Spencer Cody: 1,000 Miles or 70 Million Years, Whichever Is Closer – May 16, 2016

NOAA Teacher at Sea

Spencer Cody

Soon To Be Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

 

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  Southeast Alaska Survey

Date: May 13, 2016

Personal Log:

Dillion

Dillion packing for his trip to Alaska with his family.  Credit Suzi Vail for the photo.

Dear Mr. Cody,

I am looking forward to relaxing and having a good time.  Also, I have been on a ship two years ago which was on the Carnival Sunshine.  I’m excited to explore new things on the ship.  I’m looking forward to seeing the glaciers and seeing new things and learning new things!  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

I hope you enjoy your trip to Alaska with your family. Your cruise sounds very exciting.  We missed you on the geology trip to the Black Hills, but Mrs. Kaiser was able to find a creative way to bring you with us.  I look forward to hearing more about your trip when you get back and your continued correspondence concerning your trip.  I am sure we will have a number of things in common with our trips to Alaska.  Take care.

As I look forward to another mission with the NOAA Teacher at Sea program aboard the NOAA Ship Fairweather and the prospect of again being embedded among NOAA’s ocean research, I cannot help but to think back to our recent geology trip earlier this month and the implications of geology on geography on my next NOAA mission.  The NOAA Ship Fairweather promises to be a very different experience than my experience aboard the NOAA Ship Pisces.

Needles

While Dillion was on his Alaska trip with his family, Mrs. Kaiser found a clever way to bring him with us.  Look closely for Dillion on our tour through the Needles of the Black Hills of South Dakota.  Credit Laurel Kaiser for the photo.

The Pisces was a survey ship that usually focused on fisheries missions similar to the Reef Fish Study that I worked on in 2014 while the Fairweather represents another key component of the NOAA fleet, the hydrographic ship.  Yes, this is where geology meets mapping, and when these two come together in the ocean, it is NOAA’s task to ensure that the data needed to manage and safely navigate coastal waters is up to date and accurate.

It can be a challenge to ponder upon an obvious connection to the ocean in a state like South Dakota.  During our geology field trip this May, there were times when we were no more than a few miles from the very center of North America’s landlocked isolation.  It may be quite fitting that North America’s pole of inaccessibility, the point at which one is the farthest from every ocean shore is in the Badlands of South Dakota where 100 miles to each horizon one can look in such a place and easily be led to the conclusion that this is, indeed, an ocean-less planet that stretches endlessly into beautiful desolation.

Badlands II

If you squint you can just make out the sea shore in the distance…just kidding.  The Badlands of South Dakota are as far as one can get from all shores in North America, more than 1,000 miles in every direction.  Credit Laurel Kaiser for the photo.

But, that is the illusion of South Dakota. The reality is that we live on an ocean planet that is dominated ecologically and cyclically and in every conceivable way by a giant reservoir of water far bigger than the vastness of the great North American interior.  The reality is that ocean deposits built much of what South Dakota is today through hundreds of millions of years of deposition.  The reality is that South Dakotans are tied to the ocean in a multitude of ways, yet it slips the grasp of our awareness and often our understanding.  Imagine the challenge with our students in South Dakota who have few, if any, personal experiences to draw upon when science teachers cover oceanography and other ocean sciences in classes throughout the state.  Thankfully, programs such as NOAA’s Teacher at Sea are tremendously helpful in confronting this challenge through this valuable education and research program.

I have two primary goals during my mission:  connecting NOAA’s oceanic and atmospheric work to the classroom and connecting students to the education and vocational pathways that could potentially lead to NOAA careers.  Basically, I am to learn and document as much as I can on my mission and use this experience to enhance the education of my students and to provide access to possible careers in oceanic and atmospheric work through NOAA.  I am greatly thankful and humbled to receive such an opportunity, yet again, through the NOAA Teacher at Sea program.  This is truly another great opportunity for learning for both me and my school.

13177554_943959909055546_7135506633857238816_n

There was once an ocean here…70 million years ago.  The great North American interior is largely comprised of ocean deposits of varying composition.  Hundreds of vertical feet of this ancient marine mud, Pierre Shale, is exposed through much of West River South Dakota serving as a constant reminder of our ancient watery origins.  Credit Laurel Kaiser for the photo.

As with me I will be starting my eleventh year of teaching in Hoven this August.  I teach 7-12 science:  Earth, Life, Physical, Biology, Biology II, Chemistry, and Physics.  I am also the testing coordinator and student adviser for our school district.  Like most staff members in a small school, one must get accustomed to wearing many hats with many roles.  I enjoy teaching all of the varied sciences.  It keeps my brain entertained and occupied!  Hoven is a very nice town to live and teach in.  It reminds me a lot of growing up in Veblen, another small, rural South Dakota town.  I have always been an advocate for rural education and strongly believe that small schools like Hoven offer an exceptional learning experience for students.

