Lindsay Knippenberg: An Introduction, August 28, 2011

NOAA Teacher at Sea
Lindsay Knippenberg
Aboard NOAA Ship Oscar Dyson
September 4 – 16, 2011

Mission: Bering-Aleutian Salmon International Survey (BASIS)
Geographical Area: Bering Sea
Date: August 28, 2011

Posing with the Albert Einstein statue on my first day as an Einstein Fellow in Washington DC.

Posing with the Albert Einstein statue on my first day as an Einstein Fellow in Washington DC

Before I begin my adventure, I should probably introduce myself. My name is Lindsay Knippenberg and I am currently an Albert Einstein Distinguished Educator Fellow at the National Oceanic and Atmospheric Administration (NOAA) in Washington, D.C. You might be asking yourself, what is an Einstein Fellow? The Einstein Fellowship is a year-long professional development opportunity for K-12 teachers who teach science, technology, engineering, or mathematics. Around 30 educators are placed within the federal government each year and our job is to inform our agency or office on matters related to education. Last year fellows were placed at the National Science Foundation (NSF), Department of Energy, Department of Education, National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and some fellows were even placed within the offices of U.S. senators. To learn more about what I have been working on as an Einstein Fellow check out the video below, or you can go to the NOAA Education website to view some of the resource collections that my office has made for educators this year.

My Freshmen even have energy during 1st Hour.

My Freshmen even have energy during 1st Hour.

Before I came to Washington, D.C., I was a high school science teacher in St. Clair Shores, MI. At South Lake High School I taught Biology, Environmental Science, and Aquatic Biology. As a teacher, one of my goals was to get my students to take risks and make goals that take them beyond the city bus lines. Through my previous teacher research experience as a PolarTREC teacher in Antarctica, moving to Washington, D.C. for a year-long fellowship, and now traveling to Alaska to board a ship for the Bering Sea I hope to show my students that you can challenge yourself and step outside of your comfort zones and get big rewards. I am very excited to join the crew aboard the Oscar Dyson to learn about the science that is conducted on board a NOAA vessel and the careers that are available to my students through NOAA.

The Oscar Dyson will be my home for 12 days

The Oscar Dyson will be my home for 13 days

So where am I going and what will I be doing? On Friday I will be leaving hot and humid Washington, D.C. for cool and breezy Dutch Harbor, Alaska. In Dutch Harbor I will board the NOAA Ship Oscar Dyson. The Oscar Dyson is one of NOAA’s newer vessels and is one of the most technologically advanced fisheries survey vessels in the world. As a NOAA Teacher at Sea I will have the responsibility of learning about the science that is done onboard the ship, helping the variety of scientists that are onboard with their research projects, and then communicating what I learned through a blog and classroom lesson plans. The main research project that many of the scientists will be working on is called the Bering-Aleutian Salmon International Survey (BASIS).

Chum Salmon and Walleye Pollock are two fish species that I will be seeing a lot of.

Chum Salmon and Walleye Pollock are two fish species that I will be seeing a lot of.

The BASIS survey was designed to improve our understanding of salmon ecology in the Bering Sea. We will be sampling the fish and the water in the Southeastern Bering Sea to better understand the community of fish, invertebrates, and other organisms that live there and the resources available to them. The survey has been divided up into two legs. The first leg is from August 19 – September 1 and Teacher at Sea, KC Sullivan, is onboard blogging about his experience. To learn more about BASIS and what lies ahead for me check out his blog. I will be sailing on the second leg of the “cruise” from September 4 – 16 and as a Teacher at Sea I will also be blogging about my experiences. I am very excited about lies ahead for me and I hope that you will follow my adventures as a NOAA Teacher at Sea.

Kevin Sullivan: Awaiting Departure, August 20, 2011

NOAA Teacher at Sea
Kevin C. Sullivan
Aboard NOAA Ship Oscar Dyson
August 17 — September 2, 2011

Personal Log

I arrived into Kodiak Island late Wednesday night.  I came in around midnight local time, which  put my total travel time for the day somewhere in the 17-hour range!  Coupled with a time difference of 4 hours from the East Coast I was surely in need of some downtime.

