Anna Levy: First Day of Fishing! July 12, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 12, 2017

 

Weather Data from the Bridge

We’re traveling through some mild rainstorms. Nothing extreme, but we do feel a little more side to side rocking motion in the boat (which makes me feel sleepy!)

IMG_5433

Mild rainstorms on the horizon

Latitude: 29 degrees, 56.2 minutes North

Longitude: 86 degrees, 20.6 minutes West

Air temp: 24.7 degrees Celsius

Water temp: 30.1 degrees Celsius

Wind direction: light and variable

Wind speed: light and variable

Wave height: 1 foot (about 0.3 meters)

Sky: overcast with light rain

 

Science and Technology Log

Today I completed my first shift on the science team and we surveyed 3 complete stations. At each station, we carried out a multi-step protocol (or procedure). Here are the steps:

IMG_1039

The Depth Contour Output graph displays data collected from one station.

Before we begin fishing, the ship conducts a transect (or cross-section) of the survey area, using multiple pieces of equipment to observe the ocean floor. This tells us if it is safe (for both ship operations and for fragile coral that may exist) to trawl here. If a coral reef or other large obstacle was present, we would see significant variation in the depth of the ocean floor. This “depth contour output” graph shows the data we collected at one station. How deep is the water at this station? Is it safe to trawl here?

IMG_1028

The CTD collects information about water chemistry

We also use a collection of instruments called a “CTD” to collect information about the chemistry of water itself at different depths. This information is called the water’s “profile.” For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

IMG_1025

Forel-Ule color scale

We also measure the water color using the Forel-Ule color scale by matching it to the samples shown in this photo. This gives scientists an indication of the amount of particulates, chlorophyll, and nutrients are in the water.

IMG_0033

Trawl Net being lowered into water

Once we determine it is safe to trawl, the ship returns to the starting location. We will trawl along the same path that we observed. Here’s the trawl net before it is lowered into the water. It will be pulled just along the bottom of the survey area, using tickler chains to agitate the ocean floor for benthic organisms for 30 minutes, and collecting whatever crosses its path!

IMG_1037

The catch is emptied into baskets

Once the trawl is finished, the deck crew uses a large crane to pull the trawl on board. We all help to empty the net and place everything into baskets. Most of what we catch are biological organisms, but small amounts of non-living material (like shells, dead coral, and even trash) come up as well.

IMG_1002

The Wet Lab

We then bring the baskets into the wet lab.

IMG_1046

Baskets are emptied into a long trough with a conveyor belt

We dump the baskets into a long metal trough that has a conveyor belt at the bottom.

IMG_1014

The catch is sorted into baskets by species

Next we sort the catch. Each species gets its own basket and we count the number of individuals for each species.

IMG_1032

Identifying organisms

Then, it’s time for the tough part (for me at least) – every organism has to be identified by its scientific name. That’s a lot of Latin! Fortunately, Andre and the senior scientists are very patient and happy to help those of us who are new. It’s amazing how many species these experienced scientists recognize off the top of their heads.

IMG_1030

Field Guides

We also have many field guides, which are books containing photos and descriptions of species, to help us.

IMG_1017

For each species, we record the total number of individuals and total mass

We are interested in how much of each species are present, so we record both the total number of individuals and total mass of each species.

IMG_1059

TAS Anna Levy measures the length of a flatfish using the Limnoterra Board

We also measure the length and mass of a sample of individuals. A handy device called a Limnoterra Electronic Measuring Board makes this process easy.  We place the mouth of the fish on one end of this board and then touch its tail fin with a pen-like magnetic wand. The board then automatically sends the fish’s length to the computer to be recorded.  We use an electronic balance that is also connected to the computer to measure and record mass.

IMG_1008

A computer screen displays FSCS software

All of the information is recorded in a database, using software called FSCS (pronounced “fiscus”).

Many of the specimens we collect are saved for use in further research on land.   Scientists at NOAA and other research institutions can request that we “bag and tag” species that they want. Those samples are then frozen and given to the scientists when we return to shore.

Any organisms or other material that remains is returned to the sea, where it can be eaten or continue its natural cycle through the ecosystem. The conveyor belt, conveniently, travels to a chute that empties back into the ocean. Now all that’s left is to clean the lab and wait for the process to begin again at the next station!

Our goal is to complete this process 48 times, at the 48 remaining stations, while at sea. 3 down, 45 to go!

