Hayden Roberts: Santiago’s Dream (My Introduction), July 2, 2019

NOAA Teacher at Sea

Hayden Roberts

(In advance) Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 2, 2019


Introduction

“There are many good fishermen and some great ones. But there is only one you.”

–Ernest Hemingway (Old Man and the Sea)

As I sit at my home computer, my mind is racing with thoughts of what I need to do before leaving for Mississippi. My family doesn’t quite know what I am doing aboard NOAA Ship Oregon II, not that I am sure either! They vacillate between images of cramped, hot quarters portrayed in old World War II movies like Das Boot (1981), which is about a German submarine crew. In contrast to the sailors traversing icy, choppy waters as in the reality TV show Deadliest Catch, which is about King Crab fishermen in Alaska’s Bering Sea. I am not sure my time aboard Oregon II will be either, but perhaps they will think me braver if I leave that picture in their minds ahead of my trip [wink, wink].

Roberts Family
Roberts Family. From left to right: Owen, Hayden, Jackson, and Sarah.

However, before I talk about my trip, I should take a step back and talk about where I came. I am from Oklahoma, one of the most landlocked areas of North America. I grew up in Oklahoma (both Tulsa and Oklahoma City), but have had many other experiences since then. I have been teaching at the collegiate level for 15 years. I mostly instruct high school students taking concurrent enrollment classes and community college students working on undergraduate general education requirements.  I teach regional geography, folklife and traditional culture, and introduction to the humanities at Oklahoma State University—Oklahoma City (OSU-OKC) and Oklahoma City Community College. I am lead faculty in geography at OSU-OKC.

Sarah and Hayden
My wife Sarah and I at one of our favorite date night adventures, Thunder basketball games.

I earned my BA from Sarah Lawrence College in New York (1994). I studied visual arts, primarily painting and filmmaking, and cultural studies. I earned my MA in Folk Studies from Western Kentucky University, Bowling Green (1998), and I earned my PhD in Geography from the University of Oklahoma, Norman (2015). Through my education and early adult life, I lived coast to coast in seven different states. This education prepared me to work in the field of public history, historic interpretation, community development, and arts administration in addition to teaching at the collegiate level. Before teaching, I worked in Washington, DC for Ralph Nader (yes, the clean water, clean air, clean everything guy…oh, and he ran for president). I worked for several historic sites and cultural agencies, including Mammoth Cave National Park, Kentucky Museum, Historic Carnton, and the Tennessee Arts Commission. I have also worked in education administration. I served as the director the Oklahoma Center for Arts Education for the University of Central Oklahoma, as executive director of the Oklahoma Folklife Council for the Oklahoma Historical Society, and recently, as Director of Community Resources for Western Heights Public Schools. At Western Heights, I have been fortunate to work close to a younger group of students. I have been a part of the expanding arts and science curriculum at the high school. The school district is in the process of renovating the high school science wing and building a new arts and science high school building for an emerging STEAM program. STEAM stands for science, technology, engineering, arts, and math instruction. Working with community partners, I am also involved in promoting college and career readiness at the secondary level.

Students gardening
Gardening with 5th and 6th grade students during their after school STEAM program in Western Heights’ outdoor classroom.

My research interests include the cultural geography of Oklahoma, family stories and cultural expressions, and community building. However, through my research in folk studies (similar to anthropology) and cultural geography, I have studied human interconnectivity associated with occupations, which is what initially drew my interest to the NOAA Teacher at Sea (TAS) program. In the past, I have studied occupations associated with rural culture and how environment and increased urbanization have effected work settings and their relationship to identity.  My research interest aside, I am excited to learn more about the science of fishery surveys. I think learning about the maritime career opportunities associated with NOAA programs will be important to convey to the students I teach. Especially because so many of my students come from economically challenged, urban settings, and the thought of pursuing a career based on scientific research is foreign. As a geographer, I am also excited to share with students ways they can connect to geography as an influence on their career plans.  

Mayes County Fair
Mayes County Fair in Pryor, Oklahoma. Shot as part of my fieldwork on rural culture and place identity.


Mission Information

I will be part of the third leg of the Southeast Area Monitoring and Assessment Program (SEAMAP) sailing out of the NOAA Pascagoula, MS facility. SEAMAP is a State/Federal/university program for collecting, managing, and disseminating fishery-independent data in the southeastern US. The Gulf of Mexico survey work began in 1981. I have read blogs and videos from NOAA TAS alum that have been part of the similar research cruises, and I have reviewed the NOAA website under the SEAMAP pages and NOAA Oregon II pages. TAS alumni Angela Hung from the 2018 SEAMAP survey crew posted a great blog on roughly what Oregon II crew will be doing while I am sailing (see https://noaateacheratsea.blog/2018/07/03/angela-hung-dont-give-it-a-knife-june-30-2018/). However, I am still working to understand exactly what I will be doing. Coastal culture and scientific research of this nature is new to me. The closest experience I have goes back to my childhood when in the 1980s my mom built a catfish hatchery and commercial pond operation on 10 acres of farmland in southeastern Oklahoma. The “catfish farm” as we called was only in our family for a few years. The next closest experience I have to coastal fisheries is chartering boats for near shore and deep sea fishing adventures on vacation. Clearly, I am in for a lesson on the broader science of understanding and maintaining the ecology of our domestic waterways in the US. This will be an interesting trip, for sure!

Andria Keene: The sun is setting on my adventure! October 21, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 21, 2018

Weather Data from the Bridge
Date: 2018/10/21
Time: 12:52
Latitude: 029 23.89 N
Longitude 094 14.260 W
Barometric Pressure 1022.22mbar
Air Temperature: 69 degrees F

The isness of things is well worth studying; but it is their whyness that makes life worth living.
– William Beebe

 

Last sunset
My last sunset aboard the Oregon II.

Science and Technology Log

Today is our last day at sea and we have currently completed 53 stations!  At each station we send out the CTD.   CTD stands for Conductivity, Temperature and Depth.   However, this device measures much more than that.  During this mission we are looking at 4 parameters: temperature, conductivity, dissolved oxygen and fluorescence which can be used to measure the productivity of an area based on photosynthetic organisms.

science team with the CTD
Some of the science team with the CTD.

Once the CTD is deployed, it is held at the surface for three minutes.  During this time, 4,320 scans are completed!  However, this data, which is used to acclimate the system, is discarded from the information that is collected for this station.

CTD Collage
The crane lifts the CTD from the well deck and deploys it into the water.

Next, the CTD is slowly lowered through the water until it is about 1 meter from the bottom.  In about 30 meters of water this round trip takes about 5 minutes during which the CTD conducts 241 scans every 10 seconds for a grand total of approximately 7,230 scans collected at each station.

CTD Graph
The computer readout of the data collected at one of the stations.

Our CTD scans have gathered the expected data but during the summer months the CTD has found areas of hypoxia off the coast of Louisiana and Texas.

Summer Hypoxia Zones
Data from CTD scans was used to create this map of hypoxic zones off the coast of Louisiana in summer of 2018.

 

Personal Log

The gloomy weather has made the last few days of the voyage tricky. Wind and rough seas have made sleeping and working difficult. Plus, I have missed my morning visits with dolphins at the bow of the ship due to the poor weather.  But seeing the dark blue water and big waves has added to the adventure of the trip.

Dark clouds lifting
The gloom is lifting as a tanker passes in the distance.

We have had some interesting catches including one that weighed over 800 pounds and was mostly jellyfish.  Some of the catches are filled with heavy mud while others a very clean. Some have lots of shells or debris.  I am pleasantly surprised to see that even though I notice the occasional plastic bottle floating by, there has not been much human litter included in our catches.  I am constantly amazed by the diversity in each haul.  There are species that we see at just about every station and there are others that we have only seen once or twice during the whole trip.

Catch collage
A few of the most unique catches.

I am thrilled to have had the experience of being a NOAA Teacher at Sea and I am excited to bring what I have learned back to the classroom to share with my students.  

 

Challenge Question:

Bonus points for the first student in each class to send me the correct answer!

These are Calico Crabs, but this little one has something growing on it?  What is it?

Calico crabs
Calico crabs… but what is that growing on this small one?

Did you know…

That you can tell the gender of a flat fish by holding it up to the light?

Flatfish collage
The image on the top is a female and the one of the bottom is the male. Can you tell the difference?

 

Today’s Shout Out! 