Unfortunately, I will have to leave my wife, Jill, and my daughters, Teagan and Temperance, behind for a few weeks.  I will miss them and did get a little home sick the last time with their absence.

I am counting down the days until I fly out on May 29 to Juneau, Alaska, where the Fairweather will be leaving.  I am to report a week early in order to work with the crew of the Fairweather on tidal gauges.  After my work with gauges, I will embark with the Fairweather on its mission and disembark in Ketchikan, Alaska.  I am very excited about the research involved in my upcoming mission.  I look forward to learning more about the various technological aspects of the mission and will report more on the subject once I am underway.  For more information about the Fairweather, visit the Fairweather homepage.

FullSizeRender

My family and I and Einstein.

Spencer Cody: NOAA Careers, June 10, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 10, 2014
 
Observational Data:
Latitude:  28˚ 4.545 N
Longitude:  90˚ 43.557 W
Air Temp: 28.4˚C (83.1˚F)
Water Temp: 25.4˚C (77.7˚F)
Ocean Depth:  148.0 m (486 ft.)
Relative Humidity:  80%
Wind Speed:  11.8 kts (13.6 mph)
Barometer:  1,011.1 hPa (1,011.1 mbar)

Science and Technology Log:

106_0247

Adria McClain, a survey technician, works on meteorological and oceanographic data collection in the acoustics lab.

It takes many different types of skill sets with many different types of backgrounds to make a NOAA mission like this a success.  Since it takes all kinds of people to get the job done, NOAA needs people with all of these backgrounds working together as a team for a common goal.  Maybe a NOAA career is in your future?

121_2160

Physical scientist Joe Tegeder is tracking the progress of one of the night-long mapping missions. Since the mapping grids commonly resemble a tightly-knit zig-zag of mapping trails, they are commonly referred to as “mowing the lawn.” Such a pattern is needed in order to properly map a given area.

Do you have an interest in meteorology or oceanography?  If so, NOAA needs you!  Meet Adria McClain; Adria is a survey technician who is responsible for collecting meteorological and oceanographic data and managing and maintaining the databases that store these observations.  She also helps integrate the Pisces’ system resources with each visiting science party.  She has an undergraduate degree in biology, a masters in physical oceanography and meteorology.  She was on active duty in the Navy for 10 years with the Meteorology and Oceanography Community or METOC.  During those ten years, she served two tours with the Naval Oceanographic Office where she was a hydrographer using sonar to make nautical charts for the Department of Defense.  She also served one tour at the Fleet Numerical Meteorology and Oceanography Center where she developed atmospheric and ocean models.  She states that she very much likes her job even though she still has a lot to learn about fish and fishery biology since she does not have a background in those areas.

124_2189

Lead fisherman Joe Flora is maintaining the weather deck by power washing surfaces. An advanced ship like the Pisces is a major investment in science and must be carefully maintained for future use.

Do you have an interest in the physical sciences and mapping?  If so, NOAA needs you!  Meet Joe Tegeder; Joe is a physical scientist who is responsible for using the acoustics equipment onboard specifically the ME-70 and the EK-60 in order to map fish habitat on the ocean bottom.  He has both an undergraduate and graduate degree in marine science.  He currently works for the Pacific Hydrographic Branch for NOAA where he primarily works with updating nautical charts in the U.S. waters of the Pacific.  Previously, he worked for the Naval Oceanographic Office where he helped map out harbors from around the world to develop anti-mining operations for possible future military missions.

Do you have an interest in doing the hands-on operational work required to carry out fisheries science?  If so, NOAA needs you!  Meet Joe Flora; Joe is the lead fisherman onboard the Pisces.  He helps implement all of the operational aspects of science missions by launching and retrieving science equipment, operating bandit reels, and cleaning and maintaining the ship in general.  He was with the Military Sealift Command for eight years where he worked on refueling ships and transport operations involving cargo and ammunition.  For the last nine years, he has worked in NOAA onboard the ships Thomas Jefferson, Gordon Gunter, and the Pisces.  He has been on the Pisces for six years.

103_0062

NOAA Corps officers are manning the bridge overseeing operations and ship resources. From left to right:  Ensign Johnson, Commander Fischel, and Lieutenant Commander Mowitt.

