Susy Ellison: There’s a Volcano Outside My Window, September 10, 2013

NOAA Teacher at Sea
Susy Ellison
Aboard NOAA Ship Rainier
September 9-26, 2013

Mission:  Hydrographic Survey
Geographic Area: South Alaska Peninsula and Shumagin Islands
Date:  September 10, 2013

Weather:
Partly cloudy
GPS Coordinates   540 49.627’  N ,   159o 46.421’  W
Temp. 10.3C
Wind Speed 10-14 kts
Barometer 1008.49 mb

Science and Technology Log

You never know what you might see first thing in the morning! When I awoke and looked out my porthole I saw this in the distance.

The volcano has been active for the past few months, but I saw no smoke today.  You can check out volcanic activity at  http://www.avo.alaska.edu/activity/Veniaminof.php
The volcano has been active for the past few months, but I saw no smoke today. You can check out volcanic activity at http://www.avo.alaska.edu/activity/Veniaminof.php

 

We  are scheduled to leave Kodiak at 1000 Hrs, RST
We are scheduled to leave Kodiak at 1000 Hrs, RST


We cast off yesterday morning at 1000 hrs, RST—Rainier Ship Time.  Although we are still in the Alaska Daylight Savings time zone, our time on the ship has been adjusted backwards 1 hour to give us more daylight during ‘working hours’.  Since the ship is its own floating universe, time that is referenced to a specific time zone is not as important as time that is referenced to our day and the work that needs to be completed.  Einstein would be pleased to see that time is, indeed, relative here aboard the Rainier!

There is science involved just to leave port and set forth on this cruise.  There’s data to be collected, such as a weather forecast—and decisions to be made based on that data.  Today’s weather report called for rain and high winds.  That data input resulted in a travel plan including taking a more protected route north of Kodiak Island instead of heading out to more open water right away.  We didn’t reach the wide-open spaces until evening, and I was lulled to sleep by the endless rocking and rolling of the boat.

We need to take out the trash before we leave.
We needed to take out the trash before we left.
Heading into the Shelikof Strait
Heading into the Shelikof Strait

Science can also include the protocols needed to keep everyone on board safe and healthy during a cruise.  With that in mind, I spent part of the day learning about the ship and the safety routines we need to follow.  Ensign Wall gave me my survival suit, aka Gumby Suit and showed me how to don that lifesaving apparel.  The suit is a foam-filled drysuit, providing insulation and floatation in one handy, non-form-fitting package.  They are, apparently, one size fits none, but when it’s a matter of survival, I doubt that style counts for too many points!

Each person aboard is assigned stations to report to in case of fire or in case it becomes necessary to abandon ship.  I found out that I go to the Boat Shop near the stern in case of fire, and that I head to Station 1 near the bridge.  We had a fire drill in the afternoon, followed by an abandon ship drill.  Much like fire drills at school, it’s a good time to practice and figure out the best way to get to where you need to go.  Since I’m still learning my way around the ship, it was especially important to figure out where I needed to go and how to get there.

Where do I go?
Where do I go?
Trying on my Gumby suit
Trying on my Gumby suit

Then there’s the ‘real’ science—the science of hydrography and the point of this entire venture.  The NOAA Ship Rainier has been tasked with charting (creating maps) of the Shumagin Islands and Cold Bay areas. It’s amazing to think that there are still some parts of our coastline that haven’t been charted.  I spent much of this afternoon talking with the scientists who are making these maps and came away with the overwhelming sense that this is, indeed, a complicated and multi-faceted process. I’ll be writing separate journals on all the science that goes into creating these detailed maps of the ocean floor.  If you just can’t wait and need to know more right now, check out the blogs from previous TAS teachers on the Ship Rainier.

Personal Log

Much of my first day at sea was spent getting used to being aboard a large floating object on a rather bumpy sea.   Our day was spent in transit, from Kodiak to the Shumagin Islands, around 28 hours away.

My very first rainbow at sea!
My very first rainbow at sea!

There’s a lot to learn about life on board the Rainier.  Most important has been orienting myself and figuring out where everything is located.  Decks are labeled from ‘A’, the lowest, to ‘G’, the uppermost deck area. My quarters are on the ‘E’ deck.  The Galley, where food is prepared and served, is on the ‘D’ deck below me, and the Bridge (steering and control of the ship) is above me on the ‘F’ deck.

I have my own room—kind of luxurious living!  There’s a bunk, the head (bathroom), a couple of closets, drawers, and even a small fold-down desk area so that I can write my journals.  Every drawer latches tightly to minimize the chance of unidentified flying objects if we hit some rough weather.

Home, sweet home.
Home, sweet home.

I took a short tour of some of the more esoteric parts of the ship, including a visit to the cofferdam, whose access was through a hatch and down a ladder hidden in one of the heads (bathrooms).  This is sort of like accessing the crawl space under your house through a small tunnel in your bathroom.  While we speculated on just what purpose this area served (storage, poor planning in designing the hull and layout, a random skinny place to hang out?), it turns out that it is a watertight compartment that separates the contact between liquids that might be in the bow area and those in the stern area of the ship.

Starla Robinson leads us down the hatch into the cofferdam
Starla Robinson leads us down the hatch into the cofferdam
Lt. Quintero in the cofferdam.
Lt. Quintero in the cofferdam.

There was also an escape hatch that was incredibly heavy to lift—but I am sure you could lift it if your life depended on it!  I don’t plan on having to test this thing out!!

Just in case you need to get out in a hurry!
Just in case you need to get out in a hurry! 

Susy Ellison: How Long Does it Take to Get to Kodiak, Alaska? September 7, 2013

NOAA Teacher at Sea
Susy Ellison
Aboard NOAA Ship Rainier
September 9-26, 2013

Mission:  Hydrographic Survey
Geographic Area: South Alaska Peninsula and Shumagin Islands
Date:  September 7, 2013

Weather:
Partly cloudy at the Anchorage Airport
Lat 61.217 N, Lon 149.900 W
Temp 56F

Personal Log

Although Mapquest says ‘you can’t get there from here’, when queried about routes from Carbondale, CO to Kodiak, AK, I am sitting in the Anchorage Airport and well on my way to meeting up with the NOAA Ship Rainier.  While it’s easy to make a list of exactly how I’m getting to Kodiak (drive to Vail, CO, shuttle van to Denver, fly from Denver to Seattle, Seattle to Anchorage, and Anchorage to Kodiak), it’s a little more complicated to actually describe my journey to Kodiak and the Rainier.

 

Sitting in Vail waiting for the shuttle van to Denver.
Sitting in Vail waiting for the shuttle van to Denver.

I’m not sure that the journey only started when I packed my large, orange duffel bag and threw it in the car.  That bag, currently either in the underbelly of a plane or sitting in a stack somewhere in the bowels of the airport, is filled with the clothing and personal supplies I’ll need for the next 3 weeks.  Topping the list of clothing is a pair of Xtratuffs–rubber boots to keep my feet dry on the ship and when we’re on shore.  Speaking of dry, I have 2 sets of raingear; a gore-tex parka and pants for those mostly wet days, and pvc-coated nylon parka and pants for the truly wet days.  Rumor has it that it could be a bit rainy in the Shumagin Island area.  I have long underwear to keep me warm, a wool hat to keep my head toasty, and the usual assortment of jeans and t-shirts for time ‘indoors’ on the ship.

Sometimes I think this journey started while planning 3 weeks of lesson plans for my students. My mind was already on the ship as I was creating those plans and trying to link my students’ activities with some of what I will be learning during my cruise.  I created an independent study plan for students who wanted to earn science credit by following along with my blogs and reading the blogs of other teachers.  All that planning gave me ample time to think about the journey that lay ahead, and to, perhaps, already start the journey while I was sitting at my desk.

This journey to Kodiak and the Shumagin Islands certainly has some foundation in my endless perusal of the Teacher at Sea blogs this summer.  I was an avid reader of blogs from teachers aboard the Rainier, but also took time to read journals from teachers in other oceans and locations.  Since I’ve never been on a ship this was a great way to start my trip a little bit ‘early’.

Did this journey begin way back when I applied for the Teacher at Sea program?  After all, part of the application process involved envisioning how I would use this experience in my classroom.  I had been following other teacher’s cruises for many years, so it was great to have to visualize myself on a ship and what I could learn from such an experience.

But, when I really think about this journey, it might actually have started long ago, when I was a child.  I was lucky enough to grow up in a household that was, to put it mildly, firmly rooted in science and looking at the world as one giant science experiment.  I was taught to ‘think like a scientist’, observing the world around me and asking questions (and searching for answers) about our planet.

It comes down to a question of scale.  Is it really just a journey of 3000+ miles from Carbondale to Kodiak, or is it the sum total of days, months, or even years?  Either way, I can’t wait for this part of the journey to end and my life on the ship to begin!

Katie Sard: Happy Hydro from Start to Finish, August 25, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29, 2013-August 15, 2013

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  Shumagin Islands, AK
Date:  August 25, 2013

Weather Data from Newport, OR:
GPS location:  44°38’12.63” N, 124°3’12.46”W
Sky condition: OVC
Air temperature:  10.6°C

The sun rising as we finished our transit back to Kodiak.
The sun rising as we finished our transit back to Kodiak.

Science and Technology Log

During my final days aboard the NOAA Ship Rainier, I began to understand the big picture of all that goes in to hydrographic survey.  While we were transiting from the Shumagin Islands back to the Coast Guard Base in Kodiak, the scientists invited me to sit in on a survey review meeting.  During the meeting I listened as the Commanding Officer (CO), the Chief Survey Technician, the Field Operations Officer (FOO), the sheet manager, and others went over the Descriptive Report for a project that had been completed on a previous leg in Behm Canal.  It was interesting to listen to the conversation and actually understand what these researchers were talking about!  I felt as though it was appropriate for me to attend this meeting on my final day on the ship, as this truly is the last step for the scientists on board before the chart and attached data are sent off the ship to the Pacific Hydrographic Branch where the data is further processed in order to ensure accuracy of the data.  As I have now participated in most parts of the survey process, allow me to show you a step-by-step explanation of hydrographic survey from start to finish.

Step One:  Getting to the Survey Location

Several NOAA Corps Officers on the bridge while coming in to port in Kodiak.
Several NOAA Corps Officers on the bridge while coming in to port in Kodiak.

It takes a dedicated and skilled team to safely navigate the ship to the correct survey location.  It is also important that the FOO conducts a survey meeting to review the plan of the leg with the research crew.  When I sat in on this survey meeting at the start of the leg the crew discussed what has been accomplished to date, which sheets we would be focusing on during this leg, and any technical issues that needed to be reviewed with the team.

Step Two:  Setting up Vertical and Horizontal Control Stations

Brandy Geiger (left) and Bill Carrier (right) work on equipment that was set-up on Bird Island as a vertical and horizontal control station.
Brandy Geiger (left) and Bill Carrier (right) work on equipment that was set-up on Bird Island as a vertical and horizontal control station.

Before data can be collected, it is necessary to have a reference of where the data is being collected.  As I discussed in a previous post, tidal gauges are set-up prior to survey in order to guarantee accurate water depths.  The NOAA Ship Rainier is currently setting up a tidal gauge near Cold Bay, Alaska so that they may begin working in their upcoming survey location.  You can track the Rainier at http://shiptracker.noaa.gov/

Step Three:  Running Shoreline Verification

Before the launches (small boats) are able to get data close to the shore, it is important for the skiff to visually check the shoreline to make sure that there are no major hazards to navigation.  The shoreline crew is responsible for marking any dangers, and getting close enough to shore to decide where the sheet limits should be set.  These sheet limits dictate how close the shoreline and rock formations are that the launches need to survey.

Step Four:  Data Collection on Ship and Launches

This is the time when the hydrographers and ship crew can begin “coloring in the lines” by filling in designated polygons with sonar data.  The hydrographers are in charge of determining where the ship or launch needs to be driven in order to gather the required data using navigation software on the ship called HYPACK.  They are also responsible for taking Conductivity Temperature Depth (CTD) measurements in order to apply accurate sound speed profiles to the data.  The deck department and the NOAA Corps officers are responsible for following the plan laid out by the hydrographers in order to navigate the ship to gather data.  This takes attention to detail, because if the ship goes off course, data is missed for a certain area creating a “holiday”, or a gap in the data.  If a holiday is created it means that the crew has to go back and get the missing data later.  Nobody likes a holiday as it costs time and money to fix.  While data is being collected, the hydrographers are in charge of keeping an acquisition log that is a detailed record of everything that is taking place during a specific survey.  The team uses a program called Seafloor Information Systems (SIS) in order to collect the sonar data on the ship.  On the launches, HYPACK serves a dual function as the navigation software and the sonar software.

Randy (left) and Brandy (right) working on ship survey by monitoring the systems, drawing lines for navigation, and ensuring that good data is being collected.
Randy (left) and Brandy (right) working on ship survey by monitoring the systems, drawing lines for navigation, and ensuring that good data is being collected.
Left - Releasing the CTD from one of the launches. Right - Controlling the CTD as it is dropped from the surface to the bottom.
Left – Releasing the CTD from one of the launches.
Right – Controlling the CTD as it is dropped from the surface to the bottom.

Step Five:  Processing and Cleaning the Data

This was one of the most interesting parts of the process as you begin to see the data come to life.  The “lines” of data that are collected using the Konsberg sonar unit are brought over to a program called CARIS.  Certain correctors such as sound velocity and the predicted tides are added to the data in CARIS as well.  While each processing step is being completed, the hydrographer is responsible for making notes in the acquisition log.

Here is an example of some lines of data that have been added into the processing software.
Here is an example of some lines of data that have been added into the processing software.

Next it is important to “clean” the data.  This is done by moving carefully over each line of data to filter out any noise that shouldn’t be there.  When the data has been cleaned it can then be added to the project file for the sheet manager.  This way the hydrographer that is in charge of that specific sheet of data can see what progress has been made and what steps are still required for the work to be completed.

Here is an example of data that needs to be cleaned.  Notice how the data jumps around rather than showing one continuous ocean floor.
Here is an example of data that needs to be cleaned. Notice how the data jumps around rather than showing one continuous ocean floor.

Step Six:  Writing the Descriptive Report (DR) and Conducting a Survey Review

The Descriptive Report (DR) seems to be the most tedious part of the process.  This is the report that is included with the sheet when it is sent to the Pacific Hydrographic Branch for review and further processing.  It thoroughly explains things like the area surveyed, how data was acquired, and results and recommendations.  After a DR is thought to be complete, the ship conducts an internal review.  This is what I got to sit in on during my last day on the ship.  After it has met the expectations of the Chief Survey Technician, the FOO, and the CO, the project can then be sent off the ship to the Pacific Hydrographic Branch before being sent on to the Marine Chart Division (MCD) where the charts are finalized.

This is an image of all of the work that has been completed in the Shumagin Islands by the Rainier.  The colored sections have been completed, and you can see the polygons that need to be finished.
This is an image of all of the work that has been completed in the Shumagin Islands by the Rainier during this field season. The colored sections have been completed, and you can see the polygons that need to be finished.

Like I said in my previous blog post, the scientific process is not easy.  These scientists and crew work tirelessly to ensure that they are producing quality work that can be utilized for safe navigation.  I appreciate their efforts, and I want to thank them for their long hours and their attention to detail.

Personal Log

I find myself unable to fully express my gratitude to the crew of the Rainier for my time with them.  They allowed me to ask endless questions, they welcomed me into their close-knit community, and they provided me with an experience of a lifetime.  I am extremely thankful for this opportunity, and I wanted to be sure to offer my appreciation.

It has been over a week since I’ve been back in Newport, Oregon, and I’ve had a great time reliving my Teacher at Sea (TAS) experience with family, friends, coworkers, and students.  While we were transiting from the Shumigans, Christie Reiser, a Hydrographic Assistant Survey Technician on board gave me an awesome video that she had made with several crew members.  The video gives a tour of the Rainier, and I thought it would be a nice to share it on my blog as a way to show people where I spent my 18 days at sea.

Here is the link for the video that Christie made:  http://www.youtube.com/watch?feature=player_embedded&v=59OqG9tB1RU

Just Another Day at the Office

In this section I usually do a detailed interview with one crew member.  As this is my last blog post, I wanted to be sure to include all of the other interviews that I had while on the ship.  For each of these interviews I have included a snapshot of the conversation that I had with each person.  While I wasn’t able to interview everyone on board, I can say for a fact that each person I met had a unique story.  I was particularly fascinated by the various pathways that people have taken in order to become part of the Rainier crew.  Enjoy!

RosemaryJackson

JohnStarlaRandy

Did You Know…

The NOAA Teacher at Sea community has created a Did You Know website.  Click on the following link to check out an assortment of things you might not have known:  http://teacheratsea.noaa.gov/dyk/#box23_text

Farewell

Thank you for following my blog and for sharing this experience with me.  Thanks again to the crew of the Rainier for giving me this once in a lifetime opportunity.  I’ve learned so much from this experience, and I plan to take the knowledge I’ve gained and pass it along to my students, friends, and community members.

The crew signed this flag and gave it to me as a departing gift.
The crew signed this flag and gave it to me as a departing gift.

Best wishes to the crew of the Rainier, good luck with the rest of your field season, and happy hydro!

TAS Katie Sard

Katie Sard: My Tidal Adventure and a Look into the Power Behind This Mighty Ship, August 13, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29, 2013-August 15, 2013

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  Shumagin Islands, AK
Date:  August 9-13, 2013

Weather Data from the Bridge:
GPS location:  54°49.910’N, 159°46.159’W
Sky condition:  OVC
Visibility:  5 nm
Wind: 10 kt, 135 true
Water temperature:  7.2°C
Air temperature:  11.0°C

Science and Technology Log

At the beginning of my time aboard the Rainier I couldn’t believe it when one of the hydrographers told me that it takes almost two years for the data that we are collecting right now to go into print.  After spending time with the scientists trying to understand the process, I have a better idea of why the data can take up to 24 months to appear on a chart.  There are numerous things to take into account: variables that need to be controlled for, inclement weather that may restrict completing data collection, limited personnel to process the data, reports that need to be written to accompany the data, and so on.  The point being is that it is not as simple as surveying the ocean floor and making a chart.

The FOO, Meghan McGovern, leads a morning safety meeting prior to sending out the launches.
The FOO (Field Operations Officer), Meghan McGovern, leads a morning safety meeting prior to sending out the launches.

The tides are one important variable that hydrographers must control for when they are collecting data. Tides constantly cause the depths of the water to change, but it is important for the charts to show the shoalest (most shallow) depth possible for safe navigation.

Notice how one low tide is lower than the other low tide.
Notice how one low tide is lower than the other low tide.

It’s not practical to only conduct surveys during low tides, so the data must be corrected to take water depth to a universal constant.  For most of the charts, NOAA uses Mean Lower Low Water as the control.  To explain Mean Lower Low Water, I have to review a bit about the tides themselves.  Most places, including Alaska, experience semidiurnal tides meaning that in one day, there are two high tides and two low tides.  If you look at the two low tides in one day, one of the two will be lower than the other one.   An average should be taken of the “lower low” water levels for 19 years.   This is how long the earth, sun, and moon to go through their various orbital eccentricities.  Typically, it is not reasonable to have a gauge installed for 19 years so by acquiring one 30 day cycle of tide data we are able to get approximately 90% of the solution and the remaining 10% is solved for using “primary stations” (ones which have a 19 year record) that are nearby.  This calculated average of the lower low tides is called the Mean Lower Low Water and all data is corrected to this value.

Before the water depth can be corrected to Mean Lower Low Water, the tides must first be measured.  The National Water Level Observation Network has stations all over the United States which give data on how to figure out local tide conditions.  The closest one to use in the Shumagins is at Sand Point on Popof Island.  In order to verify that the tides are being accurately predicted, the crew on the Rainier installs their own tidal gauge to verify the tidal data.

The tide station that the Rainier crew installed on Bird Island.
The tide station that the Rainier crew installed on Bird Island.

A tide gauge is installed on the sea floor near the coast line by divers.  It must be fairly deep so that it is always covered by water.  In order to verify that the tide gauge is working, a tide staff is installed nearby for the crew to take visual water level measurements every week for 3 hours in 6 minute increments. They use this manually collected data and compare it to the tide gauge to make sure that the gauge is functioning accurately and also to ensure that the gauge has not moved relative to the land after it has been installed.

One of the five benchmarks that was cemented into the bedrock at the tide station on Bird Island.
One of the five benchmarks that was cemented into the bedrock at the tide station on Bird Island.

It is a complicated process to install one of these tidal gauges, and they have to be calibrated to that Mean Lower Low Water.  In order to assure that we have a reference point on land, benchmarks are put in near the tide gauge. These benchmarks should be able to be utilized for centuries by anyone who wished to come back to set-up a tide gauge.

Last Friday I was assigned to the skiff (small boat) as part of the crew of people who would go observe the tide staff and complete other necessary tasks at the tide gauge station on Bird Island.  It was a 30 minute ride in the skiff from the ship, and when we got the island, the coxswain pulled the boat next to the rocks so we could quickly transfer ourselves and our gear onto the island.  A total of five benchmarks had been put into the bedrock during the last visit to Bird Island, and it was our job to verify the location of each benchmark.

I had the important job of pointing at the benchmarks to note their locations for the pictures.  The benchmark is embedded in the bedrock near my left hand.
I had the task of pointing at the benchmarks to note their locations for the pictures. The benchmark is embedded in the bedrock near my left hand.

We took GPS locations, measured from benchmark to benchmark, and took pictures with detailed notes telling where each of the five was located.  If something happened to the primary benchmark, there would be four back-ups that could be used to reference the location of the tide gauge.  It was also the responsibility of our crew to do the 3 hour tide staff observations, but bad weather only allowed us to complete one hour of data collection before we were required to return to the ship.

LT Mike Gonsalves takes a GPS location while sitting on one of the five benchmarks.
LT Mike Gonsalves takes a GPS location while sitting on one of the five benchmarks.
Measuring from one benchmark to the next.
Measuring from one benchmark to the next.
LT Mike Gonsalves begins taking tide staff observations.
LT Mike Gonsalves begins taking tide staff observations.

It constantly impresses me how many variables these scientists need to control for in order to get accurate depths to place on the charts.  I have only received a snapshot of the work that goes into one of these projects during my time aboard the Rainier.  I have begun to see a problem when so many people of this generation expect instant results and instant gratification. From now on it will be important for me to show my students that the scientific process is slow and arduous, but the overall results are impressive when you learn to appreciate and understand the steps that it takes to get there.

Personal Log

Earlier this week I had the opportunity to visit the engine room as the ship was getting underway.  Evan McDermott , a 1st Assistant Engineer on board, was kind enough to let me to follow him through the heart of the ship.  As we walked and ducked under the various equipment, I began to realize just how naïve I am about how the ship is powered.  As I began to observe and ask questions, I realized just how much time and effort it takes to get the ship in motion.IMG_4312

When I first went down to the engine room they had just turned the pumps on.  These pumps are used to help turn the rudders.  Each time the pumps are powered on, it is required that the engineers do a steering test.  I went with Joshua Parker, a GVA (General Vessel Assistant) in the engineering department on board, as he showed me how to complete the steering test with the rudder.

