Anna Levy: Fish Rules, July 17, 2017


NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

IMG_1191
Lazy sea gulls hitch a ride on our trawling gear
Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain

 

Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph
Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

IMG_1177
A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map
Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP
Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.

 

Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity
Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

IMG_1235
A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.
IMG_0045
Red snapper from one catch.

 

Hypoxia Watch

CTD
Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone
A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

summer-dead-zone.adapt.885.1
Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

IMG_0092
The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!

 

Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?

 

 

 

 

Melissa Barker: Going Fishing, June 25, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 25, 2017

Weather Data from the Bridge

Latitude: 28 30.0 N

Longitude: 94 00.4 W

Air temp: 26.7 C

Water temp: 28.8 C

Wind direction: 130 degrees

Wind speed: 14 knots

Sky: rain squall

Science and Technology Log

We left port Friday evening and by 10:00pm we were fishing. We move from stations to station, often in a zig zag pattern to retrieve our samples. As I mentioned in a previous blog, the stations we will visit are randomly generated for us. I will use this post to give you an idea of what we do at each station.

P1020827
CTD instrument ready for deployment

As we come upon a station, we first deploy a scientific instrument called the CTD, which stands for conductivity, temperature, and depth which it measures. Additionally, this instrument measures dissolved oxygen. During day light hours, we also take additional environmental data including water color, percent cloud cover and wave height. At least once per day, we take a water sample which will be titrated using the Winkler method to double check our dissolved oxygen readings. The CTD is first calibrated at the surface for three minutes, then lowered to approximately two meters above the bottom, with a maximum depth of 200 meters. Teamwork is critical here as the officers in the bridge announce that we have arrived at a station. The Science Field Party Chief (FPC), Andre, tells the fisherman the depth and watches the data come into a computer in the dry lab near the stern. They are all in radio communication to make sure everything goes smoothly.

P1020924
Trawl headed into the water

Then the fishermen prepare to deploy a 40-foot trawl within a 2.5 mile radius of the station coordinates. Again, with communication from the fisherman, bridge and the FPC, the trawl is lowered into the ocean and moves along the bottom collecting organisms for exactly 30 minutes after which the trawl is raised and the net is brought onto the boat. The organisms caught in the net are then released into baskets,which are weighed on deck to get a total mass for the catch.

 

 

Then the fun begins! The full catch is poured out into the trough or if big enough, brought in via a conveyor belt. If the catch is 24 kg or under, we will log the entire catch.

P1020854
Catch poured out into the trough

If it is over 24 kg, then we will split the catch and log a representative sample. When splitting the catch, we first place all the organisms in the trough and roughly divide the catch in half. Before we send the half that we will not log back to the ocean, we must pull out commercial species, such as shrimp and snapper, and any individual species not found in the half we will log. Then we take the half of the catch that we will log and start the sorting.

P1020860
Splitting the catch

We sort all organisms that are the same species into one basket, then count and take a total mass for each species group. You can see images below of a sorted catch.

IMG_3163
Sorted fish

For most species, we will sample up to 20 random individuals. We record length for all 20 and then take a mass and sex every fifth organism. Logging is a bit different for shrimp, we will record length, mass and sex for all organisms up to 200 individuals. We will do the same for any other commercial species.

P1020945
Measuring a fish with the Limnoterra board

We use a Limnoterra measuring board with a magnetic wand which gives an accurate length by connecting to a magnetic strip on the board. This tool saves a lot of time and allow us to get accurate measurements.

In future posts, I’ll talk more about what we are finding and learning from our data.

P1020864
Trying to sex a fish which can be sometimes be challenging

Personal Log

I am starting to find my sea legs. The seas were a bit rough as we left port after the storm. It was touch and go for the first 24-36 hours, but with the help of Meclizine (a motion sickness medication) and sea bands (wrist bands that push on a pressure point in your wrist) I am now feeling pretty good. I’m also getting used to the constant movement of the Oregon II which makes everyday activities like walking, showering and sleeping quite interesting. When I lay down in bed and close my eyes, I can feel the troughs of the waves push me down into my mattress and then I spring up at the tops of the waves. It is very relaxing and helps lull me to sleep. When showering, I frequently need to hold on so as to not fall over. As some of you know, I have a habit of moving pretty fast around school. Often in a rush to check items off my to-do list or get to my classes. On the boat, we need to move slowly due to the constant motion. You also never know when someone is going to open a door into the hallway or come around the corner. There is not much space, so you must move slowly and cautiously.

P1020910
Day shift crew from left to right: David, Tyler, Field Party Chief Andre, Sarah and Melissa

I am also getting use to the fish smell in the wet lab where I spend most of time when working. I’m on the day shift, which runs from noon to midnight. I’ve tried to soak up as much information as I can over the last couple days and have really enjoyed the learning. The hardest part for me is trying to learn scientific names for the 30-40 species we find in each catch. The Latin names go in one ear and out the other. Having never worked with fish, this part pretty challenging, but luckily Andre is very patient and always willing to answer my questions. My day-shift teammates, Tyler, David and Sarah, are terrific, keep the atmosphere fun and teach me each day. It has been really interesting to see the increase and decrease of certain species from different stations.

P1020865
Melissa and Tyler measuring fish in the wet lab

Did You Know?

The Texas shrimp fishery closed on May 15, 2017 and will re-open on a yet to be determined date in July. This is what is referred to as the “Texas Closure”. The shrimp data that we are collecting will be sent to the state to help them determine the health of the fishery and when to open it back up. According to the Coastal Fisheries Division of the Texas Parks and Wildlife Department (TPWD), “The closure is designed to allow escapement of shrimp out to the gulf where they can grow to a larger, more valuable size before they are vulnerable to harvest. The goal is to provide shrimp of a size that are more valuable for the shrimping industry while ensuring sustainable stocks in the future.”

P1020883
A large Brown Shrimp: Penaeus aztecus

 

Dawson Sixth Grade Queries

How many different species did you find? (Owen, Sylvia, Tyler, Maylei, Ben)

The number of species we find varies with each trawl, but recently we have been finding about 35-40 species per trawl. The picture below show the diversity a typical catch.

 What organisms other than fish did you find? (Badri, Tyler, Alexa, Lorena, Wanda)

We find many other species besides fish. Some of the more common groups of organisms we find are squid, jelly fish, shrimp, sea stars, scallops, crabs, and vacated shells. Occasionally we catch a small shark or sting ray.

P1020954
Example catch diversity

Melissa Barker: Breaking the Land Lock, June 14, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 14, 2017

Weather Data from the Bridge

Here in Longmont, Colorado where I live, we are settling into warm summer days often topping out in the high 80’s to 90’s F and typically with low humidity. In Galveston, Texas, where I’ll board the ship it is in the 80’s F this week with 90% humidity. I’ll have to get used to that humid air.

Science and Technology Log

NOAAS_Oregon_II_(R_332)
NOAA Ship Oregon II. Photo courtesy of NOAA.

I will spend two weeks aboard the NOAA fisheries research vessel Oregon II, in the Gulf of Mexico, working on the SEAMAP (Southeast Area Monitoring and Assessment Program) Summer Groundfish Survey. The objective of the survey is to monitor the size and distribution of shrimp and groundfish in the Gulf of Mexico.

gfmexico
The Gulf of Mexico. Photo from world atlas.com

What are groundfish, you ask? These are the fish that live near or on the bottom of the ocean. This survey is conducted twice per year; the data help scientists monitor trends in shrimp and fish abundance as well as changes over time. We will also be collecting plankton samples and environmental data at each site. The second leg of the groundfish survey works off of the Louisiana coast and the outlet of the Mississippi River where a “dead” or hypoxic zone forms in the summer. I am very interested to see the what we pull up in this area.

Personal Log

IMG_3082
I’m all geared up and ready to go!

When the NOAA Teacher at Sea email arrived in my inbox in February, I held my breath as I opened and read it as fast as possible. I was accepted! I was going to sea! I am honored to be a part of the National Oceanic and Atmospheric Administration Teacher at Sea program.

I teach Biology and direct the Experiential Education program at the Dawson School in Lafayette, Colorado. I love sharing my passion for learning about the biological world with my students and engaging my students’ curiosities. Many of my favorite teaching moments have been times when I can take students outside to observe and explore their surroundings.

P1070391
My classroom for a week in the San Juan Mountain Range, CO. March 2017. Photo credit Pete Devlin

I’ve lived in Colorado for about 17 years and love to play in the mountain environment on foot, ski or bike. Having lived land locked for most of my life, I can’t wait for the opportunity to explore the ocean ecosystem this summer. As a child, I spent short amounts of time exploring tide pools in Maine and beaches in Florida and was always intrigued by the vastness and mystery of the ocean.

IMG_3086.JPG
Tending my garden to grow delicious food

Now, I’m heading out to sea for two weeks to dive right into (not literally) learning about the ocean. Like my students, I learn best by doing, so I am thrilled to be working with the NOAA Fisheries team.

Did You Know?

Did you know that June is national ocean month? Celebrate the ocean this month.Check out this great video from NOAA and visit NOAA’s Celebrate the Ocean page for more information.

Dawson Sixth Grade Queries

Just before the end of the school year, I visited the Dawson sixth graders to talk about my NOAA Teacher at Sea expedition. We learned about the importance of the ocean, even for us here in Colorado, and the sixth graders wrote questions for me to answer while I’m at sea. Look for this section in my blog where I will answer some of those questions.

IMG_2782
Dawson School sixth grade. Photo by RuthAnne Schedler.

-What do you think the most common organism is that you will find? (from Allison)

One of the main goals of the Groundfish survey is to collect data on the abundance and distribution of shrimp, so I think I’ll be seeing a lot of shrimp in our net. I’ll be sure to post photos of what we find.

 -Are you going to scuba dive? (from Gemma, Emma and Margaret)

I will not be scuba diving on my trip. I am not certified and the Teacher at Sea program does not allow teachers to scuba (even if they are certified). Instead I will be learning from above the water’s surface and pulling up samples to learn about what lives deep below.

Now it’s your turn to ask the questions…

What are you curious about? Maybe you are interested to know more about what we haul up in our nets or how to become a NOAA scientist. You can write questions at the end of any of my blog posts in the “comments” section and I’ll try to answer them.

David Walker: Slowly Getting the Hang of Things (Days 3-5), June 29, 2015

Sexing Fish

NOAA Teacher at Sea
David Walker
Aboard NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Monday, June 29, 2015

Weather Data from the Bridge

Weather Log 6/28/15
NOAA Ship Oregon II Weather Log 6/28/15

Weather remained quite calm through Days 3-5.  I observed a couple minor rain showers during the night shift.  As noted in the above weather log from the bridge, hazy weather (HZ) on multiple occasions during Day 4.  Sky condition on Day 4 went from 1-2 oktas in the morning (FEW), to 5-7 oktas (BKN), to 8 oktas (OVC) by midday.  The sky cleared up by the evening.

Science and Technology Log

Day 3 was incredibly busy.  There were no breaks in the 12 hour shift, as there were many trawl stations, and each catch contained a very large amount of shrimp.