Do you have an interest in hands-on science and exploration?  If so, NOAA needs you!  Meet the NOAA Corps; they navigate the ship, allocate and coordinate the ship’s resources with the crew and the embarking science party, and most importantly make sure all hands are kept out of harm’s way by implementing proper safety procedures and protocols.  They bring all of the component parts together for a successful mission and try to make it as functional and as successful as possible.  Applicants to the NOAA Corps must possess a minimum of a four year degree with a minimum of 48 semester hours in science, math, or engineering coursework.  All of the officers onboard the Pisces have one thing in common:  they have a background in science, mostly biology and marine biology.  They also had to complete Basic Officer Training Classes after which they reported to a NOAA ship to serve onboard for two years where they learned watch duties and various other collateral duties along with all of the ship’s systems and operations.  In addition to assigned duties, they needed to know how to deploy and recover a diverse array of equipment including fishing gear, oceanographic instrumentation, sonar devices, and underwater cameras.  I could tell right away on the cruise that the officers had an inherent interest in science since they were always dropping in to see what we were working on exhibiting a genuine curiosity in the science that was going on.  NOAA officers are rotated out of their work positions spending a certain period of time out to sea and on land in varying geographical areas with alternating assignments.  This gives them a well-rounded experience in many aspects of NOAA’s mission.

124_2183

Members of the science party processing and recording fish specimens in the wet lab. Pictured from left to right are Paul Felts, John Moser, Adam Pollack, and Harriet Nash.

Do you have an interest in working with food preparation and presentation?  If so, NOAA needs you!  Meet Moises Martinez and Mark Potter; Moises is the chief steward.  His responsibilities include making sure there is enough storage for food, linens, and toiletries.  He is also responsible for hospitality onboard the ship and cleaning of the galley and mess.  He works with the second cook to preplan menus, but he really tries to take requests from the scientists and crew and responds accordingly.  He knows that there is not as much to do at sea during downtime as on land; so, he appreciates how much people look forward toward their meals; he tries to make everyone happy when possible.  He was in the Navy for eight years where he realized his interest in preparing food.  Later he worked two years in Italy with the Military Sealift Command as a cook and a baker.  When he came back to the United States, he found out that NOAA was trying to contact him to see if he was still interested in working for them.  He found this to be surprising since he had forgotten that he had applied through NOAA before he left for Italy two years prior.  He started out as a second cook for NOAA and has worked his way up the last six years.  Meet Mark; he is the second cook onboard the Pisces.  His responsibilities include cleaning, preparing food, cooking, and restocking.  He used to work in computer servicing but had to make a career change due to the economic downturn.  He liked preparing food; so, he decided to go back to school.  He went to Great Lakes Culinary Institute in Traverse City, Michigan, where he worked with some world class chefs to learn what he needed to know in order to work onboard the Pisces.  Prior to his assignment on the Pisces, he worked on freighters and research vessels in the Great Lakes for a couple of years.

Do you have an interest in engineering and mechanical systems?  If so, NOAA needs you!  Meet Jake DeMello; Jake is the chief engineer for the Pisces.  His responsibilities include maintaining any mechanical, propulsion, or electrical system.  He works to ensure that these systems are running safely and efficiently.  He has worked for NOAA for six years.  Prior to NOAA he worked in engineering on cruise ships and tankers.  He has a BA in marine engineering from the California Maritime Academy and is licensed as an unlimited chief engineer through the Coast Guard.

105_0117

The science party’s chief scientist, Kevin Rademacher, is coordinating from the dry lab a camera array drop with the bridge and the crew out on the weather deck.

Do you have an interest in science?  If so, NOAA needs you!  Meet the fishery research biologists onboard the Pisces; this includes the science party’s chief scientist and fishery research biologist, Kevin Rademacher, fishery research biologist Paul Felts, and fishery research biologist John Moser.  Other members of the science party include fishery biologist Adam Pollack and guest scientist Harriet Nash.  In order to be a fishery biologist, one needs a degree that includes courses such as limnology, ichthyology, fishery biology, and various other aquatic topics.  A background including technology, computer programming, and statistics is also useful when data analysis software is needed to produce maps and other displays of research data.  Having research experience that gives one the ability to do the data collection and processing, trouble-shooting, and analysis that is needed to carry out fishery research is also necessary.

121_2155

Jim Johnson works on the camera array after another full day of scheduled camera drops and data acquisition.

Do you have an interest in computers, computer programming, and electronics?  If so, NOAA needs you!  Meet Jim Johnson; Jim is an electronics technician for this mission.  His responsibilities include data downloading and maintenance and repair of the camera array system.  He started working for NOAA as a contractor and has been a NOAA employee for the last five years.  He has a four year degree in electronic engineering technology and a background in computers, technology, and computer programming.

Personal Log:  Unfortunately, my time on the Pisces is quickly coming to an end as the science carried out by the Pisces continues on for another leg of the SEAMAP survey.  I am so grateful for this experience and this remarkable program that NOAA has in place to provide such research experiences for teachers.  I look forward to developing materials in my classroom from this experience and making an impact on my students’ lives by sharing my experiences with STEM related NOAA careers.  I am also thankful to all of the crew and scientists of the Pisces for showing patience in everything from explaining basic ship operations and procedures to showing me how to carry out some of the science onboard.  The hands-on nature of the cruise made it an extremely valuable learning experience.  It is my hope that this program will continue offering such opportunities to educators well into the future.  I truly believe that the future of STEM-related jobs in the United States depends on programs like this to develop tomorrow’s scientists and engineers.