GVA Josh Parker helps to show me around the engine room.
GVA Josh Parker helps to show me around the engine room.

While we were anchored, the engines were powered down and we were running the basic functions of the ship with two generators which stay on 24 hours a day while the ship is underway.  When I came back to the engine room it was time to turn the engines on, and Evan walked me through how to do this.  Really all I did was push two buttons that he showed me, but it was neat to hear the engines come to life.

The two 12-cylinder engines that we have on board.
The two 12-cylinder engines that we have on board.

While I was in the engine room, I remembered several of the questions my students had when the CO came to speak to my class last year.  I seemed to remember a lot of students asking questions about the fuel that the Rainier uses.  I decided to do some investigating by asking some of my own questions.  It turns out that the ship is able to carry a total of 103,000 gallons of fuel at a time.  On a typical 18 day leg, the ship will burn about 30,000 gallons of fuel.  Evan pulled up a detailed Microsoft Excel sheet and showed me how they keep track of the fuel being used.  He showed me that while underway the ship typically burns about 2,000 gallons each day, but if the ship is anchored it is more like 600 gallons.

Something else I learned while in the engine room was how this ship uses fuel as ballast.  Normally on a ship, ballast is water that is taken in to help keep the ship balanced.  The Rainier has 17 fuel tanks all around the ship, and one of the reasons for this is to give the ship stability.

A diagram of the 17 fuel tanks on the Rainier.  Notice how they are low as they help with the stability of the ship.
A diagram of the 17 fuel tanks on the Rainier. Notice how they are low as they help with the stability of the ship.

For this reason, it is important that the fuel is burned in a certain order based on which tank it is in.  Once the engineers decide that they need to use fuel from a certain tank, it is transferred into two settlers.  This is where the water is allowed to settle out of the fuel before it is purified and transferred to the day tanks.  These two-day tanks are where the two engines suck fuel from directly.

The last thing that grabbed my attention in the engine room was the process on how the sewage is filtered.  I know it sounds gross, but it is such a simple chemical reaction that I feel compelled to share it!  The machine that is responsible for this treatment uses salt water and DC current.  The current is run through the water and breaks the salt (NaCl) into the ions Na+  and Cl.  The Cl ions go on to reform with the OH ions from the water forming sodium hypochlorite.  This substance acts to kill the bacteria in the sewage.  Chemistry at work!

Just another Day at the Office

Evan McDermott, 1st Assistant Engineer

Evan McDermott
Evan McDermott

After touring the engine room, I sat down with Evan to talk about his job and how he came to work for NOAA as a 1st Assistant Engineer.  He told me that he graduated from Massachusetts Maritime Academy with a BS in Marine Engineering as well receiving his US Coast Guard license.  I didn’t know what a Maritime Academy was until I came aboard the Rainier, so I asked him how he originally heard about this field.  Evan told me that in high school he went through a unique program where he spent two days each week doing marine engineering outside of his school.  A guidance counselor told him more about the benefits of  marine engineering, and that’s when Evan decided to apply to Massachusetts Maritime Academy.

During our conversation, Evan told me that what he enjoys most about his job is the variety of hands-on work that he gets to be involved in, and he also enjoys the scenery here in Alaska.  He is required to stand watches in the engine room for two 4-hour shifts while the ship is underway, and he also plays a supervisory role.  The engineering department on the ship is mostly responsible for the maintenance and operations.  I asked him to share the advice he would give to students hoping to get into this field of work, and he said that it is important to keep up on your math to become a marine engineer!  Evan told me that the Maritime Academy was a tough four years of his life, but that his hard work has paid off as he has now secured this job with NOAA.

Evan appreciates the fishing that is available in Alaska, and when not on the ship he enjoys snowboarding.

Your Questions Answered!

A friend from my high school, Derek Cusimano, works with similar technology that is being utilized on the Rainier.  I was excited to see the questions he had for me, and also to realize that I actually understood how to answer some of the more technical questions.  First he asked about the program that is used to collect and process the data on board.  It is my understanding that on the ship, Hypack is the navigation software that is used.  The bridge sees this screen, and the hydrographers use it to draw the lines to show where the ship needs to be navigated in order to collect the data.  Seafloor Information Systems (SIS) is the sonar software for the EM710.  Finally, CARIS is the software that is used to process the data once it is collected.

Derek also asked me about what positioning the crews use for their surveys.  The tidal gauges that I discussed in this post are used for vertical control, as the water moves up and down with the tides.  The scientists also have to take into account horizontal control.  They need to accurately be able to tell where their position is, because without that information the water depths that we are gathering with the sonar are useless.

ENS Bill Carrier and HST Brandy Geiger work to set-up part of the horizontal control station on Bird Island.
ENS Bill Carrier and HST Brandy Geiger work to set-up part of the horizontal control station on Bird Island.

Differential Global Positioning System (DGPS) is used from the Coast Guard station in Kodiak Alaska to gain accurate latitude and longitude.  However, the Rainier crew also installs their own GPS  base stations to correct the GPS positions acquired on the ship and launches during “post processing”.  For this project, a GPS base station was installed on Bird Island near the tide gauge and data is down loaded via a VHF radio.  These stations listen to all GPS signals and correct the locations for each satellite down to the decimeter.  This allows the Rainier to correct their GPS positions to have an accuracy of just a few centimeters.

The next question comes from my 2-year old nephew Ollie Burgeson.  He wanted to know what I was eating on the ship.  My answer to him is a little bit of everything!  I can’t say that I’ve had the same meal twice while out at sea.  Meals are at 0700, 1130, and 1700, and each day a menu is posted that tells what will be available for breakfast, lunch, and dinner.  The stewards also provide a stocked ice cream freezer and other snacks 24 hours a day.  Many know that I eat mostly vegetarian food, and each meal there is always a vegetarian option which several crew members and I enjoy.  While out on the launches, the coolers are packed full of food for the crew of each boat.  Sandwiches, fresh fruit, chips, and dessert are all included on the launches.

Did You Know…

humpbackwhale_noaa_large
Photo courtesy of NOAA.

On Sunday I saw at least a dozen whales while I was looking out over the waters of the Shumagins.  The ship was anchored while the launches were out gathering data.  It was such a clear day that I decided to spend time on the bridge whale watching.  It didn’t take long before I saw several breach in the distance.  I was told by some of the crew that I was observing humpback whales, Megaptera novaeangliae.  I didn’t know much about them, so I decided to do a bit of research.  Here are some of the interesting things I learned about humpback whales:

  • Humpback whales can be found in all major oceans from the equator to sub-polar latitudes
  • The humpback whale’s lifespan is about 50 years
  • They eat mostly krill, plankton, and small fish
  • Humpback whales can consume up to 3,000 pounds of food per day
  • Females are typically longer than males, and they can reach up to 60 feet in length
  • Newborns weight about 2,000 pounds and adults can grow to be between 50-80,000 pounds

Katie Sard: A Brief History, and the “Simple” Science of Sonar, August 9, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29-August 15, 2013

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  Shumagin Islands, AK
Date:  August 5-8, 2013

Weather Data from the Bridge:
GPS location:  54°49.402’N, 159°33.182’W
Sky condition: Overcast (OVC)
Visibility: 5 nm
Wind: 210 true, 15 kts
Water temperature: 8.3°C
Air temperature: 11.0°C

The NOAA Ship Rainier.  This has been my home for the past 12 days!
The NOAA Ship Rainier. This has been my home for the past 12 days!

Science and Technology Log

While I was speaking with ENS Rosemary Abbitt, a Junior Officer on board, she used an analogy to describe the amount of information that she takes in every day while on the job.  She said that it is like trying to get a drink from a fire hose.  I thought that this was fitting as each day as a Teacher at Sea I am constantly trying to take in and process the huge amount of new information I am learning.  I have jumped in to the heart of hydrographic surveys, but in this post I would like to take a step back and look at a brief history of how the use of sonar has evolved.

Before coming on the Rainier, I knew that the use of sonar on ships had something to do with sound waves traveling in the water in order to map the ocean floor.  After gathering information from the crew, and a bit of my own research, I found out that sonar actually stands for Sound Navigation and Ranging.  I also found out that sound waves travel better in water as compared to radar or light waves, so that is why they are used for this type of work.

The top-side unit of the sonar system that is used on board.  This machine acts as the "brain" of the sonar system.
The top-side unit of the sonar system that is used on board. This machine acts as the “brain” of the sonar system.

The NOAA Ship Rainier is equipped with a Kongsberg EM710 Multibeam Sonar System which falls in the category of active sonar.  The system emits acoustic signals into the water, and when the sound bounces off of an object it returns an echo to the sonar transducer.  By determining the time between emission and reception, the range and the orientation of the object can be determined.  The range of an object is equal to the sound speed times the travel time divided by two.

On the left you can see the machine that is used to drag the MVP in the water behind the ship while we are surveying.  On the right, the MVP is ready to go in the water.
On the left you can see the machine that is used to drag the MVP in the water behind the ship while we are surveying. On the right, the MVP is ready to go in the water.

It is extremely important that the hydrographers using this technology have accurate measurements for sound speed.  The Rainier is equipped with a Moving Vessel Profiler (MVP) which generates sound speed profiles.  These profiles include information such as temperature, salinity, depth, and most importantly, sound speed.  These measurements are applied to real-time sonar data in order to make sure that these variables are controlled for.

Sonar was first used during World War I as a way of detecting submarines.  The US Coast and Geodetic Survey were the first to use sonar to map deep water areas in the 1920s.  As I discussed in a previous post, lead line surveys were the primary way to gather bathymetric data up until that point.  It astounds me to see all of the technology on board, but it also leaves me wondering where we’ll be in another 10 to 20 years.  I suppose only time will tell what new technologies will allow for the continued exploration of our Ocean!

Personal Log

The beauty of Alaska has truly come to life for me in the last few days.  Last night, the CO was kind enough to take a group of people to a nearby beach on Chernabura Island.  From time to time he will do this, and the crew calls these events “Beach Parties”.  It took me several minutes to gain my land legs as my body has acclimated to life on a ship.  I walked the beach, but I soon turned to hike up one of the peaks that I had been seeing from a distance for so many days.

My footsteps on the beach at Chernabura Island.  It's crazy to think how few people have walked on this land.
My footsteps on the beach at Chernabura Island. It’s crazy to think how few people have walked on this land.

The hike up to the top was HARD!  The ground beneath my feet was not solid earth, but rather soft, boggy terrain that required a great deal of energy to hike through.

The view from a stop along the way. Looking out over Chernabura Island.
The view from a stop along the way. Looking out over Chernabura Island.

When I made it to the top I could not believe my eyes.  The beauty of this untouched land was overwhelming, and I realized how very lucky I am to be on this wonderful adventure.

A hidden lake in the background at the top of the ridge on Chernabura Island.
A hidden lake in the background at the top of the ridge on Chernabura Island.
The ship in the distance from the top of the ridge on Chernabura Island.
The ship in the distance from the top of the ridge on Chernabura Island.

Just another Day at the Office…

Christie Reiser, Hydrographic Assistant Survey Technician

Christie Reiser
Christie Reiser

I began getting to know Christie while I was out on my first launch with her last week.  Before this time, I had heard her mentioning that she is currently doing an internship with NOAA.  This immediately caught my attention as I am always interested in how students are able to involve themselves with real-world organizations such as NOAA.  As I began interviewing her I found out that she is working on her bachelor’s degree through the University of Colorado with hopes of someday becoming a physical scientist.  She began her internship with NOAA last field season, and she is now a permanent employee while also completing her internship.  Before her current school work she obtained an associates degree in business marketing and worked for an oil company as an executive assistant.  During that time, her boss asked if she wanted to learn Geographic Information Systems (GIS) for her work, and so she was signed up for a crash course which allowed her to begin using the software to make maps.  Unfortunately, she was laid off but during this time she was able to move to Europe because she has dual nationality in Germany. While overseas, she spent a year working as an apprentice in a saddlery in Austria.  When she came back to the states, she decided to go back to school at the University of Colorado.  She enjoyed her previous GIS experience, so she began her work in the geography department which led her to the internship with NOAA.

Christie told me that has truly enjoyed her time in Alaska.  She loves seeing the marine life and getting to know the people she works with so well.  Her favorite part of the work is the night processing where she is able to work directly with the data in order to see the sea floor come to life.  When asked what advice she would give a young person trying to break into this field, she said that she would recommend waiting to go to college until you are ready.  Wait to find something that makes you happy and that you have a passion for.

When not on the ship, Christie enjoys leather working, saddle making, and book binding.

Your Questions Answered!

One question that I’ve had from several people has to do with the morale of the crew.  These people are out to sea for 18 days at a time, and so people wanted to know if it gets depressing out here.  Also, it was asked if there is  good comradery and banter among the crew?

In response, I can say this; life at sea is not for the shy or the meek.  While there are many amazing advantages to this type of work it definitely takes a certain type of person.  As far as the morale of the crew, from my perspective it seems like field season up here means time to get business done.  Everyone has important tasks to be completed, and most of the time people are busy with work.  Operations run 24 hours, and the point of being here is to gather the data. However, it’s not all work and no play.  Morale on the ship is important, and I’ve heard many people speak of the crew as a second or extended family.  I don’t know any other job where you work, live, and share space 24 hours a day with the same people.  I’ve noticed that people on the ship really look forward to meals.  It is one of the small pleasures of life at sea and it is a time to gather with everyone and take a break.  The universal struggle on board is the time away from home. Nobody wants to be away from their loved ones, but the crew on the Rainier work as hard as possible to make life at sea enjoyable.

My Aunt Kathy wanted to know if I have seen any whales.  The ship has had to navigate around pods of whales, but it seems to be whenever I am busy with something else.  Yesterday the crew called me to the bridge as they had been seeing a lot of whale activity.  Of course, as soon as I got my camera out, there wasn’t a whale in sight.  However, last night I was walking on Chernabura Island during the beach party, and I saw a pod of whales out in the distance.  I saw four of five spouts, but they were too far to get a picture.

The first sunset I've seen since being on board.
The first sunset I’ve seen since being on board.

Did You Know…

Here are a few ship specific terms that I have learned during my time aboard the Rainier:

To come about – to turn the ship around

Aft – the back of the ship

Helm – ship’s steering equipment, found on the bridge

Pitch – the forward and backward rise and fall of the ship as it moves

Leeward – the side of an island or a ship that is sheltered from the wind

Also, when making a call to another vessel, it is important to say the call sign of the vessel you are calling for first followed by your own call sign.  When I was out on RA-6 doing survey launches, I had to call the Rainier to give hourly updates.  In a previous blog I told you that the call sign for the Rainier is WTEF, but they typically shorten it when out on surveys to just ET.  In this case when I was calling for the ship I would say, “Echo Foxtrot this is RA-6.”  The OOD would respond with, “RA-6 this is Echo Foxtrot go ahead.”  This type of universal communication system is one of the ways that the team aboard the Rainier maintains safety while at sea.

Rosalind Echols: Cool Science on the Ship and Final Reflections on My Rainier Adventure, July 30, 2013

NOAA Teacher at Sea
Rosalind Echols
Aboard NOAA Ship Rainier
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 30, 2013

Current Location: 54° 55.6’ N, 160° 10.2’ W

Weather on board: Broken skies with a visibility of 14 nautical miles, variable wind at 22 knots, Air temperature: 14.65°C, Sea temperature: 6.7°C, 2 foot swell, sea level pressure: 1022.72 mb

Science and Technology Log:

Sometimes in school you hear, “You’ll need this someday.” You have been skeptical, and (at times) rightfully so. But here on the Rainier, Avery and I encountered many areas in which what we learned in school has helped us to understand some of the ship operations.

How does a 234 ft. ship, like the Rainier, float?

If you take a large chunk of metal and drop it in the water, it will sink. And yet, here we are sailing on a large chunk of metal. How is that possible? This all has to do with the difference between density (the amount of mass or stuff contained within a chunk of a substance) and buoyancy (the tendency of an object to float). When you put an object in water, it pushes water out of the way. If the object pushes aside an amount of water with equal mass before it becomes fully submerged, it will float. Less dense objects typically float because it doesn’t take that much water to equal their mass, and so they can remain above the water line. The shape of a ship is designed to increase its buoyancy by displacing a greater quantity of water than it would as a solid substance. Because of all the empty space in the ship, by the time the ship has displaced a quantity of water with equal mass to the ship itself, the ship is still above water. As we add people, supplies, gasoline and so on to the ship, we ride lower. As evidenced by the sinking of numerous ships, when a ship springs a hole in the hull and water floods in, the buoyancy of the ship is severely compromised. To take precaution against this, the Rainier has several extra watertight doors that can be closed in case of an emergency. That way, the majority of the ship could be kept secure from the water and stay afloat.

How does a heavy ship like the Rainier stay balanced?

Another critical consideration is the balance of the ship. When the ship encounters the motion of the ocean, it tends to pitch and roll. Like a pendulum, the way in which it does this depends largely on the distance between the center of gravity of the ship (effectively the point at which the mass of the ship is centered) and the point about which it will roll. Ships are very carefully designed and loaded so that they maintain maximum stability.

Boat stability diagram
Boat stability diagram

Ballast is often added to the hulls of ships for the following reasons:

  • to help keep them balanced when there is not enough cargo weight
  • to increase stability when sailing in rough seas
  • to increase the draught of the ship allowing it to pass under bridges
  • to counteract a heavy upper deck like that of the Rainier, which itself contains 64, 000 pounds of launches.

Ballast comes in many forms and historically rocks, sandbags and pieces of heavy metal were used to lower a ship’s center of gravity, thus stabilizing it. Cargo ships, when filling up at port, would unload this ballast in exchange for the cargo to be transported.  For example, in the 1800s, the cobblestone streets of Savannah, Georgia were made with the abandoned ballast of ships. Today water is used as ballast, since it can be loaded and unloaded easier and faster. Most cargo ships contain several ballast tanks in the hull of the ship.

Cargo ship with several ballast tanks
Cargo ship with several ballast tanks

It is thought that the capsizing of the Cougar Ace cargo ship bound for the west coast of the US in 2006, was caused by a ballast problem during an open-sea transfer.  The ship was required to unload their ballast in international waters before entering US waters to prevent the transfer of invasive species carried by the stored water. The result of the Cougar Ace snafu: 4, 700 Mazdas scrapped and millions of dollars lost. Oops!

Couger Ace capsized in open ocean
Cougar Ace capsized in open ocean

Because the Rainier is not loading and unloading tons of cargo, they use a permanent ballast of steel rebar, which sits in the center of the lower hull. Another source of ballast is the 102, 441 gallons of diesel which is divided between many gas tanks that span the width and length of the ship on the port and starboard sides.  These tanks can be filled and emptied individually.  For stability purposes the Rainier must maintain 30% of fuel onboard, and according to the CO, the diesel level is usually way above 30% capacity. The manipulation of the individual diesel tank levels is more for “trimming” of the boat which essentially ensures a smoother ride for passengers.

Where does all the freshwater come from for a crew of 50?

If only humans could drink saltwater, voyages at sea would be much easier and many lives would have been saved. Unfortunately, salt water is three times saltier than human blood and would severely dehydrate the body upon consumption leading to health problems such as kidney failure, brain damage, seizures and even death.  So how can we utilize all this salt water that surrounds us for good use?  Well, to avoid carrying tons of fresh potable water aboard, most large ships use some type of desalination process to remove the salt from the water.  Desalination methods range from reverse osmosis to freeze thawing to distillation. The Rainier uses a distillation method which mimics the water cycle in nature: heated water evaporates into water vapor, leaving salts and impurities behind, condensing into liquid water as the temperature drops. This all is happening inside a closed system so the resulting freshwater can be kept.  To speed up this process, the pressure is lowered inside the desalinator so the water boils at a lower temperature.  Much of the energy needed to heat the water comes from the thermal energy or waste heat given off by nearby machines such as the boiler.

Desalinator in the Rainier engine room
Desalinator in the Rainier engine room

Distillation purifies 99% percent of the salt water and the remaining 1% of impurities are removed by a bromine filter.  The final step of the process is a bromine concentration and PH check to ensure the water is potable. The bromine should be about .5 ppm and the PH between 6.8-7.2.

Daily water quality log
Daily water quality log

Everyday the Rainer desalinates 2500 gallons of saltwater to be used for drinking, cleaning and showering. The toilets, however, use saltwater and if you are lucky like me, you can see flashes of light from bioluminescent plankton when flushing in darkness. It’s like a plankton discotec in the toilet!

How does the chicken cross the road when the road is moving?

The difference between a road map and a nautical chart is that a road map tells you which way to go and a nautical chart just tells you what’s out there and you design your course.  Thus, navigating on the ocean is not as simple as “turn left at the stop sign,” or “continue on for 100 miles”, like directions for cars often state. Imagine that the road beneath you was moving as you drove your car. In order to keep following your desired course, you would need to keep adjusting to the changes in the road. That’s a lot like what happens in a ship. If you want to drive due west, you can’t simply aim the ship in that direction. As you go, the ship gets pushed around by the wind, the currents, and the tides, almost as if you drove your car west and the road slid up to the north. Without compensating for this, you would end up many miles north of your desired location. If you have a north-going current, you have to account for this by making southward adjustments. In a physics class, we might talk about adding vectors, or directional motion; in this case, we are considering velocity vectors. When you add up the speed you are going in each direction, you end up with your actual speed and direction. In the ship we make adjustments so that our actual speed and direction are correct.

Which way to the North Pole?

Did you know that when you look at a compass, it doesn’t always tell you the direction of true north? True north is directly towards the North Pole, the center of the Earth’s axis of rotation which passes directly to the true south pole. However, compasses rely on the location of the magnetic pole which is offset somewhat.

Compass showing true north and magnetic north
Compass showing true north and magnetic north

The combination of the solid iron core and the liquid iron mantle of the Earth create a magnetic field that surrounds the Earth (and protects us from some really damaging effects of the sun). If you visualize the Earth like a bar magnet, magnetic north is located at an approximate position of 82.7°N 114.4°W, roughly in the middle of northern Canada. If you stood directly south of this point, your compass would point true north because true north and magnetic north would be on the same line of longitude. However, as you get farther away from this west or east, the North indicated by your compass is more and more offset.

The magnetic poles of the earth
The magnetic poles of the earth
Earth showing true and magnetic poles
Earth showing true and magnetic poles

Our navigational charts are made using “true” directions. Because of our location in Alaska, if we were steering by compass, we would have to offset all of our measurements by roughly 14° to account for the difference in true and magnetic north. Fortunately, due to the advent of GPS, it is much simpler to tell our true direction.

Why so much daylight and fog?

Every hour, the crew of the Rainier measures the air temperature, sea water temperature, atmospheric pressure, and relative humidity. Aside from keeping a record of weather conditions, this also allows the National Weather Service to provide a more accurate weather forecast for this geographical region by providing local data to plug into the weather prediction models.