According to many on deck, the shrimp catches on Day 3 would have been deemed successful by commercial shrimping standards.  I got lots of good practice sexing the shrimp from the catch — I sexed over 2000 shrimp on Day 3 alone.  Sexing shrimp is fairly easy, as the gonads are externally exposed.

I also learned how to sex crabs.  This is also a simple process, as there is no cutting involved (see graphic below).  The highlight of the day was the landing of a really large red snapper.  They let me take a picture with it before taking it inside for processing.  I was absolutely exhausted at the end of Day 3 and completely drenched in a mixture of sweat, salt water, and fish guts.

Day 4, in contrast, was very slow.  The trawl net broke on one of the early stations, so the research was delayed for quite awhile.  In fact, in my entire 12 hour shift, we only had to process two catches.  We were able to complete all CTD, bongo, and Neuston stations, however, quite efficiently.  I have gotten to the point where I can serve as the assisting scientist for the CTD, bongo catch, and Neuston catch on my own.  This data also requires two fisherman on hand — one to operate the crane, the other (along with me) to guide the device or net into the water.  The fishermen with whom I most commonly work are Lead Fisherman Chris Nichols, Skilled Fisherman Chuck Godwin, and Fisheries Methods and Equipment Specialist (FMES) Warren Brown (see photo).

On Day 5, I got great practice sexing a wide variety of fish.  An incision is made on the ventral side of the fish, from the anus toward the pectoral fin.  After some digging around inside the fish, you will find the gonads — either ovaries (clear to yellowish appearance with considerable vasculature, round in cross-section often many eggs) or testes (white appearance, triangular in cross-section).  As you might guess, larger fish are much easier to sex than smaller ones, and the ease of sexing is also species dependent.  To make matter even worse, many fish are synchronous hermaphrodites (containing both male and female sex organs), and some are protogynous hermaphrodites (changing from female to male during the course of life).  The ease of sexing is also species dependent.  For instance, I have found the sexing of adult puffer fish and lizardfish to be quite easy (very easily defined organs), however I have experienced considerable difficulty sexing the Atlantic menhaden (too much blood obscuring the organs).

Field Party Chief Andre DeBose provided me with a hypoxia contour chart (see below), representing compiled CTD data from Leg 1 and the beginning of Leg 2.  According to DeBose, these contour charts are generated by the National Coastal Data Development Center (NCDDC) once out of around every 10 stations, and they represent an average of data taken by station near the ocean floor.  A data point is defined as hypoxic if the dissolved oxygen content is below 2 mg/L.  On the below chart, you can see that many hypoxic areas exist along the Texas coast, near the shore.

Bottom Dissolved Oxygen Contours
Dissolved oxygen contours for water at ocean bottom — Plotted data thus far from the SEAMAP Summer Survey (June 9 – 26, 2015)

I could not wrap my head around why this trend exists in the data, as I figured that shallower water would be warmer, allowing for more plant life in greater density, and accordingly more dissolved oxygen in greater density.  Fisheries Biologist Alonzo Hamilton helped me better understand this trend.  The fact that the water is warmer in shallower areas means that more of the dissolved oxygen leaves the surface of water in these areas.  In addition, while plant life is indeed in greater concentration in shallower water, so is the concentration of aerobic microbes.  These organisms use up oxygen through respiration to decompose organic matter.  You can see on the above graphic that the greatest hypoxia is found in areas near major runoff (e.g. Matagorda Bay and Galveston Bay).  Among other things, this runoff feeds nitrates from plant fertilizer into the ocean, which supports growth of more algae (in the form of algal blooms).  Aerobic microbes decompose this excess organic matter once it dies, taking further oxygen from the water. Although it seems counterintuitive, at least to me, the greater heat and greater organism density actually leads to a more hypoxic environment.

I am slowly getting better with the species names of aquatic organisms, but as of now, I am still focusing on common names.  The common names often relate to the fish’s phenotype, and this helps me recall them with more ease.  Common name knowledge, however, is fairly useless when it comes to entering the organisms into the computer during species counts, as the computer only has scientific (Latin) names in its database.  I hope to learn more scientific names as the week progresses.

I am also slowly amassing a really interesting collection of organisms to take back with me to LASA High School.  CJ Duffie taught me how to inject crabs with formaldehyde to preserve them.  Upon return to port, I will spray these crabs with polyurethane, to preserve the outer shell.  I have also been preserving different organisms in jars with 20/80 (v/v) formaldehyde/saltwater.  If you know me, you know I love collecting things, so this process has been particularly enjoyable.  Fisheries Biologists Alonzo Hamilton and Kevin Rademacher have been very supportive in helping me collect good specimens for my classroom.

Personal Log

Life on the ship is very enjoyable.  My bed is comfortable, the work is exciting, the meals are excellent, and the company is gregarious.  However, I have completely lost track of time and date.  My “morning” is actually 11 PM, and my “evening” is actually 1 PM.  Accordingly, my “lunch” is actually breakfast, and my “breakfast” is actually lunch.  I also never have any idea what day of the week it is.  I called my girlfriend yesterday and was surprised to hear that she was not at work (it was a Sunday).

Regarding this blog, I have finally found the optimal time to write and upload photos.  As the satellite internet is shared by all of the ships in the area, it is not possible to access WordPress during the daytime.  Accordingly, I do all of my uploading and most of my writing between 2 and 6 AM.  This works for me, as long as I can find time for the blog between research stations.

I really enjoy the people on the night shift.  Kevin Rademacher, Alonzo Hamilton, and Warren Brown provide such a wealth of knowledge.  These three are absolute experts of their craft, and it is a true honor to work with them.  I am nearing the end of my first week on the ship, and I am still learning just as much as I was on my first day – this is incredibly exciting.

I have found that Alonzo really enjoys the TV show, “Chopped,” as it seems to be on every time I enter the dry lab.  It is pretty interesting to observe him watching the show, as he enthusiastically comments on all of the dishes and regularly predicts the correct winner.

I am also getting well through one of the books I brought – Everything is Illuminated, by Jonathan Safron Foer.  It is a very odd read, but it has been enjoyable so far.

I am looking very forward to every new day.

Did You Know?

The scorpionfish that we are catching are some of the most venomous creatures in the world (see Scorpaenidae) .  These fish have spines that are coated with a venomous mucous, and their sting is incredibly painful – just ask CJ Duffie!  These fish are also incredible masters of camouflage, changing in color and apparent texture to disguise themselves, so as to catch more prey.

Notable Species Seen


David Walker: Lots to Do, Lots to Learn (Days 1-2), June 26, 2015

Sorting by species

NOAA Teacher at Sea
David Walker
Aboard NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Friday, June 26, 2015

Weather Data from the Bridge

Weather Log 6/26/15
NOAA Ship Oregon II Weather Log 6/26/15

Weather was quite calm on Days 1 and 2.  As noted in the above weather log, the only real disturbance was a small squall (SQ) observed at 7 AM on Day 2.  Sky conditions are estimated in terms of how many eighths of the sky are covered in cloud, ranging from 0 oktas (completely clear sky) through to 8 oktas (completely overcast).  FEW in the above log represents 1-2 oktas of cloud coverage.  SCT represents 3-4 octas, and BKN represents 5-7 oktas.

Science and Technology Log

I have been assigned the night watch, which runs from 12 midnight to 12 noon.  Accordingly, on Day 1, I went to sleep around 2 PM and woke up around 10 PM to prepare for watch. My first day consisted mostly of general groundfish biodiversity survey work, one of the focuses during the summer being on shrimp species.  Data collection points have been randomly plotted throughout the Gulf, and data is collected via trawling the seafloor, which consists of the boat pulling a fishing net behind the boat, along the seafloor, for a predetermined length of time.  To allow for collection along the seafloor, the net has rollers on the bottom.  The net also contains a “tickler chain” to stir up organisms (mainly shrimp) from the seafloor, so that they can be captured with the net. The trawl catch is transferred to the boat, where the following steps are completed:

Tranferring catch to boat
CJ Duffie transferring a trawl catch to the boat.

1. The total catch is weighed.
2. The catch is run along a belt, and the three significant shrimp species (white, brown, and pink) are taken out and saved. In addition, multiple unbiased samples are taken from the catch and saved.  The sample should contain at least one of each species encountered in the catch.
3. The entire taken sample is sorted by species.
4. Individuals within each species are counted.
5. Length, weight, and gender are recorded for shrimp individuals within a significant species (white, brown, and pink).
6. Length measurements are taken for all other species individuals within the sample. Weight and gender are recorded for one individual out of every five within a species, for species other than shrimp.
7. Everything is returned to the ocean.

Sorting by species
Sorting the catch by species along the belt. Left to Right — Volunteer CJ Duffie, Equipment Specialist Warren Brown, me, and Research Fisheries Biologist Kevin Rademacher.

On Day 1, we completed the above process for 4 separate catches.  Aside from my lack of knowledge, the only other mishap was that my middle finger accidentally got pinched by a fairly large Atlantic Blue Crab.  I was amazed at the amount of force of the pinch, as well as the amount of pain caused.  I ended up having to break the crab’s claw off in order to free myself.

Also on Day 1, I got to observe the CTD (Conductivity, Temperature, Depth) sensor in action.  A CTD’s “primary function is to detect how the conductivity and temperature of the water column changes relative to depth” (NOAA).  The salinity of the seawater can be determined from this conductivity and temperature data.  On the Oregon II, the CTD also contains a dissolved oxygen sensor for measuring levels of dissolved oxygen in the seawater.  In addition, the CTD is housed in a larger metal frame (called a “rosette”) with water bottles, allowing for sampling at various depths.  Various data collection points have been randomly plotted throughout the gulf, and data collection consists of sending the CTD (+ dissolved oxygen sensor and water bottles) to and from the ocean floor.  The photo at right shows the data output – the y-axis represents water depth, temperature is recorded in blue (two data points taken at each scan), salinity is recorded in red, and dissolved oxygen is recorded in green (2 data points taken at each scan).  The ocean floor was at a very shallow depth (between 10 and 20 meters) for all sampling done on Day 1.

CTD data output
CTD data output

On Day 2, we completed more shrimp survey work and CTD sampling.  I also got to participate in a plankton survey at the beginning of my shift.  This entailed dropping two fine-mesh nets into the water – a dual-bongo and a neuston – and dragging them through the water to collect plankton.  The dual-bongo is lowered to a predetermined depth, while the neuston remains at the surface.  Obtained plankton is transferred to a jars with salt water and formaldehyde (for preservation) and sent to a lab in Poland (with which NOAA has a partnership) where it is categorized, measured, etc.

Personal Log

I have already met all of the scientific personnel and most of the other core and crew on the ship.  Andre Debose is the Field Party Chief, and he heads up all scientific operations on the ship.  The Executive Officer of the ship is Lieutenant Commander (LCDR) Eric Johnson, a NOAA Corps Officer.  These are the two people who approve of all of my blog posts before I submit them to NOAA. The night watch (12 AM – 12 PM) consists of me, Kevin Rademacher, Warren Brown, and Alfonso Hamilton (watch leader).  The day watch (12 PM – 12 AM) consists of Adam Catasus, Jeffrey Zingre, Joey Salisbury, and Michael Hendon (watch leader).  CJ Duffie completes his watch from 6 AM to 6 PM. Adam, Jeffrey, and CJ are volunteer graduate students from Florida.  This is their first NOAA research cruise, but they have already completed a two-week leg, so they know much more than I do.  Alfonso, Kevin, Warren, Adam, and Joey are all seasoned NOAA veterans, have completed many years of research cruises, and have a wealth of knowledge.