Kudos to all of my students who followed along, answered the challenge questions, played species BINGO, and plotted my course!  You made this adventure even more enjoyable!  See you soon 🙂

Andria Keene: Let the fun begin! October 17, 2018

NOAA Teacher at Sea

Andria Keene

Aboard NOAA Ship Oregon II

October 8 – 22, 2018

 

Mission: SEAMAP Fall Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: October 17, 2018

Weather Data from the Bridge
Date: 2018/10/17
Time: 13:10
Latitude: 027 39.81 N
Longitude 096 57.670 W
Barometric Pressure 1022.08mbar
Air Temperature: 61 degrees F

Those of us who love the sea wish everyone would be aware of the need to protect it.
– Eugenie Clark

Science and Technology Log

After our delayed departure, we are finally off and running! The science team on Oregon II has currently completed 28 out of the 56 stations that are scheduled for the first leg of this mission. Seventy-five stations were originally planned but due to inclement weather some stations had to be postponed until the 2nd leg. The stations are pre-arranged and randomly selected by a computer system to include a distributions of stations within each shrimp statistical zone and by depth from 5-20 and 21-60 fathoms.

Planned stations and routes
Planned stations and routes

At each station there is an established routine that requires precise teamwork from the NOAA Corps officers, the professional mariners and the scientists. The first step when we arrive at a station, is to launch the CTD. The officers position the ship at the appropriate location. The mariners use the crane and the winch to move the CTD into the water and control the decent and return. The scientists set up the CTD and run the computer that collects and analyzes the data. Once the CTD is safely returned to the well deck, the team proceeds to the next step.

science team with the CTD
Some members of the science team with the CTD

Step two is to launch the trawling net to take a sample of the biodiversity of the station. Again, this is a team effort with everyone working together to ensure success. The trawl net is launched on either the port or starboard side from the aft deck. The net is pulled behind the boat for exactly thirty minutes. When the net returns, the contents are emptied into the wooden pen or into baskets depending on the size of the haul.

red snapper haul
This unusual haul weighed over 900 pounds and contained mostly red snapper. Though the population is improving, scientists do not typically catch so many red snapper in a single tow.

The baskets are weighed and brought into the wet lab. The scientists use smaller baskets to sort the catch by species. A sample of 20 individuals of each species is examined more closely and data about length, weight, and sex is collected.

The information gathered becomes part of a database and is used to monitor the health of the populations of fish in the Gulf. It is used to help make annual decisions for fishing regulations like catch and bag limits. In addition, the data collected from the groundfish survey can drive policy changes if significant issues are identified.

Personal Log

I have been keeping in touch with my students via the Remind App, Twitter, and this Blog. Each class has submitted a question for me to answer. I would like to use the personal log of this blog to do that.

3rd Period - Marine Science II
3rd Period – Marine Science II: What have you learned so far on your expedition that you can bring back to the class and teach us?

The thing I am most excited to bring back to Marine 2 is the story of recovery for the Red Snapper in the Gulf of Mexico. I learned that due to improved fishing methods and growth in commercial fishing of this species, their decline was severe. The groundfish survey that I am working with is one way that data about the population of Red Snapper has been collected. This data has led to the creation of an action plan to help stop the decline and improve the future for this species.

4th Period - Marine Science I
4th Period – Marine Science I: What challenges have you had so far?

Our biggest challenge has been the weather! We left late due to Hurricane Michael and the weather over the past few days has meant that we had to miss a few stations. We are also expecting some bad weather in a couple of days that might mean we are not able to trawl.

5th Period - Marine Science I
5th Period – Marine Science I: How does the NOAA Teacher at Sea program support or help our environment?

The number one way that the NOAA Teacher at Sea program supports our environment is EDUCATION! What I learn here, I will share with my students and hopefully they will pass it on as well. If more people know about the dangers facing our ocean then I think more people will want to see changes to protect the ocean and all marine species.

7th Period - Marine Science I
7th Period – Marine Science I: What is the rarest or most interesting organism you have discovered throughout your exploration?

We have not seen anything that is rare for the Gulf of Mexico but I have seen two fish that I have never seen before, the singlespot frogfish and the Conger Eel. So for me these were really cool sightings.

 

 

 

 

 

 

 

 

 

 

8th Period - Marine Science I
8th Period – Marine Science I: What organism that you have observed is by far the most intriguing?

I have to admit that the most intriguing organism was not anything that came in via the trawl net. Instead it was the Atlantic Spotted Dolphin that greeted me one morning at the bow of the boat. There were a total of 7 and one was a baby about half the size of the others. As the boat moved through the water they jumped and played in the splashing water. I watched them for over a half hour and only stopped because it was time for my shift. I could watch them all day!

Do you know …

What the Oregon II looks like on the inside?
Here is a tour video that I created before we set sail.

 

Transcript: A Tour of NOAA Ship Oregon II.

(0:00) Hi, I’m Andria Keene from Plant High School in Tampa, Florida. And I’d like to take you for a tour aboard Oregon II, my NOAA Teacher at Sea home for the next two weeks.

Oregon II is a 170-foot research vessel that recently celebrated 50 years of service with NOAA. The gold lettering you see here commemorates this honor.

As we cross the gangway, our first stop is the well deck, where we can find equipment including the forecrane and winch used for the CTD and bongo nets. The starboard breezeway leads us along the exterior of the main deck, towards the aft deck.

Much of our scientific trawling operations will begin here. The nets will be unloaded and the organisms will be sorted on the fantail.

(1:00) From there, the baskets will be brought into the wet lab, for deeper investigation. They will be categorized and numerous sets of data will be collected, including size, sex, and stomach contents.

Next up is the dry lab. Additional data will be collected and analyzed here. Take notice of the CTD PC.

There is also a chemistry lab where further tests will be conducted, and it’s located right next to the wet lab.

Across from the ship’s office, you will find the mess hall and galley. The galley is where the stewards prepare meals for a hungry group of 19 crew and 12 scientists. But there are only 12 seats, so eating quickly is serious business.

(2:20) Moving further inside on the main deck, we pass lots of safety equipment and several staterooms. I’m currently thrilled to be staying here, in the Field Party Chief’s stateroom, a single room with a private shower and water closet.

Leaving my room, with can travel down the stairs to the lower level. This area has lots of storage and a large freezer for scientific samples.

There are community showers and additional staterooms, as well as laundry facilities, more bathrooms, and even a small exercise room.

(3:15) If we travel up both sets of stairs, we will arrive on the upper deck. On the starboard side, we can find the scientific data room.

And here, on the port side, is the radio and chart room. Heading to the stern of the upper deck will lead us to the conference room. I’m told that this is a great place for the staff to gather and watch movies.

Traveling back down the hall toward the bow of the ship, we will pass the senior officers’ staterooms, and arrive at the pilot house, also called the bridge.

(4:04) This is the command and control center for the entire ship. Look at all the amazing technology you will find here to help keep the ship safe and ensure the goals of each mission.

Just one last stop on our tour: the house top. From here, we have excellent views of the forecastle, the aft winch, and the crane control room. Also visible are lots of safety features, as well as an amazing array of technology.

Well, that’s it for now! Hope you enjoyed this tour of NOAA Ship Oregon II.  

 

Challenge Question of the Day
Bonus Points for the first student in each class period to come up with the correct answer!
We have found a handful of these smooth bodied organisms which like to burrow into the sediment. What type of animal are they?

Challenge Question
What type of animal are these?

Today’s Shout Out:  To my family, I miss you guys terribly and am excited to get back home and show you all my pictures! Love ya, lots!

Jeff Peterson: The Work in the Western Gulf, July 15, 2018

 NOAA Teacher at Sea

Jeff Peterson

Aboard NOAA Ship Oregon II

July 9 – July 20, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2018

 

Weather Data from the Bridge

Date: 2018/07/18

Time: 16:05:45

Latitude: 30 05.44 N

Longitude: 085 52.76 W

Speed over ground: 05.3 knots

Barometric pressure: 1015.62 mbar

Relative humidity: 81%

Air temp: 27.6 C

 

Science and Technology Log

At the time of writing, we’ve completed the “stations” (i.e., the appointed stops where we trawl to collect specimens) in the western Gulf of Mexico, and are headed to the Florida coast, where we’ll conclude the 3rd leg of the Summer Groundfish Survey. Sometime tonight we’ll arrive and resume work, trawling and identifying fish. What follows is my attempt to furnish a detailed description of where we are and what we’re doing.

Stations: Where We Stop & Why

As I explained in my previous blog post, “Learner at Sea: Day 1,” the survey work being performed on this cruise contributes to a larger collective enterprise called SEAMAP, the Southeast Area Monitoring and Assessment Program. The “sample area” of SEAMAP is considerable, ranging from Texas-Mexico border to the Florida Keys.

image 1 SEAMAP - coverage
Spatial coverage of SEAMAP Summer and Fall Trawl Surveys in the northern Gulf of Mexico

Fisheries biologist Adam Pollack tells me that the total trawlable area–that is, excluding such features as known reefs, oil rigs, and sanctuaries–consists of 228,943.65 square kilometers or 88,943.65 square miles. That’s a piece of ocean of considerable size: nearly as big as Louisiana and Mississippi combined.