Hourly weather log
Hourly weather log

Weather in the Shumagin Islands could be very different from that of the nearest permanent weather station, so this can be valuable information for mariners. In our time out here, we have experienced a lot of fog and cool temperatures (although the spectacular sunshine and sunsets of the past few days make that seem like a distant memory). One reason for this is our simultaneous proximity to a large land mass (Siberia, in far-east Russia) and the ocean. Cool air from the land collides with warm waters coming up from Japan, which often leads to fog.

Currents of the Pacific
Currents around Alaska

However, because we are pretty far north, we also experience a lot of daylight (although not the 24-hour cycles so often associated with Alaska). At this time of the year, even though the Earth is farther away from the sun that it is in our winter season, the axis of the Earth is tilted toward the sun, leading to more direct sunlight and longer hours of illumination.

Earth's orbit around the sun
Earth’s orbit around the sun

One slightly bizarre fact is that all of Alaska is on the same time zone, even though it is really large enough to span several time zones. Out in the west, that means that sunset is in fact much later than it otherwise should be. Our last few spectacular sunsets have all happened around 11pm and true darkness descends just past midnight.  I have on several occasions stayed up several hours past my bedtime fishing on the fantail or getting distracted wandering around the ship because it is still light out at 11pm!

Rosalind and Avery at sunset
Rosalind and Avery (with Van de Graaf generator hair) at sunset

Personal Log:

After roughly a week back on land, I have already been inundated with questions about life on the Rainier, the research we were doing, the other people I met, and so on. It occurs to me that as challenging as it was to embark on this journey and try to learn as much as possible in three weeks, perhaps the greater challenge is to convey the experience to friends, family, and most importantly, my students. How will I convey the sense of nervousness with which I first stepped from the skiff to land, trying not to fall in the frigid north Pacific? What will I do in my classroom to get my students as excited about learning about the ocean and diving into new experiences as I was on this trip? How will I continue to expand on the knowledge and experiences I have had during my time on the Rainier? At the moment, I do not have excellent answers to these questions, but I know that thinking about them will be one of the primary benefits of this extraordinary opportunity.

For the moment, I can say that I have deepened my understanding of both the value and the challenge of working in collaboration with others; the importance of bringing my own voice to my work as well as listening to that of others; and the extent to which new experiences that push me out of my comfort zone are incredibly important for my development as an individual. I genuinely hope that I can develop a classroom environment that enables this same learning process for my students, so that, like the science I discussed above, they aren’t doing things that they will, “need some day,” but doing things that they need now.

Finally, I will say that I am finishing this trip even more intrigued by the ocean, and its physical and biological processes, than I was before. When one of the survey techs declared, “This is so exciting! We are the first people ever to see the bottom of this part of the ocean!” she wasn’t exaggerating. Even after my time on the Rainier, I feel like I am only beginning to scratch the surface of all of the things I might learn about the ocean, and I can’t wait to explore these with my students. I look forward as well to the inevitable research that I will do to try to further solidify my understanding and appreciation of the world’s oceans.

I leave with fond memories of a truly unique 18 day voyage aboard the most productive coastal hydrographic survey platform in the world: her majesty, the NOAA Ship Rainier. Thank you lovely lady and thank you Rainier crew for making this Teacher at Sea adventure so magical!

The most striking sunset of our voyage.
The most striking sunset of our voyage.

Katie Sard: Setting up for Survey, August 4, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29 – August 15, 2013

Mission: Hydrographic Survey
Geographical Area of the Cruise: Shumagin Islands, Alaska
Date: August 1-4, 2013

Weather Data from the Bridge:
GPS location: 55°02.642’N, 159°57.359’W
Sky condition:  Overcast (OVC)
Visibility: 7 nm
Wind: 180° true, 8 kts
Water temperature: 8.3°C
Air temperature:  12.0 °C

Science and Technology Log

In my last post I talked mostly about the science needed for safely navigating the ship to our survey area in the Shumagin Islands.  Now that the surveying has begun, I’d like to use this post to talk about the actual logistics of the surveys that are being completed.  These surveys are the reason that we are in Alaska, and it takes quite a bit of planning and coordination to make sure that accurate data is collected.  The hydrographers are looking for features to put on the chart (map) such as depth, rocks, shoals, ledges, shipwrecks, islets (small islands), and kelp beds.

One of the massive kelp beds that we recorded while out on a survey launch.
One of the massive kelp beds that we recorded while out on a survey launch.

The last time most of this area was surveyed was back in the early 1900s.  Lead lines were used in order to gather data about the depth of the sea.  While accurate, this method only gave information on discrete points along the ocean floor.  This resulted in charts being left with large amounts of white space which represents areas that have never before been surveyed.

You can see the sea depth measurements on this chart are in a neat line where I've highlighted in red.  These are the lead line measurements that were taken in the early 1900s.
You can see the sea depth measurements on this chart are in a neat line where I’ve highlighted in red. These are the lead line measurements that were taken in the early 1900s. You can also see the large amounts of white space that haven’t yet been charted.
Here is a comparison of the type of data that would be gathered from a lead line versus multi-beam sonar. (Credit http://www.nauticalcharts.noaa.gov/mcd/learnnc_surveytechniques.html)

The sonar technology on the ship allows us to gather data which can be classified as full-bottom coverage.  That means that we have data on every inch of ocean floor that we cover rather than just one point along the way.

Now let’s get to the heart of survey!  The overall survey area here in the Shumagins is broken down into what the team refers to as sheets.  The Commanding Officer (CO) informed me that the reason they call them “sheets” is because back before the use of computers in surveying, hydrography would be done on a small boat and all the positions would be hand-plotted on a sheet of fine cotton paper.  The size of this “sheet” of paper and the scale of the survey dictated how big the survey would be. Anyways, each sheet has a sheet manager that is responsible for the data collected in that area.  Each sheet is then broken down even further into several polygons which represent specific areas to be surveyed on that sheet.  Meghan McGovern, the Field Operations Officer (FOO) on this ship, explained to me that while the ship itself is running sonar to collect data 24 hours a day only two launches can be sent out at a time to do additional surveys.  This is because the ship does not have the manpower to run the entire ship plus all four small survey launches.  However, it is hard on the crew to run continuous 24 hour operations on the ship, so every so often the ship will anchor and four survey launches can be sent out to gather data during the day.  I asked which method is preferred and Megan told me that it really depends on the area that needs to be surveyed.  Sometimes it can be more beneficial to anchor and send out all four launches if a lot of data needs to be collected on areas close to the shore.  In that case, the ship is not able to navigate as closely to the shoreline as the small launches are.

Before the launches can be sent out to gather data close to shorelines, benchmarks must be set and tidal gauges must be taken in order to measure the actual water level based on the varying tides.  This has not been done during my time in the Shumagins because they were done on the previous leg.  (For more information visit TAS Marvin’s blog to understand how she helped set-up benchmarks in the Shumagins.) Shoreline verification must also be completed by the small skiff (boat) in order to visually mark any dangers that may be hazardous to the launches while they are surveying.  I am hoping to do shoreline verification while I am here, but for now this area has already been done.

This shows several rocks that would need to be noted through shoreline  verification before sending the launches out.
This shows several rocks that would need to be noted through shoreline verification before sending the launches out.
To the left of Chernabura Island you can see the two polygons (V and X)  we were responsible for surveying.
To the left of Chernabura Island you can see the two polygons (V and X) we were responsible for surveying.

After the shoreline verification has taken place the actual data collection can begin.  I have been out in a launch two times since we reached our survey area.  The first time we were surveying polygons V (Victor) and X (X-ray) on the west coast of Chernabura Island.  I learned a great deal from the crew about the survey system on the small launch.  While I was on this launch I was allowed to drive.  It turns out it is hard to drive a boat in a nice, neat line.  Yesterday I was able to go out for a second time on a survey launch, and this time we collected near shore data on the east side of Near Island.

You can see the highlighted area was clearly marked on the boat sheet as "TAS Driven" to indicate to the hydrographer why the lines weren't exactly straight!
You can see the highlighted area was clearly marked as “TAS Driven” to indicate to the hydrographer why the lines weren’t exactly straight!

The launch runs a system that is very similar to the ship in order to collect bathymetric data.  The screen, that is projected to the Hydrographer in Charge (HIC) and the coxswain (driver), shows a swath of the area where data has been collected.

Here is what the HIC and the coxswain see as the data is being gathered.  Notice the red arrow I've inserted to show the "colored in" areas that represent where the data has been collected.
Here is what the HIC and the coxswain see as the data is being gathered. Notice the red arrow I’ve inserted to show the “colored in” areas that represent where the data has been collected.

On the screen it looks as though the ship is driving back and forth coloring in the lines as data is collected.  Once all of the data has been collected on the launch, it is saved to an external hard drive and brought back to the ship for night processing.  I haven’t observed night processing yet, but I plan to do that in the upcoming days.

I will hold off on more detail now and wait until next time to give you the science behind the detailed sonar that is being used during these surveys.

Personal Log

Yesterday was one of my favorite days on my adventure so far.  I went with three other people on one of the small launches called the RA-6.  While I was on the launch I had the responsibility of doing the radio communication back to the ship for a check-in each hour to let them know our position and what we had accomplished up to that point.  The sun was peeking through the clouds, and I was finally able to see the majestic islands that are surrounding us.  These islands have no trees, but their sharp cliffs and the mystical lenticular clouds that hovered above them captured my attention each time we drove close.

The lenticular clouds forming over the land near where we were surveying.
The lenticular clouds forming over the land near where we were surveying.

The birds out here are the only animals that can be observed and they include gulls, muirs, and puffins.  Each time we drove near a puffin I couldn’t help but laugh as they scuttled quickly away in the water.  Some of them seemed to have eaten too many fish to be able to lift themselves into the air.

My free time on the ship has been mostly spent at meals and in the wardroom.  Each night the ship shows three different movies that run on the cable channels throughout the ship, and a mix of people tend to gather in the wardroom to sit and watch the shows together.  I have also had the unique experience of using the elliptical machine several times while on board.

This is the wardroom where I watch movies with various crew members some evenings.
This is the wardroom where I watch movies with various crew members some evenings.

If you have ever used an elliptical machine, you know that normally when you step off the machine it feels like you are still in motion.  Add that feeling to the swaying of the ship and it makes for a strange type of vertigo!

The ship even has a small "gym" where the crew can work out while out at sea.
The ship even has a small “gym” where the crew can work out while out at sea.

Laura McCrum, a past student of mine, told me in a recent email to remember that knowledge is not confined to age…and she made sure to clarify that she wasn’t calling me old!  I am so grateful for this unique experience where I am able to continue my education each and every day in order to expand my knowledge base.  I hope that this experience will not only benefit me but also my students, coworkers, and community members as well.

Just Another Day at the Office

I wanted to start this section of my blog as a way to highlight a different member of the crew during each post.  These people go to work each day in such a unique environment that I thought it was important to share a piece of their stories.

Carl VerPlanck, 3rd Mate

The first time I saw Carl was on the bridge while the ship was departing from port.  He is the navigation officer responsible for creating routes, updating charts and publications, and maintaining a certain decorum on the bridge.  Carl also helps to train junior officers in the art of navigation.  He conducts underway watches and drives the launches while helping to train others to do the same.

Carl VerPlanck
Carl VerPlanck

When asked about how he got to be in the position that he holds today, Carl told me that he grew up in Indiana and received his GED when he was 18 before moving to Alaska to work on a fishing boat.  Having no prior experience on boats, he worked in a fish processing plant in Naknek, Alaska until he was able to start as a General Vessel Assistant (GVA) with NOAA.  He eventually worked his way up the rank as an Ordinary Seaman (OS), followed by an Able-bodied Seaman (AB) until he received his 3rd Mate certification.  He currently holds his 2nd Mate certification, and he plans to hold this position in the future.

While I was talking with him, Carl told me that the best part about his job was that he loves working in Alaska.  He has a sense of exploration while doing these surveys, and he likes the feeling that anything could be down there on the sea floor.  I asked him to share the advice that he would give a young person trying to break into the field of an ocean related career and he said that you shouldn’t be afraid to broaden the scope of what you might be good at or what your interests are.  Never miss a chance to take hold of an opportunity, and don’t be afraid to consider a non-traditional pathway.

I ended our conversation by asking Carl what he would be doing if he wasn’t currently working for NOAA, and he said he was sure he would still be in the maritime community in some way.  Besides working for NOAA I found out that Carl enjoys taking flying lessons and he is currently working toward getting his pilot’s license.  He has a home in Seattle where he lives, when not underway, with his wife and his 1 1/2 year old son.

Your Questions Answered!

I love getting questions via comments and emails, and so I wanted to do these questions justice by providing prompt answers.  So here we go…

My first question was from Kirsten Buckmaster, a fellow teacher at INMS.  She asked me if I have any specific duties from day to day on the ship.  As a Teacher at Sea it is really up to me to insert myself into the everyday schedule of the ship.  The Field Operations Officer (FOO) and the Commanding Officer (CO) sat down with me at the start of the leg and asked me what I was interested in doing while on board, and I told them that I was eager to do a little bit of everything.  Each day the FOO posts the Plan of the Day (POD), and this tells you what specific tasks are going to be done for the day.  Each day I look for my name on the POD to understand if I have any specific responsibilities.  Some days it is up to me to go observe on the bridge or in the plot room.  I am hoping to help with the deck department before my time is over, as well as try to better understand what the engineers do.

Plan of the Day (POD) for Saturday.  If you look to the left you can see my name under RA-6.
Plan of the Day (POD) for Saturday. If you look to the left you can see my name under RA-6.

Next I had a question from one of my students Mr. Zachary Doyle.  Zach asked me if I was getting seasick.  Luckily, it turns out that I am not prone to sea sickness…yet.  The POD gives the weather forecast, and the FOO makes sure to let the crew know if we are going to have any inclement weather.  If I know the ship is going to be rockin’ and rollin’ I will take Dramamine which helps to prevent sea sickness.  Also, the launches get shaken around a bit more so if I know I’m going out on a launch I will take some medicine the night before just in case.

Finally, my grandmother-in-law Liz Montagna asked me about the waves.  I’ve learned out here that we need to be aware of two important things: sea wave height and swells.  In simple terms, a swell is a wave that is not generated by the local wind.  They are regular, longer period waves generated by distant weather systems.  The wave height can be measured from the waves caused by the wind in the area where they are created.  Luckily we haven’t had waves breaking on the deck.  Liz also asked about who does the housekeeping.  In my stateroom the answer is my roommate and I.  We are responsible for keeping our living quarters neat and tidy.  The deck department is mostly in charge of the rest of the ship.  Each day I have met people in the passageways (halls) sweeping, mopping, and doing other necessary tasks to keep the ship looking good.

I love questions so please keep them coming!  Remember you can post a comment/question on the blog or email me at katie.sard@lincoln.k12.or.us .

All is well in Alaska!

TAS Sard

Did You Know…

I didn’t know how the Shumagin Islands got their name so I did some investigating.  It turns out that Vitus Bering was the man who led an expedition to the islands in 1741.  Nikita Shumagin was one of the sailors on this mission, but he unfortunately died of scurvy and was buried on Nagai Island.

Avery Marvin: Cool Science on the Ship and final Reflections of My Rainier Adventure, July 30, 2013

NOAA Teacher at Sea
Avery Marvin
Aboard NOAA Ship Rainier
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 30, 2013

Current Location: 54° 55.6’ N, 160° 10.2’ W

Weather on board: Broken skies with a visibility of 14 nautical miles, variable wind at 22 knots, Air temperature: 14.65°C, Sea temperature: 6.7°C, 2 foot swell, sea level pressure: 1022.72 mb

Science and Technology Log:

Sometimes in school you hear, “You’ll need this someday.” You have been skeptical, and (at times) rightfully so. But here on the Rainier, Rosalind and I encountered many areas in which what we learned in school has helped us to understand some of the ship operations.

How does a 234 ft. ship, like the Rainier, float?

If you take a large chunk of metal and drop it in the water, it will sink. And yet, here we are sailing on a large chunk of metal. How is that possible? This all has to do with the difference between density (the amount of mass or stuff contained within a chunk of a substance) and buoyancy (the tendency of an object to float). When you put an object in water, it pushes water out of the way. If the object pushes aside an amount of water with equal mass before it becomes fully submerged, it will float. Less dense objects typically float because it doesn’t take that much water to equal their mass, and so they can remain above the water line. The shape of a ship is designed to increase its buoyancy by displacing a greater quantity of water than it would as a solid substance. Because of all the empty space in the ship, by the time the ship has displaced a quantity of water with equal mass to the ship itself, the ship is still above water. As we add people, supplies, gasoline and so on to the ship, we ride lower. As evidenced by the sinking of numerous ships, when a ship springs a hole in the hull and water floods in, the buoyancy of the ship is severely compromised. To take precaution against this, the Rainier has several extra watertight doors that can be closed in case of an emergency. That way, the majority of the ship could be kept secure from the water and stay afloat.

How does a heavy ship like the Rainier stay balanced?

Another critical consideration is the balance of the ship. When the ship encounters the motion of the ocean, it tends to pitch and roll. Like a pendulum, the way in which it does this depends largely on the distance between the center of gravity of the ship (effectively the point at which the mass of the ship is centered) and the point about which it will roll. Ships are very carefully designed and loaded so that they maintain maximum stability.

Boat stability diagram
Boat stability diagram

Ballast is often added to the hulls of ships for the following reasons:

  • to help keep them balanced when there is not enough cargo weight
  • to increase stability when sailing in rough seas
  • to increase the draught of the ship allowing it to pass under bridges
  • to counteract a heavy upper deck like that of the Rainier, which itself contains 64, 000 pounds of launches.

Ballast comes in many forms and historically rocks, sandbags and pieces of heavy metal were used to lower a ship’s center of gravity, thus stabilizing it. Cargo ships, when filling up at port, would unload this ballast in exchange for the cargo to be transported.  For example, in the 1800s, the cobblestone streets of Savannah, Georgia were made with the abandoned ballast of ships. Today water is used as ballast, since it can be loaded and unloaded easier and faster. Most cargo ships contain several ballast tanks in the hull of the ship.

Cargo ship with several ballast tanks
Cargo ship with several ballast tanks

It is thought that the capsizing of the Cougar Ace cargo ship bound for the west coast of the US in 2006, was caused by a ballast problem during an open-sea transfer.  The ship was required to unload their ballast in international waters before entering US waters to prevent the transfer of invasive species carried by the stored water. The result of the Cougar Ace snafu: 4, 700 Mazdas scrapped and millions of dollars lost. Oops!

Couger Ace capsized in open ocean
Cougar Ace capsized in open ocean

Because the Rainier is not loading and unloading tons of cargo, they use a permanent ballast of steel rebar, which sits in the center of the lower hull. Another source of ballast is the 102, 441 gallons of diesel which is divided between many gas tanks that span the width and length of the ship on the port and starboard sides.  These tanks can be filled and emptied individually.  For stability purposes the Rainier must maintain 30% of fuel onboard, and according to the CO, the diesel level is usually way above 30% capacity. The manipulation of the individual diesel tank levels is more for “trimming” of the boat which essentially ensures a smoother ride for passengers.

Where does all the freshwater come from for a crew of 50?

If only humans could drink saltwater, voyages at sea would be much easier and many lives would have been saved. Unfortunately, salt water is three times saltier than human blood and would severely dehydrate the body upon consumption leading to health problems such as kidney failure, brain damage, seizures and even death.  So how can we utilize all this salt water that surrounds us for good use?  Well, to avoid carrying tons of fresh potable water aboard, most large ships use some type of desalination process to remove the salt from the water.  Desalination methods range from reverse osmosis to freeze thawing to distillation. The Rainier uses a distillation method which mimics the water cycle in nature: heated water evaporates into water vapor, leaving salts and impurities behind, condensing into liquid water as the temperature drops. This all is happening inside a closed system so the resulting freshwater can be kept.  To speed up this process, the pressure is lowered inside the desalinator so the water boils at a lower temperature.  Much of the energy needed to heat the water comes from the thermal energy or waste heat given off by nearby machines such as the boiler.

Desalinator in the Rainier engine room
Desalinator in the Rainier engine room

Distillation purifies 99% percent of the salt water and the remaining 1% of impurities are removed by a bromine filter.  The final step of the process is a bromine concentration and PH check to ensure the water is potable. The bromine should be about .5 ppm and the PH between 6.8-7.2.

Daily water quality log
Daily water quality log

Everyday the Rainer desalinates 2500 gallons of saltwater to be used for drinking, cleaning and showering. The toilets, however, use saltwater and if you are lucky like me, you can see flashes of light from bioluminescent plankton when flushing in darkness. It’s like a plankton discotec in the toilet!

How does the chicken cross the road when the road is moving?

The difference between a road map and a nautical chart is that a road map tells you which way to go and a nautical chart just tells you what’s out there and you design your course.  Thus, navigating on the ocean is not as simple as “turn left at the stop sign,” or “continue on for 100 miles”, like directions for cars often state. Imagine that the road beneath you was moving as you drove your car. In order to keep following your desired course, you would need to keep adjusting to the changes in the road. That’s a lot like what happens in a ship. If you want to drive due west, you can’t simply aim the ship in that direction. As you go, the ship gets pushed around by the wind, the currents, and the tides, almost as if you drove your car west and the road slid up to the north. Without compensating for this, you would end up many miles north of your desired location. If you have a north-going current, you have to account for this by making southward adjustments. In a physics class, we might talk about adding vectors, or directional motion; in this case, we are considering velocity vectors. When you add up the speed you are going in each direction, you end up with your actual speed and direction. In the ship we make adjustments so that our actual speed and direction are correct.

Which way to the North Pole?

Did you know that when you look at a compass, it doesn’t always tell you the direction of true north? True north is directly towards the North Pole, the center of the Earth’s axis of rotation which passes directly to the true south pole. However, compasses rely on the location of the magnetic pole which is offset somewhat.

Compass showing true north and magnetic north
Compass showing true north and magnetic north

The combination of the solid iron core and the liquid iron mantle of the Earth create a magnetic field that surrounds the Earth (and protects us from some really damaging effects of the sun). If you visualize the Earth like a bar magnet, magnetic north is located at an approximate position of 82.7°N 114.4°W, roughly in the middle of northern Canada. If you stood directly south of this point, your compass would point true north because true north and magnetic north would be on the same line of longitude. However, as you get farther away from this west or east, the North indicated by your compass is more and more offset.

The magnetic poles of the earth
The magnetic poles of the earth
Earth showing true and magnetic poles
Earth showing true and magnetic poles

Our navigational charts are made using “true” directions. Because of our location in Alaska, if we were steering by compass, we would have to offset all of our measurements by roughly 14° to account for the difference in true and magnetic north. Fortunately, due to the advent of GPS, it is much simpler to tell our true direction.

Why so much daylight and fog?