Stateroom
My stateroom

My stateroom is quite nice.  There is sufficient storage space for all of my clothing and equipment, such that I am able to keep most everything off of the floor.  I am rooming with Joey Salisbury (I have top bunk), but as Joey is on the day shift, we do not see too much of each other.  I am quite paranoid about not waking up on-time, so I tethered my cell phone to a pipe on the boat, directly above my head.  This way, the phone alarm blares directly toward my face, and there is no danger of my phone falling off of the bunk.

I have not yet experienced any seasickness, although I am still taking preventative medication every day.  Andre noted before we left that ginger helps with seasickness, so I brought some ginger ale and ginger cookies.

The food served on the ship is amazing, definitely much more than what I was expecting.  There are multiple course options for each meal, and everything I have had so far has been exceptional.  The highlight was the made-to-order omelet that I had for breakfast after 7 hours of sorting and measuring fish.

Notably, I also got to experience two boat safety drills on Day 1 – a fire drill, and an abandon ship drill.  For the abandon ship drill, I got to try on my survival suit.  It is made out of neoprene, so in that regard it reminds me of fly fishing waders.  However it feels quite claustrophobic once you put your arms in it and zip it
halfway up your face.  I needed much assistance in putting it on.

Survival suit
In my survival suit, during an abandon ship drill

Did You Know?

NOAA has a Commissioned Service, one of the seven Uniformed Services of the United States.  The NOAA Corps consists only of Commissioned Officers (i.e. no enlisted personnel or Warrant Officers).  The Corps first became a Commissioned Service in 1917, during World War I, as the United States Coast and Geodetic Survey Corps.  In 1965, this Corps was renamed the Environmental Science Services Administration Commissioned Corps, and in 1970, was again renamed the NOAA Corps (Source — NOAA).

Notable Species Seen

David Walker: Introduction, June 22, 2015

Oregon II

NOAA Teacher at Sea
David Walker
Anticipating Departure on NOAA Ship Oregon II
June 24 – July 9, 2015

Mission: SEAMAP Bottomfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: June 22, 2015

Introduction

Greetings from Austin, Texas.  My name is David Walker, and I will be posting here over the next couple of weeks to chronicle my participation in the second leg of the NOAA (National Oceanic and Atmospheric Administration) SEAMAP Summer Bottomfish Survey in the Gulf of Mexico.  I leave for Galveston tomorrow and could not be more excited.

Backpacking Big Bend
On a recent backpacking trip to Big Bend National Park

About Me: I am about to begin my sixth year as a high school teacher at the Liberal Arts and Science Academy (LASA) in Austin, Texas.  LASA is a public magnet school which draws students from the entirety of Austin Independent School District.  Currently, I teach three courses — Planet Earth, Organic Chemistry, and Advanced Organic Chemistry.  Planet Earth is a project-based geobiology course with a major field work component, which consists of the students completing field surveys of organisms in local Austin-area parks and preserves.  Organic Chemistry is an elective course which covers the lecture and laboratory content of the first undergraduate course in organic chemistry.  Advanced Organic Chemistry is an elective course framed as an independent study, in which students address the content of the second undergraduate course in organic chemistry.  I also sponsor our school’s Science Olympiad team, and we compete around the nation in this science and engineering competition.  This year, LASA Science Olympiad placed third in the nation, this representing the best any team from Texas has ever performed!  Outside of teaching, my interests include backpacking, fly fishing, ice hockey, birding, record collecting, photography, dancing, and karaoke, in no particular order.

About NOAA:  The National Oceanic and Atmospheric Administration (NOAA) is a scientific agency of the United States government whose mission focuses on monitoring the conditions of the ocean and the atmosphere.  More specifically, NOAA defines its mission as Science, Service, and Stewardship — 1) To understand and predict changes in climate, weather, oceans, and coasts, 2) To share this knowledge and information with others, and 3) To conserve and manage coastal and marine ecosystems and resources.  NOAA’s vision of the future consists of healthy ecosystems, communities, and economies that are resilient in the face of change [Source — NOAA Official Website].

About TAS: The Teacher at Sea Program (TAS) is a NOAA program which provides teachers a “hands-on, real-world research experience working at sea with world-renowned NOAA scientists, thereby giving them unique insight into oceanic and atmospheric research crucial to the nation” [Source — NOAA TAS Official Website].  NOAA TAS participants return from their time at sea with increased knowledge regarding the world’s oceans and atmosphere, marine biology and biodiversity, and how real governmental field science is conducted.  This experience allows them to enhance their curriculum by incorporating their work at sea into project-based activities for their students.  They are also able to share their work with their local community to increase awareness and knowledge of the state of the world’s oceans and atmosphere, and current research in this field.

My Mission: I will be participating in the second leg of the 2015 SEAMAP (SouthEast Area Monitoring and Assessment Program) Summer Bottomfish Survey in the Gulf of Mexico, aboard the NOAA Ship Oregon II.  The survey will span two weeks, from June 24 – July 7, 2015, beginning in Galveston, Texas, and ending in Pascagoula, Mississippi

The Oregon II research vessel was built in 1967 and transferred to NOAA in 1970.  Its home port is Pascagoula, Mississippi, at the National Marine Fisheries Service (NMFS) Mississippi Laboratories.  More information about the ship can be found here.

Oregon II
NOAA Ship Oregon II in 2007
[Source — NOAA Website]
The Chief Scientist for the survey is Kim Johnson (NOAA Biologist), and the Field Party Chief for my leg of the survey is Andre DeBose (NOAA Biologist).  According to Ms. Johnson, the survey has three main objectives — shrimp data collection, plankton data collection, and water column environmental profiling.

1) Shrimp data collection involves catching shrimp in a 40 foot shrimp net, towed at 2.5 knots.  Caught shrimp will all be weighed, measured, sexed, and taxonomically categorized.  This is completed for 200 individuals in each commercial shrimp category, and real-time data is distributed weekly (see SEAMAP Real-Time Plots).  This data is of incredible importance to the commercial fishing industry, especially considering that the season-opening is in late July.

SEAMAP
SEAMAP shrimp survey data from 2014
[Source — GSMFC Website]
2) Plankton are drifting animals, protists, archaea, algae, or bacteria that live in the ocean water column and cannot swim against the current [Source — Plankton].  Regarding plankton data collection, the Oregon II houses two types of collection nets — dual bongos and a neuston net.  As many plankton are microscopic in size, these nets contain a very fine mesh.  The dual bongos are used to sample the water column at an oblique angle, while the neuston net is used to collect surface organisms (“neuston” is a term used for organisms that float on top of the water or exist right under the water surface — see Neuston).  This data is used to “build a long term fishery-independent database on the resource species important to the economy of the Gulf of Mexico” [Source — NOAA Plankton Surveys].

3) The third mission of the survey is water column environmental profiling.  These profiles are completed using a CTD (conductivity-temperature-depth) device, which is sent back and forth between the surface and the ocean floor (the entire water column) and allows for the collection of real-time data.  The main focus of this survey is the measuring of dissolved oxygen levels in the water to identify and monitor areas of hypoxia.  In aquatic ecosystems, hypoxia “refers to waters where the dissolved oxygen concentration is below 2 mg/L. Most organisms avoid, or become physiologically stressed, in waters with oxygen below this concentration. Also known as a dead zone, hypoxia can also kill marine organisms which cannot escape the low-oxygen water, affecting commercial harvests and the health of impacted ecosystems” [Source — Gulf of Mexico Hypoxia Watch].  NOAA has partnered with the National Coastal Data Development Center (NCDDC) and other agencies to centralize this data, which has been collected and analyzed for 15 years.  This summer’s survey is quite important, as the large amount of rainfall over the past two months could have significantly affected levels of dissolved oxygen in the ocean, and accordingly, zones of hypoxia.

My Goals: Through this program, I hope to accomplish four main objectives —

1) Learn as much as I can about the biology I encounter, especially in terms of taxonomic classification and biodiversity.  This will be directly applicable to the biodiversity unit and project in my Planet Earth class.

2) Understand in detail the methods by which NOAA real-time data is collected, plotted, and presented to the public.  This will be directly applicable to updating the data analysis and presentation portions of the biodiversity project in my Planet Earth class.

3) Upon my return, create a project-based activity for my Planet Earth students, based on the research I conduct aboard the ship.  Students will use the real-time data from my leg of the survey (to be posted online) to come to conclusions regarding the biologic and environmental profile of the Gulf of Mexico.  This will become part of the Planet Earth course unit global biodiversity.

4) Present my research experience and resulting project-based curriculum to the science faculty of LASA High School, emphasizing the value of research-based activities and projects in high school science.

That’s it from me.  My next post will be from the Gulf of Mexico!

David Walker
NOAA Teacher at Sea
LASA High School
Austin, Texas

   

Sue Zupko, Sing it, Willie–On the Road Again, September 10, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 10, 2014

Weather Data from the Bridge
Lat 37°38’N
Lon 075°15.8W
Present Weather CL
Visibility 10 +nm
Wind 025° 10kts

Sea Level Pressure 1016.2
Sea Wave Height 3-4 ft
Temperature: Sea Water 26.6°C
Air 24.8° C

Science and Technology Log

 

We are now “on the road again” trawling. The nets were lowered at about 7:30 am. I was surprised by how small our catch has been. The scientists are not at all surprised. They said because of the time of year, many fish are in the estuaries spawning (reproducing). Today we have been on the edge of the continental shelf off the coast of Delaware and Virginia. When we get in closer, the scientists say we will have a lot more fish in our net.

It is fascinating how they are selecting sites for sampling.The sea floor needs to be fairly flat to pull a net across. We learn what the bottom is like using sonar. A multi-beam sonar on the bottom of the hull is in the center of the ship. There is also a single-beam sonar there. They serve two different purposes. The single-beam looks straight down the water column. It is like a really bright penlight. This shows what is in the water column such as fish and plankton. It also can reach greater depths since its light is stronger. The multi-beam is more like a floodlight. It spreads out over the bottom revealing all the different levels of the ground. These sonar beams bounce off the bottom and send the ship information. The crew  watches the sonar information and scouts for a good area to drop our nets. Of course, there are certain areas where samples need to be taken. They are trying to repeat a tow at the same time every year within a strata area. “So what is a strata?” I asked.

Geoff Shook, our survey technician, reads the information on the display
Geoff Shook, our survey technician, reads the information on the display

Strata lines are like lines on a topographic map on land. It is called a bathymetric map underwater. The lines on a bathymetric map are called strata lines. These are based on the different depths. The net needs to be pulled within the same strata at the same time each year. As long as a tow is within the strata the habitat is about the same. In order to get accurate population information, they must make at least two tows within a strata. Some of the strata are hundreds of square miles. Strata are the same depth range and habitat. Closer to the continental shelf, the strata are much narrower. Closer to shore, they are much wider. For example, strata 70 is 281 square nautical miles (nm). It is 55-110 m deep and is next to the shelf. However, strata 73 is closer to shore, is 2145 sq. nm, and is 27-55 m deep. Their habitats are different so random samples need to be taken within each.

