Staci DeSchryver: A Brief Lesson on All the Things We Deliberately Throw Over the Side of the Ship, July 12, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

 

Mission:  HICEAS Cetacean Study

Geographic Area:  Hilo Coast, Hawaii

Date:  July 12, 2017

Weather Data from the Bridge:

Location:  22 deg 38.0 min N, 159 deg 33.9 min W

Cloudy with rain squalls all around

Visibility: 10 nmi

Wind: E @ 23 kts

Pressure: 1019.1mb

Waves: 2-3 ft

Swell:  60 degrees at 3-5 ft

Temp: 27 degrees

Wet Bulb Temp: 24 degrees

Dewpoint: 26 degrees

Relative Humidity:  96%

 

Science and Technology Log

Today, we will be exploring all of the equipment we deliberately toss over the stern of the ship.  There are a number of different audio recorders that the HICEAS and other teams use to detect various species while underway.  Chief scientist Erin Oleson gives a great perspective when she says that, “We pass through this particular area for this study only one time.  Just because we may not see or hear an animal, it certainly doesn’t mean it’s not there, or that it won’t come by this area at a later time.”  In order to compensate for the temporal restrictiveness of the ship being in one spot at one time, the team will periodically launch buoys over the side to continue the listening process for us.  Some buoys are designed to last a few hours, some report the information real-time back to the ship, some are anchored to the ocean floor, some drift around, and all serve different needs for the scientific team.

Thing we deliberately throw off the ship #1:  Sonobuoys

Since arriving on the ship, I have been recruited to “Team Sonobuoy” by the acoustics team for deployments!  It is my job to program and launch two sonobuoys on a set schedule created by the scientific team.   Sonobuoys are designed to pick up low-frequency sounds from 0 – 2 KHz, most often made by baleen whales.  The sonobuoy will send information back to the ship in real-time.  Once launched over the side, the sonobuoy will drift in the ocean, listening for these low frequency noises.  They are a temporary acoustic tool – lasting anywhere from 30 mins to 8 hours of time.  Most of the buoys are set to record for 8 full hours.  After the pre-set recording time is up, the float on the buoy pops, and the buoy is no longer active.  It is my job to launch two sonobuoys, and then monitor the signal coming back to the ship via VHF until we are too far away to detect the frequency coming back to us.  This usually happens between 2 and 3 miles after launch.   The recordings are sent onshore for processing.  Fun fact: sonobuoys were originally developed by the Navy to listen for enemy submarines!  The scientists thought they would be a handy tool for baleen whales, and picked up the technology.  We have deployed sonobuoys almost every evening of the cruise.

Thing we deliberately throw off the ship #2:  DASBRs

DASBRs, or Digital Acoustic Spar Buoy Recorders, are floating recorders launched at certain waypoints in the ocean.  The word “spar” simply means that the buoy floats vertically in the water.  There are two types of DASBRs, one records from 0 – 128 KHz, and one goes all the way from 0 – 144 KHz.  Now, these particular buoys get launched, but they don’t get anchored.

DeSchryver_connecting buoy to DASBR

Shannon and Jen connect the buoy to the DASBR before deployment

Inside the DASBR is a transmitter that shows the location of the buoy so that the scientific team can recover them at a later time.

DeSchryver_Eric waits DASBR

Erik waits to deploy the DASBR at the proper GPS location.

So, in effect, this is a buoy we deliberately throw off the ship only to bring it back on after a predetermined amount of time.  These recorders do not transmit back to the ship.  They store all of the data on the  DASBR, which is why recovery of the DASBRs is so important.  A DASBR that does not get recovered keeps all of its secrets as it floats along in the ocean.  We can track DASBRs real time, and they follow interesting patterns as they float freely in the ocean – some track in a given direction along with the current, while others corkscrew around in the same area.  So far, we have deployed 4 DASBRs in the first 8 days of the cruise.

Things we deliberately throw off the ship #3:  HARPS

HARPS, or High Frequency Acoustic Recording Packages, are the third type of microphone deployed off the ship.  HARPS record all sounds between 0 and 100 KHz. They last far longer than both sonobuoys and DASBRS in terms of time out on the water. They are limited not by data storage, but by battery power.  HARPS are deployed at one location and are anchored to the ocean floor.  Small yellow floats rise to the surface to alert ships and other traffic to their presence.  They are a little easier to find when it comes to recovery, since they have a GPS known location and are secured to the ocean floor, but they are a little more difficult to wrangle on to the back deck of the ship when recovered and deployed, since there is an anchor associated with them.

DeSchryver_HARP

The HARP in the Wet Lab undergoing repairs before launch.

On this cruise we have both recovered and deployed HARP systems.  The HARPS also store information within  the HARP, so recovery is important to the scientific team because the data does not get transmitted in real time back to any computers.

Things we deliberately throw off the ship #4:  Ocean Noise Sensors

There are data recorders that record the level of noise in the ocean over time.  We are currently on our way to pick one of these recorders up, complete some maintenance on it, and re-deploy it.  This will be a full day commitment for the scientific team and the crew, so I’m going to keep you guessing on this one until we actually complete this part of the operation.  We have many hands working together both on the ship and between organizations to make the ocean noise-monitoring program effective and cohesive, so this section of “Things we deliberately throw off the ship” will get its own blog post in the future as we complete the haul in, maintenance, and re-deployment.  Stay tuned.