Personal Log

IMG_1048

Sometimes the work is high-paced…

This work has real highs and lows for me, personally. There are dramatic, hold your breath, moments like when equipment is lifted off the deck with cranes and lowered into the water. There is the excitement of anticipating what data or species we will find. My favorite moment is when we dump the buckets and all of the different species become visible. I’m amazed at the diversity and beauty of organisms that we continue to see. It reminds me of all of the stereotypical “under the sea” images you might see in a Disney movie.

The more challenging part is the pace of the work. Sometimes there are many different things going on, so it’s easy to keep busy and focus on learning new things, so time passes quickly. Other times, though, things get repetitive. For example, once we start entering all of the data about the individual fish, one person calls out the length and mass of a fish, while the other enters it into the computer – over and over until we’ve worked through all of the fish.

IMG_1050

… but sometimes the work even stops altogether, especially when whether interferes.

Sometimes, the work even stops altogether, especially when the weather interferes. There have been mild rainstorms coming and going continually. It is not safe to have people on deck to deploy the CTD and trawling equipment when there is lightning in the area, so there is nothing for the science team to do but wait during these times.

Because the pace of the work is constantly changing, it’s difficult to get into a groove, so I found myself getting really tired at the end of the shift. However, an important part of collecting data out in the field is being flexible and adapting to the surroundings. There is a lot to accomplish in a limited amount of time so I keep reminding myself to focus on the work and do my best to contribute!

Did You Know?

When working at sea, scientists must use special balances that are able to compensate for the movement of the ship in order to get accurate measurements of mass.

To ensure that we are accurately identifying species, we save 1 individual from each species caught at a randomly selected station. We will freeze those individuals and take them back to NOAA’s lab in Pascagoula, where other scientists will confirm that we identified the species correctly!

Questions to Consider:

Review: Look at the “depth contour output” graph above: How deep is the water at this station? Is it safe to trawl here?

Research: What does “CTD” stand for?

Research: For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

Reflect: Why might scientists decide to use three different pieces of equipment to collect the same data about the ocean floor? And, why might they have several different scientists independently identify the species name of the same individuals?

Melissa Barker: Going Fishing, June 25, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 25, 2017

Weather Data from the Bridge

Latitude: 28 30.0 N

Longitude: 94 00.4 W

Air temp: 26.7 C

Water temp: 28.8 C

Wind direction: 130 degrees

Wind speed: 14 knots

Sky: rain squall

Science and Technology Log

We left port Friday evening and by 10:00pm we were fishing. We move from stations to station, often in a zig zag pattern to retrieve our samples. As I mentioned in a previous blog, the stations we will visit are randomly generated for us. I will use this post to give you an idea of what we do at each station.

P1020827

CTD instrument ready for deployment

As we come upon a station, we first deploy a scientific instrument called the CTD, which stands for conductivity, temperature, and depth which it measures. Additionally, this instrument measures dissolved oxygen. During day light hours, we also take additional environmental data including water color, percent cloud cover and wave height. At least once per day, we take a water sample which will be titrated using the Winkler method to double check our dissolved oxygen readings. The CTD is first calibrated at the surface for three minutes, then lowered to approximately two meters above the bottom, with a maximum depth of 200 meters. Teamwork is critical here as the officers in the bridge announce that we have arrived at a station. The Science Field Party Chief (FPC), Andre, tells the fisherman the depth and watches the data come into a computer in the dry lab near the stern. They are all in radio communication to make sure everything goes smoothly.

P1020924

Trawl headed into the water

Then the fishermen prepare to deploy a 40-foot trawl within a 2.5 mile radius of the station coordinates. Again, with communication from the fisherman, bridge and the FPC, the trawl is lowered into the ocean and moves along the bottom collecting organisms for exactly 30 minutes after which the trawl is raised and the net is brought onto the boat. The organisms caught in the net are then released into baskets,which are weighed on deck to get a total mass for the catch.

 

 

Then the fun begins! The full catch is poured out into the trough or if big enough, brought in via a conveyor belt. If the catch is 24 kg or under, we will log the entire catch.

P1020854

Catch poured out into the trough

If it is over 24 kg, then we will split the catch and log a representative sample. When splitting the catch, we first place all the organisms in the trough and roughly divide the catch in half. Before we send the half that we will not log back to the ocean, we must pull out commercial species, such as shrimp and snapper, and any individual species not found in the half we will log. Then we take the half of the catch that we will log and start the sorting.

P1020860

Splitting the catch

We sort all organisms that are the same species into one basket, then count and take a total mass for each species group. You can see images below of a sorted catch.