Spencer Cody: A Floating City of Life, June 6, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 6, 2014
 

Observational Data:

Latitude:  28˚ 18.164 N
Longitude:  92˚ 26.145 W
Air Temp: 27.7˚C (81.9˚F)
Water Temp: 25.5˚C (77.9˚F)
Ocean Depth:  86.1 m (282 ft.)
Relative Humidity:  76%
Wind Speed:  3.9 kts (4.5 mph)
Barometer:  1,011.5 hPa (1,011.5 mbar)

Science and Technology Log:

Sargassum

The floating mats of Sargassum stay afloat due to a series of small air bladders. The floating brown algae provides habitat for a diverse assortment of sea life.

It has been the subject of many ocean myths and legends:  ships becoming trapped in mats of thick, unrelenting seaweed.  Of course, such stories are not true, but the giant mats of seaweed that inspired such fear in sailors hundreds of years ago are very real and are an important component of the Gulf of Mexico’s ecosystem.  The Carthaginians and later the Romans first described a portion of the Atlantic covered in seaweed.  By the 15th century, the Portuguese had named the area the Sargasso Sea after the sargaco rock rose that grew in their water wells back home, which appeared to be similar to the seaweed that grew on the surface of the water in stagnant parts of the Atlantic.  From this comes the genus name Sargassum or as it is commonly referred to along the Gulf coast as gulfweed.

In the Gulf of Mexico, Sargassum can form large mats acres in size.  These large mats of brown algae provide a floating micro-ecosystem in the Gulf.  Sargassum is a food source for many marine organisms.  The mats also serve as a nursery for fish and invertebrate eggs and developing young.  The thick mats provide structure and cover in an ocean environment that may be lacking in the necessary cover to support the development of their young and to keep them hid from potential predators.  Within the mats many types of marine herbivores can be found.  The presence of various herbivores draws in fish to feed on those organisms grazing on the Sargassum.  In fact, some organisms have evolved to look like Sargassum for protection.  One good example of this is a type of frogfish called the sargassum fish.  The sargassum fish can appear to be brown, yellow, or olive depending on whatever color they need to be in order to blend in with the mat of algae.

 

P1020355

Hardhat, life jacket, and work gloves are needed during operations on the weather deck. This is a picture of me placing a float on one of our bandit reel lines.  Credit Kevin Rademacher for the photo.

Personal Log: 

Safety is always a key concern when going on a survey aboard a research vessel such as the Pisces.  This is especially true when a ship is moving and lifting the sensors and equipment to facilitate the science the Pisces is carrying out.  Whenever we are launching or retrieving either the CTD or camera array, protective gear including a hardhat and a life jacket are required.  Whenever we are using a bandit reel, the same equipment is needed as well.  Losing someone overboard is a constant concern.  That is why these precautions are taken whenever operations are occurring on a weather deck and is why we have drills for a man overboard situation to recover someone as fast as possible.

fire hose

Water hoses along with other fire suppression equipment are tested during one of our mandatory fire drills.

As with any building, fire is a serious threat.  On a ship fire is a threat that endangers everyone onboard.  Everyone is given an assignment list on their bunk card.  Each bunk card lists the person’s individual emergency billet assignments for a fire, abandon ship, and a man overboard.  During a fire everyone may end up becoming a part of the fire suppression crew.  People need to report to there assigned stations.  During a drill a mock fire is assessed and contained, and fire suppression equipment is tested out.  The Pisces is designed to contain fire wherever possible by having heavy fireproof doors throughout the ship making it more difficult for fire to spread to other decks.

If an emergency requires the ship to be abandoned, people are required to report to specific life raft stations with life jackets, a survival suit, and other items in order to leave the ship behind.  Life jackets and survival suits are found in our staterooms and throughout the ship.  This is an act of last resort once every attempt to save the ship has been made.  The Pisces is specifically designed to prevent water from entering cabins and corridors by using water tight doors.  This is designed to either prevent taking on water or at least slow the process down enough to abandon ship.

102_0046

Survival suits are both water tight and thermally insulated keeping a person who needs to abandon ship dry and warm. A flotation device is wrapped around the neck, which inflates, keeping the floating person upright in the water.  Credit Adam Pollack for the photo.