So, I think of it like a chess board within a strata. If we want a random sample, we could drop a piece of soft clay from about a 1/2 m above the board. Where it hits is where we tow in that strata. Our first tow is at D5. The second piece of clay could fall on H2. So, there is where we would sample.

Then, when the ship is over top of the strata we will sample, it must find a safe area to tow which won’t tangle or break the net. You can’t get a sample with a broken net.

Notice the wires on the spools which haul the nets. On the first one the wire is tightly wrapped. On the second one the wire has a gap. This could lead it to break or more easily tangle. We are doing a deep tow tonight outside of the “normal” range of 366 m deep. However, it will not only give us new information, but will, hopefully, help rewrap the wire on the second spool so it will be tight. Have you ever tangled a loose fishing line on your reel? It is somewhat similar to that so we are trying to prevent this from happening later.

So, what have I been doing while waiting for a tow to complete? It depends. One time I told jokes with the scientists. Another I had a snack. Once I ate dinner. Right now, I’m working on my blog. Nap is not an option. I’ll explain that later.

It was a Win-Win Wednesday. We got some great fish by going deep, we explored some very deep water, the wire was rewound properly onto the spool, and we will have a shrimp fest tomorrow.

Meet the Crew

Luke Staiger, 2nd Cook
Luke Staiger, 2nd Cook

The old adage “an army runs on its stomach” holds true for a research vessel. Meet Luke Staiger, our 2nd cook. Luke is with the Bigelow on temporary assignment from the Reuben Lasker  in San Diego. NOAA members get moved around short term as needed. Luke has been with NOAA for 12 years. He has been cooking since he was a kid. His most important tool is an 8″ all purpose knife. It must be sharp and long-handled. If he could invent the perfect tool for the job, what do you suppose it would be? That’s right, a knife that is comfortable to hold all day.

Luke worked in a buffet restaurant so this is the perfect situation for him since it’s all buffet. He worked his way up to cook after doing other jobs at the restaurant. I’m looking forward to a breakfast that he prepares since cooking breakfast is his favorite.

Luke recognizes how important the work is that NOAA does. We need to preserve our resources, such as water, he says. NOAA keeps an eye on things so we don’t lose sight of what matters. When not on a boat, Luke enjoys fixing up cars, especially adding stereo systems. Luke has an easy going personality and a ready smile, making it pleasant to work with him.

How did he find NOAA? Similar to others that I have interviewed, he looked online. NOAA has good benefits, you get to travel, and the experience is good. His advice to my students is to gain lots of experience in your field, even if it’s just volunteering. You will find work if you do a good job and have a lot of experience.

Personal Log

Remember I said I won’t get a nap during my 20 minutes between tows? It is interesting how our stateroom (cabin/bedroom) works. There are four of us in our stateroom. When I leave to go to work, I cannot go back until the end of my watch. I carry everything with me so it is like the private room for two other women. Then I only have one room mate. We get the room for 12 hours. There are curtains around our beds and we wear earplugs. I hardly know that the other scientist on my watch, Lacey, is even there. All I do is check to see if her curtain is closed. That means, “I’m asleep.”

Did You Know?

Did you know that there is an anchor-cleaning device onboard the ship? It sprays salt water at 150 psi (pounds per square inch). The anchor gets pretty dirty sitting on the ocean floor when we are at anchor. They don’t want all that dirt on the ship in the anchor locker, so it gets cleaned. A clean ship is a happy ship.

Question of the Day

Why would different depths affect which fish live there?

Vocabulary Word

Sonoluminescence. This is short bursts of light from imploding bubbles in water (or in a liquid) when excited (moved around) by sound. A mantis shrimp is capable of sonoluminescence because the high speed of its front legs is capable of creating and rapidly shrinking air bubbles. The bubble looks like a spark underwater with no fire.

Something to Think About

If we don’t preserve our fisheries, which is what NOAA is researching, soon there won’t be any fish.

Challenge Yourself

We used a deep-water protocol, which is between 183 and 366 m. If you are fishing in a strata that is 200 feet deep, would you fall in the deep-water protocol?

Animals Seen Today

Here are pictures of what we saw today in our really deep water trawl.

 

 

Crystal Davis, Female, Male? How do you tell? July 2, 2014

Common Octopus
This Common Octopus was found in a 7-Up can.

NOAA Teacher at Sea The fish board that measures the length of marine organisms

Crystal Davis

Aboard NOAA ship Oregon II

June 23-July 7, 2014

Mission: SEAMAP Groundfish Survey

Geographical area of cruise: Gulf of Mexico

Date: Wednesday July 2, 2014

Weather: Clear and sunny with isolated showers and thunderstorms

Winds:   5-10 knots

Waves:   2-3 feet

Science and Technology Log:

Shortly after boarding the Oregon II, the science crew had orientation with the Operations Officer LTJG Thomas reviewing  basic procedures for emergencies on board. But what stuck out for me the most, was when Operations Officer LTJG Thomas said we were on a S.A.D. boat. It turns out that S.A.D. means no sex, alcohol or drugs are allowed on the Oregon II. This ensures that the boat is safe and reduces the number of accidents on board. This is the opposite of SAD and makes me feel much safer on board. But luckily for KISS fans, rock and roll is still allowed and is on consistently. Sometimes there’s so much rocking and rolling that I fall on the floor, but that’s happening less frequently as I’ve found my sea legs.

In the Groundfish Survey, after the organisms are separated by species, they are sexed. Overall, this gives the scientists an idea of what future generations will look like. Although all the organisms vary in the way you differentiate their gender, the following are some of the most common organisms found in the groundfish survey.

Sexing Shrimp

Brown Shrimp Female (top) Male (bottom)
Paneaus Aztecas Shrimp Female (top) Male (bottom)

As shown in the pictures on the left, male shrimp have a set of claspers (they look like an extra set of legs) called the petasma that is the equivalent of a penis. Females do not have a petasma.

In young (juvenile) shrimp, it can be difficult to identify the males from females as the petasma is very small and not easily visible. At this age they can easily be confused for females. When this is suspected, they are input into the computer as unknown so as not to generate inaccurate data.

Sexing Crabs

When you pick up a crab you have to be very careful to stay away their claws (cheliped). I have found that they like to grab onto you as soon as you pick them up. My roommate had a large blue crab grab her finger that would not let go and she still has bruises from it.

Shame Faced Crab
Shame Faced Crab

Mature female crabs are called a “Sook” and have a dome or bell shaped abdomen.  This is shown in the top row and looks like the U.S. Capitol Building.

Male crabs are called a “Jimmy” and have a T-shaped abdomen that looks like the shape of the Washington Monument.

To mate, the male crab will carry the female until her shell softens and she is able to mate. During mating, the female stores the males sperm to fertilize her eggs later. Once her shell hardens, the male releases her and she will fertilize her eggs later.

Female Lesser Blue Crab with eggs
Female Lesser Blue Crab with eggs

After fertilization, the eggs are stored outside the female’s abdominal area and look like a sponge. They’re very squishy when you touch them. Although this shows orange eggs, they can also be a gray or black color. I have been told that the darker the egg color, the closer to hatching the offspring are. I am not sure that this is scientifically valid and am still trying to verify this.

 

 

 

Sexing Flatfish

Photos courtesy of Robin Gropp
Photos courtesy of Robin Gropp

Flatfish include fish such as flounder, halibut and turbot. These fish begin their life swimming vertically in the water. However, as they get older they sink to the bottom and their eyes move to one side of their body. They then spend the rest of their life on the bottom of the ocean floor. Luckily their top half matches the ocean floor and they are easily camouflaged from predators. The bottom half of the flounder on the ocean floor is clear or white.

The easiest way to sex a flatfish is to hold them up to a bright light. When doing this you will see that the female has a long curved gonad while the male does not.

A Confused Flounder
A Confused Flounder (right) Normal Flounder (bottom left)

This Flounder is very confused. He should be a clear or light white on the bottom but as you can see his bottom half matches his top half. This could be due to a mutation but no one on the boat is exactly sure why he looks this way. This is one of the most interesting things I have seen so far. In fact, no one on the boat had seen this before.

 

 

 

 

Sea Jellies

Sea Jellies
Sea Jellies

Sea Jellies differ from most of the other marine organisms discussed so far. Sea jellies reproduce both sexually and asexually depending on what stage of life they are in. In an early stage of life sea jellies are called a polyp and they attach to a rock. The polyps reproduce asexually by cloning themselves and breaking off (budding). Imagine 300 people that came from you and look exactly like you. It’s actually pretty creepy.  But back to the sea jellies. Eventually the sea jelly will develop into an adult (medusa) that reproduces sexually with sperm and egg.

 

Personal Log:

I have a three day backpacking trip to Mt. Silliman scheduled almost immediately after my NOAA trip is over. Under normal circumstances I wouldn’t worry, but after spending two weeks not hiking or training, I’m a little concerned. Luckily there are weights and a rowing and elliptical machine on board, so I have been able to do a bit of training. Being on a ship that’s moving has made working out even more intense. I have to stabilize every time the boat moves, so I don’t fall over. But even if I did, or have, how could I complain with this view.

Boat Personnel of the Day

Holland waiting for a trawl to come in
Holland on the stern

Holland McCandless-Lamier

Holland is my roommate on the Oregon II and is a member of the scientific party. She was contracted by Riverside in response to the Deep Water Horizon (BP) blowout in 2010. She attended the University of Mississippi and majored in marine biology. During college, Holland had an internship in Florida where she led students (from 4th grade to college) in marine science activities. This included snorkeling, visiting coral reefs and other hands on activities.

After college, Holland met an individual from the NOAA Corps at a job fair. They put her in touch with NOAA FIsheries MSLabs Groundfish Unit, where she began volunteering as a participant on surveys. This hands on experience led to her current job. Holland currently spends most of her time in the NOAA South East Fishery Science Center (SEFSC) Pascagoula lab where she works with plankton. Her current project is updating decapod (crustacean) taxonomy.

Did You Know?

A female sunfish can lay 300 million eggs each year. Each egg is smaller than the period at the end of this sentence.

Crystal Davis, Bottom Trawl for Shrimp, June 27, 2014

Bringing in a trawl
Bringing in a trawl

NOAA Teacher at Sea

Crystal Davis

Aboard NOAA Ship Oregon II

June 23 – July 7, 2014

Mission: SEAMAP Groundfish Survey

Geographical area of cruise: Gulf of Mexico

Date: Friday June 27, 2014

Weather: Partly cloudy

Winds:  15-20 knots

Waves:  5-6 feet

 

 

Science and Technology Log: Bottom Trawling

The Oregon II is a participant and contributor to SEAMAP (The Southeast Area Monitoring and Assessment Program) which monitors the biodiversity of marine life in the Gulf of Mexico. The primary way the Oregon II assists SEAMAP is by conducting bottom trawls with a 42 foot semi-balloon shrimp trawl net.The net is slowly lowered into the ocean until it reaches the bottom and is then dragged along the ocean floor for thirty minutes. The net has a tickler chain between the doors which scrapes the bottom of the ocean floor and flicks objects into the net. The net is then brought to the surface and all of the organisms inside are put into baskets (see video above). The total weight of the catch is massed on scales on the deck. If the catch is large (over 20 kilos), it is dumped onto a conveyor belt and a random sub-sample (smaller) is kept, along with any unique species while the rest of the catch is dumped overboard.