 

Personal Log

Team.  You’ll never guess what I did.  I.  Drove. The Ship.  Yes, you read that correctly.  I drove the ship, and – AND – I didn’t hit anything while I did it!  What’s better is that I didn’t tip anyone out of their chairs while I made turns, either!  This is cause for much celebration and rejoicing among scientists and crew alike.  The Commanding Officer, CDR  Stephanie Koes invited me, “Spaz the TAS” up to the bridge for a little steering lesson two days ago, in which I happily obliged.  ENS Fredrick gave me a little mini-lesson on the onboard radar systems, which were picking up rain just off our starboard side.

I also learned of the existence of the many GPS positioning systems and navigation systems onboard.  The NOAA Marine and Aviation Operations, or OMAO, is not lost on system redundancies.  From what I can surmise, there are two of everything on the bridge in order to ensure the NOAA OMAO’s number one priority – safety. Everything on the bridge has a backup, or in many instances, a preferential option for each officer responsible for the bridge at any given time.  Some systems are fancy and new, while others maintain tradition on the bridge.  For example, a bell will still chime every half hour to remind the watch stander to record weather data on the bridge and a navigational fix on a paper chart.  ENS Fredrick says that the bell is an older maritime system, but is very handy when things get busy on the bridge –  the bell ringing is a perfect audio cue for him to stop what he’s doing and get to the logbook to record the weather.

Turning a giant ship sounds difficult, but in reality, it’s really difficult.  The actual act of turning doesn’t take much – a simple flip of a switch to take the ship off what I termed “cruise control” and a turn of the wheel (which by the way looks exactly like a smaller version of the ship wheels you see in all of the fabulous movies – I’m looking at you, Goonies) and an eye on the bearing angle (the compass direction in which the ship is headed).  But here’s the real issue – this moving city technically has no brakes.   So as the ship begins to turn, the driver has to pull the rudder back in the opposite direction before the bearing angle is reached, otherwise the bearing angle gets overshot.  If you turn the wheel too far one way or the other too quickly, the ship responds by  “leaning into” the turn at a steep angle.

DeSchryver_driving ship

This is me not running in to things while steering the ship with ENS Fredrick!

This sounds like it might be fun until the chef downstairs rings the bridge and chews the driver out for making the cheesecake fall off the galley countertop.  Then the driver must take the heat for ruining the cheesecake for everyone else on the ship waiting quite impatiently to eat it.  Thankfully, I tipped no cheesecakes.  That would make for a long month onboard being “that guy who turned the ship too hard and ruined dessert for everyone.”  I’m pretty sure had I not had the direction of ENS Fredrick as to when and how far to turn the rudder, I’d be in the dessert doghouse.

Another fabulous part of turning the ship is that I got to use the radio to tell the flying bridge (and anyone else who was listening) that I had actually turned the ship and it was correctly on course.  Luckily I had been listening to the radio communication for a few days and put on my best radio voice to make said announcements.  I think my performance was middling to above average at least, and fully qualified to speak on the radio without sounding too unfortunate at best.  However, there was one element of driving the ship that made me terrified enough to realize that I probably am not quite ready to hack the job – everything else that is going on up on the bridge while you are keeping the ship on-course.

Watch standers are notoriously good at keeping data.  They record every move the ship makes.  If the mammal and bird team go off effort due to weather or too high of a Beaufort state, the bridge records it.  They also record when they go back on effort. They log every turn and adjustment the ship makes.  They log every time we deploy a CTD or any kind of buoy.  I watched the watch stander on the bridge take a phone call, make a turn, log the turn, put the mammal team off-effort, put the mammal team back on-effort, take a request on the radio and record weather data all in a span of about two minutes.  It seemed like everything was happening all at once, and he managed it all like it was just another day in the office.  For him, it was.

To be a member of the NOAA OMAO means that you must be willing to learn, willing to make mistakes, willing to follow orders, willing to be flexible, and willing to be one heck of a multi-tasker.  I, for one, went quickly cross-eyed at all of the information processing that must happen up on the bridge during an officer’s shift. Thankfully, I didn’t go cross-eyed while I was trying to turn the ship.  That would have been bad, especially for cheesecakes.  I’m thinking that if I play my cards right, I can enlist as a “backup ship driver” for future shifts on Oscar Elton Sette.  I figure you never know when you might need someone fully unqualified to steer a giant moving city in a general direction for any given amount of time.  But I think I can do it if I do it like the NOAA Corps – taking everything one turn at a time.

Cetacean and Fish Species Seen:

Risso’s Dolphins

Striped Dolphins

Melon-Headed Whales

Blainsville Beaked Whales

Sperm Whale

False Killer Whales

Kogia – unidentified (These are either pygmy Sperm Whales or Dwarf Sperm Whales)

Flying Fish

Wahoo or Ono (Ono in Hawaiian means “tasty” – the name was confirmed as I enjoyed a few pieces of Ono sashimi last night at dinner)

 

Seabirds spotted as of July 14:

White Necked Petrel

Juan Fernandez Petrel

Hawaiian Petrel

Black-Winged Petrel

Cook’s Petrel

Pycroft’s Petrel

Bulwer’s Petrel

Wedge-Tailed Shearwater

Christmas Shearwater

Newell’s Shearwater

Band-rumped Storm Petrel

Red-Tailed Tropic Bird

White-Tailed Tropic Bird

Masked Booby

Brown Booby

DeSchryver_brown footed booby

A juvenile Red-Footed Booby takes a two day rest on Sette‘s Mast.