SEAMAP divides the sample area into a series of statistically comparable “zones” (there are two zones within each of the numbered areas in the diagram above), taking into account a key variable (or stratum): depth. It then assigns a proportionate number of randomized locations to every zone, arriving at 360-400 stations for the sample area as a whole. Statisticians call this method a “stratified random design.”

While Louisiana, Mississippi,  Alabama, and Florida participate in the SEAMAP, the lion’s share of stations are surveyed by NOAA.

These are the 49 stations we sampled during the first half of the cruise, off the shore of Louisiana:

leg 3 west
Stations covered in the western Gulf during the 3rd leg of the Summer Groundfish Survey

The data from the Summer Survey is analyzed in the fall and available the following spring. NOAA’s assessments are then passed along to the regional Fisheries Management Councils who take them into account in setting guidelines.

The Trawl: How we Get Fish Aboard

NOAA Ship Oregon II brings fish aboard using an otter trawl. As described in “Mississippi Trawl Gear Characterization,” “The basic otter trawl is the most common type of trawl used in Mississippi waters to harvest shrimp. The otter trawl is constructed of twine webbing that when fully deployed makes a cone shape. Floats on the head-rope (top line) and chains on the foot rope (bottom line) of are used to open the mouth of the trawl vertically. To spread the mouth of the trawl open as large as possible, each side (wing) is attached to trawl doors” (http://www.nmfs.noaa.gov/pr/pdfs/strategy/ms_trawl_gear.pdf). Positioned by chains so that their leading edges flare out, those doors are sizable and heavy, 40 inches high and 8 feet long, and help not only to spread the net open (and ‘herd’ fish in) but also to keep it seated on the ocean floor.

An otter trawl deployed
An otter trawl deployed

To mitigate environmental harm–and, in particular, to help save inadvertently caught sea turtles—trawling time is limited to 30 minutes. The trawl is 40 feet wide and is dragged over 1.5 miles of ocean bottom.

Here are the trawl’s technical specifications:

Trawl schematic
Trawl schematic, courtesy of NOAA fishing gear specialist Nicholas Hopkins

It should not go without saying that deploying and retrieving gear like this is mission critical, and requires physical might, agility, and vigilance. Those tasks (and others) are performed expertly by the Deck Department, manned on the day watch by Chief Boatswain Tim Martin and Fisherman James Rhue. Fisherman Chris Rawley joins them on the swing shift, coming on deck in the evening.

The process of bringing the trawl aboard looks like this:

doors up
Trawl doors on their way up toward the starboard outrigger

separating
Seizing the “lazy line” with the hook pole

orange section
The “elephant ear” (orange section) secured

cod end at the rail
Chief Boatswain Tim Martin brings a catch over the rail

The bottom of the trawl is secured with a special knot that permits controlled release of the catch.

knot
Among other names, this piece of handiwork is known as the “double daisy chain” or “zipper knot”

 

The catch emptied into baskets
The catch emptied into baskets

CTD

Before every trawl, the CTD is deployed from the well deck (port side) to collect data on, as its acronym suggests: Conductivity, Temperature, and Depth. According to NOAA’s Ocean Explorer website, “A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists. When combined with temperature data, salinity measurements can be used to determine seawater density which is a primary driving force for major ocean currents” (https://oceanexplorer.noaa.gov/facts/ctd.html).

The CTD secured on deck
The CTD secured on deck

 

CTD in the water
The CTD suspended at the surface, awaiting descent

During daylight hours, a scientist assists with the deployment of the CTD, contributing observations on wave height and water color. For the latter, we use a Forel-Ule scale, which furnishes a gradation of chemically simulated water colors.

 

Forel-Ule scale
Forel-Ule scale

 

The Wet Lab: How We Turn Fish into Information

Once in baskets, the catch is weighed and then taken inside the wet lab.

the wet lab
The wet lab: looking forward. Fish are sorted on the conveyor belt (on the right) and identified, measured, weighed, and sexed using the computers (on the left).

Once inside the wet lab, the catch is emptied onto the conveyor belt

Fish ready for sorting
Fish ready for sorting

Snapper on the belt
A small catch with a big Snapper

Next the catch is sorting into smaller, species-specific baskets:

Emily McMullen sorting fish
Emily McMullen sorting fish

 

batfish face
Say hello to the Bat Fish: Ogecephalus declivirostris

Calico Box Crab, Hepatus epheliticus
Calico Box Crab, Hepatus epheliticus

 

Blue Crab, Callinectes sapidus
Blue Crab, Callinectes sapidus

At this stage, fish are ready to be represented as data in the Fisheries Scientific Computing System (FSCS). This is a two-step process. First, each basket of fish is entered by genus and species name, and its number recorded in the aggregate.

Andre entering data
Andre DeBose entering initial fish data in FSCS

Then, a selection individual specimens from each basket (up to 20, if there are that many) are measured and weighed and sexed.

Andre and Emily measuring
Andre and Emily measuring and sexing fish

Occasionally researchers from particular laboratories have made special requests for species, and so we label them, bag them, and stow them in the bait freezer room.

requests
Special requests for specimens

 

IMG_8214
Red Snapper, Lutjanus campechanus, for Beverly Barnett

Once every animal in the trawl has been accounted for and its data duly recorded, it’s time to wash everything down and get ready to do it all over again.

porthole
Late afternoon view from the wet lab porthole

 

Personal Log

The key to enjoying work in the wet lab is, as I see it, the enduring promise of novelty: the possibility of surprise at finding something you’ve never seen before! For me, that promise offsets the bracing physical rigors of the work and leavens its repetitiveness. (Breathtaking cloudscapes and gorgeous sunsets do, too, just for the record. Out here on the water, there seem to be incidental beauties in every direction.) Think of the movie Groundhog Day or Camus’s “The Myth of Sisyphus” and cross either of them with the joys of beach-combing on an unbelievably bounteous beach, and you’ll have a sense of the absurd excitement of identifying fish at the sorting stage. Life in the wet lab is a lot like Bubba Gump’s box of chocolates: “You never know what you’re gonna get.”

At the next stage, data entry, the challenge for the novice is auditory and linguistic. Between the continual growl the engine makes and the prop noise of the wet lab’s constantly whirring fans, you’ve got the soundscape of an industrial workplace. Amid that cascade of sound, you need to discern unfamiliar (scientific) names for unfamiliar creatures, catching genus and species distinctions as they’re called out by your watch-mates. The good news is that the scientists you’re working with are living and breathing field guides, capable of identifying just about any animal you hold up with a quizzical look. It’s a relative rarity that we have to consult printed guides for IDs, but when we do and that task falls to me, the shell-collector kid in me secretly rejoices.

IMG_7825
I found it! Ethusa microphthalma (female)

I’m enjoying the camaraderie of my watch, led by Andre DeBose, and, as my posts suggest, I’ve had some good opportunities to pick Adam Pollack’s brain on fisheries issues. My partner in fish data-entry, Emily McMullen–an aspiring marine scientist who’ll be applying to graduate programs this fall–did this cruise last summer and has been an easy-going co-worker, patient and understanding as I learn the ropes. I’ve also had some wonderful conversations with folks like Skilled Fisherman Mike Conway, First Assistant Engineer Will Osborn, and Fisheries Biologist Alonzo Hamilton.

It’s been a busy week, as you’ll have gathered, but I’ve still managed to do some sketching. Here’s a page from my sketchbook on the CTD:

CTD
Sketch of the CTD. The main upright tanks, I learned, are Niskin Bottles

And here’s a page from my journal that pictures three species we saw quite often in the western Gulf:

Longspined Porgy - Butterfish - Brown Shrimp
Longspine Porgy (Stenotomus caprinus), Butterfish (Peprilus burti), and Brown Shrimp (Farfanepenaeus aztectus)

Had I the time, I’d sketch the rest of my “Top 10” species we’ve seen most commonly in the western Gulf. That list would include (in no particular order): the Paper Scallop, Amusium papyraceum; Lookdown, Selene vomer; Blue Crab, Callinectes sapidus; Squid, Loligo; Lizardfish, Synodus foetens; Croaker, Micropogonias undulatus; and Red Snapper:

Red Snapper
Presented for your inspection: Red Snapper, Lutjanus campechanus

Did You Know?