Shrimp Net
Shrimp Net

Once the sample has been selected, the marine organisms are sorted by species and put into baskets. Each species is then massed and counted while the data is recorded into a system called FSCS (Fisheries Scientific Computer System). To obtain a random sampling, every fifth individual of the species (up to twenty) is measured, massed and sexed (more on this later). Once the data has been verified by the watch manager, the marine organisms are put back into the ocean. The following are pictures of a sample on the conveyor belt and the organisms divided into a few species.

The sorting process for shrimp (white, brown and pink) differs slightly from that of the other marine organisms. Every shrimp (up to 200 of each species), is massed, measured and sexed.This data is then used by various government agencies such as the Fish and Wildlife Service, Gulf of Mexico and South Atlantic Fishery Management Councils, etc… to determine the length of the shrimping season and to set quotas on the amount that can be caught by each issued license. States will not open the shrimping season until SEAMAP reports back with their findings from NOAA’s shrimp survey.

Types of shrimp in the Gulf of Mexico
Types of shrimp in the Gulf of Mexico

The shrimp trawl net used on the Oregon II differs from a shrimp net used on a commercial boat in two main ways. Commercial shrimping boats have BRD’s (Bycatch Reduction Devices) and TED’s (Turtle Excluder Devices). BRD’s and TED’s are federally required in the U.S. to reduce the amount of bycatch (unintentionally caught organisms) and sea turtles. Shrimping boats typically trawl for hours and turtles cannot survive that long without air. TED’s provide turtles and other large marine organisms an escape hatch so that they do not drown (see the video below). Unfortunately, larger turtles such as Loggerheads are too big to fit through the bars in a TED. Additionally, TED’s may become ineffective if they are clogged with sea debris, kelp or are purposefully altered.

     

Boat Personnel of the Week:

Warren Brown:

Warren Brown
Warren Brown

Warren is a gear specialist who is working as a member of the scientific party. He is contracted by Riverside for NOAA.  While aboard the Oregon II, Warren designs, builds and repairs gear that is needed on the boat. Unfortunately, on this leg of the trip either sharks or dolphins have been chewing holes in the nets to eat the fish inside. This means Warren has spent a large chunk of his time repairing nets.

Warren is not a crew member of the Oregon II  and actually works at the Netshed in Pascagoula where he spends his time working with TED’s. He has law enforcement training and will go out with government agencies (such as the Coast Guard or Fish and Wildlife Service) to monitor TED’s on shrimping boats. He also participates in outreach programs educating fishermen in measuring their nets for TED’s, installing them. Warren will bring TED’s and nets to make sure that every everyone at the training has a hands on experience installing them. While he regularly does outreach in Alabama, Mississippi, Florida, Georgia, North Carolina and Texas, his work has also taken him as far as Brazil.

Robin Gropp:

Robin playing his mandolin
Robin playing his mandolin

Robin will be a junior at Lewis & Clark College in the Fall. He is currently an intern aboard the Oregon II. Robin received a diversity internship through the Northern Gulf Institute and is one of eight interns for NOAA. For the first two weeks Robin worked at the NOAA lab participating in outreach at elementary school science fairs. He brought sea turtle shells and a shrimp net with a TED installed. The students were very excited to pretend to be sea turtle and run through the TED. They proclaimed, “we love sea turtles.”  After leaving the Oregon II, Robin will return to the NOAA lab to study the DNA of sharks.

 

Personal Log:

Overall I have had a hard time processing and accepting the groundfish survey portion of the trip. I am a vegetarian that does not eat meat, including fish, for ethical and environmental reasons. Yet here I find myself on a boat in the Gulf of Mexico surveying groundfish so that others can eat shrimp. A large part of me feels that I should be protesting the survey rather than assisting. Because of this I spent a lot of time talking to the other scientists on my watch and Chief Scientist Andre Debose. After many discussions (some still ongoing) I do realize how important the groundfish survey is. Without it, there would be no limits placed on the fishing industry and it is likely that many populations of marine organisms would be hunted to extinction more rapidly than they are now. This survey actually gives the shrimp species a chance at survival.

Did You Know?

Countries that do not use TED’s are banned from selling their shrimp to the U.S.

Carol Schnaiter: Our First Day of Work, June 10, 2014

NOAA Teacher at Sea

Carol Schnaiter

Aboard NOAA Ship Oregon II

June 6 – 21, 2014

Mission: SEAMAP Summer Groundfish Survey

Gulf of Mexico

June 10-11, 2014

South wind  10 to 15 knots

Seas (waves) 3 to 4 feet

Partly cloudy

My home away from home for a few weeks!
My home away from home for a few weeks!

Science and Technology Log

On June 9th we arrived at our first station. There are over 120 stations on this survey in the Gulf of Mexico. Unfortunately I was not able to participate in the first station. (More on that later)

When we arrive at the station the ship’s crew is very busy. The deck crew put trawling nets into the water and down to the bottom to catch fish, shrimp, and other organisms. Once these nets are back at the surface the crew uses cranes to lift them to the deck where the scientists can work on the catch. When the nets are in the water the ship must slow down, so the nets do not rip.

After the nets are raised the organisms collected in the nets are emptied into buckets. The scientists then weigh the buckets on a scale. To make sure they are only weighing the organisms, they first weigh the bucket when it is empty.

Weighing the catch
The basket must be weighed before we sort it.

Next everything goes into the “wet” lab. It is called a wet lab because this area has water available and it is where the organisms are poured out on to a long conveyor belt, sorted, and washed off.

Catch on the conveyor belt
Everything is poured onto the conveyor belt to be sorted.

First, everything is sorted by species. Then everything is counted, measured, weighed, and sometimes the gender and maturity are calculated. All of this is recorded into computers.

Some of the species are very tiny and others are large, but everything is counted.  Many of them look alike so the scientists need to be careful when sorting everything.

The scientists on the Oregon II know many of the names of what they catch, but they also use books, charts, and the computer to look up information to make sure.

Sometimes someone in the lab back on shore may be doing research on a certain species and if that species is found it will be tagged, bagged and sent back to the lab.

The CTD’s and bongo net tows are conducted from the forward well deck (check the first blog if you forgot what those do).

The bongo nets are used to collect ichthyoplankton and so the mesh on these nets is very tight, sometimes as small as 0.333 millimeters. These samples are placed into jars and will be examined back in the lab on land later.

Material from bongo net
This is what we collect using the bongo nets. Photo by Chrissy Stepongzi

By time everything is finished, it is time for the next station and everything starts over again.

The work that the Oregon II does is very important. This survey has been conducted twice a year since the early 1970’s and the information collected can show the scientists what is happening under the surface of the water.

The survey helps to monitor the population and health of everything, plus shows any interactions with the environment that may be happening.

Personal Log:

You may have noticed that I mentioned I could not participate in most of the first day’s work, I was seasick and I spent a lot of time in my stateroom.

State Room
State Room

Thank goodness for the medics and Chief Steward on the ship. Walter, the Chief Steward, sliced up fresh ginger for me to suck on, while Officer Rachel Pryor gave me sugar coated ginger to chew on.

The two trained medics, Lead Fisherman Chris and Fisherman James, both were great help and were all very concerned. Kim, the lead scientist, and my bunk mate, Chrissy, checked in on me throughout the night. I am so grateful for everyone that helped. I am now drinking a lot of water and Gatorade to stay hydrated.

As soon as I felt better I was able to help in the wet lab by sorting, counting, weighing, and measuring organisms that were pulled up. We found some really cool things, like this Atlantic Sharpnose shark that Robin Gropp is holding.

Atlantic Sharpnose Shark
Atlantic Sharpnose Shark

The Atlantic Sharpnose Shark can grow to be 3.9 feet long and can live 10-12 years. It is a relatively small shark, compared to others.

The Common Terns (seabirds) follow the ship when we are trawling hoping to find a free meal. They sit on the ship’s rig that holds the nets waiting for food. The Common Tern is the most widespread tern and can be found by many large bodies of water. They are mostly white with a little black.

Common Terns waiting for dinner!
Common Terns waiting for dinner!

Taniya Wallace and Andre Debose are the two scientists on the night shift (midnight to noon) and they are extremely knowledgeable and explain everything to me. I am learning a lot of new words and I am even getting better at telling one fish from another.

Andre and Taniya holding the stingray.
Andre and Taniya holding the stingray.

The Southern Stingray that Andre is holding is just one of the amazing creatures we caught. We also brought up a Blackedge moray, a Texas Clearnose Skate, a sea hare, red snapper, jellyfish, pufferfish, sea horse, and many more. I can’t wait to share all of my photos next school year!

He may not look dangerous, but he could really hurt you!
He may not look dangerous, but he could really hurt you!

I am working the midnight to noon shift and it is strange to “wake-up” at midnight and eat supper (the cooks save a plate if you ask) and then go to work. Again, the food is wonderful. Last night I had the best prime rib and mashed potatoes!

Everyone on the ship is so helpful and friendly. I enjoy listening to where everyone is from and why they decided to make the Oregon II their home.

On the Oregon II
Here I am enjoying the beautiful view from the bow. Photo by Rebecca Rosado

Crystal Davis, Introduction, June 1, 2014

NOAA Teacher at Sea

Crystal Davis

(Almost) Aboard NOAA Ship Oregon II

June 23 – July 6, 2014

 

Mission: SEAMAP Summer Groundfish Survey 
Geographical Area of Cruise: Gulf of Mexico
Date: June 1, 2014

Personal Log

Hello from gorgeous and sunny Southern California. My name is Crystal Davis and I am finishing my tenth year of teaching and my fifth year at Hawthorne Math and Science Academy. I currently teach Advanced Placement Environmental Science, Anatomy and Physiology and Biology.

Backpacking in the Sierras
Backpacking in the Sierras

As an environmental science teacher it is important that I make connections between the classroom and current events that are occurring on our planet. For this reason I chose to apply to become a NOAA Teacher at Sea. My students spend a significant portion of their year studying the ocean and atmosphere and the various ways humans impact these systems. I want to bring current research into my classroom and encourage my students to develop an interest in pursuing careers in research as they deepen their understanding of their actions on our planet.

I am excited to begin my cruise in three weeks when I set sail on June 22nd on NOAA Ship Oregon II. We will be conducting bottom trawls to survey the abundance and distribution of shrimp in the Gulf of Mexico.  This method of sampling is something I teach in class and I am so happy to take part in the action and get an up front view of what it entails.

Being onboard a ship will be a significant difference from a normal day of rock climbing and backpacking with my friends in WTC and hiking with my two chihuahuas (Comet and Dasher).