Other general precautions must be observed onboard.  Passengers and crew are not allowed to run while onboard for several reasons.  The watertight doors come up from the floor by nearly a foot in addition to many other obstacles.  Places like any of the weather decks or the wet lab where we process fish specimens are often wet and slippery.  Perhaps the most obvious reason one should be careful moving around onboard is the movement of the ship itself.  Large waves and swells can send the ship into an unpredictable motion.  This makes even walking or standing difficult at times and is certainly disorienting.  The Pisces has several features to accommodate this problem.  Handle bars and railings are found throughout the ship in order to stabilize yourself during swells.  Having a handle bar in the shower may seem rather over the top, but when your morning shower starts to resemble a theme park ride that you may have been on before, then you will start to understand why that feature is there.  Cabinet and drawers are self-locking; otherwise, they would constantly slide in and out, which is why we had to tape down many of the drawers in the dry lab that do not have this feature.  When you are on a moving ship, everything takes a little longer to do than on land.  It is just something you have to get used to.

Did You Know?

Even water temperatures as high as 80˚F can be a hypothermia risk if exposed to it for long periods of time.  Water conducts heat away from your body 25 times faster than air of the same temperature.

Spencer Cody: Science at Sea, June 1, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 1, 2014

Observational Data:

Latitude:  27˚ 50.503 N
Longitude:  93˚ 46.791 W
Air Temp: 26.3˚C (79.3˚F)
Water Temp: 23.3˚C (73.9˚F)
Ocean Depth:  126.8 m (416 ft.)
Relative Humidity:  84%
Wind Speed:  7.8 kts (9.0 mph)
Barometer:  1,009.5 hPa (1,009.5 mbar)

Science and Technology Log: 

It was not until the Pisces arrived at its first survey area off the coast of Texas that I was able to appreciate the volume of scientific data collection that this vessel could collect.  It took most of the 27th and all of the 28th to arrive at our initial survey area.  While in transit, the Pisces is constantly collecting data.  Data such as air temperature, wind direction, relative humidity, wind speed, and barometric pressure are recorded and periodically reported back to NOAA and the National Weather Service and from other marine vessels to improve data on meteorological events in the Gulf and weather forecasts.

In addition to collecting meteorological data, the Pisces uses a fishery acoustics system called the ER-60 to track depth and various sea floor features.  This system can also be used to monitor biomass such as fish, coral, and even plankton.  Once we arrived at our initial survey area within the SEAMAP survey grid, the amount of science conducted increased dramatically.  In the survey areas, the camera array is dropped to the sea floor to survey fish populations.  In most cases we are looking at fish habitat from 50 to 120 m deep.  Video and still photos are taken of fish attracted to the bait bag filled with squid.  To ensure that sampling is both consistent and unbiased for the survey, pictures and video are pulled at random from all four cameras on the camera array.  It is important that the same procedures are carried out throughout the SEAMAP survey gird concerning data collection in order to be able to reliably compare different survey areas and track species development and abundance.

In order to assist the camera array in obtaining accurate information about precisely how deep the camera array is when it is recording fish population data, a Temperature Depth Recorder or TDR is attached to the camera array to compare position in the water column to what the ship’s fishery acoustics system is displaying.  This is necessary in case the camera array has fallen off an underwater cliff or is hung up on some other topographic feature.

106_0233

The Conductivity Temperature and Depth or CTD submersible probe can measure the salinity of the water, temperature, pressure, plankton concentrations, dissolved gases, and water samples at different depths.

The Conductivity Temperature and Depth submersible aids the ship’s acoustic equipment in determining an accurate depth of the ocean bottom.  Since sound travels at different velocities in water that has different densities and temperatures, information regarding the salinity and temperature of the water must be fed into the ship’s fishery acoustics system to calibrate the system for it to accurately read the bottom depths.  If temperature or salinity are not taken into account, the depth will either be too shallow or too deep compared to the true value.

The Pisces not only has the ER-60 for fishery acoustics, but it also has a state of-the-art multi-beam echo sounder, the ME-70, that has 27 transducers that are aligned in a configuration allowing for scans of wide swaths of the ocean bottom.  In fact, the Pisces has engines that are specifically designed to run quietly enough to accommodate such advanced acoustic equipment.  The ME-70 is used for mapping various sample areas of the SEAMAP survey.

While the camera array can be used to measure the length of some of the fish viewed, it cannot reliably determine characteristics such as age or sex.  Determining age or sex just through appearance can be very tricky in the Gulf and is frequently unreliable.  Many species of fish will grow at different rates depending on available forage and other environmental factors.  This is an issue that is also commonly encountered among freshwater fish in South Dakota.  Complicating fish characteristics even further, many reef fish are one or the other sex at different phases of their lives.  They are not strictly male or female but change roles depending on complex physical or environmental factors.  With so many factors complicating these characteristics, live catches are necessary to determine the full story of what is going on with reef fish in the Gulf.