Every hour, the crew of the Rainier measures the air temperature, sea water temperature, atmospheric pressure, and relative humidity. Aside from keeping a record of weather conditions, this also allows the National Weather Service to provide a more accurate weather forecast for this geographical region by providing local data to plug into the weather prediction models.

Hourly weather log
Hourly weather log

Weather in the Shumagin Islands could be very different from that of the nearest permanent weather station, so this can be valuable information for mariners. In our time out here, we have experienced a lot of fog and cool temperatures (although the spectacular sunshine and sunsets of the past few days make that seem like a distant memory). One reason for this is our simultaneous proximity to a large land mass (Siberia, in far-east Russia) and the ocean. Cool air from the land collides with warm waters coming up from Japan, which often leads to fog.

Currents of the Pacific
Currents around Alaska

However, because we are pretty far north, we also experience a lot of daylight (although not the 24-hour cycles so often associated with Alaska). At this time of the year, even though the Earth is farther away from the sun that it is in our winter season, the axis of the Earth is tilted toward the sun, leading to more direct sunlight and longer hours of illumination.

Earth's orbit around the sun
Earth’s orbit around the sun

One slightly bizarre fact is that all of Alaska is on the same time zone, even though it is really large enough to span several time zones. Out in the west, that means that sunset is in fact much later than it otherwise should be. Our last few spectacular sunsets have all happened around 11pm and true darkness descends just past midnight.  I have on several occasions stayed up several hours past my bedtime fishing on the fantail or getting distracted wandering around the ship because it is still light out at 11pm!

Rosalind and Avery at sunset
Rosalind and Avery (with Van de Graaf generator hair) at sunset

Personal Log:

Well friends, I said a bittersweet goodbye to the Rainier and its incredible dynamic crew. I am sad to have left but am also excited to return home to the Oregon Coast to begin planning for this school year. I look forward to incorporating my newfound knowledge and unique experience at sea into the classroom.  I am still amazed at the breadth and diversity of information that I learned in just under 3 weeks. From learning how to steer the ship to acquiring and processing survey data to puffin reproduction, the list goes on. I never stopped asking questions or being curious.  And the Rainier crew was always there to graciously answer my questions.  I am grateful for all that they taught me and for the kindness and patience they consistently showed me.

When I asked Rick Brennan, the Commanding Officer, what he most enjoyed about his job, he responded “The people.” He said he enjoys seeing the personal and professional growth of individual crew members.  It is not hard to see that the Rainier crew is pretty amazing.  They are an extremely dedicated group of individuals whose passion for their profession supersedes living a “normal life”. Each one of them has an interesting story of how they got to the Rainier and many of them sacrifice family time and personal relationships to be aboard the ship for months at a time.

Beyond the scientific knowledge attained, I leave this ship with a few important life reminders.

1) Be patient with yourself, your own learning style, with others around you and the task at hand. Authentic science is messy and exhausting. Ship life attracts unique personalities.

2) Don’t forget about the big picture and why you are here in the first place. “Mowing the lawn” day in and day out can seem mundane but all of those data points together will compromise the updated nautical chart which will ensure safe mariner travel for a multitude of ships.

3) Teamwork is key to any complex operation. This not only means working together but always being willing to lend a helping hand and sharing your particular knowledge with fellow crew members.

4) Appreciate, observe and protect the natural beauty that surrounds us.  Cultivate this awareness in others. Our livelihood as a species depends on our interaction with the environment.

This is my second to last blog post. Stay tuned for an exciting last entry about my extended stay in Kodiak, Alaska (post Rainier) where I explored the unique cultural and historical facets of this vibrant fishing port. Note: This next post will involve bears, a seal skin kayak, a behind the scenes fish factory tour, orcas, reindeer sausage and fossils!

For now, I leave with fond memories of a truly unique 18 day voyage aboard the most productive coastal hydrographic survey platform in the world: her majesty, the Rainier. Thank you lovely lady and thank you Rainier crew for making this Teacher at Sea adventure so magical!

The most striking sunset of our voyage.
The most striking sunset of our voyage.

Katie Sard: The Science Needed to Get the Data, July 31, 2013

NOAA Teacher at Sea
Katie Sard
Aboard NOAA Ship Rainier
July 29 – August 15, 2013

Mission:  Hydrographic Survey
Geographical Area of the Cruise:  Shumagin Islands, Alaska
Date: Wednesday, July 31, 2013

Weather Data from the Bridge:
GPS location:  54°52.288’N, 159°55.055’W
Sky condition:  Overcast (OVC) with Fog (FG)
Visibility:  Less than 2 nautical miles (nm)
Wind: 120 degrees true, 13 knots (kt)
Sea level pressure:  1009.7 millibar (mb)
Sea wave height:  1 foot (ft)
Swell waves:  180 degrees true, 3 ft
Water temperature:  9.4°C
Air temperature:  12.2°C

Science and Technology Log

From the moment I stepped on to the NOAA Ship Rainier in port at the Coast Guard Base in Kodiak three days ago, it was apparent to me that this ship functions in order to acquire information.  Hours upon hours of teamwork, dedication, money, and precise planning go in to making sure this ship gets to the right spot, functions properly, and has the correct instrumentation to collect the data.  My goal for this post is to share with you all of the science that goes into making sure that this ship is able to perform the overall mission of doing hydrographic surveys.

A view of the bow of the ship from the flying bridge as we began to get underway.
A view of the bow of the ship from the flying bridge as we began to get underway.

First perhaps I should give a brief background of what a hydrographic survey is and why they are done.  The NOAA Ship Rainier uses sonar in order to collect information about the ocean floor.  Each time the ship, or any of the survey launches (smaller boats), use this sonar, they are surveying the area for hydrographic information.

Two of the launches had to get rearranged into their standard locations on the ship as we left port.  They had been switched around while at port for maintenance.
Two of the launches had to get rearranged into their standard locations on the ship as we left port. They had been switched around while at port for maintenance.

This information is then processed and used to create nautical charts which NOAA produces for navigational purposes.  These nautical charts contain information on ocean floor depth, but they also give detailed information on areas that may be hazardous to those navigating the waters in that area.  I will stop there for now on the hydrographic surveys because the surveys have only just begun today on the ship.  The ship has been in transit the past two days, meaning that we have been moving from port to our survey area.   Little did I know how much science it takes to even get the ship to the survey area where the hydrographic surveys can begin.

If you are one of my students reading this blog, you may know how I say that science is everywhere.  One of my students even asked me this past year, “Mrs. Sard, are you like ALWAYS thinking about science?”  Well it turns out that science IS everywhere on this ship.  I’ve had the pleasure of chatting with several different crew members in my first few days, and they’ve been eager to explain the many functions of the ship and the crew.  What is important to understand is that there are several departments that all must work together in order to allow the ship to function properly.  Here is a brief breakdown of each department and what their main tasks are:

Wardroom – These are mostly members of the NOAA Corps which is one of the seven uniformed services of the United States.  Besides managing and operating the ship, these dedicated workers also function as scientists and engineers.

Survey – These are the scientists that are mostly in charge of the hydrographic data.  They collect, process, and manage the information that is collected during the surveys.

Engineers – These people have the important task of keeping the ship in functioning order.  They do things like maintain the engine room and respond to any mechanical type issues.

Electronics Technician (ET) – This crew is in charge of the technology on board the ship.  They ensure that things like the computers, internet, and phones are all up in working condition.

Steward – This department is tasked with the job of feeding the crew members.  (They do a great job, and I think I might actually gain weight while out a sea because I cannot say no to the delicious food they prepare!)

Part of the galley where the food is served and we eat three delicious meals each day!
Part of the galley where the food is served and we eat three delicious meals each day!

Deck – The deck crew members are responsible for things like driving the small launches, maintaining the ship’s equipment, and so on.

Visitors – These would be people, like me, who are only on board the ship temporarily.  They have a specific purpose that usually falls within one of the other departments.

Navigating the Ship

Now that you are aware of the overall goal of the ship, and you are familiar with the departments, let me discuss the science that is needed to get the ship where we need to go.  It was an overwhelming and exciting feeling to be on the bridge of the ship while we were getting underway.  The Officer On Deck (OOD) was giving orders to both the helmsman, who marked his orders down on a marker board, and the “lee helm” or engine controls operated by ENS Poremba. The third mate was acting as the navigator and had precisely mapped out the route for safely and efficiently departing the Coast Guard base.

You can see part of the route that the navigator has mapped out for the ship.
You can see part of the route that the navigator has mapped out for the ship.

The Commanding Officer (CO) was overseeing all that was happening, along with several other officers.  I was in awe of how smoothly everything came together, and how efficiently the people worked together as a team.  LT Gonsalves eloquently said that the ship is like a “floating city” and that all of the pieces must come together in order for it to function.

As I awoke yesterday, after our first night out at sea, I could hear the fog horn coming from the bridge.  I decided to go and observe again to see how things were functioning out at open sea.  ENS Wall showed me how to do a GPS fix to make sure that we are following the plans laid out for navigation.

Ens Wall taking a GPS fix that he showed be how to do!
Ens Wall taking a GPS fix that he showed be how to do!

These are taken about every fifteen minutes.  He used the current chart that was laid out as well as electronic GPS measurements and plotted them on the chart with a compass.  He then marked the latitude and longitude with the time to show that we were on course at that moment.

The OOD, John Kidd, went on to explain a bit more about the navigation of the ship including the gyroscope. Simply put, a gyroscope is an instrument used for measuring and maintaining orientation while out at sea, but it’s not as simple as it looks.  I noticed a sign that read “Gyro Error” and so I asked.  John went on to tell me that the gyro error is the difference between true north and what the gyro thinks is north.  The difference between true north and magnetic north is the combination of “variation” which is a function of local magnetic fields, and “deviation” which is the effect the magnetic fields aboard the boat have on the compass.  The steel ship itself and all of the electricity on board have some crazy magnetic fields that interfere.

Finally, I went up to the bridge this morning to quickly get the weather data that I needed for my blog.  What I thought would be a quick visit turned into a 30 minute conversation with the crew.  It was remarkable to see all of the data that is collected each hour dealing with the weather.  The conning officer is required to take the data once each hour and enter it into the computer.  They don’t simply look out and take a rough estimate of the weather.  It is a detailed process that takes a variety of instrumentation in order to get the quantified weather data that is needed.   All of the weather data is then sent off to  NOAA’s National Weather Service and is used to refine the local at-sea weather forecasts.

Weather data from the Bridge.  Hey INMS students - check out this data table! Data tables can be good!
Weather data from the Bridge. Hey INMS students – check out this data table! Data tables can be good!

I couldn’t help but smile at all of the science and math that was taking place in order to have safe navigation through the sea.  So much science goes in to making sure that the officers have accurate data in order to navigate the ship.  This is one of my goals as a TAS: I want to show my students how many different opportunities they have, and the possible fields of science that NOAA has to offer.

Personal Log

When I arrived in Kodiak on Saturday, Avery Marvin, the previous Teacher at Sea (TAS) was still on board for one night.  She took me on a tour of the ship, and gave me the low down on how everything functions.  Avery and I decided that before departing on Monday, we would take the day on Sunday to explore the island of Kodiak.  I couldn’t believe all of the wildlife I saw including the various creatures of the tide pools, bald eagles, sea otters, salmon, and so much more.

TAS Marvin (left) and myself (right) as we went tide pooling at Fort Abercrombie State Historical Park.
TAS Marvin (left) and myself (right) as we went tide pooling at Fort Abercrombie State Historical Park.

I have been so impressed by the functionality of the ship.  Every inch of space is used, and the people on board truly understand what it means to work as a team.  Yesterday we had our safety drills including Fire/Emergency and Abandon Ship.  When the different alarms sounded, I was required to quickly get to my muster station where I was checked in and accounted for to the CO.  I also was asked to try on my immersion suit.  In all of the excitement, I wasn’t able to get a picture, but it was an experience to practice these drills.

The rack where I will be staying over the next three weeks.
The rack where I will be staying over the next three weeks.
The head or the bathroom in my room that I share with my roommate Martha.
The head or the bathroom in my room that I share with my roommate Martha.

I believe my body is starting to get accustomed to the constant movement of the ship. While sleeping in my rack (bed) at night, I can feel it as the ship sways back and forth.  At times the waves are large, but for the most part it feels as though I’m being rocked to sleep.

Please post comments, or email me at katie.sard@lincoln.k12.or.us if you have any questions or information that you would like me to blog about.  I’m looking forward to sharing more information on my experience with you next time!

Best wishes,

TAS Sard

Did You Know…

Each ship has it’s own call sign.  These signs are displayed on the ship by flags that each represent one letter in the alphabet, and they are international symbols that are used.  The call sign for the NOAA Ship Rainier is WTEF.

The flags for the call sign of the Rainier.  From top to bottom they read WTEF.
The flags for the call sign of the Rainier. From top to bottom they read WTEF.

To ensure clearness when reading off these letters, the military alphabet is used.  For example, if you were reading the call sign for the Rainier it would read Whiskey Tango Echo Foxtrot instead of just WTEF.

Susy Ellison: Dreaming of the Cool North, July 22, 2013

NOAA Teacher at Sea
Susy Ellison
Aboard NOAA Ship Rainier
September 9-26, 2013

Mission:  Hydrographic Survey
Geographic Area: South Alaska Peninsula and Shumagin Islands
Date:  July 22, 2013

In September I will be heading north for 3 weeks as a NOAA Teacher at Sea (TAS).  Right now it’s over 90F outside and I am happily visualizing wearing layers of fleece and waterproof raingear on the deck of the NOAA Ship Rainier assisting with hydrographic survey work along the South Alaska Peninsula and Shumagin Islands.

How am I preparing for my experience?  First and foremost, it’s important to actually practice blogging and communicating using the TAS website.  Since this is the platform that will enable me to communicate with my coworkers, students, and all of you out there in the blogosphere, it’s important to learn how to manipulate all the nuances of electronic communication.  Second, I need to learn about the work I will be involved in during my TAS cruise.  Third, since I will be gone during the school year, I need to design lessons and unit plans that will enable students and staff at school to follow along during my experience.  Finally, since it’s still summer vacation, I need to make sure that I get out there!!

A visit to Niagara Falls

I am Susy Ellison, a teacher at Yampah Mountain High School in Glenwood Springs, CO.  Yampah is a public, alternative high school serving students from 4 school districts.  Our students come to us for a variety of reasons, although most are united in their search for a high school experience that helps them identify and pursue their passions while providing information in a relevant, hands-on manner.  I am the sole science teacher for our school, responsible for teaching earth, life, and physical science classes, as well as taking students outdoors for weeklong trips in the nearby mountains and deserts. My passion is environmental literacy, creating connections between people and their planet.  My students will tell you that, no matter what class they are taking, they learn about the planet and how their actions matter.

If you’ve been a good follower of the TAS blogs, you will already know that there have been 4 teachers cruising along on the Rainier (2 of them are on the ship right now).  I have been following their blogs to learn about the science and daily life aboard the ship.  It is exciting to know that there are still places that need to be mapped. I am looking forward to gaining firsthand knowledge of the mapping technology that is used. The one thing that I have noticed is always mentioned in their blogs, besides the science, is the fact that no one is malnourished onboard the ship!

In the coming weeks I will be designing lesson and unit plans for my science classes so that they will be able to follow along while I am at sea. Since Yampah takes an integrated approach to education, I am also creating lessons that our math, language arts, and social studies teachers will be using to add a little hydrographic science to their classes.  The lessons will revolve around the theme of ‘Mapping Our World’, which just happens to be this year’s theme for Earth Science Week.

Finally, my preparations include having an action-packed summer vacation.  I am lucky enough to live in western Colorado, close to mountains, rivers, and deserts.  I have spent part of the summer floating rivers in Utah and Idaho with my husband and friends.  Now, as the waters ebb, I am heading to the mountains for some altitude-adjustment and hiking.  The wildflowers are lovely, and the high-elevation hiking helps me beat the heat (and stay in shape!).

My husband in the dory he built.
My husband in the dory he built.
Floating in my kayak on the Green River
Floating in my kayak on the Green River
I have a wonderful 'backyard'!
I have a wonderful ‘backyard’!

Stay tuned as my cruise approaches for more of my preparations and, perhaps, some glimpses of the lessons I will be preparing for my students.

Rosalind Echols: Sound Off! From Noise to Nautical Charts, July 22, 2013

NOAA Teacher at Sea
Rosalind Echols
Aboard NOAA Ship Rainier (NOAA Ship Tracker)
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 22, 2013

Current Location: 54° 55.6’ N, 160° 10.2’ W

Weather on board: Broken skies with a visibility of 14 nautical miles, variable wind at 22 knots, Air temperature: 14.65°C, Sea temperature: 6.7°C, 2 foot swell, sea level pressure: 1022.72 mb

Science and Technology log:

Teamwork, safety first
Rainier motto, painted in the stern of the ship above the fantail, the rear lower outside deck where we have our safety meetings.

“Teamwork, Safety First”, is inscribed boldly on the Rainier stern rafter and after being aboard for more than 2 weeks, it is evident this motto is the first priority of the crew and the complex survey operation at hand.

Rainier launch
This is one of the survey launches that we use to gather our survey data. In this case, the launch is shown approaching the Rainier, getting ready to tie up.

It’s a rainy overcast morning here in SW Alaska and we are circled around the officers on the fantail for the daily safety meeting. Weather conditions, possible hazards, and the daily assignment for each launch are discussed. Per the instructions on the POD (Plan of the Day), handed out the previous evening, the crew then disperse to their assigned launches. The launches are then one-at-a-time lowered into the water by the fancy davit machinery and driven away by the coxswain to their specific “polygon” or survey area for the day. A polygon surveyed by a launch on average takes 2-3 hours at 6-8 knots to survey and usually is an area that is inaccessible by the ship. Many polygons make up one large area called a “sheet” which is under the direction of the “sheet manager”. Several sheets make up an entire survey project. Our hydrographic project in the Shumagins has 8 sheets and makes up a total of 314 square nautical miles.

Safety meeting
The CO, XO, and FOO lead the safety meeting for the day, discussing weather conditions, water conditions, and the assignments for each launch.
Shumagin Islands
This is a chart of the Shumagin Islands showing the 8 sheets (highlighted in green) that we are surveying.
Polygons
East side of Chernabura Island divided into survey “polygons”, each labeled with a letter or word. Notice how each polygon is a small subset of the larger sheet.

On board each launch we have a complex suite of computer systems: one manages the sonar, another manages the acquisition software, and the third records the inertial motion of the launch as it rocks around on the water (pitch, heave, roll). The acquisition system superimposes an image of the path of the launch and the swath of the sonar beam on top of a navigational chart within the polygon. Starting at one edge of the polygon, the coxswain drives in a straight a line (in a direction determined by the sheet manager), to the other end of the polygon, making sure there is some overlap at the boundaries of the swaths. He/she then works back in the other direction, once again making sure there is some overlap with the adjacent swath. We call this “mowing the lawn,” or “painting the floor” as these are visually analogous activities. Throughout the day, we pause to take CTD casts so that we have a sound velocity profile in each area that we are working.

Launches
Typical launch dispersal for a survey day. Launches are signified by “RA-number”. You can also see the location of our tide measurement station and GPS control station, both of which we use to correct our data for errors.
Mowing the lawn
This image shows the software tracking the path and swath of the launch (red boat shape) as it gathers data, driving back and forth in the polygon, or “mowing the lawn.” The darker blue shaded area shows overlap between the two swaths. The launch is approaching a “holiday”, or gap in the data, in an effort to fill it in.

You might be wondering, why the swath overlap? This is to correct for the outer sonar beams of the swath, which can scatter because of the increased distance between the sea floor and the sonar receiver below the hull of the boat. The swath overlap is just one of the many quality control checks built into the launch surveying process. Depending on the “ping rate”, or the number of signals we are able to send to the bottom each second, the speed of the boat can be adjusted.  The frequency of the sound wave can also be changed in accordance with the depth. Lower frequencies (200 khz) are used for deeper areas and higher frequencies (400 khz) are used for shallower areas.

Rosalind in launch
Rosalind in front of the computers on the launch, checking for sonar quality (right screen) and observing the path of the ship, to make sure there are no gaps in the data, or “holidays”.

Despite what might seem like mundane tasks, a day on board the launch is exhausting, given the extreme attention to detail by all crew members, troubleshooting various equipment malfunctions, and the often harsh weather conditions (i.e. fog, swells, cool temperatures) that are typical of southwest Alaska. The success of the ship’s mission depends on excellent communication and teamwork between the surveyors and the coxswain, who work closely together to maximize quality and efficiency of data collection. Rain or shine, work must get done.  But it doesn’t end there. When the launches arrive back at the ship, (usually around 4:30 pm), the crew will have a debrief of the day’s work with the FOO (field operations officer) and XO (executive officer). After dinner, the survey techs plunge head first (with a safety helmet of course) into the biggest mountain of data I have EVER witnessed in my life, otherwise known as “night processing”. We are talking gigabytes of data from each launch just for a days work.  It begins with the transferring of launch data from a portable hard drive to the computers in the plot room. This data is meticulously organized into various folders and files, all which adhere to a specific naming format. Once the transferring of data has finished, the “correction” process begins. That’s right, the data is not yet perfect and that’s because like any good science experiment, we must control for extraneous factors that could skew the depth data. These factors include tides, GPS location error, motion of the launch itself, and the sound velocity in the water column.

Plot room
Our chief surveyor works in the plot room cleaning and correcting data.
Data cleaning.
Data showing the consequences of the tide changing. The orange disjointed surface shows the data before it was adjusted for the tide changing. You can see how the edges between swaths (i.e. red and olive green) do not match up, even though they should be the same depth.
Sound speed artifact
This image shows the edge effects of changing sound speed in the water column. The edges of each swath “frown” because of refraction owing to changing density in the water column. This effect goes away once we factor in our CTD data and the sound speed profile.

In previous posts, I discussed how we correct for tides and the sound velocity. We also correct for the GPS location of the launch during a survey day, so that any specific data point is as precisely located as possible. Although GPS is fairly accurate, usually to within a few meters, we can get even more precise by accounting for small satellite errors throughout the day. The Coast Guard provided Differential GPS allows us to position ourselves to within a meter. To get even more precise, within a few centimeters, we determination location of a nearby object (our Horizontal Control, HorCon, Station) very precisely, and then track the reported position of this object throughout the day. Any error that is recorded for this station is likely also relevant for our launch locations, so we use this as the corrector. For example, if on July 21, 2013, at 3pm, the GPS location of our Bird Island HorCon station was reported 3cm north of its actual location, then our launches are also probably getting GPS locations 3cm too far north, so we will adjust all of our data accordingly. This is one of the many times we are thankful for our software. We also account for pitch, heave, and roll of the launch using the data from the inertial motion unit. That way, if the launch rolled sideways, and the center beam records a depth of 30 meters, we know to adjust this for the sideways tilt of the launch.

HorCon station
This shows the set up of our Horizontal Control and tide gauge station. The elevated rock position was chosen to maximize satellite visibility.