Dasher and Comet hiking Mount Wilson
Dasher and Comet hiking Mount Wilson

Amie Ell: Fireworks, Fish, and Flukes, July 6, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
June 30 – July 21, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Gulf of Alaska
Date: July 6th, 2013

Location Data from the Bridge:
Latitude: 55.29.300 N
Longitude: 156.25.200 W
Ship speed:   10.7 kn

Weather Data from the Bridge:
Air temperature: 8.6 degrees Centigrade
Surface water temperature: 8.6 degrees Centigrade
Wind speed:  14 kn
Wind direction: 210 degrees
Barometric pressure: 1008.5 mb

Science and Technology Log:

The Oscar Dyson is equipped with several labs to accommodate the researchers on board.  In this blog post I will describe to you what is happening in the wet/fish lab.  This is where I have experienced quite a bit of hands-on data collection.

Pollock being separated on the conveyor belt.
Pollock being separated on the conveyor belt.
Basket full of pollock.
Basket full of pollock.

After a trawl, the crew dumps the load of  fish into a bin.  Inside the lab we can raise or lower this bin to control the amount of fish coming onto a conveyor belt.  Once the fish are on the belt the scientists decide how they will be separated.   We separate the pollock according to age into baskets.  They are categorized by size; under 20 cm (age 1), under 30 cm (age 2), and any larger than 30 cm

OLYMPUS DIGITAL CAMERA
A lumpsucker
A basket full of small squid
A basket full of small squid

At this time we also pull out any other sea creatures that are not pollock.  So far we have pulled up quite a few jelly fish, la lumpsucker, shrimp, squid, eulachon, and capelin.  These are also weighed, measured, and in some cases frozen per request of scientists not currently on board.

Larger squid.
Larger squid.

After organizing the pollock into appropriate age groups, we then measure and record their weight in bulk.  Scientists are using a scale attached to a touch screen computer with a program called CLAMS to record this information.  The pollock are then dumped into a stainless steel bin where their sex will be determined.  In order to do this the fish must be cut open to look for “boy parts, or girl parts”.   After the pollock are separated into female and male bins we begin to measure their length.

This is the tool used for measuring length of the fish.
This is the tool used for measuring length of the fish.

The tool used to measure length is called the Ichthystick.  This tool is connected to the CLAMS computer system.  The fish is placed on the Ichthystick and a pointer with a magnet in it is placed at the tail end of the fish.  There are three different types of length measurement that can be done: fork length, standard length, and total length.  When the magnetic pointer touches the Ichthystick it senses that length and sends the information to the CLAMS computer system.

OLYMPUS DIGITAL CAMERA
Northern shrimp

One of these bins of fish is placed aside for individual weighing, length measurements, and removal of otoliths.  You may recall that I mentioned otoliths in the last blog post.  These ear bones are sent to a lab and analyzed to determine the age of each of these individually measured fish.  The Alaska Fisheries Science Center has created a demonstration program where you can try to determine the age of different types of fish by looking at their otoliths. Click here to try it yourself! (I will add hyperlink to: http://www.afsc.noaa.gov/refm/age/interactive.htm)

Personal Log:

Ben and Brian in fire gear  with flares.
Ben and Brian in fire gear with flares.

One afternoon while waiting for the fishermen to bring up the trawl net, I watched a group of porpoises swimming behind the ship.  Another day I was able to see whales from up on the bridge.  These were pretty far out and required binoculars to see any detail.  I observed many spouts, saw one breach, and some flukes as well.

There is quite a bit of downtime for me on the ship while I am waiting in between trawls.  I get to read a lot and watch movies in my free time.  I have had the opportunity to talk with different members of the crew and learn about their roles a bit.  The chief engineer gave me a tour of the engine rooms (more about this with pictures in a future post.)

The 4th of July fireworks show on the Oscar Dyson was like no others I have ever experienced.  Two of our crew, Ben & Brian, dressed in official fire gear shot expired flares off the ship into the sea.  America themed music was played over the PA system.  I have attached a video of our fireworks display.  Happy Independence Day everyone!

Sarah Boehm: Shrimp Galore, June 30, 2013

NOAA Teacher at Sea
Sarah Boehm
Aboard NOAA Ship Oregon II
June 23 – July 7, 2013 

Mission: Summer Groundfish Survey
Geographic area of cruise: Gulf of Mexico
Date: June 30, 2013

Weather at 20:40
Air temperature: 29.8 °C (85.64° F)
Barometer: 1007 mb
Humidity: 65   %
Wind direction:  221 °
Wind speed: 8.4  knots
Water temp: 29.2° C
Latitude: 29.05° N
Longitud: 88.69 ° W

Science and Technology Log

I have been on board for a week now and have learned a lot about the fish of the Gulf of Mexico. We have collected data on over 300 different species at 129 trawl stations So what happens with all this data?

Our work out here is part of SEAMAP – South East Area Monitoring and Assessment Program – a joint venture between NOAA and the states to better understand the populations of fish and invertebrates along the coast of the Gulf and Atlantic. The information we are collecting on Oregon II is combined with the data from other ships that do surveys in closer to land. The groundfish surveys began in the 1950s and happen each summer and fall. All this data tells a story of each species – how many individuals there are, how big they are, and where they prefer to live. This information can then be used to better manage the fishing industry so that marine populations stay strong.

We gather data about every species we pull up in our nets, but we pay special attention to the ones that are fished commercially like shrimp and red snapper. There are several shrimp species out here, but one we see a lot of is the brown shrimp.

Brown Shrimp
Brown Shrimp

The brown shrimp are found from Massachusetts to the Gulf. They live for about 1 ½ years and can be up to 7 inches long. Their lives start as eggs deep in the waters of the Gulf and Atlantic. After they hatch, tiny baby shrimp float in to the shallow water of estuaries (coastal areas where fresh river water mixes with sea water). They grow larger in the protected waters of the estuaries and eventually migrate out into deeper, saltier water.  They live on the bottom of the sea, moving out farther into deeper water as they grow larger. You can learn more about brown shrimp on NOAA’s Fish Watch website.

For most species we haul in we record length on up to 20 individuals, and weight and sex for only every 5th individual. But for brown shrimp we measure the length, weight and sex of up to 200 individuals. Sometimes we pull up a lot of shrimp like the 419 brown shrimp in just one trawl last night. To tell male from female you flip the shrimp over and check the spot in between its walking legs (in front) and swimming legs (in back).  A female has a wider plate. A male has extra fuzzy bits on the inside of the front swimming legs.

Male and Female Shrimp
The shrimp on the left is a female and the one on the right is male.

Shrimp fishing is a big industry here in the Gulf. Last year 221 million pounds of shrimp were taken by fishing boats from the states along the Gulf. Commercial fishing boats use similar nets to ours, but they are larger and trawl underwater for much longer. Just like we pull up many fish in addition to shrimp, shrimping boats have a large bycatch. Part of our research is to monitor the bycatch species to help make management decisions that protect them, too. NOAA works with the fishing industry to develop nets with Bycatch Reduction Devices that allow unwanted fish to escape.

shrimp boat
A fishing boat trawling for shrimp

Let me answer a few more student questions. Jared, we don’t wear lab coats; we mostly wear old t-shirts and shorts that definitely get wet, muddy and slimy working with the fish. A lab coat would help keep me clean, but it is hot and humid in our lab and the extra layer would be uncomfortable. Sabrina, we have found some plastic and other trash in the water, but have not seen any animals tangled in it. Deliana, we do all our work from the ship, so we don’t swim underwater with the fish. When they do surveys of reef fish earlier in the year they send a video camera underwater to learn more about the fish, but the scientists still stay on board.

silver fish
Clockwise from top: Rough Scad, Silver Jenny, Dusky Anchovy, Long Spine Porgy
brown fish
Shoal Flounder on the left and Big Eye Sea Robin on the right

Julissa asked about colors of our fish. Most of our fish come in two colors – silver or brown. We catch fish that live on the bottom of the sea or swim near the bottom and these colors help them camouflage with the sand and mud. But there are some that have splashes of color.

Dwarf Goatfish
Dwarf Goatfish
Lesser Blue Crab
Lesser Blue Crab

Personal Log

Several students had questions about food on board, so let me reassure you I am eating well.

the stewards
Stewards Walter and Lydell

The two stewards on board, Walter and Lydell, are responsible for feeding 30 people on board. The food is good, plentiful and there are several options at each meal. One challenge is that people on board are working different schedules and can’t always make meal times. If you ask ahead of time, they will save you a plate of food for later. There are also snacks and sandwich fixings available all the time. To give you an idea of what I am eating, yesterday I had a freshly baked muffin and juice for breakfast, a chicken fajita and Mexican veggies for lunch, fried rice, stir fry and a salad for dinner, and then some ice cream with fruit for a late night snack.

How much food does it take to feed 30 people for 2 weeks? Walter gave me a few numbers for this trip: 80 pounds of chicken, 35 dozen eggs, 100 pounds of potatoes, 12 gallons of ice cream, and a whole lot of coffee. Jennixa wondered what would happen if we ran out of food – the answer is that we would head back to land and buy more. But I’m pretty sure Walter has enough on board. Damian asked if we eat what we catch – and yes, some of the shrimp and red snapper have gone to the galley after being measured.  They were delicious.

CDCPS science students – How are the colors of fish an adaptation to survival?

sunset
sunset

Patty McGinnis: Women Scientists on the Ocean Starr, May 27, 2013

NOAA Teacher at Sea
Patty McGinnis
Aboard R/V Ocean Starr
May 20 – 29, 2013

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Point Reyes, CA
Date: Monday, May 27, 2013

Weather Data from the Bridge
Latitude: 38 09.465 ° N
Longitude: 123 01.204 ° W
Air Temperature: 10.2 Celsius
Wind Speed: 17 knots
Wind Direction: North
Surface Water Temperature:  9.8 Celsius
Weather conditions: clear

Science and Technology Log

If you had asked me ahead of time to predict the percentage of males and females aboard the Ocean Starr, I would have surmised that males would make up the majority. While it is true that most of the crew is male, my scientist co-workers are primarily female.

Lyndsey
Lyndsey is dressed to go out on deck

Lyndsey Lefebvre is a fisheries biologist who works for the Groundfish Analysis Team. Her primary job is to study the age and growth of rockfish and flatfish species such as sanddabs to support fishery assessments. Lyndsey ages fish by removing their ear bones, or otoliths. Otoliths contain annual rings, much like a tree. The ear bones are prepared by breaking them in half and holding them over an open flame to darken them; the rings are tiny so a microscope is required to count the rings. Lyndsey explains that this work is important because studying the age structure of a population over time can yield insights into the population’s health. Fish populations that are heavily fished tend to be smaller and younger. Lyndsey is also concerned with reproductive biology such as when and how frequently fish spawn. She studies the blackgill rockfish, a long-lived fish that has internal fertilization. Females give birth to live young once a year, but Lyndsey is trying to determine if a female’s health or environmental conditions impact the numbers of young produced. In contrast, the Pacific sanddab releases eggs on a daily basis for up to six months of the year. Lyndsey says that although she enjoys field work, that about 90% of her work is microscope work done in the laboratory. She likes to listen to audio books or music to help pass the time. Lyndsey says that being a fisheries biologist is a great career. If you think you are interested in such a career, try volunteering doing any type of naturalist work and make as many contacts as you can.