Four of the species visible on the surface of this basket have been identified in the blog post you’ve just read. Can you ID them? And how many of each would you say there are here on the surface?

Basket of fish
Basket of fish

 

 Look for a key in my next blog post.

 

Angela Hung: Flexibility, June 22, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 22-July 5, 2018

June 19-July 5, 2018

June 23-July 5, 2018

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 22, 2018

Weather Data from the Bridge

(Actually from weather.gov, the program in the bridge is off)

Conditions at 1454

Latitude: 30.46° N

Longitude: 88.53° W

Temperature: 34° C

Wind Speed: SW 12 mph

Science and Technology Log

Taniya Wallace-Chief Scientist, Fisheries Biologist

If you enjoy a good seafood steam pot or boil—overflowing with shrimp, crabs, clams and corn and potatoes mixed in, rounded out with fish filets blackened/broiled/fried to your preference—then you have to thank hardworking scientists like Taniya Wallace. Taniya is a fisheries biologist and is the Chief Scientist aboard Oregon II for this leg of the 2018 SEAMAP Summer Groundfish Survey. On top of assessing the health of the Gulf fisheries that feeds Americans across the country, she is busy coordinating the group of scientists that form the research party on the boat. The specifics of the research will follow in upcoming posts, but today, I’d like you to meet a scientist.

Taniya Wallace
Taniya entering data into the computer.

Taniya was certain of becoming a nurse. Her high school offered vocational coursework in nursing to give students an early start into college degree programs. She was on track, until it came to clinicals. Nursing clinicals are the part of the program where students begin their training in real work settings to apply what is learned in the classroom. More importantly, clinicals introduces students to the realities of the job.

Nurses are among the ranks of hard working, underappreciated sectors of the health field because much of what they do goes unseen. For many in pre-nursing and nursing programs, clinicals ensures that students are experiencing what they are signing up for. For Taniya Wallace, her experience during this class compelled her to make the difficult decision to pursue a different program of study.

Taniya was accepted in Mississippi Valley State University, a historically black university, where she earned her bachelor’s degree in biology with a minor in chemistry. She began a position as a laboratory scientist until the 2010 explosion on the Deepwater Horizon oil drilling rig that caused 11 deaths and the largest oil spill in history. Four million barrels of oil flowed into the Gulf of Mexico over three months before the underwater well was finally capped.

Taniya has always loved the water, and had previously shadowed her cousin who is also a marine scientist. Her aunt builds boats for Austal Shipyard in Alabama and her father works at Ingalls Shipbuilding in Pascagoula, MS, the very company that built Oregon II. With an urgent need to study the critical impacts of crude petroleum oil on the Gulf ecosystems, an opportunity on Oregon II was a natural fit. Taniya signed a three month contract–she’s been here ever since.

Plaque aboard Oregon II
Plaque aboard Oregon II

What has kept her going for eight years? As a scientist on a ship, she sees “something new every day” on the boat and on land when they stop at different ports. With a love of water, working in a lab at sea is a win-win.

Personal Log

The Teacher at Sea Program emphasizes to applicants that “flexibility and the ability to cope with the uncertain is crucial to the character of those who go to sea.” Taniya Wallace demonstrates this quality by shifting to a research program in college, joining NOAA Ship Oregon II, and by working at sea.

It is no exaggeration that flexibility is a requirement for working on a boat. In fact, I was scheduled to participate in the second leg of the SEAMAP summer groundfish survey on June 21, departing from Galveston, TX on the 22nd. Unfortunately, the trawl winch broke during the first leg (the first time ever for Oregon II which has been sailing for 50 years!), cutting their trip short. To try to make up the time, it was decided that the second leg would get an early start from Mississippi as soon as repairs were completed in Pascagoula, MS.

What originally was a week to get packed, find a plant sitter and cuddle with my cats became a last minute scramble to find rain boots and mow the lawn in the middle of a heat wave—I boarded a plane to Gulfport, MS on June 18 instead. (It was explained that this was not the typical direction in scheduling shifts.) I got to meet some of the fantastic crew members of Oregon II, as well as from neighboring Gordon Gunter, who invited me to play corn hole for the first time. This is the game where you are trying to throw bean bags through a hole cut in a plywood board that’s set on an incline.  I spent the night on the boat in port.

 

 

 

The boat bustled the next morning as everyone arrived: crew, scientists and a couple of interns. [Find your internship here! https://coastalscience.noaa.gov/about/internship/  ] At 1400, we were off!

There’s the requisite training and safety information for the ship in general. Taniya took over the interns and me for science brief. I learn that I’m assigned to the day shift which begins at 1200 noon the next day. Night shift starts at 2400 midnight that same day. The operations of the ship are 24 hours. It’s a long wait to get started and I’m looking forward to it.

We spend a night out at sea and I’m up and ready to sort some fish and shrimp. When I get to the galley, I find out that we are in fact, returning to Pascagoula because the trawl winch wasn’t fully repaired.

While issues like this are rare on Oregon II, a vessel that is widely regarded as extremely reliable, the process of science frequently hits stumbling blocks. TV shows like CSI and Bones and movies like Jurassic Park feature futuristic laboratories with state-of-the-art, if wildly impractical, equipment with colorful liquids, holograms, and scientists in lab coats and goggles who complete experiments in mere minutes. In reality, science is a lot messier and SLOWER. While wiling away the time today, I learned about a new hashtag for scientists full of internet examples: #badstockphotosofmyjob.

Real labs tend to have old equipment, space is limited so rooms are often crowded with large machines and many computers, and most liquids are colorless, stored in small, like the size of your pinky, tubes in a refrigerator or freezer. Particularly if you work outside, aka “the field”, and even if you don’t, a lot of equipment might be jerry-rigged from things picked up at Wal-Mart or Home Depot. Not to say that science is unreliable or not credible, but that projects are unique and a lot of times, you have to be creative and build what you specifically need. Then modify it until it works.

 

 

 

 

So here we are in a typical day of a scientist. A piece of equipment isn’t working, we’re losing data collection by the minute, but remember, we’re going to be flexible.

Did You Know?

The National Oceanic and Atmospheric Administration (NOAA) is operated by the U.S. Department of Commerce, which is tasked with promoting job creation and economic growth by providing tools and programs for the scientific collection and analysis of data. NOAA is one of these scientific research agencies employing scientists to study the atmosphere to provide us with weather and climate data, and the oceans, providing information for the operation of fisheries, for example. Good policies are informed by basic research, making the work of these agencies invaluable to the US economy.

Angela Hung: The First Day of Summer, June 12, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 19-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 12, 2018

 

Weather Data from Prairie State College

Conditions at 1510

Latitude: 41.45° N

Longitude: 87.53° W

Temperature: 26° C

Wind Speed: S 6mph

 

Science and Technology Log

How did we decide that June 21 is the first day of summer? Is this the day the pool opens? Is it the hottest day of the year? The critical date when students have de-stressed from the last school year and the next still seems far away?

In fact, the first day of summer says a lot about planet Earth’s annual journey around the sun. June 21 (sometimes June 20) is also called the Summer Solstice—the longest day of the year in the Northern Hemisphere. Because Earth rotates on a tilted axis, this is the day that the North Pole is most directly pointed at the sun. From our view on the ground in Chicago Heights, the sun appears farthest north in the sky.

The seasons are a result of the Earth's tilted axis as it travels around the sun. Summer Solstice occurs between June 20-22 when the North pole is tilted towards the sun.
The seasons are a result of the Earth’s tilted axis as it travels around the sun. Summer Solstice occurs between June 20-22 when the North pole is tilted towards the sun. Image credit: NOAA National Weather Service, https://www.weather.gov/cle/seasons

Conversely, winter begins on a solstice as well—the shortest day of the year when the planet is leaning away from the sun. In between, Spring and Fall correspond to “equinoxes”, the days when night and day are “equal” or roughly the same lengths.

It follows that in the Southern Hemisphere, the seasons are reversed. On June 21 while the North Pole is soaking in the sun, the South pole is in the shadows for the longest night of the year. A common misconception is that summer is when the entire Earth is close to the sun in an elliptical orbit and winter is when the planet is far away. If this was true, the Northern and Southern hemispheres would experience winter and summer at the same time. Actually, Earth’s orbit is fairly circular and the planet as a whole remains the same distance all year. Only the poles change their relative positions to the sun.