A juvenile Red-Footed Booby who has taken up residence on the mast of the ship for two full days and pretends to fly from the mast – highly entertaining.

 

Red-Footed Booby

Great Frigatebird

Brown Noddy

Sooty Tern

Grey-Backed Tern

White Tern

Ruddy Turnstone

Sanderling

Japanese Quail

 

 

Michael Wing: What’s there to see out there? July 24, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Cordell Bank National Marine Sanctuary
Date: July 24, 2015

Weather Data from the Bridge: Northwest wind 5 to 15 knots, wind waves 1’ to 3’, west swell 3’ at 14 seconds, patchy fog.

Science and Technology Log

I’ve been putting in long hours on the back deck, washing plankton in sieves and hosing down the hoop net. Often by the time the sample is safely in its bottle and all the equipment is rinsed off, it’s time to put the net down and do it all again.

On the back deck

Here’s where I wash plankton on the back deck

But, when I look up from the deck I see things and grab my camera. The surface of the ocean looks empty at first glance but it isn’t really. If you spend enough time on it, you see a lot.

Black Footed Albatross

Black Footed Albatross

Black footed albatrosses turn up whenever we stop to collect samples. They probably think we are a fishing boat – we’re about the same size and we have a cable astern. They leave once they find out we didn’t catch any fish. Kirsten tells me these birds nest on atolls east of Hawaii, and that most of the thirty or so species of albatross live in the southern hemisphere.

Mola

Mola

We also see lots of molas, or ocean sunfish. These bizarre looking fish lie on their side just under the water’s surface and eat jellyfish. They can be really large – four feet long, or more. I wonder why every predator in the ocean doesn’t eat them, because they are big, slow, very visible and apparently defenseless. The scientists I am with say that sea lions sometimes bite their fins. Molas are probably full of bones and gristle and aren’t very appetizing to sharks and seals. There are more molas than usual; one more indicator of the extra-warm water we’re seeing on this cruise.

Spouting whales

Humpback whales; one has just spouted

whale back

The back of a humpback whale

And of course there are WHALES! At times we a have been completely surrounded by them. Humpback whales, mostly, but also blue whales. The humpbacks are black with white patches on the undersides of their flippers and barnacles in places. They are playful. They breach, slap the water with their flippers, and do other tricks. The blue whales are not really blue. They are a kind of slate grey that may look blue in certain kinds of light. They are longer and straighter and bigger than the humpbacks, and they cruise along minding their own business. Their spouts are taller.

Humpback whale flukes

Humpback whale flukes

When we see one whale breaching in the distance, we call out. But, when a bunch of whales are all around us, we speak in hushed voices.

Personal Log

Orange balloon

Orange balloon

I have seen six balloons floating on the water, some dozens of miles offshore. Four of them were mylar, two like this one. The scientists I am with say they see the most balloons in June, presumably because June has more graduations and weddings. Maybe it’s time to say that balloons are not OK. When they get away from us, here’s where they end up.

Container ship

Container ship

We see container ships on the horizon. Sometimes they hit whales by accident. Every t-shirt, pair of sneakers, toy and electronic device you have ever owned probably arrived from Asia on one of these. Each of those boxes is forty feet long.

This is my last post from the R/V Fulmar. I go home tomorrow. I sure am grateful to everyone on board, and to NOAA, Point Blue Conservation Science, the Greater Farallones National Marine Sanctuary and the Cordell Bank National Marine Sanctuary for giving me the opportunity to visit this special place.

Common murre

Common murre

Did You Know? When common murre chicks fledge, they jump out of their nests onto the surface of the sea. The drop can be forty or fifty feet. At this point they can swim, but they don’t know how to fly or find food. So, their fathers jump in after them and for the next month or two father and chick swim together on the ocean while the father feeds the chick. These are small birds and they can easily get separated in the rough seas. When this happens, they start calling to each other. It sounds sort of like a cat meowing. We have heard it often on this cruise.

Murre with chick

Adult murre with almost-grown chick

Michael Wing: Seabirds to starboard, whales and seals to port, July 18, 2015

NOAA Teacher at Sea
Michael Wing
Aboard R/V Fulmar
July 17 – 25, 2015

Mission: 2015 July ACCESS Cruise
Geographical Area of Cruise: Pacific Ocean west of the Golden Gate Bridge
Date: Saturday, July 18, 2015

Weather Data from the Bridge: Wind Southeast, ten knots. Wind waves less than two feet. Swell 4-6 feet ten seconds. Patchy morning fog.

Michael Wing and Fulmar

Michael Wing and the R/V Fulmar

Science and Technology Log

We loaded the boat yesterday at 3:00 PM and I met a lot of people including the three co-principal investigators Jan Roletto of the Greater Farallones National Marine Sanctuary, Danielle Lipski of the Cordell Bank National Marine Sanctuary, and Jaime Jahncke of Point Blue Conservation Science. There are others, including volunteers and visitors, and I will try to introduce some of them in future posts.