For live catches we use bandit reels.  Bandit reels are similar in concept to a standard fishing rod and reel except they are built for heavy duty sea fishing.  The reel and rod are attached to the side of the ship.  One hundred pound test line is used with a five pound sinker weight.  Each line for the bandit reels has ten hooks, a small float that keeps the hooks in a vertical column, and a large float that keeps the ten hooks just above the ocean bottom.   Again, in order to guard against bias in the results, we use the bandit reels with a set procedure.  For our survey we are using three bandit reels at a time each with ten hooks.  The bandit reel stations are in radio communication with the dry lab, where the chief scientist is coordinating the sampling, and the bridge, which is keeping the ship in position for the lines preventing lines from running under the ship.  Since we want to be as objective as possible without contributing to any type of bias in the sampling, each line was in the water for exactly five minutes.  Even though it may have went against every natural inclination of most fishermen and fisherwomen, we were not allowed to jig our lines or do anything that might attract more fish to our bait.  In addition to standardizing the number of hooks and the length of time spent fishing, three different sizes of hooks are used and rotated out from each bandit reel station; consequently, one of each of the three hook sizes is always being used for each survey area.

105_0180

White, nickel-sized disk-like structures called otoliths can reliably age fish. They are inner ear structures that grow in size as a fish ages allowing calcium carbonate deposits to form over the course of its life. Scientists can read these calcium carbonate deposit rings like rings in a tree to determine the age of the fish.  Credit Harriet Nash for the photo.

107_0275

After all the measurements are taken of the fish and their otoliths and gonads have been sampled, the information must be added to the database for use in the SEAMAP Survey. Credit Adam Pollack for the photo.

After five minutes of fishing, the lines are brought up and fish are tagged one through ten to keep fish identified with a specific hook and depth.  The tagged fish are then taken to the wet lab for measurement readings.  In the wet lab, fish length, weight, sex, and phase of reproductive development are recorded.  Since reproductive development, and sometimes even sex, can be difficult to determine, a sample of each fish’s gonads (ovaries or testes) are removed and placed in a labeled specimen vial for confirmation in the lab back on land.  The otoliths (inner ear bones) are removed from the fish, as well, in order to reliably age the fish back in the lab.  Once the measurements are recorded, they need to be added to the database to be compiled with the gonad and otolith specimens.  This is just a small piece of the monitoring that is occurring in the Gulf through NOAA.  The Gulf of Mexico is a remarkably diverse expanse of ocean and requires significant scientific research in order to understand and track fish populations and the habitat and forage that sustain them.  Without these types of intensive scientific studies on the ocean, we could not possibly manage or attempt to conserve a natural resource that we would, otherwise, have little to no understanding of.

Personal Log:

Since we had arrived off the coast of Texas a couple of days ago, we have been slowly back tracking to Pascagoula as we go through our survey areas.  The weather has been beautiful the last couple of days; however, sea swells do cause the boat to jostle around a bit.  Each day we see more species on the surface of the water and through our camera array under the water.  Since the science log is rather long for this post, I will talk more about life at sea and the different types of organisms we are encountering in future posts.

Did You Know?

Fish identification can be a tricky business in the Gulf of Mexico.  Many species of Gulf fish alter their physical appearance depending on their reproductive development, environmental factors, or phase of physical development.  Fish will even appear to have different patterns depending on whether they are viewed under our out of water.

Spencer Cody: A Sea of Uncertainty, May 28, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico

Mission:  SEAMAP Reef Fish Survey

Date:  May 28, 2014

 

Observational Data:

Latitude:  28˚ 1.564 N

Longitude:  92˚ 19.000 W

Air Temp: 26.2˚C (79.2˚F)

Water Temp: 23.3˚C (73.9˚F)

Relative Humidity:  90%

Wind Speed:  16.3 kts  (18.8 mph)

Barometer:  1,011.9 hPa (1,011 mbar)

Personal Log:

Aftermath of a fire early Sunday morning that destroyed most of the high school.  Credit Jill Cody for the photo

This is the aftermath of a fire early Sunday morning that destroyed most of the high school in Hoven.  My classroom is in the lower left of this picture.  Credit Jill Cody for the photo

I see the pictures, the video, and the news stories, and it is still hard to accept the reality of what happened Sunday morning.  For those of you who are not familiar with my town and the events surrounding it, our community suffered a great loss over the weekend by losing much of the high school to a fire.  Since I was on vacation when it happened and had to leave directly from that to the Pisces, I never saw the fire or the resulting damage, and I suppose reality will finally sink in three weeks from now when I see my school and classroom in person to see what science materials and equipment is salvageable.  My sympathies to those affected by this tragedy.  However, I am heartened by my community’s initial response of determination to rebuild our school and to continue our tradition of offering high quality education to rural South Dakota.  Though the future remains uncertain, I stand with those who support saving our school district and will be there to help see this transition through.  I will proceed with the NOAA Teacher at Sea program while keeping in mind that I am now helping move forward the recovery from this tragedy by advancing and enhancing the future of science education in Hoven and beyond.