After all correctors have been applied (and a few software crashes weathered), the survey technicians then sort through all the data and clean out any “noise.” This noise represents sound reflections on sea life, air bubbles, or other items that are not part of the seafloor. Refraction of sound waves, as mentioned in the last post, is caused by density changes in the water due to changes in the temperature, pressure, or salinity.

Dirty data
This shows sonar data with “noise”. The noise is the seemingly random dots above and below the primary surface. On the surface itself, you can see data from four different swaths, each in a different color. Notice the overlap between swaths and how well it appears to be matching up.
Cleaned surface
This shows sonar data after the “noise” has been cleaned out. Notice how all data now appears to match a sea floor contour.

Many of the above correctors are applied the same day the data is collected, so the sheet manager can have an up-to-date record of the project’s progress before doing final planning for data collection the next day. After a sheet has been fully surveyed and ALL correctors applied, the sheet manager will complete a “descriptive report”, which accompanies the data and explains any gaps in the sonar data (“holidays”) and/or other errors present. This report, along with the data, is sent to the Pacific Hydrographic Branch for post-processing and Quality Control. After that the data is forwarded to the Marine Charting Division where the data undergoes a final set of Quality Assurance checks and is put in a format that can be printed on a paper nautical chart. From acquisition on the launches to publication on a chart, the process can take up to two years! The length of the process is designed to ensure maximum accuracy as many mariners rely on accurate charts for safe navigation.

Personal Log

As the saying goes, “When in Rome, do as the Romans.” One of the attractions of life in Alaska is access to excellent fishing, and a wide variety of tasty fish species. Although I normally consider myself to be a fairly outdoorsy person, thus far in my life this had not extended to the activity of fishing. However, inspired by Avery’s enthusiasm, and her first successful halibut catch, I decided at least give it a try, obtaining an Alaska fishing license and preparing myself for yet another adventure. I am, after all, always encouraging other people to try new things, especially things that make them a bit nervous, so it only felt right to follow some of my own advice. Honestly speaking, though, the thought of catching the fish and then having to deal with the consequences made me a little anxious.

Rosalind with fish
Rosalind with her first ever fish catch, trying very hard to keep her fingers away from the tip of the hook and the very spiny and painful back fin of the fish. Black rock fish have venomous points on their fins.

Fortunately, I had excellent guidance in this activity, setting out with Avery and two very patient crew members, who put up with my initial lack of skill and muscle, and intense enthusiasm about even the smallest jellyfish in the water. I had realized after my shoreline rock verification expedition that pointing at everything in the water and shouting “Look!” was probably not that helpful if we were trying to identify rocks, but here it seemed more appropriate. At least if you think jellyfish are cool. After several lackluster hours, we finally found a spot where a group of Black Rock Fish were schooling, and caught quite a few very quickly. Not surprisingly, the fish aren’t that happy about being caught and flail around a fair amount. Considering that they have pointy, venomous spines in their dorsal fin, it takes great care to get the fish in the bucket without injury, but we successfully managed it.

Rosalind cleaning
Rosalind learning how to fillet a black rock fish. Notice the safe distance between knife and fingers!

Somehow, in all my years of school, I never actually dissected anything, and have always felt a little squeamish around dead animals. However, after helping catch the fish, I couldn’t very well leave my colleagues alone to deal with the arduous task of filleting and cleaning the fish, so I decided to do my best to participate. It actually went much better than I expected, and I learned quite a bit about fish anatomy along the way. For example, fish have an air bladder that allows them to float. They look much less impressively large when this is deflated.

Fish fillets
A sampling of our collection of black rock fish fillets, mid-way through cleaning. I am proud to have contributed to this!

All in all, it was a very satisfying experience. It is nice to be able to say that I have developed a somewhat useful life skill (fishing as well as avoiding my fingers with large knives). Our wonderful cook, Kathy, even used some of the fish for a delicious lunch of fish tacos, which I hope to try to replicate myself some time in the near future.

FIsh tacos
Delicious fish tacos made from Black Rock Fish caught by Rainier crew and Teachers at Sea Rosalind and Avery!

Fun Fact: a fathom, a maritime measurement for depth equal to six feet, was originally based on the distance between a man’s outstretched finger tips. The word itself derives from an Old English word meaning outstretched or embracing arms. Given that we use it to measure depth, it is also interesting to note that it is related to the word to fathom something, or the adjective unfathomable, meaning immeasurable. The word is also related to the phrases “six feet under” and to “deep six” something.

Avery Marvin: Sound Off! From Noise to Nautical Charts, July 22, 2013

NOAA Teacher at Sea
Avery Marvin
Aboard NOAA Ship Rainier (NOAA Ship Tracker)
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 22, 2013

Current Location: 54° 55.6’ N, 160° 10.2’ W

Weather on board: Broken skies with a visibility of 14 nautical miles, variable wind at 22 knots, Air temperature: 14.65°C, Sea temperature: 6.7°C, 2 foot swell, sea level pressure: 1022.72 mb

Science and Technology log:

Teamwork, safety first
Rainier motto, painted in the stern of the ship above the fantail, the rear lower outside deck where we have our safety meetings.

“Teamwork, Safety First”, is inscribed boldly on the Rainier stern rafter and after being aboard for more than 2 weeks, it is evident this motto is the first priority of the crew and this complex survey operation at hand.

Rainier launch
This is one of the survey launches that we use to gather our survey data. In this case, the launch is shown approaching the Rainier, getting ready to tie up.

It’s a rainy overcast morning here in SW Alaska and we are circled around the officers on the fantail for the daily safety meeting. Weather conditions, possible hazards, and the daily assignment for each launch are discussed. Per the instructions on the POD (Plan of the Day), handed out the previous evening, the crew then disperse to their assigned launches. The launches are then one-at-a-time lowered into the water by the fancy davit machinery and driven away by the coxswain to their specific “polygon” or survey area for the day. A polygon surveyed by a launch on average takes 2-3 hours at 6-8 knots to survey and usually is an area that is inaccessible by the ship. Many polygons make up one large area called a “sheet” which is under the direction of the “sheet manager”. Several sheets make up an entire survey project. Our hydrographic project in the Shumagins has 8 sheets and makes up a total of 314 square nautical miles.

Safety meeting
The CO, XO, and FOO lead the safety meeting for the day, discussing weather conditions, water conditions, and the assignments for each launch.
Shumagin Islands
This is a chart of the Shumagin Islands showing the 8 sheets (highlighted in green) that we are surveying.
Polygons
East side of Chernabura Island divided into survey “polygons”, each labeled with a letter or word. Notice how each polygon is a small subset of the larger sheet.

On board each launch we have a complex suite of computer systems: one manages the sonar, another manages the acquisition software, and the third records the inertial motion of the launch as it rocks around on the water (pitch, heave, roll). The acquisition system superimposes an image of the path of the launch and the swath of the sonar beam on top of a navigational chart within the polygon. Starting at one edge of the polygon, the coxswain drives in a straight a line (in a direction determined by the sheet manager), to the other end of the polygon, making sure there is some overlap at the boundaries of the swaths. He/she then works back in the other direction, once again making sure there is some overlap with the adjacent swath. We call this “mowing the lawn,” or “painting the floor” as these are visually analogous activities. Throughout the day, we pause to take CTD casts so that we have a sound velocity profile in each area that we are working.

Launches
Typical launch dispersal for a survey day. Launches are signified by “RA-number”. You can also see the location of our tide measurement station and GPS control station, both of which we use to correct our data for errors.
Mowing the lawn
This image shows the software tracking the path and swath of the launch (red boat shape) as it gathers data, driving back and forth in the polygon, or “mowing the lawn.” The darker blue shaded area shows overlap between the two swaths. The launch is approaching a “holiday”, or gap in the data, in an effort to fill it in.

You might be wondering, why the swath overlap? This is to correct for the outer sonar beams of the swath, which can scatter because of the increased distance between the sea floor and the sonar receiver below the hull of the boat. The swath overlap is just one of the many quality control checks built into the launch surveying process. Depending on the “ping rate”, or the number of signals we are able to send to the bottom each second, the speed of the boat can be adjusted.  The frequency of the sound wave can also be changed in accordance with the depth. Lower frequencies (200 khz) are used for deeper areas and higher frequencies (400 khz) are used for shallower areas.

Rosalind working the surveying computers in the launch
Rosalind working the surveying computers in the launch

Despite what might seem like mundane tasks, a day on board the launch is exhausting, given the extreme attention to detail by all crew members, troubleshooting various equipment malfunctions, and the often harsh weather conditions (i.e. fog, swells, cool temperatures) that are typical of southwest Alaska. The success of the ship’s mission depends on excellent communication and teamwork between the surveyors and the coxswain, who work closely together to maximize quality and efficiency of data collection. Rain or shine, work must get done.  But it doesn’t end there. When the launches arrive back at the ship, (usually around 4:30 pm), the crew will have a debrief of the day’s work with the FOO (field operations officer) and XO (executive officer). After dinner, the survey techs plunge head first (with a safety helmet of course) into the biggest mountain of data I have EVER witnessed in my life, otherwise known as “night processing”. We are talking gigabytes of data from each launch just for a days work.  It begins with the transferring of launch data from a portable hard drive to the computers in the plot room. This data is meticulously organized into various folders and files, all which adhere to a specific naming format. Once the transferring of data has finished, the “correction” process begins. That’s right, the data is not yet perfect and that’s because like any good science experiment, we must control for extraneous factors that could skew the depth data. These factors include tides, GPS location error, motion of the launch itself, and the sound velocity in the water column.

Plot room
Our chief surveyor works in the plot room cleaning and correcting data.
Data cleaning.
Data showing the consequences of the tide changing. The orange disjointed surface shows the data before it was adjusted for the tide changing. You can see how the edges between swaths (i.e. red and olive green) do not match up, even though they should be the same depth.
Sound speed artifact
This image shows the edge effects of changing sound speed in the water column. The edges of each swath “frown” because of refraction owing to changing density in the water column. This effect goes away once we factor in our CTD data and the sound speed profile.

In previous posts, I discussed how we correct for tides and the sound velocity. We also correct for the GPS location of the launch during a survey day, so that any specific data point is as precisely located as possible. Although GPS is fairly accurate, usually to within a few meters, we can get even more precise (within a few centimeters) by accounting for small satellite errors throughout the day. We do this by determining the location of a nearby object (our Horizontal Control, HorCon, Station) very precisely, and then tracking the reported position of this object throughout the day. Any error that is recorded for this station is likely also relevant for our launch locations, so we use this as the corrector. For example, if on July 21, 2013, at 3pm, the GPS location of our Bird Island HorCon station was reported 3cm north of its actual location, then our launches are also probably getting GPS locations 3cm too far north, so we will adjust all of our data accordingly. This is one of the many times we are thankful for our software. We also account for pitch, heave, and roll of the launch using the data from the inertial motion unit. That way, if the launch rolled sideways, and the center beam records a depth of 30 meters, we know to adjust this for the sideways tilt of the launch.

HorCon station
This shows the set up of our Horizontal Control and tide gauge station. The elevated rock position was chosen to maximize satellite visibility.

After all correctors have been applied (and a few software crashes weathered), the survey technicians then sort through all the data and clean out any “noise.” This noise represents sound reflections on sea life, air bubbles, or other items that are not part of the seafloor.  Refraction of sound waves, as mentioned in the last post, is caused by density changes in the water due to changes in the temperature, pressure, or salinity.

Dirty data
This shows sonar data with “noise”. The noise is the seemingly random dots above and below the primary surface. On the surface itself, you can see data from four different swaths, each in a different color. Notice the overlap between swaths and how well it appears to be matching up.
Cleaned surface
This shows sonar data after the “noise” has been cleaned out. Notice how all data now appears to match a sea floor contour.

Many of the above correctors are applied the same day the data is collected, so the sheet manager can have an up-to-date record of the project’s progress before doing final planning for data collection the next day. After a sheet has been fully surveyed and ALL correctors applied, the sheet manager will complete a “descriptive report”, which accompanies the data and explains any gaps in the sonar data (“holidays”) and/or other errors present. This report, along with the data, is sent to the Pacific Hydrographic Branch for post-processing, and in 1-2 years, we will have a corrected and updated navigational chart. During this time the data is reviewed for quality and adherence to hydrographic specifications and then is distilled into a cartographic product (nautical chart) consisting of points, lines, and areas.

Personal Log:

So I am going to hold off in talking about an animal that has recently fascinated me and instead devote this personal log to some cool things I have been doing on the ship.

Most recently I got to be the helmsman and steer the ship. This involved me following orders from the “conning officer” who told me various steering commands such as: “Left ten degrees rudder”, “steady on course 167°”, “ease 5° right”, “helm in auto” (auto-pilot). To acknowledge the command, I repeated what the conning officer said followed by “aye”. For example: “Left ten degrees rudder, aye” or “course 167°, aye”.  When the boat is actually on the course that was requested by the conning officer, I repeated the command with the word “steady”. For example: “Steady on course 167°”

Avery at the helm
Avery at the helm

You might be wondering why all of the commands involve degrees. Well that is because this ship is steered by the rudder, similar to how you manually steer a small sailboat.  So changing the angle of the rudder will change the direction of the ship.  To change this angle, you turn the steering wheel a desired amount of degrees beyond zero in the direction the conning officer instructed.  So if he said “right 5 degrees rudder”, I would turn the steering wheel right, and stop at the 5 hash mark.

Once the boat actually turns 5°, I will make sure I am at the correct “heading” or degree mark that the conning officer instructed.  A heading can be any number between 000-360 (where 000-deg = North, 045 = Northeast, 090 = East, etc.) as this boat can turn in a complete circle and be navigated in any direction.  (There is 360° in both a compass and a circle.)  Once I am steady at the correct heading, I will put the steering wheel back to 0° which means the rudder is completely straight and parallel with the boat. At this point the boat is going straight. If this were a car, you could just stay straight no problem.

But because this boat moves in water and is affected by ocean conditions such as swells, it is easily knocked off course of the heading. So as helmsman I am constantly making tiny adjustments with the steering wheel by a few degrees in either direction to maintain my heading.   This adjustment is done using the steering wheel if I am driving manual, or using a dial on the gear panel if the boat is in “auto” (auto-pilot). Because the ship rudder must “push water out of the way” in order to steer the boat, there is a delay between when I turn the steering wheel to when the ship actually moves that amount of degrees. This is not a car which turns instantaneously by the movement of axles.  So I need to account for that “lag time” as well as ocean conditions and the speed of the boat when turning the ship.  For example, if the boat is going slow (3 knots) and I need to turn quickly, I will have to use a greater rudder angle.  Throughout this process I have several digital screens that show me my current position and course, current heading and desired heading as well as other navigational aides.  When I was helmsman, I was closely monitored and assisted by Jason, a former Navy Chief Boatswain, who is one of the best helmsman on the ship.  To be a good navigator you need to know the fundamentals but you also need a lot of practice and exposure to various navigational situations.

Helm stand
Helm stand

Yesterday, Rosalind and I got to work on deck and help the Chief Boatswain with various deck tasks such as lowering the anchor and assisting with the davit to hoist the launches from their day of surveying out on the water.  Assisting with the job of lifting a 16,000 lb launch with 3 people aboard using the davit winch was by far the most exhilarating experience thus far on the ship. I handled the task with extreme caution. As with being a helmsman, there are many factors I must consider as a davit operator.  For example, if there is a significant swell, I need to be more aggressive with the davit movements to get the boat lifted fast to avoid any excessive swaying in mid-air. Most importantly, I must attentively follow the gestures of the deck boss below who is able to see the launch very clearly and is directing me on every davit movement.  Even an experienced davit operator like Jason, who probably can predict the next davit movement in his sleep, must never assume and then act. He ALWAYS follows the exact orders of the deck officer below because he never knows what they are seeing that he cannot from the above deck.  Overall, with Jason’s close attention and assistance, I think I did a good job of assisting with the davit. The boat made it safely aboard, and my heart returned to a normal beating pattern. 🙂

Operating the crane to get the davit ready to lift the launch out of the water
Getting the davit positioned and ready to lift the launch out of the water.

On a lighter note I learned how to play the good ole’ mariner pastime favorite, Cribbage. Rosalind (the other Teacher at Sea and my delightful roommate) taught me how to play. We had a cribbage tournament here aboard the ship in which about 12 people competed. I did not advance to the finals but had a lot of fun nonetheless.  I am looking forward to gaining more Cribbage strategies so I can be a more competitive player for future matches.

First round of Cribagge tournament
First round of Cribbage tournament

Just for fun:

An adorable sole I caught on the fantail of the Rainer (I released him/her)
An adorable sole I caught on the fantail of the Rainer (I released him/her). 🙂

Fun factoid: A fathom which is a maritime measurement equal to 6 feet, was originally based on the distance, fingertip to fingertip of a man’s outstretched arms. Fathom that!

Avery Marvin: Is it an Island or Just an Ink Blot? July 16, 2013

NOAA Teacher at Sea
Avery Marvin
Aboard NOAA Ship Rainier (NOAA Ship Tracker)
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 16, 2013

Current Location: 54° 55.8’ N, 160° 09.5’ W

Weather on board: Overcast skies with a visibility of .5 nautical miles, South wind at 18 knots, Air temperature: 10°C, Sea temperature: 7.2°C, 1-2 foot swell

Science and Technology log: Shoreline Verification

When you think of a shoreline, you might think of a straight or curved “edge” made of sandy beaches that gradually retreat into deeper and deeper water.  In the Shumagin Islands, a sandy cove is a rare occurrence and a place for a beach party! Towering, jagged cliffs patched with Artic moss and blanketed by a creeping fog are the typical “edges” here.  Below the cliffs in the water, lie sporadic toothed rocks and beds of dense rooted bull kelp, swaying with the current. As I sit on the edge of the skiff (small dingy-like boat), which gently trudges along the outside of the protruding rocks, I think to myself “Is this what Ireland is like?” or is this a world unto its own-untouched and solitary? Whatever it is, this place evokes an ethereal mood and you really feel like you are in one of the most remote places in the world.

Rocky shoreline of Nagai Island
Rocky shoreline of Nagai Island
Navigating through Bull Kelp bed
Navigating around Bull Kelp bed
Picture of skiff offshore
Picture of skiff offshore

Remote it is and that is why we are here. These are for the most part, uncharted or poorly documented waters and shorelines and in this post, I am going to talk about the shoreline aspect.  Besides taking bathymetric data (depth data), hydrographic ships like the Rainier must also verify that the shorelines of various land-masses are portrayed accurately and that all necessary “features” are documented correctly on nautical charts.  Features include anything that might be a navigational hazard such as rocks, shoals, ledges, shipwrecks, islets (small islands) and kelp beds. For shoreline verification, a 19 foot skiff is used for maneuverability and shallow water access. This boat will go out during the “shoreline window”, when the tide is the lowest, with the hopes that if there is a dangerous feature present, it will be visible above the water. In the best case scenario, we can investigate the shoreline fully with the skiff before sending in the bigger launches to survey the area with the sonar, so that we know they won’t hit anything.

Shoreline verification crew

Shoreline verification crew. From left: Randy (Coxswain), John (NOAA Corps. Officer), Chief Jacobson (Chief Survey Tech), Avery (Teacher at Sea)
Shoreline verification crew hard at work
Shoreline verification crew hard at work. From left: Randy (Coxswain), John (NOAA Corps. Officer), Chief Jacobson (Chief Survey Tech), Steve (NOAA Corps. Officer)

The main goal of the scientists aboard the skiff is to establish a “navigational area limit line” (NALL). This is a boundary line delineating how far off shore the launch boats should remain when they are surveying.  This boundary line is obtained in one of three ways:

1) presence of a navigational hazard such as a dense kelp bed or several protruding rocks

2) a depth of 4 meters

3) distance of 64 meters to shore

Whichever of these is reached first by the skiff will be the navigational area limit line for the launches.  Here in the Shumagins, kelp beds and rocks have been the boundary line determinant and often these hazards are in water that is deeper than 4 meters because we have been encountering these before we get within 64 meters of the shoreline.

While scientists are determining the NALL, they are also verifying if certain features portrayed on older charts are in fact present and in the correct location. Using navigational software on a waterproof Panasonic Toughbook, they bring up a digitized version of the old chart of a specific survey area. This chart depicts features using various symbols (asterisk=rock above water, small circle=islet). This software also overlays the boat’s movement on top of the old chart, allowing the boat to navigate directly to or above the feature in question.

Shoreline map 1
Shoreline map showing course of skiff, shoreline buffer, and feature for examination.
Shoreline map 2
Shoreline map showing charted location of islet and the actual location of islet determined by the skiff.

If the feature is not visually seen by the human eye or the single beam sonar on the skiff, it will be “disproved” and a picture and depth measurement will be taken of the “blank” location. If the feature IS seen, more data will be recorded (height of feature above the water, time of day observed, picture) to document its existence.  This same verification procedure is used for newfound features that are not present on the old charts.  All of this data is written on a paper copy of the chart and then back in the “dry lab”(computer lab), these hand-written notes are transferred to a digital copy of the chart.

Section of shoreline showing data and notes about specific features in question
Section of shoreline showing data and notes about specific features in question
Digitized version of notes and data taken at field site Note: Kelp buffer are the large shaded red areas and the smaller red circle is the actual position of the islet
Digitized version of notes and data taken at field site. The black box corresponds to the area from the previous picture above.
Note: Kelp buffers are the large shaded red areas and the smaller red circle is the actual position of the islet. The three southernmost rocks (marked by red asterisks) inside the black box were disproved.

On the two shoreline verification adventures I went on, many rocks and islets were disproved and several new features were found. Most of the new features were rocks, islets or large kelp beds.  It is important to note that if scientists find a new feature which is a serious present navigational hazard (ex. Shipwreck, huge jutting rock or shoal far offshore) it will be marked a DTON (Danger to Navigation) and communicated to mariners within a short time frame. Other less significant features take 1-2 years to appear on updated nautical charts.

For some survey areas, the Rainier uses aircraft-acquired LiDAR (Light Detection And Ranging) to get an initial idea of various features and water depths of a shoreline area. (This is a service that is contracted out by NOAA.) LiDAR data is obtained by a plane flying over an area at 120 mph, emitting laser beams to the water below. Like SONAR, LiDAR measures the time it takes for the laser beam to return to its starting point. Using this measured time and the speed of light, the distance the light traveled can be obtained, using the equation distance = speed*time, accounting for the fact that it travels through air and then water.  Because light travels much faster than sound, the plane can travel significantly faster than a boat and a large area can be surveyed faster.  Unfortunately LiDAR can only be used in clear, calm water because light is easily reflected by various solids (silt in the water, floating wood), specific color wavelengths (ex. White foam on ocean surface) and absorbed by biological specimens for photosynthesis (ex. Surface bull kelp).  LiDAR surveys do reduce the time hydrographers spend at a shoreline site thus increasing the safety and efficiency of an operation.  As with any data acquisition method, it must be cross-checked by another method and in this case because of the obvious downsides, it is used as a guide to shoreline verification.