 

Introductory Personal Log

June 21 is a bittersweet day for me. As an avid gardener, the flip side of the Summer Solstice is that the days begin to get shorter and shorter until December 21. I start accounting foot by foot around the yard where “full sun” areas disappear and the infamous Chicago winter looms ahead. But this year, the Solstice brings a new excitement. Next week, Earth’s and my summer officially begins with a trip to Pascagoula, Mississippi to begin the second leg of the SEAMAP (Southeast Area Monitoring and Assessment Program) Summer Groundfish Survey aboard NOAA Ship Oregon II. Oregon II is a research ship that surveys various types of marine life in the Gulf of Mexico, Atlantic Ocean and Caribbean Sea. I can’t think of a better way to spend summer in these bodies of water.

 

How would I know about the Gulf, Atlantic and the Caribbean? I’ve lived in a few places around the U.S. My early childhood was spent in northern Virginia before moving to Florida where I stayed until I left for graduate school. That took me to New Mexico (truly enchanting!) and my current position brought me here to the south suburbs of Chicago, Illinois. My parents still live in Florida by the Indian River on a barrier island in the Atlantic Ocean. My bachelor’s degree is from New College of Florida which sits on a bay in the shimmering Gulf of Mexico. I haven’t had the pleasure of living in the Caribbean, but I have visited a couple of times.

 

[Break to answer the burning questions on everyone’s minds]

Florida its has drawbacks to beaches, such as the crushing summer humidity, hurricanes, mosquitoes, giant spiders–it’s not that hard to leave.

New Mexico is amazingly beautiful, boasting the best sunsets in the country. There are more plants, less oxygen and colder winters than you think. The elevation in Albuquerque is over 5,000 feet rising to 10,000 feet in the Sandias Mountains that border the city. I learned to ski here.

I like Chicago, the native wildflowers are the most impressive I’ve ever seen. The cold, dark winter, which aren’t terribly worse than Albuquerque, is balanced by fall leaves and an invigorating appreciation for spring as everything seems to rise from the dead. Hence the keen interest in solstices and equinoxes. Finally, Northeast Illinois is strongly nostalgic. The climate, plants and animals are very similar to Virginia so I actually often feel like a kid again.

I’m a biology professor at Prairie State College. We are a community college located 30 miles south of Chicago. While my educational background is in animal behavior and ecology, my graduate research spanned genetics, cell biology and immunology. Biologists often say they prefer cells or organismal biology over the other, but it is important to study the parts and the whole of any study organism, both of which respond to the ecological context. I typically teach Organismal Biology, which surveys the diversity of life on Earth with an introduction to ecology and evolution, and Environmental Biology. This fall, Cell and Molecular Biology will be added to my regular course rotation.

Community colleges are dedicated teaching institutions. However, Prairie State College supports faculty who engage with students outside of the classroom through research. I teach full time but I sometimes have the privilege of mentoring a research student. This past spring, my mentee won First Place in the STEM (Science, Technology, Engineering and Math) Skyway Poster Competition! Community college students in the region present their original projects which are judged by scientist volunteers from Argonne National Lab.

Tylar tested different types of alternative plant growing systems such as hydroponics and aeroponics to grow lettuce. He is committed to developing and promoting practices that reduce the environmental impact of industrial agriculture while meeting the needs of a growing world population. My experience as a Teacher at Sea in the Gulf of Mexico is timely because agriculture in Illinois generates pollution that ultimately impacts the marine ecosystems of the Gulf. Additionally, his project is now a teaching tool that I can use in each of my classes along with what we learn on Oregon II.

 

Let’s get summer started!

Melissa Barker: Data, Samples and Research, Oh My, June 29, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

 

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 29, 2017

Weather Data from the Bridge

Latitude: 29 11.93 N

Longitude: 92 40.31 W

Air temp: 28.6 C

Water temp: 28 C

Wind direction: 180 degrees

Wind speed: 13 knots

Wave height: 1 meter

Sky: Overcast

Science and Technology Log

We had a slight lull in the sampling yesterday due to storms and lightning risk, but today has been full speed ahead with the trawling. In this blog I’ll talk more about taking data and how the data and samples are used.

We use the FSCS system, designed by NOAA, to record our data for each trawl. The program walks us through all the data need for each species. The pattern goes something like this: select species, measure length with the Limnoterra magnetic measuring board, then mass the individual, and finally try to determine the sex of the organism. Without this technology I can image that the whole sampling process would take a lot longer.

 

 

Determining sex can be tricky at times and there are some species that we cannot sex such as squid, scallops and very small fish. We cut the fish open and look for male and female gonads. If possible we also mark the maturity state of the individual.

Female gonads

Male gonads

When recording shrimp, we measure length, weight and sex for each individual up to 200. This can take a while, but working in pairs we get pretty efficient. Female shrimp have a circular breast plate, called a thelycus, under the head or just above their first set of legs. Males have a petasma, the male sex organ, between their two front legs.

Female shrimp on the left, male shrimp on the right. The knife is indicating the petasma, the male sex organ.

David (left) and Tyler work together to measure, weigh and sex the shrimp efficiently

You might be wondering what happens to all this data that we are collecting?

The data we collect is sent to SEAMAP (Southeast Area Monitoring and Assessment Program) and is made publicly available. Scientists can use this data for their research. The SEAMAP Groundfish survey happens twice per year and has been ongoing for 42 years, allowing for identification of long term trends in the data.

SEAMAP gives the shrimp data to the different state agencies who make the data available to fishermen, who will use it to determine if shrimp are of marketable size and thus worth heading out to shrimp.

Bagged lizard fish headed to the freezer

In addition to the data we are collecting, we also collect and freeze samples. Any scientists can make requests for a study species to be saved from our trawls. These requests are entered into the computer system, which prompts us to bag, label and freeze the species to be taken off the ship at the end of the cruise.

Samples stored in the freezer. There are many more in additional freezers.

For example, we save all Red Snapper and send them to the NOAA lab in Panama City, Florida, for an age and growth study. Red Snapper is the top commercial fish in Gulf of Mexico, so this is critical data for fisherman and sustaining a healthy fish stock.

 

Several of the students who are part of the science team are collecting samples for their research.

Tagged Blue Crabs (photo credit: Helen Olmi)

Helen, who is part of the night shift, attends University of Southern Mississippi and is part of the Gulf Coast Research Lab. She is part of a team that is looking at migration patterns and reproductive behavior of female Blue Crabs (Callinectes sapidus). She tags female crabs and if fishermen find them they call in to report the location. Female Blue Crabs mate after their terminal molt and collect sperm in sac-like receptacles to use later to fertilize their eggs. When ready to spawn, the females move lower in the estuary into saltier waters. Blue Crabs are the most common edible crab so it is important to continue to monitor the health of the population in the Gulf.

Sharpnose Shark ready to be measured

David is an undergrad at University of Miami, who has earned a scholarship through NOAA Office of Education school scholarship program. As part of this program, he is funded to do summer research. He is working as part of larger study looking at the distribution and diet of the sharpnose shark (Rhizoprionodon terraenovae), one of the most common species of shark in the Gulf. Sharpnose sharks are generalists and the research study is looking to see if they are also potentially opportunistic eaters. He is also comparing diets from East and West Gulf sharks and may also be able to compare diets of sharks in low vs high oxygen areas. David’s data collection involves sorting through partially digested stomach remains to try to figure out what the shark ate; he gets to play detective in the lab.

Tyler holding a Croker

Tyler is a graduate student at Texas A&M at Corpus Christi and works with Atlantic Croaker (Micropogonias undulatus). He researches whether exposure to low oxygen affects what Croaker eat. Croaker are widely abundant in the Gulf–they often make up more than half of our trawl samples–thus they make a good study species. Croaker often feed at the bottom, in the benthic zone. Tyler is trying to determine if Croaker are changing their feeding patterns in hypoxic areas by feeding higher up in the water column in the pelagic zone to find more food. He uses Croaker tissue samples to examine diet using isotopes. The general idea with isotopes is that what you eat or process will become part of you. Different prey species will have different isotope signatures and looking at Croaker tissue can determine what organisms the fish have been eating.

As you can see the data and samples from this survey support a lot of science and sustainable fisheries management. Check out some of the interesting organisms we have found in our trawls in the last few days.

 

 

Personal Log

 As we crank through trawl after trawl of species, I have to stop and remind myself of where I am. As a land lover, it can be a little disconcerting that there is no land anywhere in sight. This fact is helping me appreciate the vastness of the ocean. It is said that we have only explored five percent of the ocean. Before I was on the Oregon II, this was hard to believe, but now I am starting to comprehend just how large the ocean really is.

