Deb Novak: Sailing South, August 11, 2012

NOAA Teacher at Sea
Deb Novak
Aboard NOAA Ship Oregon II
August 10 – 25, 2012

Mission: Shark Longline Survey
Geographical Area of Cruise: Gulf of Mexico
Current Geographical Position: Traveling south along the east coast of Florida to move into position to start survey work.

Date: Saturday, August 11, 2012

Setting sail, you can almost see the Mayport Naval Base in the background

Weather Data from the Bridge:
Air temperature: 30.9 degrees C
Sea temperature: 28.9 degrees C
6/8ths cloud cover
10 miles of visibility
0-1 foot wave height

Science and Technology Log:

I spent time on the Bridge (where the Captain and Crew pilot the boat) this morning learning about the weather data collected and all of the gauges and levers and images that they use to guide us.  Captain Dave Nelson  was nice to share information with me while he did the important work of piloting.  He was being careful to not get to close to all of the small boats that were out on the water fishing and enjoying the beautiful day.  On the radar it looked like we were surrounded by about 20 boats, looking out the windows I could only see one. The radar technology helps extend the Captain’s view of the water so that all of the boats stay safe.

The Bridge Crew record the weather every hour of the day and night. The above readings are for 11:00 am.  27.1 degrees Celsius means it is warm out. It is about the same temperature here today as it is in Albuquerque.  The difference is that there is more moisture in the air in Florida. I’ve always called it muggy, when I feel a little bit damp all the time. The crew measures cloud cover by dividing the sky into 8 sections and seeing how much is covered by clouds.  5/8ths means more than half of the sky is covered.  Here on the water we can see pretty far out in all directions, which is called visibility.  0 visibility would mean that the boat is fogged or rained in and can’t see past the boat at all.  We have 10 miles of visibility which is pretty far.  The water is almost flat when I look at it, only a few ripples. The range of wave height is 0-1 foot, but what we are seeing is closer to zero.   Since waves are caused by wind, there can be different heights of waves at the same time so a range is used for the measurement, sharing the shortest and tallest of the waves.  Wind speed and direction are also recorded.  The wind monitor looks like two small, wingless airplanes up on  top of a mast.

Wind speed and direction are read on this device on the bridge.

Wind gauges on the mast show wind direction and wind speed

Personal Log:

Happy Birthday, Mom!  It’s my mom’s birthday and since we are along the coast of Florida (I can see the buildings along the shore), I was able to call on my cell phone to personally wish her well.  She was surprised!  I told her before I left  that I would not be available much since signals won’t work when we are out at sea. There is a satellite phone that works all of the time on board for emergencies. We are never completely out of contact, but people who work on a vessel go long periods of time without phones or internet.  Since we are still moving toward the place where we will start work, many people are spending time out on deck on their phones connecting with their families and friends. They know if they can see the tall buildings lining the shore  that they can call.

Since we are not going to be able to start the survey until we are past the Florida Keys and into the Gulf of Mexico, we spent time learning about NOAA Ship Oregon II and conducting safety drills.

Getting into the Full immersion suit

Personal Floatation Device properly cinched!

All suited up!

The safety drills will happen every week to make sure that everyone knows where to go and what to do, just like we practice Fire Drills and Lock-down Drills at school.  We have to listen carefully because there are different numbers and lengths to the alarm sounds and those sounds tell us where to go and what to bring.  The abandon ship code is  seven long tones.  I brought my immersion suit with me the middle outer deck and pulled it on.  It was like stuffing a sausage!  Although the air and water feel warm, they are much colder than the human body – which is about 98.7 degrees Fahrenheit or about 37 degrees Celsius.  If you look in the Weather Report above, I’d be really cold if I stayed in 28.8 degrees Celsius (~84 F) water for too long.  It would be perfect for swimming on a hot Florida day, but not if you are stuck in the water for several hours waiting for help…

NOAA Ship  Oregon II

A ship is like a city.  Everything that people need to live, stay safe and be happy needs to be provided.  William gave me a tour of the Engine rooms before we left Mayport.  Once the boat is underway, the engine rooms are very, very hot and super noisy.  The Engineers make sure to wear earplugs and drink lots of Gatorade to stay hydrated and keep their hearing. The engines are connected to a long shaft with gears (hey 1st and 4th graders, do you remember learning about simple machines last year?) which move the boat forward. There are two of everything on board so that if one breaks down there is a backup.   This is called redundancy.  For the really big pieces of equipment they need to be placed to balance the weight on the ship.  This leads to something you have studied in math, Symmetry.  Many places I look I see mirrored pairs of objects.  See if you can find the lines of symmetry in the following pictures.