Map of island showing LIDAR data.
Map of island showing LiDAR data. The skiff does shoreline verification outside the orange line that outlines the island. Everything inside this orange island was surveyed by the LIDAR airplane. The three orange features circled in red on the southeast section of the island, need to be re-surveyed by the skiff. Different colors show various depths. (Green is more shallow than light blue.)

After spending several days “disproving” a lot of rocks and islets that were clearly not present in their identified location, we started to wonder why someone would have thought there was a specific feature there. One possibility is that it was just an ink blot on the original chart, made by accident (from a fountain pen), and then interpreted as a rock or islet in the process of digitizing the chart. It’s better to be safe than shipwrecked! Another possibility is that these features were “eyeballed” in their documented location, and thus were present but just in the wrong spot.  Lastly because of limitations previously mentioned, LiDAR occasionally mis-reports features that are not present. Fortunately, our current survey methods use sophisticated navigational technology and several cross-checks to minimize data errors.

After shoreline verification has been completed, launches can survey the ocean floor (using SONAR) outside the boundary (NALL) that was established by the skiff. Each launch will be in charge of surveying specific polygons (labeled by letters and names). The picture above shows the polygon areas which are outlined in light orange (most are rectangles). I will talk more about SONAR and surveying on the launch in my next post. 🙂

Personal log:

I have been on the skiff two times now helping with the shoreline verification process. After the second time around and a chat with the XO Mike Gonsalves, my understanding of this process is more fine-tuned. It feels good to reach this point and it reminds me of the need to be patient, diligent and okay with the unknown when learning something new. I, like my students, often seek answers and a deep understanding of complex topics immediately and if this doesn’t happen I can get frustrated with myself. I have been more self-forgiving aboard the Rainier because I know I will be exposed to the same topic or process once again either in a different format or with a different set of crew members. I am also surrounded by a group of tolerant people who continually answer my questions with grace and peak my interest with new ideas.  This repetition of content and supportive network is crucial for any learning environment, whether it be on a ship or in a classroom.  Additionally, I have been given several small but important tasks which make me feel like a part of this group and complex operation.  This empowerment inspires me to learn more and continue contributing. Building a successful classroom community is no different than what is going on here on the Rainier. All students need to have a stake in their learning and a purpose for coming to class each day.

One of my small tasks aboard the skiff during the shoreline verification was to take pictures of the various features (rocks, islets etc.) that needed to be examined.  In some cases, it was important to photograph specific biological features that had an effect on navigation.  For example, when rounding the SE side of Chernabura Island we came across a large Stellar Sea Lion rookery inhabiting a small rocky islet. The male proudly stood in the center, surrounded by about 50 females.  As seen in the picture, this was a hefty male who easily weighed upwards of 1200 pounds. (Males can get as big as 2,500 pounds.)  During the breeding season (June-August), the male will fast and often won’t leave his reproductive rookery site. His primary focus is to defend his territory and spread his genes! Even though male Stellar Sea Lions are polygamous, they do not force the females into a harem but rather control the boundaries around their physical territory where within, the females reside.  The most successful rookery territories, not surprisingly are small rocky islands which can remain stable and productive for up to two months.

Stellar sea lion reproductive rookery
Stellar sea lion reproductive rookery

After researching about the Stellar Sea Lion, I learned that the western stock which resides in the Aleutian Islands is listed as an endangered species (since the 1970’s populations have declined by 70-80%). The cause for this is complex and has been attributed to a range of factors including: overfishing of sea lion prey (ex. Herring, Pollock), predation by Orca whales, shooting by fisherman, and disease.  Interestingly, a few native Alaskan communities are still permitted to hunt Stellar Sea Lions for subsistence (survival) purposes.

Stellar Sea Lion Range   Note, the two different stocks (Western and Eastern)
Stellar Sea Lion range

Fun factoid: The Stellar Sea Lion was named after the naturalist, George Wilhelm Stellar who first discovered the species in 1741 while part of Bering’s tragic voyage across the uncharted North Pacific.

Avery Marvin: Ebbs and Flows and Puffins! July 11, 2013

NOAA Teacher at Sea
Avery Marvin
Aboard NOAA Ship Rainier
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 11, 2013

Current Location: 54° 49.6 N, 159° 46.6 W

Weather data from bridge: 8.7°C, good visibility (6-8 miles), light and variable wind, overcast

View of Bird Island Cove from tide gauge installation point
View of Bird Island Cove from tide gauge installation point

Science and Technology Log:

Today, Rosalind and I were scientists in the field, helping the ship’s crew install tidal equipment in preparation for ocean floor survey work.  This was a complex process, so we decided to walk you through it in a step-by-step question format.

What does a navigation chart show you?

The image below shows a chart of the area that we are in right now. Our first anchor point was off the north coast of Bird Island in a cove. On the chart, you can see many tiny numbers in the water areas, which represent various depths.  These depths are measured in fathoms (1 fathom=6 feet).  This depth information helps mariners stay in safe areas that are not too shallow. The charts also show known hazards such as sub-surface rocks and ship-wrecks. This chart clearly has a lot of white space, signifying many areas were never surveyed.

Shumagin survey area
Part of our survey area. Notice the white spaces around Bird and Chernabura Islands!

But wait, why are the depth numbers “fixed” on the charts? Doesn’t the water level change with the tides?

Yes! It sounds easy to say, “the water is 10 fathoms deep at this point”. However, water is subject to the gravitational pull of the moon and sun, resulting in various water levels or tides throughout the day.  So the water will not always be “10 fathoms deep at this point.” For navigational purposes, the most hazardous water level is the lowest one, so nautical charts show the depth at the low tide water level.  Depending on the location, some places have two high tides and two low tides per day (semi-diurnal) and some places have one high tide and one low tide per day (diurnal). Here in the Shumagin Islands we are on a semi-diurnal mixed tide schedule (meaning that the two highs and two lows are not the same height).

How do you measure the tides each day?

shumagin_tide_zone
Map of the Shumagin Island-Sand Point Tide Zones. Notice how the eastern Shumagin Islands are 6 minutes ahead of Sand Point.

There are permanent tide measuring stations all over the globe that provide information on how to “correct for” and figure out your local tide conditions. For our case, there is a tide station at Sand Point on Popof Island, which is west from our survey area.  Our survey area is in two zones, one which is in the same zone as Sand Point and the other which is in a different zone. Therefore, we installed a tide gauge in the latter to verify that the tidal times and heights of this zone are accurately predicted by the Sand Point values. According to the current information, it says that in the different zone the tides should occur 6 minutes before the tides in Sand Point and to multiply the heights by 0.98.

A tide gauge is a pretty cool device that works by the laws of physics. It is installed (by divers) on the sea floor near a coast-line, in relatively deep water, so that it will always be covered with water. The tide gauge uses the water pressure above to determine the depth of the water column (density of water and gravity are the important factors in making this calculation). The tide gauge stays in place for at least 28 days (one full tidal cycle), after which there is a record of the water level throughout that time period (as we were gathering data), as well as a rough idea of the tidal cycle each month, ready for comparison to the Sand Point data.

How do you know if the tide gauge is working?

To verify that the tide gauge is working, humans (i.e.: Rosalind and I), take water level  measurements (in an area close to the tide gauge) using a giant meter stick or “staff”. In our case, we recorded the average water level height every 6 minutes for 3 consecutive hours.  This 3-hour data set can then be compared to the tide gauge data set for that same time period, and hopefully they will show similar trends.  

Geiger_IMG_1279 (25)
Mike (XO) and Avery, taking water level data using the staff (big meter stick)
Tide staff
This is the tide staff we used to gather water level data for comparison to the tide gauge.
Map of the Shumagin Island-Sand Point Tide Zones. Notice how the eastern Shumagin Islands are 6 minutes ahead of Sand Point.
Graph showing the water height measurements from the tide staff and the tide gauge. Notice how they appear to be increasing at the same rate! That’s good.

What happens if the survey terrain changes over time? Will that affect the water depth?

The ocean floor is above a liquid mantle, so it is possible for there to be terrain changes and this would affect water depth measurements. Thus, as scientists, we must make sure the location of our survey area is “geologically stable”. To do this, we installed “benchmarks”. If you’ve ever been to the highest point on a mountain in the United States, you might have already seen something like this: they are bronze disks that mark important places, used by NOAA as well as other agencies. We stamped our benchmarks with the year and our station data, letter A-E (by hand! with a hammer and letter stamps!), and installed them at roughly 200-foot intervals along the coastline in what we hope is bedrock. Once they were cemented in place, we determined each benchmark’s relative height in relation to the staff using a survey instrument called an optical level – this process is also called “leveling.” At the end of the survey season, the ship will come back and re-level them. If the area is geologically stable, the benchmarks should all be at the same relative heights to one another as they were when they were initially installed. More so, the scientists will also be very pleased because their ocean depth measurements will be reliable going forward in time.

Stamping a benchmark
Stamping a benchmark
Cemented benchmark
A benchmark firmly cemented in place.
Avery cements her first benchmark :)
Avery next to her first cemented benchmark 🙂
Rosalind measuring distance between benchmarks
Rosalind measuring the distance between benchmarks

So what next?

Now that we have completed all necessary pre-survey measurements and research, we are ready to begin surveying the coastline and ocean floor.  Happy Hydro!

Personal log

It’s a pretty cool feeling to know that you stepped foot on an island that hasn’t seen human visitors in 20+ years. It was also refreshing to get off the big boat and head to shore for some science fieldwork. I learned all about tide gauge and benchmark installation.  I had several small but important tasks:

  • stamp each bronze benchmark with year and appropriate code using hammer and metal letter stamps
  • mix up cement batter and add to drilled rock hole and under benchmark disc to secure it in place for years to come (much harder than it looks because the cement was like “oobleck” and not very cooperative)
  • measure distance between each benchmark using extra long tape measure
  • take water level data using staff (big meter stick) in water every 6 minutes
Cool anemome I found!
Cool sea anemone I found!

In between tasks, I perused the tide pools for various critters. I saw a few new anemones and got a great shot of one with my new underwater camera.  I absolutely love tide pooling and could spend most of the day doing it.  I also enjoyed observing the puffins flying in and out of their cliff-side home. They tended to leave the cliff in packs probably to do some offshore fishing for herring and capelin. Upon return, presumably with a belly full of fish, some puffins would fly in large circles near their dwelling a few times before finally landing. This bewildered me. I thought, what a waste of energy! So I researched this and found out the following:  Puffins are much better swimmers than flyers and have poor maneuverability while in the air. They sometimes are involved in mid-air collisions or crash landings into rocky slopes. Thus, they “size up” their landing a few times by circling near it before finally flying directly into their vertical burrow entrance.

Their body is mostly adapted for swimming, with short rigid wings helping them to “fly” underwater, to 30+ ft. depths! They have durable bones that endure pressure changes while diving and their body tissues store oxygen. They use anaerobic respiration for long dives. To waterproof their wings, puffins rub their bill on their oil gland several times and then smear this oil all over their feathers. How cool!

We are seeing a lot of Tufted Puffins out here in the Shumigans because it is breeding season (June-August), the time when they return from lonely open waters to rocky islands to mate and raise young. Puffins are monogamous, usually having one partner for many years. Interestingly, a female puffin only lays one egg, which is incubated for around 45 days! Both parents share incubation and feeding duties. Right on! The chick then stays in the nest for around 45 days until ready to fly. I love puffins! They are not only adorable but very well-adapted creatures.

Tufted Puffin
Tufted Puffin

Fun/sad factoid: Alaskan and Canadian natives made reversible parkas out of puffin skin. When it was rainy out, they wore the feathers on the outside and in cold dry weather, they wore the feathers on the inside. It took 45 puffins to make one parka!

Rosalind Echols: Ebbs and Flows, July 11, 2013

NOAA Teacher at Sea
Rosalind Echols
Aboard NOAA Ship Rainier
July 8 — 25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 11, 2013

Current Location: 54° 49.6 N, 159° 46.6 W

Weather data from bridge: 8.7°C, good visibility (6-8 miles), light and variable wind, overcast

View of cove
View of our anchorage from the installation point in a sunny moment.

Science and Technology Log:

Today, Avery and I were scientists in the field, helping the ship’s crew install tidal equipment in preparation for ocean floor survey work.  This was a complex process, so we decided to walk you through it in a step-by-step question format.

What does a navigation chart show you?

The image below shows a chart of the area that we are in right now. Our first anchor point was off the north coast of Bird Island in a cove. On the chart, you can see many tiny numbers in the water areas, which represent various depths.  These depths are measured in fathoms (1 fathom=6 feet).  This depth information helps mariners stay in safe areas that are not too shallow. The charts also show known hazards such as sub-surface rocks and ship-wrecks. This chart clearly has a lot of white space, signifying many areas were never surveyed.

Shumagin survey area
Part of our survey area. Notice the white spaces around Bird and Chernabura Islands!

But wait, why are the depth numbers “fixed” on the charts? Doesn’t the water level change with the tides?

Yes! It sounds easy to say, “the water is 10 fathoms deep at this point”. However, water is subject to the gravitational pull of the moon and sun, resulting in various water levels or tides throughout the day.  So the water will not always be “10 fathoms deep at this point.” For navigational purposes, the most hazardous water level is the lowest one, so nautical charts show the depth at the low tide water level.  Depending on the location, some places have two high tides and two low tides per day (semi-diurnal) and some places have one high tide and one low tide per day (diurnal). Here in the Shumagin Islands we are on a semi-diurnal mixed tide schedule (meaning that the two highs and two lows are not the same height).

What are your experiences with high and low tides? What do you notice when you go to the beach? Leave me a comment!

How do you measure the tides each day?

shumagin_tide_zone
Map of the Shumagin Island-Sand Point Tide Zones. Notice how the eastern Shumagin Islands are 6 minutes ahead of Sand Point.

There are permanent tide measuring stations all over the globe that provide information on how to “correct for” and figure out your local tide conditions. For our case, there is a tide station at Sand Point on Popof Island, which is west from our survey area.  Our survey area is in two zones, one which is in the same zone as Sand Point and the other which is in a different zone. Therefore, we installed a tide gauge in the latter to verify that the tidal times and heights of this zone are accurately predicted by the Sand Point values. According to the current information, it says that in the different zone the tides should occur 6 minutes before the tides in Sand Point and to multiply the heights by 0.98.

A tide gauge is a pretty cool device that works by the laws of physics. It is installed (by divers) on the sea floor near a coast-line, in relatively deep water, so that it will always be covered with water. The tide gauge uses the water pressure above to determine the depth of the water column (density of water and gravity are the important factors in making this calculation). The tide gauge stays in place for at least 28 days (one full tidal cycle), after which there is a record of the water level throughout that time period (as we were gathering data), as well as a rough idea of the tidal cycle each month, ready for comparison to the Sand Point data.

How do you know if the tide gauge is working?

To verify that the tide gauge is working, humans (i.e.: Avery and I), take water level  measurements (in an area close to the tide gauge) using a giant meter stick or “staff”. In our case, we recorded the average water level height every 6 minutes for 3 consecutive hours.  This 3-hour data set can then be compared to the tide gauge data set for that same time period, and hopefully they will show similar trends.  

Tide staff
This is the tide staff we used to gather water level data for comparison to the tide gauge.
Map of the Shumagin Island-Sand Point Tide Zones. Notice how the eastern Shumagin Islands are 6 minutes ahead of Sand Point.
Graph showing the water height measurements from the tide staff and the tide gauge. Notice how they appear to be increasing at the same rate! That’s good.

What happens if the survey terrain changes over time? Will that affect the water depth?

The ocean floor is above a liquid mantle, so it is possible for there to be terrain changes and this would affect depth measurements. Thus, as scientists, we must make sure where our survey area is “geologically stable”. To do this, we installed “benchmarks”. If you’ve ever been to the highest point on a mountain in the United States, you might have already seen something like this: they are bronze disks that mark important places, used by NOAA as well as other agencies. We stamped our benchmarks with the year and our station data, letter A-E (by hand! with a hammer and letter stamps!), and installed them at roughly 200-foot intervals along the coastline in what we hope is bedrock. Once they were cemented in place, we determined each benchmark’s relative height in relation to the staff using a survey instrument called an optical level – this process is also called “leveling.” At the end of the survey season, the ship will come back and re-level them. If the area is geologically stable, the benchmarks should all be at the same relative heights to one another as they were when they were initially installed. More so, the scientists will also be very pleased because their depth measurements will be reliable going forward in time.

Benchmark gear
This is the benchmark-stamping set-up.
Rosalind chiseling
Rosalind chiseling away at the rock to ready it for benchmark installation.
Rosalind and Avery with cement
Rosalind and Avery cementing a benchmark in place for posterity.
Cemented benchmark
A benchmark firmly cemented in place.
Rosalind holding stick
Rosalind holding the level rod for the benchmark leveling process. It turns out that it is incredibly difficult to hold 12 feet of leveling rod level.

So what next?

Now that we have completed all necessary pre-survey measurements and research, we are ready to begin surveying the coastline and ocean floor.  Happy Hydro!

Personal log

One of my favorite parts about this particular activity was exploring the coastal wildlife along the way. A Harbor Seal spent a good portion of the day swimming near by and keeping an eye on what we were doing. Unfortunately, every time I tried to get closer for a picture he ducked under water. He was clearly very curious, though. No doubt the installation of the equipment seemed rather bizarre.

Installation point
This is a view of the installation point we used for the tide gauge. You can tell that the tide is low because of all the exposed animal and plant life at the base of the rocks.

Being on the rocky outcropping where we installed the tidal gauge and the beach nearby reminded me a great deal of my childhood. From the washed up bull kelp still clinging to a barnacle (sometimes still alive) to the hermit crabs scurrying away from my hand in tide pools to the brightly colored sea anemones untucking as the tide came in, it brought back a lot of fond memories and definitely re-inspired my childhood enthusiasm for exploring nature and learning about biology by experiencing it. It also brought back that sense of heightened physical awareness as I scrambled from barnacle-covered rock to barnacle-covered rock, trying to avoid the slippery foot placements that would inevitably lead to lengthy gashes on my hands. All is well. I returned from my beach adventure in one very intact piece, slightly rosy-cheeked despite the overcast conditions.

Sea anemone!
An open sea anemone. They also come in red, orange, pink, and purple!
Wildlife!
Sea Anemones, barnacles, and other rock-dwelling critters exposed at low tide.

Aside from that, as someone who loves food and eating, the Rainier has treated me very well so far. We have some wonderful stewards and cooks, who do a far better job feeding 50+ people than I do feeding one or two. Every meal includes several gourmet options, including stuffed peppers, chicken or tofu stir fry, braised beef, and countless other delicious things. And there is dessert at every meal. And a freezer full of ice cream. No wonder the crew on the Rainier seems so happy!

Avery Marvin: Discovering Ship Life En Route to the Shumagin Islands, July 9, 2013

NOAA Teacher at Sea
Avery Marvin
Aboard NOAA Ship Rainier
July 8–25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 9, 2013

Current Location: 54° 49.6 N, 159° 46.6 W

Weather data from bridge: Broken clouds, no wind, 12° C

Orientation to Ship Life:  NOAA Ship Rainier motto: “Teamwork, safety first.”

First view of the Rainier in the Kodiak Port
First view of the Rainier in the Kodiak port

Science and Technology Log

Greetings from the NOAA Ship Rainier! It has been a whirlwind two days since we departed from our docking station at the Coast Guard base in Kodiak, AK and Oregon seems a world away here in the remote Shumagin Islands. The trip over took roughly 32 hours and during this time we had the chance to see the many facets of ship life. The crew on board the Rainier have been incredibly welcoming, enthusiastically answering even the most basic questions (of which we Teachers at Sea have many), and have made both myself and the other Teacher at Sea onboard, Rosalind Echols, feel very comfortable.

In this blog post, I’d like to talk about getting acquainted with life on a ship. The Rainier is a complex operation, and each person on the ship wears many hats (which is very much like being a teacher) depending on what is happening on the ship each day. One person might man the bridge (front command center of the ship) in the morning, be part of the dive team in the afternoon, and at night, take the role of the on-call medical officer.

Our course
Our course leaving our docking point in Kodiak

Rosalind and I have both spent considerable time on the bridge in the last two days, watching the navigation process, from “threading the needle” between the red and green buoys in Woman’s Bay where our ship was docked to plotting out the course many hours ahead. We both noticed how important communication is in this process, specifically making sure that everyone is on the same page all the time. Thus there is specific ship language that is used and repeated for every activity. For example: when acknowledging a change of duty, everyone on the bridge responds with “Aye.”

Being a newcomer on a ship can be daunting. My first day on the ship, before we set sail, the only thing I could reliably find was my own stateroom (which has our bunkbed, or “rack”, and bathroom, or “head”). One of the many things the Rainier crew has done for us is to take us on a very thorough tour of the ship, showing us everything from the engine room to the flying bridge (the highest point on the ship outside of the mast, which offers a great view of what is going on). It is important to know how to get around in case of an emergency, so you can get to your assigned “muster” point quickly, and take an alternate route if necessary.

Avery in her "survival suit"
Avery in her “survival suit”

This actually came up not long after we got underway! In the spirit of safety, the whole ship regularly does emergency drills, so once we were in open water,  we had a fire drill which was signaled by one loud long horn. Since we’re on a ship, this isn’t like a school fire drill where everyone leaves the building as fast as possible and waits for the experts to show up. The ship is a self-contained community and it is in everyone’s best interest to keep the ship afloat and functional. Therefore, when the fire drill sounds, everyone heads to their muster station, is checked in (to make sure you are not trapped in the fire!), and then either carries out or is assigned a fire fighting duty such as: attending to the injured, manning the fire hose, preparing to mop up the water, “de-smoking” the area etc. Shortly after the fire drill, we had an abandon ship drill, which again involved us meeting at a specific “muster” station. In this case, we were preparing to abandon ship, so we quickly slipped into our bulky, waterproof, self-inflating “immersion” or “survival” suits and then prepared to exit the ship. We didn’t actually exit the ship but envisioned such a next step. After the two drills, the crew met in the “galley” (eating area)  for a debrief of the two drills led by the XO (Executive Officer) where we discussed what had gone well, what hadn’t and what we should improve upon for next time. It made me feel like I am in very good hands here on the Rainier. In the end, this complex ship operation relies on a dedicated crew who works and communicates well as a team, keeping safety as the number one priority.

Our Geographical Area

Survey area
Part of our survey area, around Bird and Chernabura Islands

While on board, we will be working primarily as part of the Survey Team, the people taking the hydrographic measurements. I will get into much more detail about how this all works once we delve into our first project, but for today, I want to focus on why this work is important and why we are in the Shumagin Islands specifically. When navigating, ships use charts, either electronic or paper, to plot a safe course through an area. In open ocean, you typically don’t have to worry about navigational hazards (rocks, shoals, ship wrecks), but as you get closer to land, these are more and more common, and ships need to be able to avoid them.