IMG_3163

Sorted fish

For most species, we will sample up to 20 random individuals. We record length for all 20 and then take a mass and sex every fifth organism. Logging is a bit different for shrimp, we will record length, mass and sex for all organisms up to 200 individuals. We will do the same for any other commercial species.

P1020945

Measuring a fish with the Limnoterra board

We use a Limnoterra measuring board with a magnetic wand which gives an accurate length by connecting to a magnetic strip on the board. This tool saves a lot of time and allow us to get accurate measurements.

In future posts, I’ll talk more about what we are finding and learning from our data.

P1020864

Trying to sex a fish which can be sometimes be challenging

Personal Log

I am starting to find my sea legs. The seas were a bit rough as we left port after the storm. It was touch and go for the first 24-36 hours, but with the help of Meclizine (a motion sickness medication) and sea bands (wrist bands that push on a pressure point in your wrist) I am now feeling pretty good. I’m also getting used to the constant movement of the Oregon II which makes everyday activities like walking, showering and sleeping quite interesting. When I lay down in bed and close my eyes, I can feel the troughs of the waves push me down into my mattress and then I spring up at the tops of the waves. It is very relaxing and helps lull me to sleep. When showering, I frequently need to hold on so as to not fall over. As some of you know, I have a habit of moving pretty fast around school. Often in a rush to check items off my to-do list or get to my classes. On the boat, we need to move slowly due to the constant motion. You also never know when someone is going to open a door into the hallway or come around the corner. There is not much space, so you must move slowly and cautiously.

P1020910

Day shift crew from left to right: David, Tyler, Field Party Chief Andre, Sarah and Melissa

I am also getting use to the fish smell in the wet lab where I spend most of time when working. I’m on the day shift, which runs from noon to midnight. I’ve tried to soak up as much information as I can over the last couple days and have really enjoyed the learning. The hardest part for me is trying to learn scientific names for the 30-40 species we find in each catch. The Latin names go in one ear and out the other. Having never worked with fish, this part pretty challenging, but luckily Andre is very patient and always willing to answer my questions. My day-shift teammates, Tyler, David and Sarah, are terrific, keep the atmosphere fun and teach me each day. It has been really interesting to see the increase and decrease of certain species from different stations.

P1020865

Melissa and Tyler measuring fish in the wet lab

Did You Know?

The Texas shrimp fishery closed on May 15, 2017 and will re-open on a yet to be determined date in July. This is what is referred to as the “Texas Closure”. The shrimp data that we are collecting will be sent to the state to help them determine the health of the fishery and when to open it back up. According to the Coastal Fisheries Division of the Texas Parks and Wildlife Department (TPWD), “The closure is designed to allow escapement of shrimp out to the gulf where they can grow to a larger, more valuable size before they are vulnerable to harvest. The goal is to provide shrimp of a size that are more valuable for the shrimping industry while ensuring sustainable stocks in the future.”

P1020883

A large Brown Shrimp: Penaeus aztecus

 

Dawson Sixth Grade Queries

How many different species did you find? (Owen, Sylvia, Tyler, Maylei, Ben)

The number of species we find varies with each trawl, but recently we have been finding about 35-40 species per trawl. The picture below show the diversity a typical catch.

 What organisms other than fish did you find? (Badri, Tyler, Alexa, Lorena, Wanda)

We find many other species besides fish. Some of the more common groups of organisms we find are squid, jelly fish, shrimp, sea stars, scallops, crabs, and vacated shells. Occasionally we catch a small shark or sting ray.

P1020954

Example catch diversity

Sue Zupko, Diversity, September 13, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 13, 2014

Weather Data from the Bridge
Lat 35°38.1’N     Lon 074°50’W                    

Present Weather PC       
Visibility 10 nm
Wind 220° 5kts

Sea Level Pressure 1016.6
Sea Wave Height 1-2 ft
Temperature: Sea Water 27.2°C
Air 28.4°

Science and Technology Log

If you want to learn about biodiversity, come on a NOAA Fisheries Cruise. We hear about the numerous fish in the ocean, but nothing really makes it come alive as does seeing it. There are pockets of animals in each of the strata. Different depths have different temperatures, bottom type, plants, etc. Let me explain a bit about my watch and what we are doing.

I was amazed by the diverse sounds. A crow. A jaguar screaming. A frog croak. Sloshing. Thumps. “Fine”. A ringing telephone. A whip cracking. A waterfall. Thunder. A pinball machine. Music playing. Some people singing along. Laughter. Chatter. The list is seemingly endless.