Two engines in the Engine room below decks.

A waterproof hatch

Look for symmetry and balance on the bow.

I will be sharing more about NOAA Ship Oregon II, the people on board and surveying sharks later.  We will just keep heading south to the Gulf.

Kristy Weaver: The Sea is All I See, May 23, 2012

NOAA Teacher at Sea
Kristy Weaver
Aboard R/V Savannah
May 22, 2012-June 1, 2012

Mission: Reef Fish Survey
Geographical Location: Atlantic Ocean, off the coast of Savannah, GA
Date: May 23, 2012

Current Weather: 85 and Sunny

Hello from the Atlantic Ocean!  Right now we are about 75 miles off the coast of Savannah, GA.  and there is water all around me!  The last time we saw land was about an hour after we left the dock yesterday.

Sunset on our first night at sea

Before I left many of you asked that I be careful while I am out here.  I wanted to tell you that I am safe and that safety seems to be a very important part of being a scientist, especially when you are on a ship.  I took photographs of a lot of the safety equipment and information throughout the ship.  We even had a safety meeting before we went out to sea.  The first mate (he does a lot of work on the ship) showed us how to put on a survival suit, which is something you wear that covers your whole body and has a hood.  This suit will keep you warm and floating if something happens and you need to go into the water.

After the meeting we had a fire drill just like we have at school, except we didn’t leave the boat.  The captain (he is the leader of the ship) sounded the alarm and we all put on life vests and met on the deck.  The deck is the back of the ship–the part that is outside.  A life vest is also called a life jacket or life preserver.  A life vest is put on like a jacket, but it doesn’t have any sleeves.   It’s bright orange and gets buckled and tied around you so that you can float if you go in the water.  You can see a picture of me in my life vest in the safety video that I made.

Many children asked what type of marine life is in the water here.  Here is a list and pictures of the animals I have seen so far.

Scamp Grouper


Black Sea Bass

Black Sea Bass

Red Porgy

Red Porgy

After we empty the traps we sort the fish by family. Jennifer (a scientist) and I are sorting Red Porgy in this picture.

After we empty the traps we sort the fish by family. Jennifer (a scientist) and I are sorting Red Porgy in this picture.

The Red Snapper is the large pink fish. The black fish is a Shark Sucker.

If you look closely you can see that the Shark Sucker has a flat head with deep pockets on it that work like suction cups.

Spotted Dolphin

Spotted Dolphin

Gray Trigger Fish

One of the fishermen caught a shark with a fishing pole.  We had to get a picture of it quickly so that we could get it back into the water as soon as possible!

AND…to answer the #1 question that I have received…(drumroll please) YES!  Someone did catch a small shark today!

Did you know that you do things in science class that I have seen real scientists do  on this ship?  What things do you think you do that make you like a real scientist?  Check my next blog to find out how you already are a student scientist!

Kevin Sullivan: Awaiting Departure, August 20, 2011

NOAA Teacher at Sea
Kevin C. Sullivan
Aboard NOAA Ship Oscar Dyson
August 17 — September 2, 2011

Personal Log

I arrived into Kodiak Island late Wednesday night.  I came in around midnight local time, which  put my total travel time for the day somewhere in the 17-hour range!  Coupled with a time difference of 4 hours from the East Coast I was surely in need of some downtime.

After some rest, the next day I was able to explore a bit of Kodiak Island until the remaining crew came into town.   I went to the Kodiak Fisheries Research Center, as well as some local museums and other points of interest.  Despite the rain and fog, I walked around and really enjoyed the opportunity to explore in seclusion.  Later that evening, the rest of the scientific crew arrived into Kodiak, we all met up and grabbed some dinner and introduced ourselves and spoke of our future together.

Thursday was continued with more overcast, socked in pea-fog conditions, with visibility coming down to <.25 mile at times.  Our trip was supposed to leave early in the morning this day which was delayed until 3:00 PM and then again delayed until 1:00 PM the following day (Friday the 20th). The delays were a result of having to wait for a specific part that the boat needed prior to leaving port.  Due to the added delay, we decided to go  investigate some intel from locals about Kodiak Bear spotting sites.  Luckily enough, we found them taking advantage of pink and coho salmon spawns occurring.  The Kodiak bear, in preparation for winter and hibernation, must gorge itself leading up to the cold winter months.  The salmon spawns coinciding with this bear’s requirement are a perfect example of evolution and “nature’s clock” at work.  It reminds me of the Horseshoe crab back in NJ wherein their eggs laid in the spring become the food for the migratory red knot bird coming all the way from South America.  The timing is just perfect.  The Kodiak seems to target the brains of the salmon as well as the belly of this fish where the eggs are located (you can see this in the picture I took below of the pink Salmon).  This ensures that every bite is as most calorically packed as possible with the warmer days ending and winter approaching.