After some rest, the next day I was able to explore a bit of Kodiak Island until the remaining crew came into town.   I went to the Kodiak Fisheries Research Center, as well as some local museums and other points of interest.  Despite the rain and fog, I walked around and really enjoyed the opportunity to explore in seclusion.  Later that evening, the rest of the scientific crew arrived into Kodiak, we all met up and grabbed some dinner and introduced ourselves and spoke of our future together.

Thursday was continued with more overcast, socked in pea-fog conditions, with visibility coming down to <.25 mile at times.  Our trip was supposed to leave early in the morning this day which was delayed until 3:00 PM and then again delayed until 1:00 PM the following day (Friday the 20th). The delays were a result of having to wait for a specific part that the boat needed prior to leaving port.  Due to the added delay, we decided to go  investigate some intel from locals about Kodiak Bear spotting sites.  Luckily enough, we found them taking advantage of pink and coho salmon spawns occurring.  The Kodiak bear, in preparation for winter and hibernation, must gorge itself leading up to the cold winter months.  The salmon spawns coinciding with this bear’s requirement are a perfect example of evolution and “nature’s clock” at work.  It reminds me of the Horseshoe crab back in NJ wherein their eggs laid in the spring become the food for the migratory red knot bird coming all the way from South America.  The timing is just perfect.  The Kodiak seems to target the brains of the salmon as well as the belly of this fish where the eggs are located (you can see this in the picture I took below of the pink Salmon).  This ensures that every bite is as most calorically packed as possible with the warmer days ending and winter approaching.

Kodiak Brown Bear. Taken 08-19-11

Kodiak Brown Bear. Taken 08-19-11

Pink Salmon Spawn.  Taken 08-19-11

Pink Salmon Spawn. Taken 08-19-11

Friday morning all scientists and new crew attended a meeting at 8:30 A.M. to discuss the logistics of the trip.  Specifically, the lead scientist, Ed Farley, reviewed how the average day was going to unfold with the various investigations going on.  The goal seems to be to get to three stations a day with each station consisting of acoustics studies, oceanography, zooplankton and lastly, a fishing trawl.  Conducting this much research all on one boat in one trip is quite ambitious and unique in the marine world.  I will be getting into the details of these activities as the trip gets underway.  Lastly, the meeting included a debriefing on vessel safety.

So far, the trip has been eye-opening.  It is amazing to be able to experience the amount of planning and logistics that must go into an expedition of this magnitude.  Every corner I turn, there are crew-members busily working and focused on their duties.   The ship itself is analogous to a bee’s nest and its crew members the bees themselves.  They are all performing certain functions all for a common goal.  It is also very inspiring to see how passionate these leading scientists and crew members are about the work they do.  It is truly contagious and has reinvigorated my own passion for the sciences.

Mountain Peak Through The Fog

Mountain Peak Through The Fog

Kevin Sullivan: Introduction, August 3, 2011

NOAA Teacher at Sea
Kevin C. Sullivan
Aboard NOAA Ship Oscar Dyson
August 17 — September 2, 2011

Mission: Bering-ALeutian Salmon International Survey (BASIS)
Geographical Area:  Bering Sea
Date:  August 3, 2011

Hello!  I am a public high school science teacher grades 9-12 for the Middletown District in Middletown, NJ.  I have been a teacher here for seven years.  I teach Environmental and Marine Sciences.  Prior to working in education, I was employed by Groundwater and Environmental Services (GES) where I did Environmental Consulting work for Exxon/Mobil.  I live directly across the street from the Atlantic Ocean in Sea Bright, NJ.  I enjoy anything associated with saltwater and am an avid saltwater fisherman.  Below is a picture of a Cubera Snapper that I caught while fishing in Costa Rica.

Cubera Snapper

Here I am (left) holding a Cubera Snapper I caught while fishing in Costa Rica.

A little about my education….  I have a Bachelors of Science in Environmental Science with Minor in Marine Sciences from Stockton State College in Pomona, NJ. I also hold a graduate degree in Geosciences from Mississippi State University. By December of this year, I will finish a masters in Science Education from Capella University.

On August 17th 2011, I will be departing from NJ to begin my two-week adventure aboard NOAA Ship Oscar Dyson. I am extremely excited to be a part of such a wonderful opportunity that has been awarded to me through the NOAA Teacher at Sea Program.