There are platforms we each stand on along the conveyor belt which brings the fish in to be processed from the checker on the deck. The first person in line and pulls out fish which might be harmful such as electric rays and large sharks. Hope she gets the Lionfish as well. Don’t want to be stuck by those spines. As the animals come down the line we sort them based on the instructions of the watch chief who has been outside to see the catch, comparing what we have.

Heath, our watch chief, programming our catch

Heath, our watch chief, programming our catch

Heath is my watch chief. So, he suits up in his PFD (life jacket–personal flotation device) and hardhat(helmet) to see what was put in the catcher and then tells us what to leave on the conveyor belt as it goes by. That is usually what is most numerous. Sometimes it’s trash, such as starfish and jellies , other times it’s Loligo squid One night we had a huge amount of scallops so a seemingly endless stream of scallops passed us by. I love eating scallops. It is amazing to view them up close. They have numerous eyes lining the inside of the shell.

Containers Small, Gallon, 10 Gallon, 1.47 Cubic Feet Baskets

Containers Small, Gallon, 10 Gallon, 1.47 Cubic Feet Baskets

Once the animals are sorted by species into containers, they then make their way down the conveyor to Heath. Heath scans the container which makes a telephone ringing sound. He enters/selects the name of the animal on his monitor (crow caws–actually except for animal id every time he does something his “ok” sound is a crow), checks our work to be sure the animals in the container are all the same, weighs the catch of that entire species, and sends the container on its way down the conveyor belt.

There are three processing stations along the conveyor. I have mostly worked with Nicole this week so far. She is a fabulous teacher. Very patient with my inexperience and points out when I do something correctly. That way I will repeat things the correct way. She also suggests better ways when I struggle. Heath explained that we process the containers with the most organisms in them first so no one is stuck at the end of the line doing a large container of animals when others are cleaning up. Some containers might just have one animal. This system works pretty well since everyone seems to finish at the same time.

1 Gallon Container

1 Gallon Container

There are two people at each of the three stations. One person is the fish processor and the other is the recorder. First, the processor scans the container. It buzzes and identifies the container and what the animal is. I was very proud of myself today. I have been assigned to work with Larry now. He left me on my own to process (though he was watching from across the conveyor). When I checked to see how to measure the fish I was working with, it said to measure the width of the carapace. Carapaces are found on turtles or crabs. It is their hard shell. I had a tiny fish. On a rocking ship, it is easy to push a wrong button on a screen and this container had the wrong name on it. Easy fix. Sent it back for reassigning a species and I picked it up when it came by again. “Nice catch on that,” Larry said. Made me feel proud that I recognized how to use the equipment, recognize certain species, and fix the problem. Nicole said if we make a mistake, it can always be fixed. Remember, we learn from mistakes. That’s what we stress in my classroom. Try it. If you fail, learn from the mistake and redo. That works with adults as well.

My favorite sound is the pinball machine that says the weight has been recorded. If the animal needs more processing than just being weighed, there is a sound (a jaguar scream or a whip cracking) to tell the team what to do. Sometimes we need to put the animal in a jar to be preserved. )

Other times we need to take a photograph, or it will ask what the animal’s sex is. We have had a lot of requests for fish to be frozen for study back in the lab. These are bagged and put into a large freezer  for the requesting scientist. The most common seems to be getting the otolith, the part of a fish that aids it in orientation, balance, and sound detection. These are tiny in most fish and require a little manila envelope that we put a sticker on identifying it. These special requests from the computer are all preset requests from scientists working in a scientific area back on shore.

 

The sound of the waterfall is the constant stream of salt water running down a shoot onto the floor. This picks up animals and trash that have dropped and washes them down drains or out the scuppers (small rectangular openings on the bottom of the wall at the floor which opens to the outside) on the sides of the room. The water is very warm and I’ve noticed that the sea water has been warmer than the air temperature. Another sound is the water sloshing around, similar to the sound in a bathtub when you move the water.

Saltwater helps keep the floor clean in the wet lab.

Saltwater helps keep the floor clean in the wet lab.

When I began this blog I was sitting on the O2 deck at a small table under the stairs. We kept changing direction at relatively slow speeds. I have learned that we were using the multi-beam sonar to look at the bottom to find an acceptable spot to trawl. I was excited to sit outside to work and gaze out over the ocean. During that time I spotted three pods of dolphins swimming. John Galbraith, our chief scientist, and I discussed last night how if you aren’t spending time observing something you will miss many things. So true. If I wasn’t observing the ocean frequently, what are the odds I would see a whale?