Kodiak Brown Bear. Taken 08-19-11

Kodiak Brown Bear. Taken 08-19-11

Pink Salmon Spawn.  Taken 08-19-11

Pink Salmon Spawn. Taken 08-19-11

Friday morning all scientists and new crew attended a meeting at 8:30 A.M. to discuss the logistics of the trip.  Specifically, the lead scientist, Ed Farley, reviewed how the average day was going to unfold with the various investigations going on.  The goal seems to be to get to three stations a day with each station consisting of acoustics studies, oceanography, zooplankton and lastly, a fishing trawl.  Conducting this much research all on one boat in one trip is quite ambitious and unique in the marine world.  I will be getting into the details of these activities as the trip gets underway.  Lastly, the meeting included a debriefing on vessel safety.

So far, the trip has been eye-opening.  It is amazing to be able to experience the amount of planning and logistics that must go into an expedition of this magnitude.  Every corner I turn, there are crew-members busily working and focused on their duties.   The ship itself is analogous to a bee’s nest and its crew members the bees themselves.  They are all performing certain functions all for a common goal.  It is also very inspiring to see how passionate these leading scientists and crew members are about the work they do.  It is truly contagious and has reinvigorated my own passion for the sciences.

Mountain Peak Through The Fog

Mountain Peak Through The Fog

Richard Jones & Art Bangert, January 4, 2010

NOAA Teacher at Sea
Richard Jones
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 4, 2010

The ship is underway

The ship is underway

Personal Log

Art and I arrived at Pearl at 7AM today at the Visitor Check-in and ID office. We were a half hour early and were still 12th and 13th in line. The process was pretty slow, but we got picked up by one of the science crew (James) when we got our passes around 8:15AM. We then went the ship and came on board durning the first of three drills for the day. Within in a few minutes of getting to the ship we were already involved in the ship board fire drill. Both Art and I were shlepping fire fighting equipment to the “fire scene”, I had a ventilation hose and Art a really big, and nasty looking, pry bar. It looked like a pry bar on steroids. After the fire drill it was the abandon ship drill, where we all put on our “gumby” suits ( I wish I had thought to have my camera ready first thing) and exchanged our old whistles for new ones without cork balls. After the abandon ship drill, it was man overboard and then we were able to stand down by about 10AM. Once the drills were done it was time to get with moving the equipment to the ship and setting up the instruments. The process of meeting the crew, loading the equipment and stores, and setting up the science stuff took until almost 6PM.

Chris Imhof, November 13, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 13, 2009

Science Log

Safety is a priority aboard the Pisces – without a sense of safe operations and knowing what to do in a situation – it would be very hard to run effective science missions – everything from knowing where a safe place to stand, when and where to wear a hard hat and what to do in an event or situation. Within hours of leaving port we assembled with the science team for a briefing and learned where we would muster in case of a drill. A muster station is a place you have been assigned when there is an alarm and/or the ship’s horn is blown to communicate to the crew an emergency, situation or event. Once assembled in the designated area, an assigned person calls the bridge to inform that everyone in that station has been accounted for.

I would go to my muster station in the case of a man-over-board -this is communicated with 3 prolonged blasts of the ship’s horn. If I was on deck and saw a person go overboard- I would yell “man-over-board!” and point over the side until I was relieved by an officer – and at the same time be throwing everything under the sun that could float to leave a trail for the ship to follow as it slowed and turned around.

It wasn’t more than an hour after our meeting, while exploring the ship that a drill was issued. As we made our way up 3 decks to our mustering station, we passed crew skillfully and methodically going through the procedures of extinguishing an imaginary “fire” on the starboard deck.

After a few minutes the captain had everyone assemble on the deck where the drill took place and with the XO led a discussion of how it went. What was impressive was the nature of the discussion in which crew members in different departments brought their knowledge and experience to consider other dimensions of the situation – glass windows, machinery or nearby materials that could cause furthers complications or additional measures etc. This type of collaboration builds the cohesion of a ships’ crew as well as the security and safety aboard the ship.