To be given the opportunity to be able to work with scientists in the field is remarkable!  I feel very fortunate to be part of such a rare opportunity and look forward to being able to share with my students, the enthusiasm and knowledge that this expedition will present.

The operating area of this cruise will be the Southeastern Bering Sea Shelf.

To learn more about the objectives of this cruise prior to my departure, please refer to the Bering-Aleutian Salmon International Survey (BASIS) webpage.

I look forward to posting much more as my travels begin.

Kathleen Harrison: Shumagin Islands, July 9, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 9, 2011

Weather Data from the Bridge
True wind direction:  59.9°, True wind speed:  11.44 knots
Sea Temperature:  9°C
Air Temperature:  8.9°C
Air pressure:  1009.74 mb
Foggy with 1 mile visibility
Ship heading:  88°, ship speed:  11 knots

Science and Technology Log

The Shumagin Islands are a group of about 20 islands in the Gulf of Alaska, southwest of Kodiak Island.  They were named for Nikita Shumagin, a sailor on Vitus Bering’s Arctic voyage in 1741.  They are volcanic in origin, composed mostly of basalt.

Shumagin Islands

Bold and mountainous, the Shumagin Islands rise from the sea in the Gulf of Alaska.

Several islands even exhibit hexagonal basaltic columns.  There are about 1000 people who reside in the islands, mostly in the town of Sand Point, on Popof Island.  According to the United States Coast Pilot (a book published by NOAA with extensive descriptions about coastlines for ship navigation), the islands extend out 60 miles from the Alaskan Peninsula.  They are bold and mountainous.

hexagonal basalt

When this island formed, volcanic lava cooled into basalt hexagonal columns.

The shores are broken in many places by inlets that afford good anchorages.  The shores are rockbound close to.  Fishing stations and camps are scattered throughout the group, and good fishing banks are off the islands.  Fox and cattle raising are carried on to some extent.

long range view of SI, Alaskan Peninsula

Shumigan Islands to the left, snow covered peaks of Alaskan Peninsula in background. An amazing sight on a rare sunny day in the Gulf of Alaska.

Sea water quality is very important to the scientists on the Oscar Dyson.  So important, that it is monitored 24 hours a day.  This is called the Underway System.  The sea water comes through an intake valve on the keel of the bow, and is pumped up and aft to the chem lab.  There, it goes through 4 instruments:  the fluorometer, the dissolved Oxygen unit, the Thermosalinograph (TSG), and the ISUS (nitrate concentration).

The fluorometer measures the amount of chlorophyll and turbidity in the sea water once every second.  A light is passed through the water, and a sensor measures how much fluorescence (reflected light) the water has. The amount of chlorophyll is then calculated.  The measurement was 6.97 µg/L when I observed the instrument.  The amount of  phytoplankton in the water can be interpreted from the amount of chlorophyll.  Another sensor measures how much light passes through the water, which gives an indication of turbidity.  Twice a day, a sample of water is filtered, and the chlorophyll is removed.  The filter with the chlorophyll is preserved and sent to one of the NOAA labs on land for examination.

chem lab

Here are all of the water quality instruments, they are mounted to the wall in the chem lab. Each one has a separate line of sea water.

The next instrument that the water passes through will measure the amount of dissolved oxygen every 20 seconds.  Oxygen is important, because aquatic organisms take in oxygen for cellular respiration.  From plankton to white sharks, the method of underwater “breathing” varies, but the result is the same – oxygen into the body.  The oxygen in the water is produced by aquatic plants and phytoplankton as they do photosynthesis, and the amount directly affects how much aquatic life can be supported.

The TSG will measure temperature, and conductivity (how much electricity passes through) every second, and from these 2 measurements, salinity (how much salt is in the water) can be calculated.  The day that I observed the TSG temperature was 8.0°  C, and the salinity was 31.85 psu (practical salinity units).  Average sea water salinity is 35.  The intense study of melting sea ice and glaciers involves sea water temperature measurements all over the world.  A global data set can be accumulated and examined in order to understand changing temperature patterns.

instrument to measure

This instrument measures the amount of nitrate in the sea water. It is called the ISUS.