Meet Scientist Nicole Charriere 

Nicole with Slender Snipe Eel

Nicole with Slender Snipe Eel

Nicole has been my mentor for the past week. She is a sea-going biological technician, sailing about 130 days out of a year. She usually is on scallop surveys, but seems pretty expert in fish, shrimp, and clams as well. Her job on this cruise is to help provide leadership. There are several volunteers on this cruise, me included, and some are novices just learning about fish. She explains about the protocols (a formal set of rules and procedures to be followed during a particular research experiment).

What Nicole likes about her job is she isn’t in an office all the time. Trawls are different every day. No two tows are the same, and there are a huge variety of species. She really enjoys the diversity of people she gets to work with. There are different scientists and crew members to meet each time. She is a scuba diver and knew she wanted a career with NOAA when she graduated college. She had a job on a commercial fishing vessel and was contacted by NOAA. Someone probably noticed her great work and let someone hiring at NOAA know.

There is something very ironic about Nicole working on a fishing vessel. She doesn’t like sea food. She recognizes its importance and that it is important for the world to have a reliable food source, but it isn’t her favorite.

Nicole’s advice to my students is to talk to everyone and learn. Make connections about what you learn. Work hard, since working hard and getting along with people on a team gets you noticed and when a job comes available, guess who gets hired? Not the person who is difficult to work with and is late constantly.

Nicole has an active lifestyle. In addition to scuba diving, she roller blades, plays guitar and keyboard, and plays soft ball and soccer. She knows a lot of people who are still looking for the perfect career for them. Nicole is thrilled to have found her dream job so early in her life. I am grateful to have had the opportunity to work with this eloquent, interesting, and fun scientist.

Personal Log

Yeah! The captain put out an all-call and said there were pilot whales off the port side. We had just finished our watch and I headed out to the port side. There they were. I said, “They look like dolphins.” Both are cetaceans, both hunt fish, both are smart, both have a dorsal fin that sticks up out of the water. I believe I saw some earlier. One remained in one place with a huge fin sticking up. I hadn’t seen a dolphin do that before. They might swim in a circle going after a fish, but this behavior was a bit unusual.  At the time I just thought how big that dolphin was. Now, upon reflection, I believe that was a Pilot Whale.   That was so kind of the captain to announce the whales’ presence. The XO, Chad Cary, told me that Pilot Whales got their name since they are indicators of where the fish were. The fisherman just piloted their boats to where those whales were. Interesting way to get a name. Obviously, I’m pretty excited. Did you say I would see a whale on that poll?

Did You Know?

Deploying CTD

Deploying CTD

CTD stands for conductivity, sea water temperature, and depth (of where measurements are taken).

According to NOAA, salinity measurements can be used to determine seawater density which is a primary driving force for major ocean currents which help drive the Earth’s climates. This seems analogous (similar) to the causes of wind when air moves from warm air to cold and back again.

Question of the Day

The CTD protocol states that it must stop 5 meters from the bottom to take its measurements. If the CTD descends at 37 m/s, how long will it take for the CTD to get in position to measure its readings and return to the surface if the bottom is 338 m from the surface?

Vocabulary

Salinity: The percentage of salt in the water. Think of it as if you had 1000 grams of water and mixed one gram of salt into it. This would be 1 ppt salinity. Our ocean averages about 35 ppt salinity. Our CTD found that the ocean’s salinity where we tested today was 34 ppt.

Something to Think About

We actually let out 361 m of wire with the CTD, but the bottom was only 338 m. Why did we let out more wire than the distance to the bottom when we dropped the CTD?

Animals Seen Today

Julia Harvey: Pollock on Deck/The Beautiful, the Strange and the Interesting, August 3, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013    

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  August 3, 2013 

Weather Data from the Bridge (as of  00:00 Alaska Time):
Wind Speed:  26.5 knots
Temperature:  13.6 C
Humidity:  84%
Barometric Pressure:  1014.6 mb

Weather Update:
A low pressure system is in the north Pacific and we are having increase winds and swells.

Science and Technology Log:

We listened. We fished. Now what?

Before reporting to the fish lab, I must gear up.  Slime gear keeps the scales and goo off of my clothes.

slime gear

Preventing head to toe slime.

Julia Harvey

That is me holding coral while in my slime gear.