Following the briefing the crew was dismissed and within a short amount of time the ship’s horn blared 6 short blasts and a single long blast – indicating an abandon ship – in this situation/drill we mustered on a side of the ship – bringing with us a life vest, hat and immersion suit. The Pisces is equipped with self-inflatable life rafts on each side of the ship – each sides’ rafts hold more than 60 crew – this is in case one side of the ship cannot be reached or rafts are unable to be used-all ships have this in place today largely due to the Titanic disaster. Following this we learned how to quickly and efficiently put on our immersion suits. This tight fitting, insulated survival suit protects you not only from the elements but the brightness alone increases your chance of rescue. The suit fits snug leaving very little of your skin exposed, it is equipped with an additional flotation device behind your neck and a whistle.

Safety is science – it is also such an important part of how the Pisces runs – how the officers, crew and scientist work, and how the ship is built, runs and operates – as a Teacher at Sea who is staying just a brief time, it has heightened my sense to be more aware of everything around me not just the sea and the science but also how things aboard the ship operate and how each person works and fits into the big picture.

Jennifer Fry, July 15, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 15, 2009

Weather Data from the Bridge 
Wind Speed: 19 kts.
Wind direction: 355° north
Temperature: 15.4°C (dry bulb); 13.2°C (wet bulb)

Science and Technology Log 

This picture shows the Miller Freeman in Alaskan waters.  On our cruise, it’s working off the coast of California.

This picture shows the Miller Freeman in Alaskan waters. On our cruise, it’s working off the coast of California.

Our cruise was delayed for a day due to poor weather conditions and heavy seas. We began with a meeting of the scientific team which consists of 8 members all with their specific scientific knowledge and expertise. We will be conducting several types of oceanographic sampling during our cruise:  2-3 hake tows per day, weather permitting, an open net tow where fish are viewed through a camera, XBTs: Expendable Bathythermograph, HABS: Harmful Algal Bloom Sampling, and CTD: Conductivity, Temperature, and Density. The ship conducted Man Overboard and Fire drills.

The research vessel Miller Freeman set sail from Eureka, California on Wednesday, July 15th at approximately 12:30. Each person aboard is assigned a specific job and place to report on the Miller Freeman during such an event. Our assignments are posted on our stateroom door. During a Fire/Emergency Drill the signal is a 10 second blast of the general alarm and/or ship’s whistle. I am to report or muster to the Chemical Lab.

In the event of an Abandon Ship Drill, I am assigned to life raft #2 and muster on the O-1 deck, port (left) side. The Abandon Ship signal is more than 6 short blasts followed by one long blast of the general alarm and/or ship’s whistle. If a Man Overboard Drill is called, we will hear 3 prolonged blasts of the general alarm and/or ship’s whistle.  The muster station is the Chemical Lab. If we personally see a person go overboard the ship there are three things to do immediately: Throw a life ring overboard, call the bridge, and keep your eyes on the person. 

These things all need to be done as simultaneously as possible to assure the safety and recovery of the person who is in the sea. It is important to conduct these emergency drills so that everyone is ready and prepared in the case of an emergency event.

Personal Log 

I am sharing a stateroom with Julia Clemons, an oceanographer on board the Miller Freeman. She works for NOAA Fisheries in Newport, Oregon.  Her educational background includes a Bachelors’ degree in Oceanography and a masters’ degree in Geology. The scientists and crew on board are so professional and willing to teach and tell about their job.  They are an amazing group of people.

New Term/Phrase/Word 
Domoic acid

Questions of the Day? 
What does a hake look like in person?

Animals Seen Today 
5 Egrets
1 great blue heron
Numerous gulls

Stacey Klimkosky, July 7, 2009

NOAA Teacher at Sea
Stacey Klimkosky
Onboard NOAA Ship Rainier
July 7 – 24, 2009 

Mission: Hydrographic survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 7, 2009

Weather Data from the Bridge 
Position: 57°36969N, 154°41.154W
Weather: Overcast, Foggy
Visibility: 10 nautical miles (nm)
Wind: North 17 knots Swells: 2-3’
Waves: 1-2’
Barometric pressure: 1021.4 mb
Air temperature: Wet bulb=10.6°C; Dry bulb=10.6°C

Science and Technology Log 

The Rainier’s a heavy ship!

The Rainier’s a heavy ship!

Finally we are underway, having pushed off of the dock in Seward around 1500 on Monday, July 6. The cruise time to the area where RAINIER and her crew will be conducting hydrographic surveys is approximately 40 hours.  The distance is 519 nautical miles.  (One mile on land = 0.869 nautical miles, so 1nautical mile = 1.15 statute miles).  Thus far, we have traveled approximately 240 nautical miles in a time of 19 hours—just about ready to finish passing Kodiak Island to the port (left) side.

