty standard ocean scientific practice. Recall that the CTD will give us an idea of temperature, salinity, and pressure variations with depth, alerting us to the presence and locations of any of the “clines” – thermocline, halocline, and pycnocline. Recall that in areas near the equator, rapid changes of temperature, salinity, and density with depth are pretty common year-round, but at the middle latitudes, these form and dissipate through the course of the solar year. These density changes with depth can block nutrients from moving to the surface, which can act as a cutoff to primary production. Further, the CTD readings will help the acoustic scientists to do their work, as salinity and temperature variations will change the speed of sound in water.
There will also be a team working to sight sea birds and other marine life that doesn’t fall under the cetacean study (think sea turtles and other fun marine life). This study is enormous in scope. And I’m so excited to be a part of it!
Pop Quiz:
What is the difference between a porpoise and a dolphin?
It has to do with 3 identifiers: Faces, Fins, and Figures.
Bradford, A. L., Forney, K. A., Oleson, E. M., & Barlow, J. (2017). Abundance estimates of cetaceans from a line-transect survey within the U.S. Hawaiian Islands Exclusive Economic Zone. Fishery Bulletin,115(2), 129-142. doi:10.7755/fb.115.2.1
NOAA Teacher at Sea Kathleen Harrison Aboard NOAA Ship Oscar Dyson July 4 — 22, 2011
Location: Gulf of Alaska Mission: Walleye Pollock Survey Date: July 22, 2011
Weather Data from the Bridge True Wind Speed: 15.33 knots, True Wind Direction: 214.98°
Sea Temperature: 8.3° C, Air Temperature: 8.8° C
Air Pressure: 1014.59 mb
Overcast, 5 foot seas
Latitude: 55.54° N, Longitude: 155.57° W
Ship heading: 119°, Ship speed: 10.5 knots
Personal Log: The time has come for me to pack my bright orange suitcase (thanks, Mom) and leave the NOAA ship Oscar Dyson.
Ok, so it is orange, at least I can find it in the luggage carousel at the airport.
The past 3 weeks have been an incredible adventure, and I am now making the journey home to Virginia Beach. Almost everything I have seen and experienced has been new for me — especially identifying the animal species here in the Gulf of Alaska. I am extremely grateful to the Teacher at Sea Program for allowing me to participate — I now have a better understanding of how real science is conducted, and am very excited to share this experience with my students, colleagues, family, and friends.
The title of this log entry might be Ending the Adventure, but I hope it is not the end of my relationship with NOAA. I would like to be active in the Teacher at Sea Alumni group, and participate in other teacher activities that NOAA sponsors, such as Teacher in the Field, and Teacher in the Lab. And, every time that I tell someone about this adventure, I will be reliving it all over again.
Sunrise in Shelikof Strait, 5:30 am.
In reflecting over the time that I have spent on board the ship, I have come to some conclusions about science, and life at sea: 1) Science is not easy, glamorous, or neat most of the time. 2) Science is messy, time-consuming, and frustrating most of the time. 3) Scientists must talk to each other, discussing ideas and problem solving. 4) Scientists on a team must at least get along with each other, and it is helpful if they actually like each other. 5) Scientists set very high goals, and then spend their time trying to make equipment work, manage millions of data points, and praying for good weather. 6) The work that marine scientists do is vital to our understanding of the seas. 7) Every science teacher should participate in real world research. 8) Alaska is a beautiful place. 9) One can get used to the smell of fish. 10) I wonder what it will be like to walk on a non-moving surface again?
Rain gear pants, used to keep the fish slime off.Snow covered peaks of the Alaskan Peninsula.
Thank you for reading this log, I hope that you have been informed and found it interesting. The next time that you eat seafood, or see fish in an aquarium, think of the countless scientists, ship’s crew, and whales who have contributed their knowledge and skills to the conservation and use of the world’s oceans.
And thank you to my husband and daughters for letting me be away for 3 weeks.