Fish are emptied out of the net and onto the table outside the fish lab.

fish table

The fish caught in the trawl net are emptied onto this table.

We can control how many fish land on the conveyor belt by raising the table and opening the door.

conveyor belt

As Darin opens the door, the fish will slide from the table to the conveyor belt.

The fish on the conveyor belt are separated by species.

Separating species

As the fish come off the table, Jodi and I separate the species while Darin weighs them.

In this blog we will focus on the pollock that were caught.

sorting pollock

Sorting pollock

Pollock are gathered into baskets and weighed.

pollock

Basket of pollock ready for the scale.

We group the pollock into 3 groups; age 1, age 2 and age 3+.  Each group as an entirety is weighed.  Each age group has a somewhat different protocol for processing.  Fifty specimens that are age 1 will be measured with the ichthystick and 10 will also be weighed.

icthystick

To measure a pollock put his head at zero and use the magnetic reader to mark his fork length.

Fish that are age 2 are processed as age 1 but are also sexed.

When measuring a pollock on an icthystick, one measures from the head to the fork in the tail.  The icthystick (a magnetic board for measuring fish) is connected to a computer that automatically records the data.

The larger pollock are grouped by sex. To do this, we cut open their abdomen and look for ovaries or testes.

sexing fish

The abdomen must be opened to determine the sex of the pollock

Then all of the fish (or at least 300) are measured on the icthystick.  Forty will be measured and weighed and set aside for otolith removal.

otolith removal

Otoliths are removed.

Otoliths are made of calcium carbonate and are located directly behind the brain of bony fishes.

otoliths

These are otoliths that were removed from an adult pollock.

They are involved in the detection of sound and the process of hearing.  The age of the fish can be established by counting the annuli much like one does when counting tree rings.

annuli

Scientists can count the rings of growth.

This age data allows scientists to estimate growth rates, maximum age, age at maturity, and trends of future generations. This data is vital for age based stock assessment models.  These fish are weighed and measured.  Otoliths are removed and placed in jars with glycerol thymol.

The jars have bar codes on the side so that the otoliths are linked to the fish’ weight, length and sex.

The otoliths are sent to Seattle for more detailed analysis of age. These results will be used to correspond length to age in the stock assessment report.

Sometimes, ovaries are removed and sent to other scientists for further histological study.

Other organisms that are caught alongside the pollock are counted and measured as well.  The catch might include Pacific ocean perch, salmon, herring, viper fish, lantern fish, jellyfish, squid, and capelin.  Below are a few of the normal finds and the rest can be found in my personal blog account “the beautiful, the odd and the interesting”.

capelin

capelin

herring

herring

POP

Pacific ocean perch

squid

squid

Personal Log:

The beautiful, the odd and the interesting

This trip is not just about pollock.  When we bring any of the nets in there is the possibility of weirdness and other things that catch my eye.  Jodi is always filling me in on the uniqueness of our discoveries.  And Darin lets me save organisms for photographing later.

My favorite find so far is the lumpsucker.  As Jodi says, they have gentle brown eyes and they do.  They also have suckers on the bottom that allow it to stick to substrate.

lumpsucker

Close up of lumpsucker

The Methot trawl went close to the bottom and picked up a handful of brittle stars.  At first, when they were mixed with all of the krill, it looked like a bunch of worms.

brittle stars

Brittle star collected from a methot trawl.

brittle stars

brittle stars

Pollock do eat young pollock.  We found evidence of this when Darin opened the stomach of an adult and discovered partially digested age 1 pollock.

pollock stomach

This pollock had feasted earlier on young pollock.

Lanternfish (Myctophids) make up a huge amount of the deep sea biomass.  They have photophores along their sides for producing light.

Lantern Fish

Lanternfish

The adult Pacific sandfish bury themselves in the sand with only their mouths protuding.

Sand Fish

sand fish

This sand fish was not happy with me.

Prowfish lack pelvic fins.  They have continuous teeth to feed on jellyfish.

prowfish

prowfish

When I think of deep ocean fish I think of the viperfish with its needle sharp teeth.

viper fish

Viper fish with finger for scale.

This cute mud star came up with the brittle stars.  It was also referred to as the cookie cutter starfish because it resembles a shortbread cookie.

mud star

Mud star

Salmon are good swimmers and usually escape the net.  A few are caught at the surface.

salmon

sockeye salmon

When we were in Kodiak, I would watch the moon jellies drift by.  Now we are catching several different species of jellyfish like this sunrise jelly.

jellyfish

One of many species of jellyfish I have seen.