Approaching the Shumagins
The Rainier approaches the Shumagin Islands

If you look at a chart of the Shumagins, you can see that there is a lot of “white space”: empty areas with no depth soundings. Most often, we see a string of measurements in a straight line, fairly regular but also fairly sparse. Our CO (Commanding Officer) said that these were most likely done with a lead line, where someone literally took a lead weight on the end of string and dropped it down to the seafloor over the side of the ship, and measured how deep it was in that spot.  While very accurate, it is hard to collect a lot of data about one entire area, and therefore there are many blank spaces.

In deciding where to survey, NOAA creates a priority list. You can find the complete list and list of factors on the Nautical Charts site, but our CO said it comes down to three main factors: age of the last survey, commerce in the area, and recent natural disasters (like Hurricane Sandy, for those of you on the East Coast: the shoreline and sea floor look very different now). As I said earlier, the Shumagins have very sparse data, and it’s old (the most recent survey in the area we are looking at was 1969, at best). Some of the measurements could be from when the Russians surveyed the area, 100+ years ago.  Because the Shumagins are en route from Asia to some North American ports, updated nautical charts are vital for safe mariner travel.

Speaking of remote, the CO said that it might have been 20 years since someone set foot on one of the Shumigan islands. That seems incredible to me! Living in a big city, there are always people around. What about you? What’s the most remote place you’ve ever been? Leave me a comment below to let me know.

Personal Log:

Hi friends!

I have been on lots of boats in my life: canoes, kayaks, rowboats, sailboats, small fishing boats, large fishing boats, a live aboard scuba diving boat in Australia and I even was the sole operator of the Soundkeeper boat one summer in high school. My duties on this boat were unique and environmentally important for I was transferring sewage from large vessels to the hull of my small vessel and at the end of the day this sewage was transferred via a vacuum system to a large holding tank on land. It was both a smelly and fun job! Never though have I lived on a boat quite as large or complex as the Rainier. And it really isn’t that large (Length: 231 ft, breadth: 42 ft., draft: 14.3 ft) in comparison to freight-liners or huge Carnival cruise ships but what’s impressive is the use of space and it’s scientific capabilities.  Hallways are narrow, ladders (stairs) are steep and storage space is maximized. Everything is bolted down to the ground or secured with a bungee cord, which is essential when the boat is in motion.  Besides the normal rooms and amenities you would expect on a live-aboard, the Rainier has several labs, a bridge (front command center) with several hi-tech navigational aides, a technology room (with terabytes of storage), 4 launch boats, 2 skiffs (dingy type boat), 1 rescue boat, 3 cranes and a fancy hydraulic system that puts the launch boats in the water.

Launch being lowered into water
Launch being lowered into water

On the food side, there are two 24- hour coffee stations, a fully stocked ice cream freezer (dangerous!) and a big snack basket. The actual meals are pretty darn good and nutritious too. For example, tonight the menu was: stuffed bell peppers, cucumber salad, homemade minestrone soup, halibut, broccoli and coconut cream pie.

I write this post to you in the mess (eating area) as the boat is anchored in the cove of Bird Island which is one of the Shumigan Islands.  I am quite happy we are anchored for many reasons:

1) I have trouble not bumping into things on a moving ship

2) Turns out I am prone to seasickness (Thankfully, anti-nausea pills prevent me from meeting the true Ralph.)

3) I can safely go to the bathroom without injuring myself.

4) I get to go on daily research excursions on the small boats.

5) I get to see many more adorable Puffins!

6) I get to wake up and see the rising sun glisten off the water.

Sunrise in Bird Island Cove
Sunrise in Bird Island Cove

It’s been a good few days so far. I am thrilled there is another Teacher at Sea onboard (Rosalind Echols) with whom I can directly relate and who shares many of the same questions and curiosities about this complex scientific operation as myself. I though, tend to ask more questions (both inane and profound) which in the end helps us both learn more.  We are now getting into the interesting Hydrographic science so the next post will be quite informative and science-y.

Fun factoid: In the 1800’s, the Aleut people of the Aleutian Islands, covered the outside of their homemade sea kayaks with sea lion skin which is both flexible and water repellant.

Have any questions about life at sea or the research I’ll be doing? Leave me a comment below!

Rosalind Echols: Discovering Ship Life En Route to the Shumagin Islands, July 9, 2013

NOAA Teacher at Sea
Rosalind Echols
Aboard NOAA Ship Rainier
July 8–25, 2013 

Mission: Hydrographic Survey
Geographical Area of Cruise: Shumagin Islands, Alaska
Date: July 9, 2013

Current Location: 54° 49.6 N, 159° 46.6 W

Weather data from bridge: Broken clouds, no wind, 12° C

Orientation to Ship Life: NOAA Ship Rainier motto: “Teamwork, safety first.”

Rosalind talking to the XO
Rosalind talking to the XO about ship operations.

Science and Technology Log

Greetings from the NOAA Ship Rainier! It has been a whirlwind two days since we departed from our docking station at the Coast Guard base in Kodiak, AK and Philadelphia seems a world away here in the remote Shumagin Islands. The trip over took roughly 32 hours and during this time we had the chance to see the many facets of ship life. The crew on board the Rainier have been incredibly welcoming, enthusiastically answering even the most basic questions (of which we Teachers at Sea have many), and have made both myself and the other Teacher at Sea onboard, Avery Marvin, feel very comfortable.

In this blog post, I’d like to talk about getting acquainted with life on a ship. The Rainier is a complex operation, and each person on the ship wears many hats (which is very much like being a teacher) depending on what is happening on the ship each day. One person might man the bridge (front command center of the ship) in the morning, be part of the dive team in the afternoon, and at night, take the role of the on-call medical officer.

Our course
Our course leaving our docking point in Kodiak

Avery and I have both spent considerable time on the bridge in the last two days, watching the navigation process, from “threading the needle” between the red and green buoys in Woman’s Bay where our ship was docked to plotting out the course many hours ahead. We both noticed how important communication is in this process, specifically making sure that everyone is on the same page all the time. Thus there is specific ship language that is used and repeated for every activity. For example: when acknowledging a change of duty, everyone on the bridge responds with “Aye.”

Being a newcomer on a ship can be daunting. My first day on the ship, before we set sail, the only thing I could reliably find was my own stateroom (which has our bunkbed, or “rack”, and bathroom, or “head”). One of the many things the Rainier crew has done for us is to take us on a very thorough tour of the ship, showing us everything from the engine room to the flying bridge (the highest point on the ship outside of the mast, which offers a great view of what is going on). It is important to know how to get around in case of an emergency, so you can get to your assigned “muster” point quickly, and take an alternate route if necessary.

Survival suit
Rosalind in her survival suit during our abandon ship drill.

This actually came up not long after we got underway! In the spirit of safety, the whole ship regularly does emergency drills, so once we were in open water,  we had a fire drill which was signaled by one loud long horn. Since we’re on a ship, this isn’t like a school fire drill where everyone leaves the building as fast as possible and waits for the experts to show up. The ship is a self-contained community and it is in everyone’s best interest to keep the ship afloat and functional. Therefore, when the fire drill sounds, everyone heads to their muster station, is checked in (to make sure you are not trapped in the fire!), and then either carries out or is assigned a fire fighting duty such as: attending to the injured, manning the fire hose, preparing to mop up the water, “de-smoking” the area etc. Shortly after the fire drill, we had an abandon ship drill, which again involved us meeting at a specific “muster” station. In this case, we were preparing to abandon ship, so we quickly slipped into our bulky, waterproof, self-inflating “immersion” or “survival” suits and then prepared to exit the ship. We didn’t actually exit the ship but envisioned such a next step. After the two drills, the crew met in the “galley” (eating area)  for a debrief of the two drills led by the XO (Executive Officer) where we discussed what had gone well, what hadn’t and what we should improve upon for next time. It made me feel like I am in very good hands here on the Rainier. In the end, this complex ship operation relies on a dedicated crew who works and communicates well as a team, keeping safety as the number one priority.

Our Geographical Area

Survey area
Part of our survey area, around Bird and Chernabura Islands

While on board, we will be working primarily as part of the Survey Team, the people taking the hydrographic measurements. I will get into much more detail about how this all works once we delve into our first project, but for today, I want to focus on why this work is important and why we are in the Shumagin Islands specifically. When navigating, ships use charts, either electronic or paper, to plot a safe course through an area. In open ocean, you typically don’t have to worry about navigational hazards (rocks, shoals, ship wrecks), but as you get closer to land, these are more and more common, and ships need to be able to avoid them.

Approaching the Shumagins
The Rainier approaches the Shumagin Islands

If you look at a chart of the Shumagins, you can see that there is a lot of “white space”: empty areas with no depth soundings. Most often, we see a string of measurements in a straight line, fairly regular but also fairly sparse. Our CO (Commanding Officer) said that these were most likely done with a lead line, where someone literally took a lead weight on the end of string and dropped it down to the seafloor over the side of the ship, and measured how deep it was in that spot.  While very accurate, it is hard to collect a lot of data about one entire area, and therefore there are many blank spaces.

In deciding where to survey, NOAA creates a priority list. You can find the complete list and list of factors on the Nautical Charts site, but our CO said it comes down to three main factors: age of the last survey, commerce in the area, and recent natural disasters (like Hurricane Sandy, for those of you on the East Coast: the shoreline and sea floor look very different now). As I said earlier, the Shumagins have very sparse data, and it’s old (the most recent survey in the area we are looking at was 1969, at best). Some of the measurements could be from when the Russians surveyed the area, 100+ years ago.  Because the Shumagins are en route from Asia to some North American ports, updated nautical charts are vital for safe mariner travel.

Speaking of remote, the CO said that it might have been 20 years since someone set foot on one of the Shumigan islands. That seems incredible to me! Living in a big city, there are always people around. What about you? What’s the most remote place you’ve ever been? Leave me a comment below to let me know.

Personal Log

Big fish
Rosalind tries to see whose mouth is bigger.

As might be expected from my introduction, I spent most of my first day thinking (and saying), “I’m so excited”. Between the tour of the ship, where we stopped into just about every major room and department on the ship, watching the ship leave the cove on Monday morning, and talking to various survey techs about what they do, I was overwhelmed by the number of new and interesting things to learn about. When I first got on board, I was a bit fidgety, because I didn’t feel like I had a specific job yet like everyone else, but now I’ve gotten a lot more comfortable just sitting down next to someone and asking about what they’re doing.

Thus far, the scariest thing about the trip was the plane ride from Anchorage to Kodiak. It wasn’t the smallest plane I’ve ever been in, but I was definitely a bit anxious. We were very fortunate on our crossing to the Shumagins in the Rainier to have very little in the way of weather and I luckily have not gotten sea sick yet (although I did worry about rolling off my top bunk as the ship was rolling last night).

Plane
The 37 passenger plane that took us from Anchorage to Kodiak

One of the things that has struck me about this experience so far is how much I enjoy experiential learning. I love learning about science regardless, but learning about a ship by participating in the drills or activities, or learning about hydrographic surveys by participating in the process, incessantly asking questions as I go, takes on a whole new meaning. It has also reminded me of the importance of humility and asking questions if you don’t understand something. I can’t wait to see what I get to learn about next!

Have any questions about life at sea or the research I’ll be doing? Leave me a comment below!

Katie Sard: Introductory Post, July 3, 2013

NOAA Teacher at Sea
Katie Sard
25 days until I am aboard the NOAA Ship Rainier
July 29 – August 15, 2013


Misson: Hydrographic Survey
Geographical area of the cruise:  Alaska Peninsula
Date:  July 3, 2013

 

Personal Log

Hello from Newport, Oregon!  I cannot begin to explain how excited I am for my upcoming Teacher at Sea (TAS) experience on the NOAA Ship Rainier. I have the privilege of working in a coastal community at Isaac Newton Magnet School (INMS) here in Newport.

Yaquina Bay Bridge
Although I don’t typically get to walk across the bridge each day on my commute, this is me as I made my way over the Yaquina Bay Bridge for the first time by foot!

I teach Integrated Science to blended classes of 6th, 7th, and 8th grade students.  My daily drive to work consists of looking out across the Pacific Ocean and passing over the Yaquina Bay Bridge.  My students are one of a kind, and their budding interests in science motivate me to continue my own scientific education.

I moved to Oregon in June of 2011 with my husband so that he could pursue a PhD position at Hatfield Marine Science Center through Oregon State University.  We moved here from Chautauqua County in Western New York State.  Although I grew up on the “East Coast”, it wasn’t until moving to Oregon that I really began to appreciate our Ocean and what it means to be a member of a coastal community.  Ever since our move I’ve been on a mission to discover all that I can about the Ocean in order to help my students appreciate what an amazing resource it truly is.  While I was attending a teacher workshop recently, I read the following quote by David Sobel that said, “Give children a chance to love the earth before we ask them to save it.”  The demands of the upcoming generations are enormous, and I am dedicated to making sure that my students grow to be scientifically literate citizens of our world.  I know that my TAS experience will help me to help my students love their planet!

The NOAA Teacher at Sea program is giving me the opportunity to continue my scientific education, and to bring my knowledge back to my students, colleagues, and community members.  The ship’s mission will be to do hydrographic surveys out around the Shumagin Islands, and in and around Cold Bay on the Alaska Peninsula.

NOAA Survey Plans
Here is a map that I found to help me understand where exactly I will be visiting.

I’m nervous, excited, and eager for my journey to start as I’ve never been on a ship of this size, and I’ve never been out on the ocean for this duration of time.  Be sure to check out the link to the Ship to get more information on the NOAA Ship Rainier.

In the upcoming month before my cruise I will be traveling back to my home town in New York with my husband Nick and my dog Luna.

Lost Creek State Park
My husband Nick, my dog Luna, and myself at Lost Creek State Park near our house in Newport.

We will spend several weeks there before heading back cross-country on the 40+ hour road trip.  The next time you hear from me will be when I am aboard the NOAA Ship Rainier!  I hope that you help to shape my experience by interacting with my via this blog while I am aboard the ship!

Did You Know?

  • The NOAA Ship Rainier is named for Mount Rainier which is the tallest peak in the state of Washington.  It is the fourth tallest peak in the United States.

Here are a few interesting fishermen’s superstitions that I will keep in mind as I begin my journey:

  • It is bad luck to look back once your ship has left port.
  • It is said that disaster will follow if you step onto a boat with your left foot first.

Avery Marvin: Excited for this upcoming adventure! July 1, 2013

NOAA Teacher at Sea
Avery Marvin
(Almost) Onboard NOAA Ship Rainier
July 8–25, 2013

Mission: Hydrographic Survey
Geographical area of cruise: Shumagin Islands, Alaska
Date: July 1, 2013

Greetings from the Oregon Coast! Thank you for visiting my blog, and I hope you continue to follow me this summer throughout my 18-day Alaskan adventure aboard the NOAA ship Rainier. I am elated and honored to be a NOAA Teacher at Sea—an experience that will undoubtedly shape me and my classroom instruction for years to come.

NOAA Ship Rainier
NOAA Ship Rainier

My name is Avery Marvin and I am a middle school General Science and high school Biology teacher at Taft 7-12, a mid-size public MS/HS in Lincoln City, on the Oregon coast. I moved here just one year ago, and have been discovering the unique facets of living and teaching in a coastal community ever since.  I continue to be amazed and inspired by the natural surroundings and marine resources (i.e. the NOAA base in Newport, Hatfield Marine Science Center) at my fingertips. Knowing I am New York native, many of my students have quizzically asked me, “Ms. Marvin, why did you move here?” My hope, then, is that through this NOAA experience, I will be further able to inspire and show kids that “here” is a pretty amazing place to be—not just in terms of its natural beauty but its ecological and research significance moreover. With this awareness and education, students hopefully will feel a greater sense of ownership of—and thus appreciate and actively protect—the greatest resource in their very backyard: the ocean.

Diving in Tasmania
Avery dives in the chilly waters of Tasmania, Australia

As an avid adventurer and ocean-goer, I have explored many waters both as a conservationist and a recreationist (i.e. scuba diver, fisherwoman). Yet Alaska is a place I have dreamed of visiting for most of my life, and to be able to combine my experience with like-minded scientists conducting vital ocean research is truly awesome to me.  The Rainier, homeported at the NOAA Marine Operations Center – Pacific in Newport, Oregon, is a hydrographic surveying ship whose primary focus is mapping the sea floor in coastal areas.  The depth data collected on the Rainier is used to update nautical charts. This is crucial work as commercial shippers, passenger vessels and fishing fleets rely on accurate nautical maps to safely traverse various ocean passages.  In the case of Rainier’s work in Alaska, some of the terrain is being surveyed for the first time. Rear Adm Gerd Glang, director of Coast Survey, sums it up best, “Simply put, we have better maps of the moon than of our oceans.”  Several multi-beam sonar systems located on the Rainier as well as on a few smaller launch boats are employed to acquire this mapping data.  This six-minute video  gives a good overview of the mission and daily operations of the Rainier.

My 18-day journey begins on July 8, 2013 in Kodiak, Alaska, where I will be meeting up with the Rainier.  From Kodiak, we travel southwest to the Shumagin Islands, where the majority of the research on this leg of the trip will be conducted. We will then conclude our journey back in the Kodiak port. (Track Rainier’s movement here.) I can’t wait to dive in and absorb all that I can. I am particularly looking forward to working with and learning from all the scientists onboard, seeing the majestic Alaskan landscape and understanding how survey data can be used for mapping vital fisheries habitats.

I hope you will ‘virtually’ join me aboard the Rainier, this summer, and be a witness to some incredible scientific research.  This blog will be updated weekly with interesting stories, pictures and lots of newfound information about our mission at sea.  So check back often and feel free to leave comments and questions for me. If I don’t know the answer, I will ask a brilliant scientist to help me.

“For most of history, man has had to fight nature to survive; in this century he is beginning to realize that, in order to survive, he must protect it.” -Jacques-Yves-Cousteau

Anne Mortimer: Thank you, Oscar Dyson! July 21, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 21, 2011

Weather Data from the Bridge

  • Conditions: overcast
  • Air Temperature: 11.6°C
  • Sea Temperature: 9.3°C
  • Air Pressure: 1007.6 mbar
  • Wind Speed: 12.71 knots
  • Wind Direction: 214°

Personal Log

My trip on the Oscar Dyson is coming to a close, so this will be my final blog as we make our 15-hour trip back to Kodiak. I have the night off, so after I finish this blog, I’ll take one last trip to the bridge to see how thick the fog is, and then I’ll try to go to sleep by midnight. Tomorrow will be a final stateroom cleaning and then off to the airport. I’ll be in Bellingham by late evening.

Sunset in Shelikof

This 3-week trip has been an incredible journey. Arriving in Kodiak, I was struck at the remoteness and scale of this beautiful place. Traveling through the Shumigan Islands and Shelikof Strait only solidified my understanding of how very vast, rugged, and wild Alaska is, and that was only my experience from a ship! I feel very fortunate that I was able to come here, and be welcomed by both the science team and ship’s crew aboard the Oscar Dyson. Living on a ship is a unique and challenging experience. Working alongside scientists that are passionate about their impact on the ocean was inspiring. Witnessing the challenges of making a 540-net successfully trawl through the ocean for an hour in wind and swell is impressive.

Our last trawl: Anne the Slimer, measuring juvenile pollock.

Although my adventure as a NOAA Teacher at Sea is over, I am confident that this will not be the end of my connections with NOAA and the science team. Being so close to Seattle, Neal, the lead scientist has invited me to come see the labs in Sandpoint and meet the other scientists that will  be using all of the stomachs, otoliths, and other data that I was able to assist with. This trip has shown me that science is messy, things get broken, and the weather may not always cooperate. Problems and challenges arise all the time and scientists must communicate with each other and the ship’s crew, problem-solve, and persevere in order to make this trip worthwhile and collect data that has a very important roll in Alaska fisheries. I am very grateful for all of their generosity in helping me be a part of their mission.

THANK YOU to NOAA, scientists, crew of Oscar Dyson, and Teacher at Sea Program support! I had an amazing time!

Kathleen Harrison: Shumagin Islands, July 9, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 9, 2011

Weather Data from the Bridge
True wind direction:  59.9°, True wind speed:  11.44 knots
Sea Temperature:  9°C
Air Temperature:  8.9°C
Air pressure:  1009.74 mb
Foggy with 1 mile visibility
Ship heading:  88°, ship speed:  11 knots

Science and Technology Log

The Shumagin Islands are a group of about 20 islands in the Gulf of Alaska, southwest of Kodiak Island.  They were named for Nikita Shumagin, a sailor on Vitus Bering’s Arctic voyage in 1741.  They are volcanic in origin, composed mostly of basalt.

Shumagin Islands
Bold and mountainous, the Shumagin Islands rise from the sea in the Gulf of Alaska.

Several islands even exhibit hexagonal basaltic columns.  There are about 1000 people who reside in the islands, mostly in the town of Sand Point, on Popof Island.  According to the United States Coast Pilot (a book published by NOAA with extensive descriptions about coastlines for ship navigation), the islands extend out 60 miles from the Alaskan Peninsula.  They are bold and mountainous.

hexagonal basalt
When this island formed, volcanic lava cooled into basalt hexagonal columns.

The shores are broken in many places by inlets that afford good anchorages.  The shores are rockbound close to.  Fishing stations and camps are scattered throughout the group, and good fishing banks are off the islands.  Fox and cattle raising are carried on to some extent.

long range view of SI, Alaskan Peninsula
Shumigan Islands to the left, snow covered peaks of Alaskan Peninsula in background. An amazing sight on a rare sunny day in the Gulf of Alaska.

Sea water quality is very important to the scientists on the Oscar Dyson.  So important, that it is monitored 24 hours a day.  This is called the Underway System.  The sea water comes through an intake valve on the keel of the bow, and is pumped up and aft to the chem lab.  There, it goes through 4 instruments:  the fluorometer, the dissolved Oxygen unit, the Thermosalinograph (TSG), and the ISUS (nitrate concentration).

The fluorometer measures the amount of chlorophyll and turbidity in the sea water once every second.  A light is passed through the water, and a sensor measures how much fluorescence (reflected light) the water has. The amount of chlorophyll is then calculated.  The measurement was 6.97 µg/L when I observed the instrument.  The amount of  phytoplankton in the water can be interpreted from the amount of chlorophyll.  Another sensor measures how much light passes through the water, which gives an indication of turbidity.  Twice a day, a sample of water is filtered, and the chlorophyll is removed.  The filter with the chlorophyll is preserved and sent to one of the NOAA labs on land for examination.

chem lab
Here are all of the water quality instruments, they are mounted to the wall in the chem lab. Each one has a separate line of sea water.

The next instrument that the water passes through will measure the amount of dissolved oxygen every 20 seconds.  Oxygen is important, because aquatic organisms take in oxygen for cellular respiration.  From plankton to white sharks, the method of underwater “breathing” varies, but the result is the same – oxygen into the body.  The oxygen in the water is produced by aquatic plants and phytoplankton as they do photosynthesis, and the amount directly affects how much aquatic life can be supported.