Amber
Amber shows a squid jig

One of NOAA’s better kept secrets is the NOAA Corps. The Corps, which is run by the Department of Commerce, consists of approximately 340 commissioned officers who are involved in operating one of NOAA’s ships or piloting a NOAA plane. Amber Payne has been in the NOAA Corps since she graduated four years ago with a degree in marine biology from Eckerd College in St. Petersburg, Florida. Amber first became interested in working on marine vessels through her involvement with a Search and Rescue extracurricular club while in college. She considered entering the Coast Guard, but was drawn to the NOAA Corps because it requires a science background. Amber enjoys the many opportunities the Corps has provided, including training and traveling. She recently obtained a 1600 ton Mate’s License which will enable her to work for a private company if she ever decides to leave the Corps. Amber is currently on shore duty as operations officer at the Fisheries Ecology Division which is part of NOAA’s Southwest Fisheries Science Center. In addition to running the Small Boats Program, Amber helps out Lyndsey in the fisheries lab. Recently Amber took a freshly-caught Humboldt squid to an elementary school where she dissected it for the students. She’s pictured above holding a contraption known as a “squid jig” that is used to catch Humboldt squid. Amber’s words of wisdom: always carry a knife and a flashlight with you when on a boat!

Jamie Lee works the day shift so I don’t see much her except at meals. She smiles delightfully as she tells me that her interest in oceanography sprang from watching “Finding Nemo” as a child.

Jamie
Jamie at work in her floating lab

Jamie is currently a graduate student at San Francisco State University; she attended Stonybrook University in New York as an undergraduate. This is Jamie’s first time on a boat and she is unfazed by its ceaseless motion. Her role on this mission is to assess chlorophyll levels. Chlorophyll is used as an indicator of primary productivity, which dictates how much food is available for ocean organisms. Jamie takes the water samples collected by the CTD and pours the water through a filter to extract chlorophyll from all the phytoplankton in the sample. Jamie tells me that this work must be conducted in subdued light to prevent the chlorophyll from degrading and giving an incorrect reading. The filter paper, which contains the extracted chlorophyll, is then stored in a glass tube or folded in half and put in aluminum foil until it is ready to be read by a fluorometer back at the university lab. I asked Jamie why she is interested in studying phytoplankton, rather than fish or marine mammals. She explains that phytoplankton, although tiny, are the crucial element upon which all the ocean relies.

Kaia
Kaia sorts krill

Kaia Colestock is a volunteer who free-lances as a wildlife biologist. Kaia has been assisting Lyndsey in the fisheries lab with counting fish eggs present in adult sanddabs. This reproductive ecology study will help to determine if the sanddab fishery is doing well. Kaia earned her undergraduate degree in fisheries wildlife from Michigan State University and her masters in ecology from Utah State. Kaia has participated in a number of wildlife studies over the years, but her favorite is when she had an opportunity to fly aerial surveys for wading birds in the Everglades with supplementary surveys via airboats.  Kaia recommends her career to anyone who likes spending their time outdoors and says that perseverance, motivation, dedication, and being a good critical thinker are important qualities for someone who works as a wildlife biologist. She recommends acquiring special skills related to math, engineering, or physics. Places that hire wildlife biologists such as Kaia include federal agencies such as the U.S. Fish and Wildlife Service, state agencies, and non-profit agencies. This is Kaia’s first time on a ship and she is enjoying seeing seabirds during the day and watching how the CTD is deployed.

Brianna
Brianna preserves krill for future studies

Krill biologist Brianna Michaeud earned her undergraduate degree in marine biology from the University of California Santa Cruz. Brianna plans to pursue a master’s degree beginning this fall at Nova Southeastern University in Fort Lauderdale, Florida. Brianna enjoys working with krill because of krill’s vital function to the ocean’s food web. Brianna enjoys being on the ocean and seeing what is caught during the trawls. She works for the Long Marine Laboratories, which is affiliated with UCSC. All the data she is collecting will be shared with NOAA scientists. Brianna’s role on this trip is to collect and preserve samples of krill that are collected in both the bongo net and the trawl net. The bongo net is actually two nets that lie parallel to each other; they are designed to remove the effects of the bridles found on regular ring nets. For organisms as small as plankton, the pressure waves produced by the bridles, or connecting cables, can push them away from the net.  The bongo net is made up of a much smaller mesh than the trawl net, so it is capable of capturing the juvenile krill that tend to escape the trawl net. The entire haul from the bongo net is kept in a jar of preservative. Once back at the lab, Brianna will go through the jar to identify the various krill species and obtain a sex ratio for each species. Brianna also preserves 200 milliliters of krill from each of the trawls for later use. Once at the lab, she will count out 100 individuals of the dominant krill species and 50 individuals from the second most dominant.  She’ll then measure each individual, identify how many are gravid (contain eggs), and obtain a sex ratio. Brianna says that marine biology is a “great career” and recommends that students interested in this career take classes in statistics, biology, and chemistry. She also recommends volunteering in laboratories, assisting with beach clean-ups, and reading about oceanography.

sophie
Sophie scans the water and air for the presence of birds

The research conducted this week extends beyond the waters; biologist Sophie Webb is onboard to document sightings of seabirds and marine mammals. Sophie is one of only three scientists who work the day shift. One glance at Sophie informs you that her site is one where she is exposed to the elements. You’ll find Sophie on the uppermost level of the ship where she sits with her binoculars and a computer recording data all day. Her job is not for the timid; the wind blowing off the Pacific Ocean is cold and she has little company other than the wildlife she is documenting.  Sophie is no stranger to this type of work; she has conducted this research project seven or eight times previously and has also participated in several five month cruises in the Eastern Tropical Pacific (Hawaii,  Mexico and Central America). Currently Sophie is recording all birds seen in a 300-meter strip seen off one side of the ship. She records the species and basic behavior, such as whether the bird is flying, sitting, or feeding. The black-footed albatross is notorious for following the boat, necessitating Sophie to carefully observe so that the bird is not counted more than once. All the information Sophie collects is recorded into a computer program that is hooked into a GPS unit that updates several times a minute. Sophie shares with me that she is also an illustrator and has authored several children’s books such as Far from Shore, Chronicles of an Open Ocean Voyage and Looking for Seabirds. If you are interested in a career like Sophie’s, she recommends that students obtain advanced degrees in biology and volunteer as much as they can to obtain experience.

Personal Log

It has been amazing to see how quickly the night shift has formed into a team. Everyone works together when the trawl is pulled up to sort, identify, and record the information as efficiently as possible.  I find it interesting to see the variety of organisms we are obtaining in the trawls; tonight some of our catches mainly consisted mainly of shrimp and smelt.

Keith
Chief Scientist Keith Sakuma displays the results of a haul
shrimp and smelt
Shrimp and smelt

I also continue to be enthralled with the odd looking creatures that the trawls yield. Last night I saw an eel larva. Its body, almost impossibly thin, was gelatinous to the touch. A tiny eye and mouth were the only things that made it recognizable as an animal. When I held it up to the light its many bones became obvious. Even odder was the Phronima, a creature reported to have been the impetus behind the creature in the Alien movies. I also got to hold an octopus in my hand—I could feel the animal’s tiny suckers pulling on my skin. The octopus was returned to its home after the photo op.

eel larva
The bones are visible in this transparent eel larva
Phronima
This cool creature, Phronima, was the inspiration for the creature in the movie “Alien”
octopus
Check out this octopus

Did You Know?

That adult krill have the unique ability to actually shrink in size after a molt if food resources are scarce?

Andrea Schmuttermair: Collecting Data, June 30, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: June 30, 2012

Ship  Data from the Bridge
Latitude: 2830.05N
Longitude: 8955.4W
Speed: 10 knots
Wind Speed: 7.11
Wind Direction: S/SW
Surface Water Salinity: 29.3
Air Temperature: 28.4C
Relative Humidity: 63%
Barometric Pressure: 1012 mb
Water Depth: 257.19m

Don’t forget to follow the Oregon II at: www.shiptracker.noaa.gov

Science and Technology Log

fish board
This is the fish board we use for measuring each critter in our sample.

Now that we’ve talked about how we collect, sort, and measure our catch, let’s take a closer look at the way we measure, weigh and sex our critters.

When measuring the critters, we use a fish board that is activated by a magnetic wand to measure the animal to the nearest millimeter.

When the fish is placed on the measuring line, we touch the magnetic wand to the board and the length is recorded into our computer program, FSCS (Fisheries Scientific Computer System).

Depending on the type of fish we catch, there are different ways to measure it.

scorpion fish total legnth
Here is Alex measuring the total length of our scorpion fish.
total length measurement
This is how we would measure a fish for its standard length, which is just before the tail fin starts.
fork length measure
This is how we would measure a fish for its fork length.
Cutlass measuring
For fish such as this cutlassfish, we measure the length from the head down to the anus, as seen here on the board.

When we are done measuring, the fish is placed on a scale to determine its weight to the nearest gram. When we confirm the weight of the fish, that weight is automatically put in the computer for us- no need to enter it manually.

Our last task is to determine the sex of the fish. For many fish, this is done by making an incision in the belly of the fish from their anus to their pelvic fins. It’s easiest to determine the sex when it is a female with eggs. In the males, you can see milt, or sperm, which is a milky white color.

male fish
This is a male fish. Notice the arrow pointing to the testes.
female fish
Here we have a female fish.

For the flatfish, you can see the female’s ovaries when you hold the fish up to the light. Males lack this feature.

male flat fish
This is a male flat fish.
female flat fish
Here we have a female flat fish- notice her gonads.

Because we were catching quite a few shrimp earlier in the leg, I got pretty good at sexing the shrimp. Remember, we take samples of 200 for each type of shrimp, and we often had more than one type of shrimp in each trawl. Male shrimp have a pestama on their first pleura to attach onto the females. The females are lacking this part. Although it’s not necessarily an indication of sex, on average the female shrimp tend to be larger than the males.

male shrimp
Here is a male shrimp.
female shrimp
Here we have a female shrimp, which is lacking a pestama.

You  know from my previous post what we do with the data we gather from the shrimp, but what about the other fish? With the other fish and critters we catch, we use the data to compare the distribution across the Gulf and to compare it to the historical data we’ve collected in the past to look for trends and changes.

Sometimes scientists also have special requests for samples of a certain species. Some scientists are doing diet studies to learn more about what certain types of fish eat.  Other studies include: species verification, geographic range extensions, age and growth, and distribution. Through our program, we have the ability to create tags for the scientists requesting the samples, allowing us to bag and freeze them to send to labs when we return to land.

showers
There are 2 communal showers for our use on the bottom deck.

Personal Log

I’ve had a few people ask me what the living quarters and the food is like on the ship, so I wandered around the ship with my camera the other day to snap some shots of the inside of the Oregon II. There are 17 staterooms on board. Most of the staterooms are doubles, such as mine, and are equipped with bunk beds to sleep on. It makes me reminisce of my days at camp, as it’s been a while since I’ve slept on a bunk bed! We have a sink and some cabinets to store our belongings. Once a week they do room inspections to ensure our rooms are neat and orderly. Most importantly, they want to make sure that our belongings are put away. If we hit rough waters, something such as a water bottle could become a dangerous projectile.