Today we didn’t collect water or plankton samples. We’ll do that tomorrow.  We sailed west from the Golden Gate Bridge on a track called “Line 5” at ten knots until we passed the edge of the continental shelf and then dropped south and cruised back to our dock in Sausalito on another line called “Line 7.” Plankton and water samples are for the even-numbered lines. Our purpose today was to count seabirds, whales and seals and sea lions. It’s not simple. By 7:30 AM we are assembled on the “flying bridge” (the highest part of the boat) with Jaime and the Greater Farallones Association’s Kirsten Lindquist on the starboard side and volunteers Jason Thompson and Rudy Wallen on the port. Kirsten notes birds, focusing just on the area from dead ahead to the starboard beam and calls out things like “Common murre, zone two, thirteen, flying, bearing 330 degrees.” This means she saw thirteen common murres flying northwest together not too far from the boat. This time is called being “on effort” and she is really focused on it. I don’t talk to her unless spoken to. Jamie enters all this into a database on his laptop.

On bird patol

On bird patrol

The guys on the port side are doing the same thing for marine mammals and saying “Animal, by eye, bearing 320, reticle seven, traveling, immature California sea lion, one-one-one.” These last numbers are estimates of the most probable number of animals in the group, and maximum and minimum estimates. Obviously, in this example just one animal was seen.

I am in awe of their ability to identify species, maturity and other things from just a glimpse. Kirsten can tell the difference between a Western gull and a California gull from hundreds of feet away, even if the gull is flying away from her. They also record floating trash, dead animals, and boats and ships.

So what are we seeing? Common murres, western gulls, California gulls, Sabine’s gulls, sooty shearwaters, pink footed shearwaters, storm petrels, black footed albatrosses, red necked phalaropes, tufted puffins, Pacific white sided dolphins, northern fur seals, a bottlenose dolphin, humpback whales, a dead seal, Mola molas (ocean sunfish), one flying fish, mylar balloons (4), a paper cup, a piece of Styrofoam. The flying fish was totally unexpected because they are mostly tropical and everyone talked about it all afternoon.

Port side

The port (left) side is for spotting marine mammals

Some of these birds have come here from Chile, New Zealand, or Hawaii in their “off” (non-breeding) season because there is a world-class food supply here for them. The sooty shearwaters start in New Zealand and fly to Japan, to Alaskan waters, and then down the west coast of North America before returning to New Zealand across the Pacific! However, a lot of these were far away. Visually, the ocean looks pretty empty from the flying bridge.

striped crab

This little crab was clinging to a piece of kelp we caught with a boat hook

Personal Log

The specter of seasickness haunts us on the first day of a cruise. Most of us are snacking on starchy treats like pretzels and Cheez-Its and drinking carbonated drinks. Paradoxically, these foods help prevent nausea. I have not taken any seasickness medicine and I am feeling a little queasy during the morning, but by noon I feel great. Nobody throws up. The Fulmar doesn’t roll from side to side very much but she does lurch when smacked head-on by a wave. It helps that the waves weren’t very big today. Soon we’ll all get our “sea legs.”

Also, you might appreciate these photos of me getting into a “Gumby suit” in under a minute, as part of my safety training. This is a survival suit meant to keep you from freezing to death if the boat sinks. You have to be able to get into it in less than a minute.

survival suit

Getting into the survival suit. I have 1 minute, and the suit is stiff. Photo credit: Ryan Hartnett

into survival suit

I am into the survival suit. Photo credit: Ryan Hartnett

Did You Know? Here’s what you need to untangle fishing nets from a frustrated humpback whale: Boathooks, sharp knives, and a GoPro digital camera on the end of a pole. The GoPro helps you study the tangles so you can decide where to make that one cut that causes the whole mess to fall apart and off the whale.

 

life ring

R/V Fulmar’s life ring

Alex Miller, Heading for Home, June 11, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Thursday, June 11, 2015

Front row from left: Paul Chittaro, Brittney Honisch, Tyler Jackson; Back row from left: Alexandra Miller, Will Fennie, Toby Auth

Front row from left: Paul Chittaro, Brittney Honisch, Tyler Jackson; Back row from left: Alexandra Miller, Will Fennie, Toby Auth

 

To conclude the discussion of the research on board the Shimada, I would like to profile the remaining scientists: the four fishermen of the night shift, and give a general report of the results of the cruise.

____________________________

Toby Auth, fisheries biologist with Pacific States Marine Fisheries Center (PSMFC), oversees most of the operations of the sorting, measuring and counting of the trawls. He works as a contractor to NOAA under the guidance of Ric Brodeur. Toby holds a BA in Fisheries and Wildlife from the University of Minnesota and he did both his MA and Ph.D. at the University of Maryland in Fisheries Management and he specialized in studying the early life of fish–egg, larval and juvenile stages, collectively called ichthyoplankton, basically anything fish-related that is small enough to sort of float along in the water.

As a researcher, he is most interested in understanding spawning success and food chain interactions of the Pacific coast species that come up in the trawls. Typically, Toby is at sea 30 – 40 days a year, but this year, due to the anomalous warm blob, he expects to be at sea about 50 – 60 days. The anomaly has implications for all fields of marine biology and oceanography.

In the far left of the image stands Dr. Paul Chittaro, of Ocean Associates in Seattle, WA. Paul is at sea on a research cruise for the first time in 10 years, and he’s very happy to be here. He was on board collecting fish in order to examine their otoliths, which are ear bones. Otoliths grow every day, laying down rings, almost like a tree. Analyzing these rings can give information about the fishes travels, diet and ocean conditions when they were alive.

The big guy in the back is Will Fennie, who will begin his Ph.D. at Oregon State University in the fall. The entire cruise he has been eagerly awaiting some juvenile rockfish to come up in the net and finally, in the last few nights, some did. Overall, we caught much less rockfish than in previous years. This could be for any number of reasons.