Jodi always has a keen eye for finding nearly invisible creatures.  The arrow worm is a voracious predator.  They immobilize their prey with neurotoxins.

marine worm

arrow worm

I had never heard of a sea mouse before this cruise.  Now I have.  Except it is not a rodent.  It is a carnivorous worm that feeds on hermit crabs and other worms.  It is also a scavenger like a vulture.

Actually a worm

Sea Mouse

Some isopods are parasitic and will feed off of the blood of fish in the gill chamber.  I prefer their cousins the pill bugs.

isopod

parasitic isopod

sea pens

sea pens

sea anemone

sea anemones

Did You Know?

When we are all measuring and weighing away in the lab, it sounds like a video game.  Each machine has it’s own unique sound effects.  This allows scientists to have confidence that their data was recorded.

Lab machines

Scanning the bar code.

machine noise

All machines have unique recording sounds

Barbara Koch, September 28, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, September 28, 2010

Me in Front of the Henry Bigelow

Me in Front of the Henry Bigelow

Weather Data from the Bridge
Latitude 41.36
Longitude -70.95
Speed 10.00 kts
Course 72.00
Wind Speed 19.19 kts
Wind Dir. 152.91 º
Surf. Water Temp. 18.06 ºC
Surf. Water Sal. 31.91
PSU Air Temperature 19.80 ºC
Relative Humidity 91.00 %
Barometric Pres. 1012.45 mb
Water Depth 31.48 m
Cruise Start Date: 9/27/2010

Science and Technology Log

I have the privilege of working with the science team on Leg II of the Autumn Bottom Trawl Survey aboard the NOAA Ship Henry B. Bigelow from September 27 – October 7, 2010. We left port on Monday, September 27 and have been conducting the survey in the waters of Southern New England.

Processing Fish

Processing Fish

Fisheries surveys are conducted every spring and autumn in order to determine the numbers, ages, genders and locations of species that are commonly caught by the commercial fishing industry. The surveys are also carried out to monitor changes in the ecosystem and to collect data for other research. The scientists working on this leg of the survey are from Alaska, Korea, and New England. This ship works around the clock, therefore, we are divided into a day watch and a night watch, and we are all under the direction of the Chief Scientist, Stacy Rowe. I’m on the day watch, so my team processes fish from 12:00 noon until 12:00 midnight.

In order to collect a sample of fish, our ship drags a net for twenty minutes in areas that have been randomly selected before the cruise began. After the “tow,” the net is lifted onto the boat, and the fish are put in a large area to await sorting. The fish move down a conveyor belt, and we sort the fish by putting the different types into buckets and baskets. Once, the catch has been sorted, we move the buckets onto a conveyor belt, which moves them to stations for data collection.

Measuring fish

Measuring fish

Two people work at a station. One is a “Cutter” and the other is a “Recorder.” The cutter measures the length and weight of the selected species of fish on a “fishboard.” This data is automatically entered into the computer system. Depending on the species, the cutter might also be required to take an age sample or a stomach sample. Age is determined by collecting scales or an otolith (sometimes called an ear bone), depending on the species. The cutter removes these and the recorder puts them in a bar-coded envelope to send back to the lab for later study. The cutter also removes the stomach, cuts it open, and identifies what the fish has eaten, how much, and how digested it is. All of this information is entered into the computer for later analysis.

The information gathered during this cruise will give NOAA and other organizations valuable information about the health of the fish species and their ecosystem.

Personal Log

I arrived the night before we left port, and I was able to spend the night on the boat. My stateroom sleeps two people in bunk beds, and each person has a locker in which to stow our belongings. The stateroom also has a bathroom with a shower. Right across the hall is the scientist’s lounge. It has two computers, a television, many books, and games. This is where we sometimes spend our time while we are waiting for a tow to come in.

We spent much of the first day waiting to leave port. Once underway, some tests were conducted on the nets, and my Watch Chief showed me pictures of some of the common species we would see, explaining how to identify them. We began processing fish today. The first time the fish came down the conveyor belt, I was nervous that I wouldn’t know what to do with them. It worked out fine because I was at the end of the conveyor belt, so I only had to separate the two smallest fish, Scup and Butterfish, and Loligo Squid. After my first try at processing, I felt much more confident, and I even was able to tell the difference between Summer and Winter Flounders. One faces to the right and the other faces to the left!