Walter, doing what he loves

My stateroom is on the bottom deck, where there are also communal showers and toilets for us to use. We can do our laundry down here, providing the seas aren’t too rough. Most of the staterooms are on this bottom deck, as the upper 2 levels are the “living areas” of the ship. On the main deck is the galley, where we eat all our meals, or where we head to when we are trying to make it through the shift to grab a snack or a cup of coffee. This tends to be right around 4:30/5:00am for me, especially when we aren’t too busy. I’ve gotten used to the night shift now, but it still can be tiring, especially when we have a long wait in between stations. Our stewards take very good care of us, and there is always something to snack on. Meals have been pretty tasty too, with plenty of fresh seafood. My favorite!

chart room
Junie, one of the NOAA Corps officers, working in the chart room on the navigational charts

On the top deck we have the lounge, a place where we hang out in between shifts. We have quite a good movie selection on board, but to be honest we haven’t had the time to take advantage of it. They’ve kept us very busy on our shifts so far, and today is one of the first days we’ve had a lot of downtime. Outside we also have some workout equipment- a bike and a rowing machine- to use on our off time. When you set the rowing machine out on deck, it’s almost like you are rowing right on the ocean!

dive
LT Harris, LT Miller, and Chris getting ready for the dive. Jeff and Reggie help them prepare.

The other day, 2 of the NOAA Corps officers, LT Harris and LT Miller (who is also the XO for the Oregon II) and 2 of the deck crew, Chris and Tim, got ready to go out on a dive. NOAA Corps officers need to do a dive once a month to keep up their certification. Sometimes they may need to fix something that is wrong with the boat, and other dives are to practice certain dive skills. They dove in the Flower Gardens, which is a national marine sanctuary with a wide diversity of sea life. I was hoping they’d see a whale shark, but no such luck. We stopped all operations for the duration of their dive.

Favorite Catch of the Day: Here are a few cool critters we pulled up today. In addition to these critters, we also started seeing some sea stars, lots of scallops, and a variety of shells.

angel shark
An angel shark
jelly soup
How about some jelly soup?
(there are about 500 jellies in there!)
large flounder
Southern Flounder
roundel skate
A roundel skate

Critter Query: This isn’t a critter question today, but rather a little bit of NOAA trivia. 

What is the oldest ship in the NOAA fleet and where is its home port?

Don’t forget to leave your answers in the comments below!

Andrea Schmuttermair: Tows Away! June 26, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: June 26, 2012 

Ship  Data from the Bridge:
Latitude:  2805.26N
Longitude: 9234.19W
Speed:  10mph
Wind Speed:  5.86 knots
Wind Direction:   E/SE
Surface Water Salinity:  35.867 PPT
Air Temperature:  28.8 C
Relative Humidity: 86%
Barometric Pressure:  1010.51 mb
Water Depth:  96.5 m

Science and Technology Log


Sunrise
Sunrise on the Oregon II

Opisthonema oglinum, Lagadon rhomboides, Chloroscombus chrysurus…..yes, I have officially started dreaming about taxonomic names of our fish. It’s day 4 and I now have a much better grasp at identifying the variety of critters we pull up in our trawls. I am always excited to be out on deck when they bring up the trawl to see what interesting critters we catch. Surprises are great!

Do you want to know where the Oregon II is headed?

Check out Ship Tracker at http://shiptracker.noaa.gov/

If you click on the link above, you can see the path that our ship is taking to hit all of our stations for the survey. We often have station after station to hit- meaning as soon as we are done sorting and measuring, we have to bring in the next catch. Because some stations are only 3-5 miles apart, we sometimes have to do “double dips”, where we put in the trawl for 30 minutes, pull it up, and put it right back in again.

It’s been interesting to note the variety of our catches. Croakers, bumperfish, and shrimp have been in high abundance the last 2 days as we were in shallower water. Before that we had a couple of catches that had a high abundance of pinfish. When we take our subsample, we typically enter data for up to 20 of that particular species. We take length measurements on each fish, and on every fifth fish. We will also weigh and sex it (if sexing is possible).

Shrimp in the Gulf
A comparison of the various sizes of shrimp we pull up from our trawls.
Shrimp waiting to be measures
A relatively small catch in comparison to the 200+ we’ve been pulling up recently.

When we were in shallower waters, we had a significant increase in the number of shrimp we brought up. Tuesday morning was the first catch that did not have well over 200 shrimp (this is because we’ve been moving into deeper waters).  For the 3 commercial shrimp, white (farfantepenaeus setiferus), pink (farfantepenaeus duorarum), and brown (farfantepenaeus aztecus), we take 200 samples, as opposed to our high-quantity fish, where we will only take 20 samples. For each of the commercial shrimp we catch, we measure, weigh and sex each shrimp. I’ve gotten very good at identifying the sex of shrimp- some of the fish are much more difficult to tell. The information we get from this survey will determine the amount of shrimp that boats can take during the shrimping season in Louisiana and Mississippi. During the first leg of the groundfish survey, the data collected determined the amount of shrimp that could be caught in Texas. The groundfish survey is crucial for the shrimping industry and for ensuring that shrimp are not overfished.

Students- think of the food chain. What would happen if we overfished and took out too many shrimp? (Hint: Think of predators and prey.)

Sunrise
The trawl net at sunrise

We’ve now started doing 2 different tows  in addition to our trawls. Some of the stations are trawl stations, whereas others are plankton stations.

The trawl on deck
Alex, Alonzo and Reggie unloading the trawl net.

At a trawl station, we lower the trawl from the stern down to the ocean floor. The trawl net is meant for catching larger critters that live at the bottom of the ocean. There is a chain, also known as a “tickler”, which moves lightly across the ocean floor to lure fish to leave their hiding spots and swim into our net. The trawl is down for 30 minutes, after which it is brought back on deck to weigh the total catch, and then brought back into the wet lab for sorting.

Another important mission of the groundfish survey is to collect plankton samples. To do this, we use a Neuston tow and a bongo tow.

neuston tow
The Neuston tow about to pick up a lot of Sargassum- oh no!

The Neuston tow has a large, rectangular frame with a fine mesh net attached to it. At the end of the net is a large cylindrical bucket, called a codend, with a mesh screen meant for catching the organisms. In comparison to the trawl net, which has openings of 41.4mm , the Neuston’s mesh is only 0.947mm. This means the mesh is significantly finer, meant for catching some of the smaller critters and plankton that would otherwise escape the trawl net. The Neuston tow is put on the surface of the water and towed for 10 minutes. Half the tow is in the water while half is out. We end up picking up a lot of Sargassum, or, seaweed, that is found floating at the water’s surface. When we gather a lot of Sargassum, we have to sift through it and spray it to get out any of the organisms that like to hide in their protective paradise.

Bongo tow
The bongo tow on deck waiting to be sent down to about 3m from the ocean floor.

After we’ve completed the Neuston tow, we do the bongo tow.  The bongo’s mesh is even finer than the Neuston tow’s mesh at only 0.333mm. The bongo has 2 parts- a left and a right bongo (and yes they do look a little like bongo drums- hence their name). The top part of the bongo is a large cylinder with an open bottom and top. The net is attached to this cylinder, and again at the bottom of each side is cylindrical tube  called codends meant to catch the plankton. The bongo tow is meant to take a sample from the entire water column. This means that instead of riding on the surface of the water, it gets sent down to about 3 meters from the ocean floor (there is a sensor at the top that is 2m from the bottom of the net)  and brought back up immediately.

Sifting through the sieve
The remnants from our Neuston tow. This is the sieve we use to weed out what we want and don’t want.
bongo leftover
Here are our 2 samples from the bongo tow. The left one is preserved in ethanol and the right is preserved in formaldehyde (10% formalin and sea water)
Neuston tow samples
Here is a sample from the Neuston tow. Carefully camouflaged are thousands of crab megalops, aka juvenille crabs.

For both tows, it is important to rinse the nets to get any lasting organisms we might not see with our own eyes into our sample. Once we’ve done this, we bring the tubes back into the wet lab where we continue to rinse them through a sieve so that only certain items are leftover. In the Neuston, we often find small fish (usually less than 3mm), baby shrimp, crabs and Jessica’s favorite, the Sargassum fish. Most recently a few flying fish got caught in our Neuston tow. Prior to pulling it up, I was enjoying watching them flit across the water- they were about all we could see in the water in the middle of the night. After being rinsed thoroughly through the sieve, we preserve them by placing the sample in a glass jar with either ethanol or formaldehyde solutions. They are preserved in ethanol for DNA work and in formaldehyde for long-term preservation. These samples are then saved to send to a lab in Poland, which is the sorting center for the SEAMAP samples.

Flying fish
Flying fish we pulled up in our Neuston tow at nighttime.

Personal Log

My stateroom
My sleeping quarters (top bunk), also known as a stateroom. My roommate is Kristin, one of the scientists on board.

Well, I think I am finally getting used to the schedule of working the night shift. I am thankful that my bunk is on the bottom floor of the ship- which means it is completely dark- so that I can sleep during the daytime. Yesterday was probably one of the least busy days we’ve had so far, and because we were in deeper waters, our trawls were much smaller. This means I had a little more time to work on my blogs, which at times can be hard to fit in. It amazes me that we have internet access on the ship, and it’s not even as slow as I expected. It goes down from time to time, especially when the waters are rough. We’ve been fortunate to have pretty calm waters, aside from the first day.

You may have heard about Hurricane Debby on the news as it prepared to hit the Gulf. On Sunday, we were heavily debating heading back to Galveston to “bunker down” and ride out the storm. However, the storm that was forming seemed to dissipate and head in a different direction, thank goodness.  I was not thrilled about the possibility of heading back to port!

We had our first drills the day after we set sail. The drills- fire and abandon ship are distinguished by different types of bells, similar to using Morse code. The abandon ship drill was fun. We got to put on our survival suit, which is like a big orange Gumby suit. It not only protects you in cold water, but also makes you highly visible. I remember reading some of the former TAS blogs, and this picture was always in. Of course, I’ve got to add mine as well.

Survival Suit
Here I am in my survival suit. Judd also decided to be in the picture. 🙂

I’ve been having fun exploring different areas of the ship, even though there is only so far you can go on the ship. Yesterday, I went up to the bridge, which is the front of the ship where the captain or the NOAA Corps officers steer the ship from. You can think of it like a control center of an airplane. There are navigation charts (both computerized and paper) and radars that help guide the ship so it knows what obstacles are out there. There is a great view from the bridge that you don’t get anywhere else on the ship. It’s also fun to watch the folks down on deck when they are deploying the CTD or either of the 2 tows.

We’ve caught such an abundance of critters, I thought I’d share some of my favorite catches thus far:

cownose ray
Here I am holding a cownose ray (Rhinoptera bonasus)- my favorite catch yet. He weighed about 25lbs! This one was the highlight of my day as rays are some of my favorite ocean critters!

Atlantic sharpnose shark
One of the 4 Atlantic sharpnose sharks (Rhizoprionodon terraenovae) we’ve caught so far.

Sharksucker
A sharksucker (Echeneis naucrates)- these guys hang onto sharks to catch a ride- he’s still alive so is able to hang onto my arm!

Critter Query Time!

Critter Query #1: What is a fathom (in your own words please)?

Critter Query #2: What are the differences between skates and rays?