You can hear interviews with Paul and Will below.

____________________________

I have to give a HUGE thank you to Ric Brodeur, Chief Scientist of this mission, for supporting me as a Teacher at Sea and for reading each and every blog post!

Listen to my interview with Ric to learn more about the impacts of the research done on board the Shimada for these 13 DAS and possibilities for the future.

 

Thanks to XO Sarah Duncan as well, both she and Ric had to read and edit each one!

 

IMG_9442

Front row from left: Yours Truly, Emily Boring, Ric Brodeur; Back row from left: Jason Phillips, H.W. Fennie, Brittney Honisch, Toby Auth, Dr. Paul Chittaro, Amanda Gladics, Samantha Zeman, Curtis Roegner, Tyler Jackson

____________________________

It would take quite some time to tell all the stories of the marine wildlife we have seen on our 13 day cruise, but I would still like to share with you some of the photos and video I and others were lucky enough to capture. Enjoy!

All photos in these two galleries are courtesy of Amanda Gladics, Oregon State University, Seabird Oceanography Lab.

 

 

Personal Log

My experiences on board the Shimada have taught me a lot about myself and my abilities. I’ve done more writing, media processing and chatting with new people in the last two weeks than I have in the last two years. I have a greater understanding of how scientists work in the field and the importance of fisheries to the health of our oceans and the commercial fishing industry and I plan to apply that understanding in my classroom to increase students’ understanding of marine science and awareness of possible careers. To my students: “Get ready, dudes!”

Hopefully, you all have learned a lot about fisheries research, the process of science and the fascinating cast of characters who sailed with the NOAA Ship Bell M. Shimada. Maybe you’re even feeling a little inspired. Now, I know I’m an inland city kid, but I’ve loved the sea since I first saw Free Willy at the age of 7 and I’m not the only one who can trace their love of the sea to a starting point.

All the scientists on board have an origin story: one salient memory that they can credit with being the moment of inspiration for pursuing a life of study and research and a career in the field of science. If you’re curious about the world, you have the potential to be a great scientist. Science is for all people, no matter what age or situation, and these ones just happen to do theirs at sea. So, I want to know: Where will you do yours?

That’s all for now. Thank you for reading and listening and, maybe, sea you again soon!

Alex Miller, Teacher at Sea, signing off.

output_mgo8L7

Bye!

One last huge THANK YOU to the crew and officers of the Shimada for a wonderful cruise!!!

Donna Knutson, September 29, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 29, 2010

The last night on the Sette.

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sightings will also be documented.

Jay the second steward during a drill.

Science and Technology:
Latitude: 19○ 53.8’ N
Longitude: 156○ 20.8’ W  
Clouds:  2/8 Cu, VOG (volcanic ash fog)
Visibility:  10 N.M.
Wind:  8 Knots
Wave height:  2 ft.
Water Temperature:  26.3○ C
Air Temperature:  26.0○ C
Sea Level Pressure:  1015.5 mb
The first leg of the Sette’s HICEAS cruise is almost over.  By tomorrow noon we will come into port at Pearl Harbor.  The mission has been highly successful!  The scientists and birders have had an action filled thirty days.
The HICEAS cruise birders, Dawn Breese and Scott Mills have documented thirty-nine species of seabirds.
 In the “tubenosed” or Procellariformes order, there are the Petrels and Shearwaters.  The Petrels include the Kermadec, Herald, Hawaiian, Juan Fernandez, White-necked, Back-winged, Bonin, Wilson’s Storm, Band-rumped Storm, Cook’s, and Bulwer’s.  The Shearwaters include the Christmas, Wedge-tailed, Buller’s, Sooty, Short-tailed, and Newell’s.

Clementine, the chief steward, in the galley. Her and Jay made a banquet for every meal! I surprised her!

From the order Pelicaniformes the Red-tailed and White-tailed Tropicbird have been recognized and also the Brown, Red-Footed Booby, Masked Booby, and Great Frigatebirds.

Harry, the chief engineer, during a drill.

The shore birds seen so far are the Bristle-thighed Curlew, Pacific Golden-Plover, Red Phalarope, Ruddy Turnstone, Bar-tailed Godwit, Sanderling and Wandering Tattler. Terns include the Brown and Black Noddies, the White, Sooty, and Grey-backed Terns; Jaegers include Pomarine, Parasitic, and Long-tailed plus the South Polar Skua.
The HICEAS mammal observers, Andrea Bendlin, Abby Sloan, Adam U, Allan Ligon, Ernesto Vazquez and Juan Carlos Salinas, have had ninety-seven sightings!  The whales observed have been the sperm whale, Bryde’s whale, and Cuvier’s and Blainville’s beaked whales.

The CO,commanding officer, Anita Lopez.

The dolphins that were documented were the bottlenose dolphin, striped dolphin, Pantropical spotted dolphin, spinner dolphin, Risso’s dolphin, rough-toothed dolphin, killer whale, false killer whale, pygmy killer whale, and pilot whale.
The scientists were able to obtain nearly 50 biopsy samples from live cetaceans, 1 necropsied Kogia, 3 tracking tags, and hundreds of pictures!
Personal Log:
If someone asked me what qualities and or skills are needed to work on a ship, I would use the Sette crew as my model.
You must have dedicated, respected and competent officers.  The engineers need to be resourceful and good problem solvers.  The deck hands must be hard working and possess a good sense of humor.  The doctor should be a model for good physical health and have a inspiring positive attitude.   The stewards need to make creative delicious dishes, and be friendly and caring. The computer technician must be a great troubleshooter in order to work on anything that requires electricity.