Thomas Ward, September 14, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 14, 2010

After the Catch

This segment is devoted to what happens to the organic material we acquire once we get it on board.  The benthic sled has a very fine mesh net, plankton net, attached to it and has a container at the end of it, a cod end.  This is where the epibenthic invertebrates end up.  Once the gear is on board the crew washes down the net with sea water to get any invertebrates to wash down into the cod end.  It took getting used to that the garden hoses around deck have salt water in them.  Growing up all your life using hoses outside with fresh water in them and then being on board here and getting an occasional spray to the face and it is salt water is a reminder of where I am really at.  Any how, the sample in the cod end is put into a jar and preserved in a buffered Formaldehyde solution.

The beam trawl is used to study settlement and nursery areas for age-0 flatfishes.  This is probably what most people would associate with net fishing.  When the haul comes up there is an assortment of organisms in it.  The catch is dumped in to a kiddie pool and we gather around it and start to sort, flopping flat fish and all.

Sorting

These pictures are a good example of what we are doing.  Remember that we are primarily studying juvenile species and what is the primary mechanism in nature that helps these little ones become adults.
The fascinating thing is the differences in the catches per location.  Once the fish that are the focus of this study have been sorted, they are measured, weighted, bagged and frozen.  They are carefully labeled and frozen at a temperature of -80 degrees Celsius in the rough lab.  After 24 hours they can be moved to a “warmer” freezer, -20 degrees Fahrenheit, which is in the slime lab.

Keepers

The catch comes on board at the stern of the ship, which is the open rear of the ship where the majority of the heavy equipment is, like cranes and such.  After the catch is sorted it is brought into the wet lab for measuring, weighing and bagging.  The measuring board that we have in this lab is very cool.  There are touch screen monitors that are set up where the species that we are concerned with is selected.  The correct species is chosen and the fish are individually placed on this electronic board.  The scientist then puts the individual fish nose at one end and takes a hand held device and places it near the tail.  The machine makes a funky sound and the length of the fish is recorded electronically.  Very cool, quick and convenient.  With a good team working this station, a fish can be measured about one every second, pretty efficient.

The benthic grab is specifically used to sample subtidal soft-bottom benthic macroinvertebrates.  This is done to determine what is in the substrate.  This is the layer just below the surface.  This is what the juvenile flat fish feed on.  When determining what causes a population’s numbers to fluctuate it is important to study what it eats

Jellyfish

The jellyfish above are very cool but not of much interest to this study.  The sole above is one of the larger flat fish that we have caught.  We do catalog them but we do not save them for future study.  The interesting thing that I want to point out about the picture of the sole is the location of their eyes.  Both eyes are on the same side of their body.  These fish lay on the bottom and wait for prey to swim by.  It is and was a huge evolutionary advantage for them to have both  eyes on one side of their body.

Yellowfin Sole

Life on board ship is a very different experience.  Yesterday was proof of that for me when the seas turned to 7-9 feet and my body could not handle it.  The crew amazed me because word of my illness spread around and many pepole have been asking me how I have been feeling today.  It is what I would call a concerened, caring, working family.  At first coming aboard, getting around the ship was very confusing.  There are numerous stairways that lead to different decks and there is a very similar look to things on the ship.  I am getting used to it and to stepping through a bulkhead to walk through the ship.  These bulkhead doors are water tight doors that are closed to protect parts of the ship in case of an accident.  The sleeping quarters are sufficent.  I am in a 4 man room with 3 other guys, with a bathroom attached to it.  I have my own personal locker which contains my personal effects and my life jacket and survival suit.  On the door the crew placed a billet which is a document that is specifally designed for the individual.  Among other things it gives my lifeboat station which we would have to muster to if an emergency occurred.  We have practiced this drill and hope that it does not become real any time soon.  I am in a lower bunk.  The noise and the motion of the ship is the hardest thing to get used to.  I occasionally sleep with ear plugs but that does not seem to help much.  A solid, uninterupted 8 hours of sleep will be very much appreciated when I return.  But, as any one that knows me knows that I can definately catch up on sleep by napping, and just about anywhere.

Remember that if you have any questions you can ask through this blog.  I believe you have to sign up for a Google account but it seems to do anything on the web these days you either have to register or sign on in some manner.  Just click the commnets icon towards the bottom of the blog and follow the prompts, it is not too cumbersome.  I hope you have enjoyed reading this and I am almost done describing the science so I hope the questions start rolling in.  Hope for flat seas for me.