Sunset over the Gulf of Mexico

Andre and the Cobia

We had some rough seas due to a storm cell a couple days ago which got the boat rocking and rolling again. The movement made it hard to sleep or move around. Luckily, we are through that area and back to our normal motion. With each trawl, I anticipate the possibility of interesting new species that might come up in our net. We caught an 18.8 kg Cobia (Rachycentron canadum) in our net yesterday, which is a fish I had never heard of, but is apparently prized as a food and game fish. Andre filleted it up and we ate it for lunch. It was so of the best fish I’ve ever tasted. Living in Colorado, I don’t eat much seafood, but I’ve decided to try what we catch out here and I’m glad I have. We’ve also had fresh caught shrimp and snapper that were delicious thanks to Valerie and Arlene, the stewards who are keeping us well fed.

I’m enjoying getting to know some of the folks who work on the ship. Many of these people have worked on the Oregon II for several years. When you live and work with each other in a confined space for 24 hours a day, you become close pretty quickly. The family feel among the crew and officers is evident.

I am getting more efficient with my measuring and weighing techniques and even remembering a few scientific names. During each twelve-hour shift, the time spent on our feet depends on the number of stations we cover. Some days we are back to back, just finishing up one sample while they are already trawling for the next. A monitor screen tells us the distance to the next station, so we can anticipate what is coming next. We are getting closer to the Mississippi delta where we are anticipating a decrease in oxygen at some of our stations.

Did You Know?

The Natural Marine Sanctuary System is a network of underwater parks that protects more than 600,000 square miles of marine and Great Lakes waters. NOAA’s Office of National Marine Sanctuaries serves as the trustee for the parks and brings together a diverse group of stakeholders to promote responsible and sustainable ocean use and protect the health of our most valuable ocean resources. Healthy oceans can provide recreation and tourism opportunities for coastal communities. (Source: sanctuaries.noaa.gov)

Marine Sanctuary map copy
(Photo credit: sanctuaries.noaa.gov)

In the Gulf of Mexico there is a marine sanctuary called Flower Garden Banks which includes three different areas, East Flower Banks, West Flower Banks and Stetson Bank, which are all salt dome formations where coral reef communities have formed. You can learn more about our National Marine Sanctuary System here.

Dawson Sixth Grade Queries

Why do you need to take the temperature and amount of salt in the water? (Bella)

Temperature, salinity, dissolved oxygen and florescence measurements give us more information about the water where we are sampling. Salinity helps tell us if we are in a freshwater, estuary or fully marine environment. The salinity will decrease as we near the Mississippi river delta. Salinity and temperature affect fish physiology or body functions. Each species has normal tolerance levels that it can live within. Organisms that find themselves outside of their salinity and temperature limits might not be able to survive.

The image of the CTD data below gives you an idea of typical values for temperature, salinity, dissolved oxygen and florescence and how they change as depth increases.

CTD key: pink=fluorescence, green=oxygen. blue=temperature, red=salinity

Does the temperature of the ocean get colder as it gets deeper? (Allison)

Generally temperature does decrease with depth, but in our shallow sampling locations there can be less than a 2 degree C temperature change. As you can see on the CTD data above, the temperature changed 6 degrees C at this sampling location.

How deep is it where you have sample? (David, Shane, Alix)

We sample at depths of 5-60 fathoms. One fathom equals 6 feet.

 

 

Melissa Barker: Breaking the Land Lock, June 14, 2017

NOAA Teacher at Sea

Melissa Barker

Aboard NOAA Ship Oregon II

June 22 – July 6, 2017

Mission: SEAMAP Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 14, 2017

Weather Data from the Bridge

Here in Longmont, Colorado where I live, we are settling into warm summer days often topping out in the high 80’s to 90’s F and typically with low humidity. In Galveston, Texas, where I’ll board the ship it is in the 80’s F this week with 90% humidity. I’ll have to get used to that humid air.

Science and Technology Log

NOAAS_Oregon_II_(R_332)
NOAA Ship Oregon II. Photo courtesy of NOAA.

I will spend two weeks aboard the NOAA fisheries research vessel Oregon II, in the Gulf of Mexico, working on the SEAMAP (Southeast Area Monitoring and Assessment Program) Summer Groundfish Survey. The objective of the survey is to monitor the size and distribution of shrimp and groundfish in the Gulf of Mexico.

gfmexico
The Gulf of Mexico. Photo from world atlas.com

What are groundfish, you ask? These are the fish that live near or on the bottom of the ocean. This survey is conducted twice per year; the data help scientists monitor trends in shrimp and fish abundance as well as changes over time. We will also be collecting plankton samples and environmental data at each site. The second leg of the groundfish survey works off of the Louisiana coast and the outlet of the Mississippi River where a “dead” or hypoxic zone forms in the summer. I am very interested to see the what we pull up in this area.

Personal Log

IMG_3082
I’m all geared up and ready to go!

When the NOAA Teacher at Sea email arrived in my inbox in February, I held my breath as I opened and read it as fast as possible. I was accepted! I was going to sea! I am honored to be a part of the National Oceanic and Atmospheric Administration Teacher at Sea program.

I teach Biology and direct the Experiential Education program at the Dawson School in Lafayette, Colorado. I love sharing my passion for learning about the biological world with my students and engaging my students’ curiosities. Many of my favorite teaching moments have been times when I can take students outside to observe and explore their surroundings.

P1070391
My classroom for a week in the San Juan Mountain Range, CO. March 2017. Photo credit Pete Devlin

I’ve lived in Colorado for about 17 years and love to play in the mountain environment on foot, ski or bike. Having lived land locked for most of my life, I can’t wait for the opportunity to explore the ocean ecosystem this summer. As a child, I spent short amounts of time exploring tide pools in Maine and beaches in Florida and was always intrigued by the vastness and mystery of the ocean.

IMG_3086.JPG
Tending my garden to grow delicious food

Now, I’m heading out to sea for two weeks to dive right into (not literally) learning about the ocean. Like my students, I learn best by doing, so I am thrilled to be working with the NOAA Fisheries team.

Did You Know?

Did you know that June is national ocean month? Celebrate the ocean this month.Check out this great video from NOAA and visit NOAA’s Celebrate the Ocean page for more information.

Dawson Sixth Grade Queries

Just before the end of the school year, I visited the Dawson sixth graders to talk about my NOAA Teacher at Sea expedition. We learned about the importance of the ocean, even for us here in Colorado, and the sixth graders wrote questions for me to answer while I’m at sea. Look for this section in my blog where I will answer some of those questions.

IMG_2782
Dawson School sixth grade. Photo by RuthAnne Schedler.

-What do you think the most common organism is that you will find? (from Allison)

One of the main goals of the Groundfish survey is to collect data on the abundance and distribution of shrimp, so I think I’ll be seeing a lot of shrimp in our net. I’ll be sure to post photos of what we find.

 -Are you going to scuba dive? (from Gemma, Emma and Margaret)

I will not be scuba diving on my trip. I am not certified and the Teacher at Sea program does not allow teachers to scuba (even if they are certified). Instead I will be learning from above the water’s surface and pulling up samples to learn about what lives deep below.

Now it’s your turn to ask the questions…

What are you curious about? Maybe you are interested to know more about what we haul up in our nets or how to become a NOAA scientist. You can write questions at the end of any of my blog posts in the “comments” section and I’ll try to answer them.

Sarah Boehm: The Dead Zone, July 5, 2013

NOAA Teacher at Sea
Sarah Boehm
Aboard NOAA Ship Oregon II
June 23 – July 7, 2013 

Mission: Summer Groundfish Survey
Geographic area of cruise: Gulf of Mexico
Date: July 5, 2013

Weather at 19:13
Air temperature: 26°C (79°F)
Barometer: 1017mb
Humidity: 93%
Wind direction: 135°
Wind speed: 18 knots
Water temp: 27°C
Latitude : 28° 44’ N
Longitude: 85° 32’ W

Science and Technology Log

Mr. Cummiskey, the other science teacher at CDCPS, asked if we saw an influence from farming along the Mississippi River in the Gulf ecosystem. At first it seems crazy that something happening over a thousand miles away can have an impact on an ecosystem as vast as the Gulf of Mexico, but it really is happening and part of our research is to monitor the effects. The first clue I had that something was changing was the color of the water. In the deep waters off Texas the water was a beautiful clear blue. As we got closer to the Mississippi delta the sea water turned a murky brown–a mix of mud brought down by the river and the phytoplankton that was thriving in the nutrient dense waters. Just like eating too much food is bad for people’s health, too many nutrients is actually bad for an ecosystem.

CTD
The CTD instrument. The bottles on the top collect water and the instruments on the bottom take measurements.