Dr. Tran and the XO, executive officer, Stephanie Koes went to Midway with me.

The science crew must be focused, persistent and knowledgeable.  I have observed that scientists, regardless of their role, whether they are mammal observers, accousticians, oceanographers or chief scientists, need to collect data, organize the information into the correct format, and then report it.  All variables need to be accounted for.
 I am very impressed with the kind and helpful crew!  They truly made me feel at home.  That is exactly how it feels like on the Sette – like a home.  They have welcomed me with open arms.

Kinji, the boatswain, cut up the yellow fin tuna into shashimi.

I have learned much, much more than anticipated on this cruise.  I was included in activities in all divisions. I was encouraged to help out the scientists by being an independent mammal observer, run security on the CTD, and help package and label biopsy samples.
In the kitchen I learned how to sanitize the dishes and where to put them away, plus I got some helpful cooking hints to take back home and a lot of good conversation.
I helped the deck crew when working with the CTD and learned how to tie a bowline knot.
I went up to the bridge and helped look –out during an emergency situation, was invited to the officer’s book review, and drove the ship.  Wow! Do I have respect for people who can do that accurately!
 I received a thorough and informative engineering tour, and I am still impressed by all the systems that need to work together to keep the ship (which is like a mini city) afloat.

The “girls” of the science crew displaying their cups before sending them down 3000 ft. with the CTD. They came back up less than half the original size.

I wanted to be involved where ever I went. Learning by observing is great, but I wanted to be an active member of the crew and learn through experience.  It is impossible to write down everything I learned from this experience, but I want to ensure everyone who was over-run with my many questions, that I appreciate all your time and patience with me.
It feels as though I have a whole different world to show my students!  Our Earth really is an amazing place of adventure!  You never know who you will have a chance to meet or what you can learn from them!
Thank you to everyone who shared their life with me.  It allowed me to have a wonderful “soul filling” experience!

Donna Knutson, September 19, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 29, 2010

Visitors of the Monument

Back in the boat trying to get a biopsy from pilotwhales.

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sittings will also be documented.
Science and Technology:
Latitude: 26○ 33.6’ N
Longitude: 177○ 05.5’ W  
Clouds:  3/8 Cu,Ac, Ci
Visibility:  10 N.M.
Wind:  12 Knots
Wave height:  4-6 ft.
Water Temperature: 27.8○ C
Air Temperature:  26.8○ C
Level Pressure:  1024.0 mb

Female Great Frigatebird is a large bird with a wingspan up to 86 in.
They do not walk or swim and are the most aerial of the seabirds.

The Northwest Hawaiian Islands became a Marine National Monument called Papahanaumokuakea Marine National Monument.  Papahanaumoku is a mother figure represented by the earth.  Wakea is a father figure represented by the sky. They are the honored and  highly recognized ancestors of Native Hawaiian people.  Together they resulted in the creation of the entire Hawaiian archipelageo and naming the Northwestern Hawaiian Islands after these names to strengthen Hawaii’s cultural foundation.

Layson ducks are only found on Laysan and Midway.
They were near extinction from hunting and invasive species, now they are protected and their numbers have increased to over 500.

Papahanaumokuakea is considered a sacred area. Native Hawaiians believe that life springs from this area and spirits come to rest there after death.  That means they also believe that they are descended from the same gods who birthed the Hawaiian Archipelago and it is therefore their responsibility to become stewards to care for the natural and cultural resources in Papahanaumokuakea.

Short-tailed Shearwaters often fly in flocks. These birds were on their migratory route.

The HICEAS cruise has track lines that cross into the National Monument, so while in the Monument, we must abide by the rules set forth to protect the natural and cultural resources within.

 This area is indeed rich in life as well as tradition.  Over ninety percent of the Monument’s area is deep sea.  Some depths are greater than three thousand feet. Hawaiian monk seals may travel more than one thousand feet down into the ocean to feed on gold and bamboo corals.  Some of the corals are over four thousand years old.  Scientists are just beginning to understand deep sea habitats such as that of sleeper sharks, hagfish and crabs.
Even though there is not much land within the monument, many animals make it their home.  Over fourteen million seabirds of twenty-two different species breed and nest in less than six square miles.  The reason these islands are so populated is because of the island’s isolation and conservation measures.

White tern on Midway. The oldest White terns on the island are 50years old!

The greatest threat of the Monument is climate change.  An increase in sea surface temperature is linked to disease and coral bleaching.   Rising sea levels cause less land for green sea turtles, monk seals and seabirds.
The HICEAS cruise has documented thirty-seven species of seabirds.  Not all of these birds live on the islands, many are migrating.  Within the “tubenosed” , Procellariformes  order, there are the Petrels and Shearwaters.  The Petrels include the Kermadec, Herald, Hawaiian, Juan Fernandez, White-necked, Back-winged, Bonin, Wilson’s Storm, Band-rumped Storm, Cook’s, and Bulwer’s.  The Shearwaters include the Christmas, Wedge-tailed, Buller’s, Sooty, Short-tailed, and Newell’s.

Bonin petrels are coming back to their burrows on Midway.
The burrows may be 9ft. long and 3 ft. underground.