In the meantime, there is plenty to do aboard— learning about the many aspects of safety aboard a working vessel being the most important.  NOAA personnel new to the ship and guests watched a variety of safety videos as well as received our safety gear. My closet, which was fairly empty yesterday morning, is now stuffed with a survival suit (a.k.a. The Gumby Suit); a Float Coat (a warm orange coat that provides both buoyancy and warmth if you “go into the drink”, or fall overboard) and an inflatable safety vest that I will wear whenever I am working inside the cabin on one of the launches once the surveys begin.  We also had our abandon ship and fire drills. It’s very similar to the fire and safety drills we do in school.  Everyone has a specific place to meet (muster) and some have specific jobs to do or items to bring.  Like the sign on the fantail of the ship says: TEAMWORK SAFETY FIRST!

Alaska has many jagged volcanic mountains.

Alaska has many jagged volcanic mountains.

I’ve also had time to begin speaking to different members of the crew—their responsibilities, how they arrived on RAINIER, and what the hydrographic surveys will be like.  One of the most interesting conversations was with Steve Foye, a Seaman Surveyor.  Steve told me that RAINIER is scheduled for a complete mid-life repair after this year’s survey season is completed in September.  RAINIER will then go into dry dock and the repairs and changes will begin.  The entire inside of the ship will be gutted and remodeled.  While all of that is going on, a decision has to be made—where will RAINIER’s homeport be?  Steve brought up quite an interesting point: a port that has brackish (part salt/part fresh) water is better for the ship.  Why? When a ship is at sea for long periods of time, creatures such as barnacles cement themselves to the hull.  It’s essential to remove them; however, the process is costly—both in time and money. Having moving fresh water along the ship’s hull while docked for the “off season” will eliminate the barnacles. But there’s another problem—after a winter docked in fresher water, algae and plant material starts to grow where the barnacles once were.  Solution? Begin a new survey season and sail the ship in salt water.  The plant material is then eliminated, but guess what starts to come back?  An interesting example of a cycle.

Personal Log 

It’s great to finally be a Teacher at Sea!  Not a Teacher on a Plane, or Teacher on a Train, or Teacher at Port.  I’ve been waiting a long time for this to get underway.  Thus far, the entire experience has been new.  I’ve had the opportunity to see some amazing scenery—the landscape is so different from that of Cape Cod, Massachusetts! Jagged volcanic mountains literally rise up from the water.  I’ve also seen some wildlife including bald eagles, otter, Dahl sheep, Arctic terns and a moose on the Alaska Railroad train that I took from Anchorage to Seward. We also passed three glaciers. The glacial melt off causes nearby lakes and streams to take on a milky light green color.

As far as being on the ship, this is my first at sea experience. I’m finding that it really reminds of my first days of college—living in close quarters; trying to get into a routine with a roommate; learning where things are and how schedules operate; figuring out the hierarchy of individuals. The constant movement is also something new.  I actually had a couple of fun rides in my bunk during the night!  I wonder if that’s what a Nantucket sleigh ride felt like. (A Nantucket sleigh ride, for those who don’t know, is a term from whaling days.  After a whale was harpooned, it would often take off, pulling the small boat of men behind it until the whale tired.)

Did You Know? 

  1. The NOAA ship RAINIER is 231 feet overall. Her cruising speed is 12.5 knots and she can travel a range of 7000 nautical miles!  Medium sized survey ships are customarily named for a prominent geographic feature in the ship’s area. RAINIER’s namesake is Mount Rainier, a volcanic cone that rises 14, 410 feet above sea level in Washington State’s Cascade Range.
  2. Today, sunrise was approximately 0520 and sunset will be at 2314 (that’s 5:20am and 11:14 pm—plus the light lingers for awhile)  Imagine falling asleep at 10:00pm when the sun is still shining!
  3. You can follow the ship’s course by taking a look at the NOAA Ship Tracker . Click on RAINIER (RA).

Alaska Fun Facts 

  1. Seward, AK is located on Resurrection Bay, the northern-most ice-free bay in the US.  It was founded in 1902 by the surveyors of the Alaska Railroad as the ocean terminus of the railroad. Originally a gold rush encampment, the famous Iditarod Trail that miners took into the mountains began here.  To the east, Mount Marathon rises up 3,022 feet.  Every 4th of July, hundreds of runners scurry up and down Marathon to see who can claim bragging rights for a year.
  2. This year, Alaska celebrates its 50th birthday. One of its original names was Alyeska (AlYES-ka), an Aleut word that means “great land”.