Each time we get to a sampling station we start by taking measurements of the water quality with the CTD (conductivity temperature and depth). From the bridge the officers control the ship to keep it in one place. Then the deck crew uses a winch and pulley system to move the heavy CTD equipment overboard and down into the water almost to the sea floor. All the way down and back up the machine is taking dozens of readings a second that are transmitted back to a computer in the dry lab.

The CTD records the depth, water temperature, the salinity (how salty the water is), and the dissolved oxygen. We are most concerned with the oxygen level because it greatly impacts the organisms living in the water. Fish and marine invertebrates breathe oxygen molecules that are mixed in with the water. Without enough dissolved oxygen in the water they will suffocate and die. Healthy levels in the Gulf of Mexico are 4 to 6 milligrams of O2 per liter of water.  If there is less than 2 mg/L it is considered hypoxic, meaning there is not enough oxygen. This map uses the data we have collected this cruise to show dissolved oxygen levels in the bottom waters of the Gulf. The green and yellow colors shows the healthy areas, the orange areas are hypoxic.

Click on the map for a larger version. The map is updated as new data comes in.

hypoxia map

See those orange areas in close to the coast of Louisiana? That is known as the Dead Zone. Runoff of fertilizer and other nutrient sources wash down rivers and out to sea where they contribute to algae blooms. When the algae dies it sinks and is decomposed, a process that uses up a lot of oxygen. Check out this video to learn more. All my 6th graders should notice similarities between this situation and the virtual pond we worked with this spring.

Hypoxia video

Not only do the oxygen levels change, but the composition of the fish trawls changed dramatically too.  At station #144 we had an oxygen reading of 3 mg/L and an average sized trawl (26 kg) with a variety of species. At station #146 we had an oxygen reading of 1 mg/L (which is hypoxic) but pulled up a huge net of fish that filled 18 buckets. The total weight was 340 kg, but over 300 kg was just two species – croaker and butterfish. We were surprised by this catch and so did another oxygen reading and found while our nets started in hypoxic waters, during the 30 minute trawl we moved into better water with 3 mg/L of oxygen .  At station #147 we had a very low oxygen reading of only 0.2 mg/L. Our trawl only brought up 1.7 kg, most of which were jellies and crabs with just a few little fish.  There just wasn’t enough oxygen to support more life. Why was station #146 so huge? As the low oxygen waters spread out from the Mississippi River delta, critters were fleeing the hypoxia zone and moving to better water. So along the edge of the dead zone is an area with high population density; the oxygen refugees and the fish swooping in to eat them.  However, not all creatures can move themselves out of the way. Creature like bivalves and gastropods (clams and snails) don’t have the capability to move much and so get caught in the annual hypoxic zone of the Gulf.

big catch
Bringing up the big catch at station 146

Hypoxia zones caused by nutrient runoff from fertilizer and other man-made sources do not just happen in the Gulf of Mexico. They have also been recorded in the Chesapeake Bay, Long Island Sound and at the mouths of rivers around the world. They can also happen in fresh water ponds and lakes.

The CTD is our main method of recording oxygen levels, but we need to make sure it is functioning properly. So each day we also take a water sample and use a titration method to find the amount of dissolved oxygen. Check out the colorful chemical reactions in this video.

Personal Log

People, like fish, need oxygen and water to survive. Out on the ship oxygen in the air is easy to come by, but fresh water is another story. We are surrounded by water of course, but cannot drink the salt water. I tracked down out Chief Engineer, Sean Pfarrer, to find out more about where all the fresh water on board comes from.

RO
The reverse osmosis machine

Down in the engine room there is a reverse osmosis machine that processes salt water and turns it into fresh water. The salt water is pumped into the machine under 950 psi of pressure. The pressurized water is forced through a selectively permeable membrane that lets water molecules through, but not the larger salt molecules. (My 6th graders should find this all sounding familiar) The super salty water left behind is pumped back out to sea, and the fresh water is used on board. Our sinks, showers and laundry all use fresh water. We go through about 1,000 gallons a day, which is close to the 1,200 gallon limit of the RO system (but only about half what 30 average Americans would use on land). To conserve fresh water the heads (toilets in sailor speak) flush with salt water.

RO element
A rod from the RO machine. Water is pumped in the tube and forced through the yellow filter.

Which brings me to one of my favorite science teacher topics – poop. Thirty people over the course of fifteen days generate a fair amount of waste. What happens to all that poop? Just emptying it into the water would be harmful to the marine environment, so we have a little waste water treatment system right on board. When you flush, it all goes down to the marine sanitation device where poop eating bacteria consume our waste.  The waste water then passes by chlorine tablets that kill any bacteria before it gets dumped into the sea. I’ll admit I’m a little fascinated by the systems and technology that keeps our floating community operating in a rather comfortable fashion.

We completed our science work this afternoon and are now heading back to port. Check out the Ship Tracker to see where we have been.

CDCPS Science Students:

How did sailors long ago during the age of exploration deal with the drinking water problem?

What do you think we could do to lessen the hypoxia problem in the Gulf?

Bruce Taterka, July 7, 2010

NOAA Teacher at Sea: Bruce Taterka
NOAA Ship: Oregon II

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Wednesday, July 7, 2010

Trawling in Deeper Waters

Weather Data from the Bridge

Time: 2015 (8:15pm)
Position: Latitude = 27.20.39 N; Longitude = 096.35.21 W
Present Weather: Could cover 90%
Visibility: 4-6 nautical miles
Wind Speed: 15 knots
Wave Height: 2-4 feet
Sea Water Temp: 28.6 C
Air Temperature: Dry bulb = 28.5 C; Wet bulb = 26.7 C
Barometric Pressure: 1008.27 mb

Science and Technology Log

Since setting out on Friday we’ve headed south along the Gulf coast of Texas almost to the Mexican border, and now we’re heading back north but farther offshore, in deeper water. As a result our trawls are pulling up a deep-water assemblage of species different from those we saw in shallower waters a few days ago. There is still no sign of oil in this part of the Gulf, but we’re still taking samples of fish and shrimp for analysis to make sure there’s no contamination here from the BP-Deepwater Horizon oil spill.

Ten-foot seas are predicted for tonight so we’re heading north along the Texas coast, away from the storm, and we’ve put away the fishing gear until it gets calmer.

Last log we talked about FSCS (Fisheries Scientific Computer System). So what is it, how is it used, and what is so great about it?

FSCS, pronounced ‘fiscus’, is an automated system for recording the massive amount of biological and oceanographic data generated 24 hours a day by NOAA scientists during fisheries surveys. During a trawl survey, fish and invertebrates from each haul are sorted, counted and weighed by species. Scientists record data from individual fish, such as sex, weight, length and even stomach contents, resulting in tens of thousands of new data points every day. Before NOAA rolled out FSCS in 2001 aboard the ship Albatross IV, scientists recorded all data by hand, an incredibly tedious process. With FSCS, however, data are recorded digitally which is much faster, allows integration of biological and oceanographic data. It also enables NOAA to obtain critical real-time information to assess and manage the health of the marine ecosystem and individual fish stocks.

FSCS uses a Limnoterra FMB4 (fish measuring board) which has a magnetic pen to upload the length of an organism within a millimeter, and software that annotates all of the data on length, mass, sex, etc. The software has an index of species scientific names and can print labels for specimen samples that are to be shipped to other scientists and to the National Seafood Inspection Laboratory in Pascagoula, MS.

We use FSCS 24 hours a day, and I can’t imagine how NOAA scientists did this work without it.


Personal Log

I’m enjoying my 12-hour shifts processing fish, shrimp and invertebrates on theOregon II. Our noon-to-midnight watch is working well together and starting to bond.

My watch-mates in the Oregon II wet lab.

I’m seeing lots of very cool marine life that we’re hauling up from the bottom of the Gulf with our trawling net. Here are just a few of the things I’ve seen in the past two days:

Singlespot frogfish – Antennarius radiosus.

Note the lure on its snout.

Examining the stomach contents of a catfish.

Red snapper – Lutjanus campechanus.

Camouflage in the Sargassum. Can you spot the crabs?

Sunset
Sunset


Bruce Taterka, July 4, 2010

NOAA Teacher at Sea: Bruce Taterka
NOAA Ship: Oregon II

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, July 4, 2010

Out in the Gulf

Weather Data from the Bridge

Time: 1000 hours (10:00am)
Position: Latitude = 27.58.38 N; Longitude = 096.17.53 W
Present Weather: partly cloudy, haze on the horizon
Visibility: 8-10 nautical miles
Wind Speed: 17 knots
Wave Height: 2-4 feet
Sea Water Temp: 28.6 C
Air Temperature: Dry bulb = 29.2 degrees Celsius; Wet bulb = 26.1 C
Barometric Pressure: 1011.1 mb

Science and Technology Log

The purpose of the SEAMAP Summer Groundfish Survey is to collect data for managing commercial fisheries in the Gulf of Mexico. SEAMAP stands for Southeast Area Monitoring and Assessment Program.