From the order Pelicaniformes the Red-tailed and White-tailed Tropicbird have been recognized and also the Brown, Red-Footed, and Masked Bobby.   Great Frigatebirds, the largest of all within this order, have also been seen soaring high above the ocean.

A third order is the Charadriiformes, the shorebirds, terns and jaegers. The HICEAS track line is bringing us close (within three miles) to the shores of atolls and islands so therefore shore birds are seen as well.  The shore birds seen so far are the Bristle-thighed Curlew, Pacific Golden-Plover, Red Phalarope, Ruddy Turnstone, Bar-tailed Godwit, the Brown and Black Noddies, the White, Sooty, and Grey-backed Terns, the Pomarine, Parasitic, and Long-tailed Jaegers, and the South Polar Skua.
The HICEAS cruise will agree with the National Monument in proclaiming this area has an abundance of seabirds!
Personal Log:

The bottom view of a Wedge-tailed Shearwater.
Like most seabirds, they mate for life.

My roommate or “statemate” (on ships there are no bedrooms rather staterooms) is Dawn Breese, she is an avid Birder.  Scott Mills, also a Birder mentioned in Log #2, have been noticing a trend in their daily bird population densities.

As we headed northwest, they noted on September 17, 2010 when the Sette was at 28 24.7’ N and 178○ 21.1’ W, they saw their last Short-tailed Shearwater.  They did not see any Short-tailed Shearwaters after those coordinates and felt that it was odd considering the large amounts they had seen previously.  Near the International Dateline past Kure we headed back southeast once again and the Short-tailed Shearwaters reappeared at 27○ 6.28’ N and 178○ 27.9’W.  They concluded that they had passed twice through the Shearwater’s migratory route and seemed to find its NW edge.  On a single day alone, they estimated that there were over fourty thousand birds in that area!

White-tailed tropicbird likes to plunge dive for fish and squid.

When they mentioned the huge numbers of Short-tailed Shearwaters they saw, I decided to do some checking on them. I discovered the Short-tails are about forty centimeters long and have a wing span of 100 centimeters.  It is chocolate brown with a darker brown cap and collar.  It is often observed in large flocks and will dive fifty meters into the ocean for fish and squid.

Juan Carlos brought the Wedge-tail Shearwater down for Dawn to see.

The Short-tails breed on islands off southeastern Australia and migrate north to feed in the Bering Sea.  The Sette crossed their route flying back to the South Pacific!  It is a good thing they are “tubenosed” because they will not land until they have reached their destination.  The “tubenose”, (mentioned blog #2), will help the birds eliminate salt from their bodies.  Some short-tails on the breeding grounds will actually commute to the Antarctic to feed on fish along the ice.

The Wedge-tails tubenose is on the top of the beak.

On September 20, 2010 Juan Carlos knocks on our door after sunset to show Dawn a Wedge-tailed Shearwater, cousin of the Short-tailed Shearwater. The nocturnal animal got distracted by the ships’ light, and ended up on deck.  According to the Hawaii Audubon Society, Wedge-tail Shearwaters on O’ahu are often hit by cars because of the car’s lights at night.  O’ahu and Kaua’I both have rescue shelters for hurt birds from car accidents.

The Wedge-tail posing with Dawn and I.

Juan Carlos rescued the stunned bird, making sure it could not bite him with its sharp beak, and brought it down to show the bird observers.  I took close-ups of the bird because I wanted a picture of its tubenose.  Dawn showed me the unique features of the Wedge-tail.  It smelled fresh like a sea breeze.  We looked for the small ears behind the eyes but it’s feathers were so dense we couldn’t get a good look at it.

The bird had light brown feathers with a white belly, it was very soft and dainty looking.  It didn’t seem to mind people staring at it within a ship, but it probably just seemed content because Dawn knew the correct way to hold a bird.  After the Wedge-tail was checked out, Dawn took it up to the fantail (back) deck and released it.   The bird flew away unhurt into the night.

Kathryn Lanouette, August 1, 2009

NOAA Teacher at Sea
Kathryn Lanouette
Onboard NOAA Ship Oscar Dyson
July 21-August 7, 2009 

Mission: Summer Pollock Survey
Geographical area of cruise: Bering Sea, Alaska
Date: August 1, 2009

This sonar-generated image shows walleye pollock close to the sea floor. The red line at the bottom of the image is the sea floor. The blue specks at the top of the image are jellyfish floating close to the water’s surface.

This sonar-generated image shows walleye pollock close to the sea floor. The red line at the bottom of the image is the sea floor. The blue specks at the top of the image are jellyfish floating close to the water’s surface.

Weather Data from the Ship’s Bridge 
Visibility: 10+ nautical miles
Wind direction: variable
Wind speed:  less than 5 knots, light
Sea wave height: 0 feet
Air temperature: 7.9˚C
Seawater temperature: 8.6˚C
Sea level pressure: 30.1 inches Hg
Cloud cover: 7/8, stratus

Science and Technology Log 

In addition to the Aleutian wing trawl (which I explained in Day 5 NOAA ship log) and Methot (which I explained in Day 8 NOAA ship log), scientists also use a net called an 83-112 for bottom trawls. The 83-112 net is strong enough to drag along the sea floor, enabling it to catch a lot of the animals that live in, on, or near the sea floor. This afternoon, we conducted the first bottom trawl of our cruise. Bottom trawls are usually conducted in two situations: if the walleye pollock are too close to the sea floor to use an Aleutian wing trawl or if the scientists want to sample a small amount of fish (because the 83-112’s net opening is smaller than the Aleutian wing trawl’s net). From the looks of the sonar-generated images, it appeared that most of the walleye pollock were swimming very close to the bottom so the scientists decided it would be best to use the 83-112 net.