Back in the Gulf, I flew into Gulfport, Mississippi, on Monday, May 26, and took a taxi to the Pisces in Pascagoula, Mississippi.  By chance I met a crewmember who noticed the NOAA Teacher at Sea t-shirt I was wearing at the airport.  He too had flown in on the same plane that I had from Atlanta.  He was very interesting to talk to learn about many of the diverse backgrounds needed to operate a ship like the Pisces.  In our conversation he had talked about why he joined NOAA and some of his past work that had given him the experience necessary for the job.  Since he is a crewmember on the deck crew, experience at sea and ship operations is a necessity.  The crew allows for day-to-day operations, ensures safety of the ship and the passengers, and assists with the research in its logistics and implementation where necessary.  The crewmember I talked to had extensive experience working at sea on cargo ships and looked forward to his future work with NOAA and was very interested in all the science that the Pisces carries out.  In general, the crew can be divided up into the following categories:  deck crew, officers, stewards, technicians, and engineering.  The deck crew carries out the implementation of operations and day-to-day maintenance of the decks.  The officers are members of the NOAA Corps, one of seven uniformed services of the United States.  The stewards maintain the galley (kitchen) and mess (dining room) providing meals to everyone on the Pisces.  The technicians process data and maintain data collection systems and other electronics.  Engineering operates and maintains the ship’s engines, equipment, and various electrical and operational systems.  Whether it is the deck crew, officers, stewards, technicians, or engineering, all are needed to make the science carried out by the science party possible.

100_0045

A picture of me on the top deck of the Pisces as we leave Pascagoula, Mississippi, for the Flower Gardens off the coast of Texas.  The USS America is in the background.  Credit Harriet Nash for the photo.

I arrived at the Pisces during the afternoon on the 26th.  This was very helpful in giving me some time to explore the area in Pascagoula and the ship before takeoff the next day.  I was assigned a very nice stateroom that I am sharing with another member of the science party.  I was surprised that our accommodations were so spacious.  We get our own desk, tv, sink, bathroom, and shower.  It reminded me of living in the college dorm my freshman year minus the group showers; so, I was more than pleased with the living arrangements.  Looking around Pascagoula directly adjacent to where the Pisces was docked, I was amazed at all of the heavy industry concentrated around the Pascagoula River.  The river hummed with activity day and night with trains, cargo ships, tugboats, oil and gas well repair work, ship repair work, fishing operations, and tourism.  It was quite remarkable to see where some of the goods that we buy in stores back in South Dakota first make their landing on the North American continent and to get a sense of the scale of the sea-based operations needed to make international trade possible.  The ocean is how you are able to sell your beans to Brazil or wheat to China.  It is the economical lifeblood that connects all of us, but we seldom think of what happens to our goods beyond the retail store or the elevator.  We just know the system works and take the infrastructure behind it for granted.  Though South Dakota is more than a thousand miles from the Gulf of Mexico, it is linked by trade with the rest of the world through the Gulf.

106_2291

The NOAA ship Pisces is a state-of-the art research vessel.  Even when in transit to a specific operational location, it is always recording data and making observations of the ocean and the atmosphere.

Onboard the ship I was able to explore the different decks.  The Pisces is a large ship, but it is not until you move around on the decks that you realize how much space is needed to carry out all of the diverse series of scientific operations.  The Pisces is equipped with a hydraulic crane with the ability to lift 10,000 pounds, which is needed to raise and lower science equipment and remove and replace the gangway, the walkway needed to board and get off the ship while it is docked.  The ship also has a giant spool called a net reel where they store the fishing nets used for trawling missions and a series of winches with thousands of feet of wire to lower scientific instruments into the depths of the ocean.  Even when the Pisces is not carrying out any specific operations while in transit to an operation point, the ship is utilizing every opportunity to gather data on the ocean and the atmosphere.  The Pisces is specifically designed to run quietly to allow for state-of-the-art acoustic sensors to gather information on topographic features of the bottom and even information on various types of biomass in the water column such as fish, plankton, and the different types of coral on the ocean bottom.  The ship is also always taking meteorological readings for scientific use, calibration, and navigation.  Wind speed, wind direction, relative humidity, water temperature, barometric pressure are just some of the observations that are constantly being compiled; therefore, even in the dead of night in our transit, the Pisces is carrying out valuable scientific research and monitoring.

Science and Technology Log:

We are enroute to the Flower Gardens, one of the northern most reef forming corals in the world.  In fact, the Flower Gardens were not officially documented to have extensive coral reefs until the early 1960s when researchers started to investigate rumors of coral reefs in the northern Gulf of Mexico.  What research divers found was amazing:  a pristine coral reef not touched by poaching or pollution.  We are scheduled to arrive at the reefs this evening, May 28.  We will begin the fish surveys using the camera array and bandit reels tomorrow, as well, to document fish populations among the coral reef structures.

104_0086

One means of surveying fish abundance and size is using this submersible camera array. It is equipped with four cameras that are used for random sampling for survey data.  The array is fitted with a bait bag filled with squid in order to attract fish such as grouper and snapper.