The TSG will measure temperature, and conductivity (how much electricity passes through) every second, and from these 2 measurements, salinity (how much salt is in the water) can be calculated.  The day that I observed the TSG temperature was 8.0°  C, and the salinity was 31.85 psu (practical salinity units).  Average sea water salinity is 35.  The intense study of melting sea ice and glaciers involves sea water temperature measurements all over the world.  A global data set can be accumulated and examined in order to understand changing temperature patterns.

instrument to measure
This instrument measures the amount of nitrate in the sea water. It is called the ISUS.

The last instrument measures nitrate concentration in the sea water every couple of minutes.  It is called ISUS, which stands for In Situ Ultraviolet Spectrophotometer.  Nitrate comes from organic waste material, and tends to be low at the surface, since the wastes normally sink to the bottom.  The normal value is .05 mg/L, at the surface, at 8°C.  Values within the range of 0.00 to 25 mg/L are acceptable, although anything above 5 is reason for concern.

All of the data from these instruments is fed into a ship’s computer, and displayed as a graph on a monitor.  The Survey Technician monitors the data, and the instruments, to make sure everything is working properly.

New Species Seen today:

Whale (unknown, but probably grey or humpback)

Horned Puffin

Dall’s Porpoise

Krill

Chum Salmon

Eulachon

monitor shows current data
The current water quality data is shown on this computer screen beside the instruments.

Personal Log

Living on a ship is quite different from living at home.  For one thing, every item on the ship is bolted, strapped, taped, or hooked to the bulkhead (wall), or deck (floor).  Most hatches (doors) have a hook behind them to keep them open(this reminds me of when I put hooks behind my doors at home to keep little children from slamming them and crushing fingers).  Some hatches (around ladderways (stairwells)) are magnetically controlled, and stay open most of the time.  They close automatically when there is a fire or abandon ship situation or drill.  Every drawer and cabinet door clicks shut and requires moving a latch or lever to open it.  For some cabinet doors that you want to stay open while you are working in the cabinet, there is a hook from the bulkhead to keep it open.

bracket holds copier
The copier machine is held in place by a 4 post bracket that is bolted to the floor.

On every desk is a cup holder, wider on the bottom than the top, designed to hold a regular glass or a cup of coffee.  If one of those is not handy, a roll of duct tape works well for a regular glass.  All shelves and counters have a lip on the front, and book shelves have an extra bar to hold the books in.  Trash cans and boxes are lashed to the bulkhead with an adjustable strap, and even the new copier machine has a special brace that is bolted to the deck to hold it in one place (I heard that the old copier fell over one time when there was a particularly huge wave).  There are lots of great pictures on the bulkheads of the Oscar Dyson, and each one is fastened to the bulkhead with at least 4 screws, or velcro.  There are hand rails everywhere – on the bulkhead in the passageway (hallway) (reminds me of Mom’s nursing home), and on the consoles of the bridge.

hallway hand rails
This view down the hall shows the hand rail. It comes in handy during rough weather.

Desk chairs can be secured by a bungee cord, and the chairs in the mess (dining room)  can be hooked to the deck.

Another thing that is different from home is the fact that the Oscar Dyson operates 24-7 (well, in my home, there could easily be someone awake any hour of the night, but the only thing they might operate is the TV). The lights in the passageways and mess are always on.  The acoustics and water quality equipment are always collecting data.  Different people work different shifts, so during any one hour, there is usually someone asleep.  Most staterooms have 2 people, and they will probably be on opposite shifts.  One might work 4 am to 4 pm, and the other would work 4 pm to 4 am.  That way, only one person is in the room at a time (there is not really room for more than one).  There is always someone on the bridge – at least the Officer of the Deck (OOD) – to monitor and steer the ship.  During the day, there is usually a look out as well.

binoculars on the bridge
These binoculars are used by the look out to scan the surrounding area for anything in the water - whales, boats, islands, kelp, or anything else in proximity to the ship.

His job is to, well, look out – look for floating items in the water, whales, rocks, and other ships (called contacts or targets).  This helps the OOD, because he or she can’t always keep their eyes on the horizon.

I have thoroughly enjoyed living on the Oscar Dyson (we have had calm seas so far), and talking with the NOAA staff and crew.  They are ordinary people, who have chosen an extraordinary life – aboard a ship.  It has challenges, but also great rewards – seeing the land from a different perspective, being up close to sea life, and forging close relationships with shipmates, as well as participating in the science that helps us understand the world’s oceans.

Laura Rodriguez, May 28th, 2010

NOAA Teacher at Sea
Laura Rodriguez
Aboard NOAA Ship Oscar Dyson
May 24 – June 2, 2012

Mission: Fisheries Surveys
Geographical Area: Eastern Bering Sea
Date: May 28, 2010

Engineering

Sunset in the Shumagin Islands

Our sampling of Pollock larvae continues around the clock. It is interesting to see what stations have a lot of Pollock and which ones don’t. From my own observations of the condition of the bongo nets when they are retrieved, I have started to predict if there will be a lot of Pollock or only a little. If the nets are covered in reddish– brown algae, they usually do not have many Pollock, or anything else in them. The nets that are clearer, but still have some red from the copepods, seem to have more Pollock larvae. (I wonder why?)The scientists say that we have found more Pollock larvae than in the past couple of years. (Again, I wonder why?) That’s a good sign for the fishery, though. I told you in an earlier blog about how Kevin Bailey is using the data that we collect to create a model that will predict the future population of harvestable Pollock. The other two research projects that are going on have to do with determining how fast the Pollock are growing and how healthy the Pollock larvae are. Annette Dougherty, the chief scientist, is studying the otoliths, (small inner ear bones) in the Pollock. The ear bones add a layer of bone each year and create a pattern similar to the growth rings of a tree. The Pollock that are preserved are shipped to her lab where she will look at the otoliths and determine the age of the Pollock to the day. She can then compare that to the size of the Pollock and determine how fast they’re growing. Steve Porter, another scientist on board, is looking at the amount of DNA in the muscle tissue. If the muscle cells are growing and dividing into new cells, there will be a higher amount of DNA in the cells. This data shows how healthy the Pollock larvae are by showing how much their muscle cells are growing.

Engineering Main Control Panel
Diesel Generator
Electric Motor
Desalinization Unit
Sewage Treatment Unit
Hot Water Tanks

Today’s feature is on engineering. The engineering department on the ship is responsible not just for maintaining the engines of the ship that move us through the water, but also for all the major systems on the ship. They maintain the heating, cooling, electrical, plumbing and sewage systems. The ship is powered by 4 diesel generators that make the electricity for the ship.  The ship is then propelled by the use of electric motors. Using electric motors to turn the propellers decreases the vibrations being transmitted to the propellers and allows for the ship to run much more quietly. This is a good thing for a ship that wants to study fish, or anything else in the water that might be scared off by the noise.  The ship has 2 desalinization units that use heat from the engines to distill the water. The heat makes the water boil leaving the salt behind. It is then condensed back into fresh water. Ships that have engines that produce a lot of heat can use this method which is very energy efficient. Other ships have to use reverse osmosis (remember that word from the cell unit?)  Finally, engineering is responsible for collecting and treating sewage. Maybe in the old days ships would just dump their sewage into the ocean, but not anymore. The toilets are flushed by vacuum action rather than pushed through pipes by water. This decreases problems in the pipes that run throughout the ship. The waste water including what goes into the toilets is collected in a storage tank called an active tank. The active tank contains bacteria and yeast that break down the waste. From there, the water is filtered into a “Clean tank.” Here chlorine is added to make the water crystal clear before it is released into the ocean. The system contains one more tank for storage. It is used when the ship is within 3 miles of the shore and at dock so water is not released right by the land.
Answers to your questions

Hannah M. – The reason that the procedure was developed for how we sample is to minimize the shrinkage of the fish once they are caught. The scientists are trying to get an accurate measure of the fish so we try to collect and photograph them as quickly as possible. Keeping them cold helps to decrease the amount they shrink. They are preserved so that their DNA and otoliths can be examined back at the NOAA labs in Seattle.  The larvae that we are collecting are about 4 weeks old.

Exercise Room

Elaina – I haven’t spoken with each person about if they get bored on ship or not, but being on a ship is different from being on land. You have your work to do during your shift. Sometimes that can be very repetitive. On your off hours, there is not a lot to do. There are however, 2 exercise rooms, you can read or watch a movie or play video games. You can’t, however, just go out somewhere to do something.

Adeline and Deborah – Adeline asked me what my favorite job is and Deborah asked which crew member I would like to be. These are difficult questions to answer as I don’t see every aspect of each job. For what I’m doing, I enjoy seeing what we’ve caught in the net each time, and finding the Pollock larvae. As far as the different jobs on the ship, I think it would be very cool to be in charge of navigating the ship safely through the water. (See, I always want to be in charge)

Rick, the Chief Steward, in the Galley
Floyd, the second cook in the Galley

Lucy – The steward started collecting lunchboxes over 20 years ago. He did it for fun. Eventually he had so many he started to sell them. He sold an underdog lunchbox that he bought for 50 cents for $2500.00. He has sold the entire collection, now.   The Oscar Dyson stays close to Alaska. She and her 4 other sister ships were built to be used all over the US. Because of that, she is outfitted with air conditioning although it is seldom used. Her sister ships, that stay in warmer waters, also have de-icers on the windows that they never use.

Jasmine – In addition to studying the Pollock fisheries, the Oscar Dyson is also used for ecosystem studies, marine mammal and bird studies.

 

Your Question to answer

Find out more about one of the following jobs on board the ship: Include a description of their duties and requirements needed to get this job

 1.       Deck officers include CO – Commanding officer, XO – Executive officer, FOO – Field operations officer, Navigation officer, Safety officer, Medical officer

2.       Ship engineer

3.       Steward

4.       Survey technician

5.       Electronics technician

6.       Deck crew-  includes Boatswain, able-bodied seaman

John Schneider, July 21-26, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Juvenile bald eagle preening
Juvenile bald eagle preening

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 21-26, 2009

Position
In port, Dutch Harbor, AK

Personal Log 

The days we spent in Dutch Harbor were a combination of 8-hour work days and evenings spent in town at either the Harbor View Sports Bar and Grill or the Grand Aleutian Hotel.  The crew and survey techs put in full days, then go out for a couple of hours using the liberty van.  Everyone’s usually back aboard by midnight or so (the van stops running at 2300, but the town’s only about a 20 minute walk.)  In Dutch and Unalaska, there are houses of worship, museums, a Safeway, a clinic (which I got to visit / after stepping on a nail), a community indoor pool and a post office. There are also a couple of ship supply places that have excellent quality gear at a minimum markup considering how far away we are.

schneider_log14bFor me, there were four events that were particularly of note.  First, before now I had only ever seen one bald eagle in the lower 48 and a half dozen or so in Kodiak.  In Dutch, they are all over.  These birds get to be about 3 feet tall and the talons on the juvenile pictured are about an inch long!  I took well nigh 100 pictures and had trouble selecting which ones to include.  They are stunning animals.

Second, I knew that Dutch Harbor had been bombed by the Japanese in WWII as part of the diversionary action prior to the Battle of Midway.  What I never realized was WHY they would bomb a remote, nothing, minor outpost and attack and occupy Attu and Kiska farther out in the Aleutians. The answer lies in spheroid geometry!  (OK all you math phobes, this is a cool one that’s not too hard to grasp.) Simply put, the shortest distance between any two points on a sphere (the Earth) is the distance along the surface created by a plane created by three points: the two points in question and the center of the sphere.  In other words, it cuts the planet in half!  (The red line in the illustration.)

Great circle rout from Tokyo to Seattle
Great circle route from Tokyo to Seattle
Spheroid geometry (diagram courtesy USNA)
Spheroid geometry (diagram courtesy USNA)

On the diagram above, the red line is the great circle route from Tokyo to Seattle.  As you can see it passes right through the Aleutians.  The battle in the Aleutians is sometimes referred to as the “Thousand Mile War” and is largely unknown, However, the Aleutian Islands are the “back door” to attacking North America.  That’s why, after the bombing of Dutch Harbor six months after Pearl Harbor, the United States made a concerted effort to fortify the Aleutians and take back Attu and Kiska. By the way, the landings on Attu and Kiska were the first landings on American soil by an enemy since the War of 1812!  There are reinforced concrete bunkers and Quonset huts all over the Dutch Harbor area and the fortifications atop Mount Ballyhoo are among the most well-preserved and extensively built in the United States.  The fact that our military – both men and women – were stationed in such an inhospitable frontier should be taught to all of our students.

Quonset hut on Mt Ballyhoo
Quonset hut on Mt Ballyhoo

Personally, I am thankful to one of my professors, Jack Lutz, who was stationed on Adak, 350+ miles West of Dutch Harbor.  Freedom isn’t free and we are very lucky.  So, this information about great circles should lend a bit of insight to the questions I posed earlier about the D.E.W. Line (used for radar protection in the event of Soviet missile launch over the North Pole) and why we encountered ships sailing from North America to Asia while passing through Unimak Pass (It’s right in the middle of the great circle route!)

 Gun emplacement overlooking the entrance to Dutch Harbor
Gun emplacement overlooking the entrance to Dutch Harbor

On our last day in Dutch, the CO and 5 others including myself went to the old cemetery in Unalaska. Buried there is Karl Mueller of the U.S. Ship Surveyor. He was one of the earliest Americans to work on surveying the Aleutians and was drowned in 1938 when his survey launch hit a previously uncharted reef. For more information on the NOAA personnel lost in the line of duty, go here. It’s important that we know our history in order to appreciate our present and look forward to the future.  

Grave marker of Karl Mueller.  The Fairweather crew maintains the grave and established a benchmark on the marker.
Grave marker of Karl Mueller. The Fairweather crew maintains the grave and established a benchmark on the marker.

The last notable event in Dutch was the combined “wetting down” and Sunday Brunch for the new officers. As I pointed out on one of my first logs, CO Doug Baird was promoted to Captain and Mark Andrews was promoted to Lieutenant JG.  LTjg Andrews generously invited me to the wetdown and brunch which was attended by the entire crew. The wetdown was at the Grand Aleutian on Saturday night and Sunday brunch was there also. These two events were really something special and the camaraderie was great to experience.  Thank you, sirs.

Crab legs, lox, salmon, biscuits w/ crab gravy, kippers (Plate #2 with dessert yet to come!)
Crab legs, lox, salmon, biscuits w/ crab gravy,
kippers (Plate #2 with dessert yet to come!)

John Schneider, July 18-20, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 18-20, 2009

Position
Shumagin Islands, in transit to Dutch Harbor

Weather Data from the Bridge 
Weather System:
(July 18th) Low system approaching from the South
(July 19th) Fog, gusty wind in the morning, clear afternoon, but getting windier; Wind: southwesterly at 4-6 kts; Sea State: 1-2 feet

Weather System:  Projected for the July 20-21 overnight
Barometer: falling rapidly (a warning sign of unsettled weather) Wind: sustained at 30-40 kts, gusting to 55 kts (This would qualify as a “gale”)
Sea State: Predicted wave height next 24-36 hrs – 18 feet!

Andy and lunch—a nice halibut!
Andy and lunch—a nice halibut!

Science and Technology Log 

On the 18th and 19th, the launches went out (including me on the 19th) to clean up some holidays and get more near-shore data.  When we got back on the 19th, we found out that a major low pressure system was building to the south and expected to be in our area within a day and a half.  A major low system can reach out a couple of hundred miles and the CO decided that we would leave the Shumagins about 18 hours earlier than originally planned.  I discussed this with him (he is remarkably approachable) and he reiterates to me what I had already believed: his responsibilities are in three priorities – 1. His crew.  2. His ship.  3. The mission. Our research in the Shumagins does not represent life-or-death, it represents the continuing quest for knowledge and the expansion of our understanding of the Earth.  I’m sure you’ve realized it already, but Captain Baird and his officers have earned my highest regard.

We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.
We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.

On board the Fairweather is a phenomenal array of electronics.  Our positioning equipment is able to determine our position with just a couple of meters and when we are on a course it can tell if the course error is as little as a decimeter! Operating in Alaska, where fog is a way of life, RADAR (Radio Direction And Ranging) is an absolute must, and we have redundant systems in the event one breaks down. Probably the coolest thing about the radar is the use of ARPA technology. ARPA (Automated Radar Plotting Aid) is a system that not only identifies other vessels on the water, but diagrams their projected course and speed vectors on the screen. It does this from as far as 64 miles away!

The filleted tail of the halibut and some crabs found in its stomach
The tail of the halibut and some crabs found in its stomach

By looking at the screen, you can see the lines of other ships relative to your own and navigate accordingly. Furthermore, the system includes ECDIS, which is an Electronic Chart Display and Information System that identifies other ships as to their name, size, destination, and cargo!  So when you see on the radar that you are in a situation where you will be passing near to another vessel, you can call them on the radio by name! This technology is essential, especially going through Unimak Pass.  Unimak Pass is about 15 miles wide and is a critical point in commercial shipping traffic between the Americas and Asia. As we were transiting Unimak Pass, We were passed by an 800 foot long container ship that was en route to Yokohama, Japan and going the other way was a 750 foot ship going to Panama.  This is a critical area due to what is called “Great Circle” navigation.  I’ll address this point when in Dutch Harbor next week.

Eat your hearts out!
Eat your hearts out!

Personal Log 

Last night, after the beach party, Andy Medina (who has been on board for almost 200 days this year) was fishing off the fantail and caught a nice halibut. The crew who hail from Alaska all have fishing permits and when the day is done, if we’re anchored they get to use their free time for fishing.  They even got a freezer to keep their filets in.  Earlier in the cruise, we actually had halibut tacos made with about the freshest Alaskan halibut you can find (less than 12 hours from catch to lunch!)  Of course, with me being a bio guy, I asked for two things: 1 – to keep and freeze the head (I For the last night of the leg before making port in Dutch Harbor  (home of the World’s Deadliest Catch boats) the stewards, Cathy Brandts, Joe Lefstein and Mike Smith really outdid themselves.  I sure hope you can read the menu board, but if you can’t, dinner was Grilled NY Strip Steak and Steamed Crab legs with Butter! 

We went through about 10 trays like this!!!
We went through about 10 trays like this!!!

After dinner, everybody secured as much equipment as possible in the labs, galley and cabins as possible in anticipation of the run ahead of the weather into Dutch Harbor.  We ran through the night and got to Unimak pass in the middle of the day on the 20th. About half way through the pass was an unusual announcement, “Attention on the Fairweather, there are a lot of whales feeding off to starboard!” It’s the only time whales were announced and it was worth the announcement.  For about 2 to 3 miles, we were surrounded by literally MILLIONS of seabirds and a score or more of whales.  Comments from everybody were that they had never seen anything like it. I kept thinking of the old Hitchcock film The Birds and the scenes in Moby Dick where Ahab says to “watch the birds.” We were all agog at the sight.

Fifteen minutes of this! Incredible!
Fifteen minutes of this! Incredible!

With the collective 200-300 years of at-sea experience, no one had ever seen anything like it. After 2.5 weeks that seems like 2.5 days, we approach Dutch Harbor and are secured to the pier by 1700 hours. Tonight we’ll head into town, but if not for the news in the next paragraph, this would be the worst time of the trip, however . . .

The Best news of the trip: I’ve requested and been approved to stay on board the Fairweather for the next leg! WOO-HOO!!!  It’s called FISHPAC and deals with integrating bottom characteristics to commercially viable fish populations!  I’m going to the Bering Sea!!!

Questions for You to Investigate 

  1. When did the Andrea Doria and Stockholm collide?  Where?  In what conditions?
  2. What was the D.E.W. Line in the Cold War?
  3. Why did the Japanese want bases in the Aleutians in WWII?
  4. Why did we pass a ship going from North America to Yokohama well over 1000 miles north of both ends of the trip?
  5. What are Great Circles?

Did You Know? 

That almost 10% of all commercial fishing catch in the United States comes through Unalaska and Dutch Harbor?

Approaching Dutch Harbor
Approaching Dutch Harbor

John Schneider, July 16-17, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 16-17, 2009

Position
Shumagin Islands

Morning safety briefing
Morning safety briefing

Weather Data from the Bridge 
Weather System: Light fog, clearing through the day
Wind: light and variable
Sea State: <2 feet

Science and Technology Log 

This morning, I went up to the boat deck and took a shot of the FOO in the morning safety briefing on the fantail. Afterwards, while the launches were conducting near-shore and off-shore surveys, the Fairweather ran cross track lines where we had completed a large open-water polygon. Once the large offshore polygons are surveyed by the Fairweather, the ship runs several transects at a 90º angle across the original survey lines. This is to corroborate prior data. When the survey crew finally completes their data analysis, they have checked and re-checked the data a minimum of 4 times before the report leaves the ship. Then, the information goes to NOAA’s charting offices and is reviewed multiple times again before being incorporated and published on charts and in the Coast Pilots.

Personal Log 

Perhaps the three most frightening prospects on board a ship at sea are:

  1. Fire
  2. Abandoning a sinking vessel
  3. Man Overboard 
Going up the ladder blindfolded
Going up the ladder blindfolded

This afternoon, we ran drills addressing the first two situations.  In the first drill, we simulated a shipboard fire with thick smoke.  Rather than filling the ship with smoke, the crew paired up and practiced escaping from their cabins blindfolded.  Each person took a turn being the eyes so their partner didn’t get injured, but could not give directions. My path was relatively easy: Left out of my cabin, right along the wall, up the ladder, right to the next wall, right again, pass the door to the scullery, go over a coaming and left out to the weather deck. I did fine, and my partner, Engineer Joe Kelly, also did. On the other hand, Andrew Clos, one of the survey techs, made one wrong turn and wandered into the mess. Once he got there, well, on board ship folks tend to enjoy a good laugh – either at their own expense or someone else’s.  Once Andrew got into the mess, other crew members put chairs in his way, opened cabinet doors, blocked the ability for him to go backwards!

Andrew cornered in the mess!
Andrew cornered in the mess!

Oh, they were merciless!  Finally, someone led him out and we all shared a good laugh.  The XO was, however, quick to point out that Andrew had crawled during the drill – one of the few who had done so.  Remember what they teach even in pre-school, if there’s smoke, the smoke rises, so crawl to safety. So I guess the point was well-made. The abandon ship drill is very simple in concept, but with 45-50 people hustling through passageways with life jackets and Gumby suits (not wearing them, but just carrying them) it can be chaotic. Nonetheless, within less than 4 minutes, every crew member was at their abandon ship stations.

“Ensign Forney” at his station in Plot
“Ensign Forney” at his station in Plot

The best aspect of the drills was the seriousness of the personnel. We all realize, even the crewmen who have been to sea for decades, that life on the sea is held by a thin thread and frivolity belongs in its place. While the launches were operating, Survey Tech Tami Beduhn (with help!) put a chicken suit on the CPR mannequin that we have on board and set it up in Ensign Matt Forney’s station in the plot room.  They even put his ball cap on it!

Ensign Matt Forney (left) and the CO at the bonfire. It would get real big!