Here I am holding one of the skates that was caught in the bottom trawl

Here I am holding one of the skates that was caught in the bottom trawl

Once the fish were spotted, we changed our course to get ready to trawl. Usually the trawl is made into the wind for stability and net control. Once the ship reached trawling speed, the lead fisherman was given the “OK” to shoot the doors. Slowly, the net was lowered to 186 meters below the surface, the sea depth where we happened to be. The water temperature down there was about 1˚C (compared to 7˚C on the sea’s surface).  I had heard from a previous Teacher At Sea that bottom trawls brought up a wide variety of animal species (compared to the relatively homogenous catches in mid-water trawls). And sure enough, when the net was brought up, I couldn’t believe my eyes!

All told, we sorted through over 7,000 animals, a total of 36 different species represented in the total catch. It took 4 of us over 4 hours to sort, measure, and weigh all these animals. There were over 350 walleye pollock in this catch as well as skates, octopi, crabs, snails, arrowtooth flounder, sea anemones, star fish, and dozens of other animals. Some of them were even walking themselves down the table.

During this catch, I also learned how to take the ear bones, or otoliths, out of a walleye pollock. Why ear bones you might ask? Using the ear bones from a walleye pollock, scientists are able to determine the exact age of the fish. Misha Stepanenko, one of the two Russian scientists on board the Oscar Dyson, showed me how to cut partially through the fish’s skull and take out two large ear bones. Once they were taken out, I put them in a solution to preserve them. Back in NOAA’s Seattle lab, the ear bones are stained, enabling scientists to count the different layers in each ear bone. For every year that the fish lives, a new layer of bone grows, similar to how trees add a layer for each year that they live. By learning the exact age of a fish, scientists are able to track age groups (called “cohorts”), allowing more precise modeling of the walleye pollock population life cycle.

A diagram of an otolith, or ear bone, of a fish.  You can see that it’s a lot like looking at tree rings!

A diagram of an otolith, or ear bone, of a fish. You can see that it’s a lot like looking at tree rings!

Personal Log 

So far this trip, we have sailed within 15 miles of Cape Navarin (Russia) on at least two different occasions but fog and clouds prevented any glimpse of land both times. It was a frustrating feeling knowing that land was so close, yet impossible to see. After 12 days of looking at nothing but water and sky, seeing land would have been a welcome treat.

Despite not seeing land, I still felt like I was in Russia just from listening to different fishing vessels communicate with one another. On our first night in Russian waters, we sailed through a heavy fog, with 7 or 8 different boats fishing nearby. I was impressed with how Ensign Faith Opatrny, the Officer on Deck at the time, communicated with various vessels, using collision regulations (“the rules of the road”) to navigate safely. On a culinary note, I got my first chance to eat some of a catch. After most trawls, we discard remaining inedible specimens overboard. After our bottom trawl however, one of the scientists filleted some of the cod. The next day, the stewards cooked it up for lunch. It tasted great and it felt good to be eating some of the fish that we sampled.

A graph showing the adult walleye pollock biomass estimates from 1965 to 2008.

A graph showing the adult walleye pollock biomass estimates from 1965 to 2008.

As the cruise starts to wind down, I also want to express my gratitude to all the NOAA scientists and Oscar Dyson crew. Everyone in the science group took time to explain their research, teach me scientific techniques, and answer my many questions. On numerous occasions, the deck crew explained the mechanics of fishing nets as well as the fishing process. The engineering crew gave me a tour of the engine rooms, describing how four diesel engines power the entire boat. The survey techs explained how different equipment is operated as well as the information it relays back to the scientists. The NOAA Corps officers showed me how to read weather maps, take coordinates, and explained ship navigation. The ship’s stewards described the art and science behind feeding 33 people at sea. And the USFWS bird observers patiently showed me how to identify numerous bird species. From each of them, I learned a tremendous amount about fisheries science, fishing, boats, sailing, birding, and life in the Bering Sea. Thank you!

Answer to July 28 (Tuesday) Log: How has the walleye pollock biomass changed over time? 
In the past few years, the walleye pollock biomass has decreased (according to the acoustic-trawl survey, the survey that I joined.) It should be noted that there is a second complementary walleye pollock survey, the eastern Bering Sea bottom trawl survey. This survey studies walleye pollock living close to the sea floor. As walleye pollock age, they tend to live closer to the sea floor, thus the bottom trawl survey sometimes shows different biomass trends than the acoustic-trawl survey. Both surveys are used together to manage the walleye pollock stock.

An up-close look at one of the squid’s tentacles

An up-close look at one of the squid’s tentacles

Animals Seen 
Auklet, Arrowtooth flounder, Basket star, Bering skate, Cod, Hermit crab, Fin whale, Fur seal, Octopus, Sculpin, Sea mouse, Sea slug, Shortfin eelpout, Snow crab, Squid, and Tanner crab.

New Vocabulary: Bottom trawl – fishing conducted on and near the bottom of the sea floor. Catch – fish brought up in a net. Shoot the doors – a fishing expression that means to lower the 2 metal panels that hold open the fishing nets in the water. Stewards – the name for cooks on a ship. Table – nickname for the conveyor belt where the fish are sorted for sampling. Vessels – another word for ships.