Did you know?

The world’s coral reefs contain a remarkably rich and diverse multitude of life, yet they are threatened by poaching, pollution, disease, invasive species, and increasing ocean temperatures and acidity.

Spencer Cody: From the Center of the Continent to the Edge of the Continental Shelf, May 9, 2014

NOAA Teacher at Sea

Spencer Cody

Soon To Be Onboard the NOAA Ship Pisces

May 27 – June 11, 2014

 

Mission:  Reef Fish Survey

Geographical Area of the Cruise:  along the continental shelf edge off the coast of Louisiana

Date: May 9, 2014

 

Personal Log:

Pole of inaccessibility…I admit I was shocked to see that South Dakota claimed such a dubious geographical title in a recent issue of National Geographic.  South Dakota is technically not the geographical center of North America; that title goes to North Dakota.  South Dakota, however, does carry the rather obscure title of being a pole of inaccessibility for the North American continent, the point farthest from all North American shorelines.  Basically, if you live in South Dakota, you live at least 1,000 miles from a coast…any coast!  Perhaps our isolation from the ocean is more than a physical measurement on a map.  How often do South Dakotans think of living on an ocean planet?  Indeed, our perception of the world is seemingly skewed considering we live smack in the middle of that 30% we call land.  Living in South Dakota, it is easy to forget about the ocean and its impact on our daily lives.  We live as far from it as one can in North America; yet, we are inseparably bound to it.  The seafood you eat, the nearly subconscious purchases of foreign goods you make, the moisture we receive, the crops you sell, and even a large portion of the air that we breathe link us all to the ocean’s central value in our lives; therefore, understanding the ocean and the ocean sciences is vital to our daily lives even to landlocked South Dakotans.

Stoney Butte, South Dakota

South Dakota, a sea of former and current grassland! (Credit Spencer Cody for photo)

Here is where the National Oceanic and Atmospheric Administration and the Teacher at Sea program come into play.  It has become obvious to me since my selection as a Teacher at Sea that very few people in this region associate NOAA with ocean research.  They seem to know that NOAA plays a role in researching the atmosphere such as working with the National Weather Service to forecast storms, but they never make a connection to the ocean even if it is the second word in NOAA’s namesake.

It is understandable that South Dakotans in general would assume this because the only exposure we have to NOAA in this part of the country deals with storm and weather forecasting.  In reality NOAA operates a fleet of ocean research vessels that cover the expanse of U.S. waters and beyond in order to increase our understanding of what we really have in our oceans and how it all interacts with each of its differing component parts.  Also, NOAA has its own uniformed service called the NOAA Corps, which keeps the fleet operational and aids and assists in ocean research.  My goals as a Teacher at Sea are twofold:  connecting NOAA’s oceanic and atmospheric work to the classroom and connecting students to the education and training-related pathways that could potentially lead to NOAA careers.  Essentially, I am to learn and document as much as I can on my cruise and use this experience to enhance the education of my students and to provide access to possible careers in oceanic and atmospheric work through NOAA.  I am greatly thankful and humbled to receive such an opportunity through the NOAA Teacher at Sea program.  This is truly a great opportunity for learning for both me and my school.

Spencer Cody Hoven, SD

I enjoy geology, paleontology, and many other sciences. It is probably a safe guess that a large dinosaur left this track behind.

More about me…I will be starting my ninth year of teaching in Hoven this August. I teach 7-12 science:  Earth, Life, Physical, Biology, Biology II, Chemistry, and Physics.  I enjoy teaching all of the varied sciences.  It is hard to get bored when you teach everything.  Hoven is a very nice town to live and teach in.  It reminds me a lot of growing up in Veblen, another small, rural South Dakota town.  I have always been an advocate for rural education and strongly believe that small schools like Hoven offer an exceptional learning environment for students.

Unfortunately, I will have to leave my wife, Jill, and my daughters, Teagan and Temperance, behind for a few weeks.  I will miss them, but also realize that my four-year old daughter being present on a research vessel would make any productive research almost impossible.  She is very rambunctious.

I am counting down the days until I fly out on the 26th to Pascagoula, Mississippi, where the Pisces will be leaving and returning after the mission is completed.  I am very excited about the research involved in my upcoming mission.  Researching fish species abundances associated with the topography of the Gulf of Mexico has so many implications because our mission is just a small piece of a giant survey puzzle that includes nearly the entire edge of the North American shelf in the Gulf of Mexico.  Ships in the survey area have been using many innovative ways of monitoring reef fish abundance.  I look forward to learning more about this technology and will report more on the subject once I am underway.  For more information about the Pisces, visit the Pisces homepage or track our movements using the NOAA ship tracker.

Isle Royale National Park Spencer Cody

My wife and two kids on vacation at Isle Royale National Park in the middle of Lake Superior.