Right now we’re working along the Gulf Coast of Texas, far from the BP Deepwater Horizon oil spill, so we’re not seeing any effects of oil here. However, part of our mission is to collect fish for testing to make sure that oil spill has not impacted the marine life in this area and that the fish and shrimp from Texas are safe to eat. We’re also collecting water samples from this area to use as baseline data for the long-term monitoring of the impact of the oil spill in Gulf.

Analyzing a water sample in the Oregon II’s lab.

There are four main ways the Oregon II is gathering SEAMAP data on this cruise, and we’ve already learned how to use all of them. The main way we collect data is by trawling, and this is where we do most of our work on the Oregon II. In trawling, we drag a 42’ net along the bottom for 30 minutes, haul it up, and weigh the catch.

Hauling in the trawl net.

We then sort the haul which involves pulling out all of the shrimp and red snapper, which are the most commercially important species, and taking random samples of the rest. Then we count each species in the sample and record weights and measurements in a computer database called FSCS (Fisheries Scientific Computer System).

Logging a sample into FSCS.

Here on the Texas coast, where we’re working now, the SEAMAP data is used to protect the shrimp population and make sure that it’s sustained into the future. Since 1959, Texas has been closing the shrimp fishery seasonally to allow the population to reproduce and grow. The SEAMAP data allows Texas to determine the length of the season and size limits for each species. Judging by our trawls, the Texas shrimp population is healthy.

Another tool for data collection is the CTD, which stands for Conductivity, Temperature, and Depth. The CTD also measure dissolved oxygen, chlorophyll and other characteristics of the marine ecosystem and takes measurements from the surface to the bottom, creating a CTD profile of the water column at our trawling locations. These data are important to assess the extent of the hypoxic “dead zone” in the Gulf of Mexico, and to relate the characteristics of our trawling hauls to dissolved oxygen levels. SEAMAP data collected since the early 1980s show that the zone of hypoxia in the Gulf has been spreading, causing populations to decline in hypoxic areas.

We also use Bongos and Neustons to gather data on larval fish, especially Bluefin Tuna, Mackerel, Gray Triggerfish, and Red Snapper. The Neuston is a rectangular net that we drag along the surface for ten minutes to collect surface-dwelling larval fish that inhabit Sargassum, a type of seaweed that floats at the surface and provides critical habitat for small fish and other organisms.

Examining the results of a Neuston drag.

Bongos.

We drag the Bongos below the surface to collect ichthyoplankton, which are the tiny larvae of fish just after they hatch. The Neuston and Bongo data on fish larvae are used for long-term planning to maintain these important food species and keep fish stocks healthy.

Personal Log

This is a great learning experience, not only about marine science but also about living and working on a ship. The Oregon II is literally a well-oiled machine, and the operation of the ship and the SEAMAP study depends on a complex effort and cooperation among the science team, the crew, the officers, engineers, and the steward and cook. Everyone seems to be an expert at their job, and the success of our survey and our safety depends on that. It’s a different feeling from life on land.

Life aboard the Oregon II is comfortable, especially now that I’ve gotten my sea legs.(I was hurting after we set out on Friday in 4’ to 6’ swells, but by Saturday afternoon I felt fine.) The food is excellent and most of the ship is air conditioned. The Gulf – at least the Gulf Coast off of Texas right now – is beautiful. The seas are deep green and blue and teeming with marine life. I’m looking forward to spending the next 2 weeks on board the Oregon II and being part of the effort to study the marine ecosystem in the Gulf and how it’s changing.

View of Gulf of Mexico
View of Gulf of Mexico

Bruce Taterka, July 1, 2010

NOAA Teacher at Sea: Bruce Taterka
NOAA Ship: Oregon II 

Mission: SEAMAP Summer Groundfish Survey 
Geographical Area of Cruise: Gulf of Mexico 
Date: Tuesday, July 13, 2010 

On board the Oregon II in the Port of Galveston

I arrived in the Port of Galveston last night in the rain on the edge of Hurricane Alex, which was making landfall farther south along the Gulf Coast. The boat was quiet. I found my quarters – Stateroom 4, below deck – which I am sharing with Walter, the Second Cook for our cruise.

Stateroom 4
Stateroom 4

We were supposed to set sail today, but given the wind and rain that Alex brought to the Gulf our departure is delayed until tomorrow. Today is a wait-out-the-weather day.

Porthole
Porthole

Kim (the other Teacher at Sea the Oregon II) and I are meeting the officers and the crew and scientists and learning about our work for the next two weeks. I’ll be working the “day” shift – noon to midnight – while Kim will be on nights.

We set out tomorrow, heading south along the coast. Heavy seas are expected in the aftermath of Alex, which will be a major test for my sea legs. You can follow the Oregon II’s progress here.

 

Me on board
Me on board

Mechelle Shoemake, June 29, 2010

NOAA Teacher at Sea
Mechelle Shoemake
Onboard NOAA Ship Oregon II
June 19 – 30, 2010

Mission: SEAMAP Groundfish Survey
Geographical Area of Cruise: Northwestern Gulf of Mexico
Date: Tuesday, June 29, 2010

Weather Data from the Bridge
Time: 0000 hours (12:00pm)
Position: Latitude = 28.45.067 N; Longitude = 091.35.189 W
Present Weather: cloudy
Visibility: 6 nautical miles
Wind Speed: 8 knots
Wave Height: 4-6 foot swells
Sea Water Temp: 29.8 degrees Celsius
Air Temperature: Dry bulb = 27.3 degrees Celsius;
Wet bulb = 26.2 degrees Celsius

Science and Technology Log

The Groundfish Survey’s purpose is to find out what species are here in the Gulf how many, and their size, sex, and maturity status. On average the trawl produces at least 20-40 different species on each tow. The type of trawl used on the Oregon II is the Bottom Otter Trawl. The deck hands put the net out, it trawls for around 30 minutes, and it is then pulled back in by the deck hands. The catch is then placed in basket where it is weighed and then separated by species Each species is then individually weighed, measured, and sexed.

This is a red snapper I’m sorting out of the catch

We caught a nice red snapper that will be sent back to the lab for testing. It will also be determined if the oil spill had any effect on the fish, shrimp, crabs, and other species we caught. We also took some more water samples using the CTD to determine how much oil is in the water. We We used the Neuston net and the Bongo nets to gather plankton, which is also being collected for testing. The Neuston gathers plankton on the surface while the Bongo nets gather plankton all the way from the bottom of the gulf to the surface. This plankton is then placed inglass jars with a preservative Twenty-four hours later the plankton is transferred to a lesser preservative. The initial set sample is too strong for long storage. The plankton samples are then sent to Poland to a specialized plankton lab. In this lab, the plankton is identified to the family level. It is then sent back to the NOAA labs where it is identified to the species level. It was amazing to see all the little critters in the jar. There were so many of them.

Deploying the bongo net

Later in the day, we did another trawl….the catch of the day. Well it was a tire! It did have two little critters living in it, though. They were both identified and weighed and then frozen and packaged for the lab. The speculated reason for the trawl producing so few specis what’s called hypoxia. Hypoxia is the depletion of the oxygen in the water. If there is no oxygen,the fish and many other species cannot live. You can read more about hypoxia at http://www.ncddc.gov.

A frog fish

To the right is a frog fish that we found living in the tire. It has a trick to catch its food. The tentacle on the top of the head acts as a lure to attracts its prey. When a smaller fish comes by to eat what it thinks is food at the end of the frog fish’s lure…..well it gets caught and the frog fish eats the little fish. This frog fish still had its dinner in its mouth.

To the left is a picture of the last trawl that my shift made. You can see that this catch was full of shrimp and little crabs. We had to turn back towards Texas due to Tropical Storm Alex, which is forecasted by NOAA’s National Weather Service to become a hurricane by tomorrow. It’s too dangerous for the ship to be out in weather like that.

Some of the critters from out last trawl

Personal Log

Well, I can say that this has definitely been an adventure of a lifetime. I have enjoyed my voyage with all of my new NOAA friends. They have taught me a lot. As I am writing this, we are sailing back to port in Galveston, TX. As I said earlier, we had to cut our trip short due to Tropical Storm Alex. Believe me, I know he is out there. Our ship is rolling with the waves. I had a quick lesson in securing my belongings. You never know what you might encounter when you go to sea. Thanks to NOAA for giving me this opportunity.