The last instrument measures nitrate concentration in the sea water every couple of minutes.  It is called ISUS, which stands for In Situ Ultraviolet Spectrophotometer.  Nitrate comes from organic waste material, and tends to be low at the surface, since the wastes normally sink to the bottom.  The normal value is .05 mg/L, at the surface, at 8°C.  Values within the range of 0.00 to 25 mg/L are acceptable, although anything above 5 is reason for concern.

All of the data from these instruments is fed into a ship’s computer, and displayed as a graph on a monitor.  The Survey Technician monitors the data, and the instruments, to make sure everything is working properly.

New Species Seen today:

Whale (unknown, but probably grey or humpback)

Horned Puffin

Dall’s Porpoise

Krill

Chum Salmon

Eulachon

monitor shows current data

The current water quality data is shown on this computer screen beside the instruments.

Personal Log

Living on a ship is quite different from living at home.  For one thing, every item on the ship is bolted, strapped, taped, or hooked to the bulkhead (wall), or deck (floor).  Most hatches (doors) have a hook behind them to keep them open(this reminds me of when I put hooks behind my doors at home to keep little children from slamming them and crushing fingers).  Some hatches (around ladderways (stairwells)) are magnetically controlled, and stay open most of the time.  They close automatically when there is a fire or abandon ship situation or drill.  Every drawer and cabinet door clicks shut and requires moving a latch or lever to open it.  For some cabinet doors that you want to stay open while you are working in the cabinet, there is a hook from the bulkhead to keep it open.

bracket holds copier

The copier machine is held in place by a 4 post bracket that is bolted to the floor.

On every desk is a cup holder, wider on the bottom than the top, designed to hold a regular glass or a cup of coffee.  If one of those is not handy, a roll of duct tape works well for a regular glass.  All shelves and counters have a lip on the front, and book shelves have an extra bar to hold the books in.  Trash cans and boxes are lashed to the bulkhead with an adjustable strap, and even the new copier machine has a special brace that is bolted to the deck to hold it in one place (I heard that the old copier fell over one time when there was a particularly huge wave).  There are lots of great pictures on the bulkheads of the Oscar Dyson, and each one is fastened to the bulkhead with at least 4 screws, or velcro.  There are hand rails everywhere – on the bulkhead in the passageway (hallway) (reminds me of Mom’s nursing home), and on the consoles of the bridge.

hallway hand rails

This view down the hall shows the hand rail. It comes in handy during rough weather.

Desk chairs can be secured by a bungee cord, and the chairs in the mess (dining room)  can be hooked to the deck.

Another thing that is different from home is the fact that the Oscar Dyson operates 24-7 (well, in my home, there could easily be someone awake any hour of the night, but the only thing they might operate is the TV). The lights in the passageways and mess are always on.  The acoustics and water quality equipment are always collecting data.  Different people work different shifts, so during any one hour, there is usually someone asleep.  Most staterooms have 2 people, and they will probably be on opposite shifts.  One might work 4 am to 4 pm, and the other would work 4 pm to 4 am.  That way, only one person is in the room at a time (there is not really room for more than one).  There is always someone on the bridge – at least the Officer of the Deck (OOD) – to monitor and steer the ship.  During the day, there is usually a look out as well.

binoculars on the bridge

These binoculars are used by the look out to scan the surrounding area for anything in the water - whales, boats, islands, kelp, or anything else in proximity to the ship.

His job is to, well, look out – look for floating items in the water, whales, rocks, and other ships (called contacts or targets).  This helps the OOD, because he or she can’t always keep their eyes on the horizon.

I have thoroughly enjoyed living on the Oscar Dyson (we have had calm seas so far), and talking with the NOAA staff and crew.  They are ordinary people, who have chosen an extraordinary life – aboard a ship.  It has challenges, but also great rewards – seeing the land from a different perspective, being up close to sea life, and forging close relationships with shipmates, as well as participating in the science that helps us understand the world’s oceans.

Jason Moeller: June 21-22, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 21-22, 2011

Ship Data
Latitude: 55.03N
Longitude: -163.08W
Wind: 17.81 knots
Surface Water Temperature: 6.7 degrees celsius
Air Temperature: 10.10 degrees celsius
Humidity: 85%
Depth: 82.03 meters

Personal Log
Welcome back, explorers!

June 21
Today has been the calmest evening since I boarded the Oscar Dyson. The night shift did not fish at all, which meant that I basically had an evening off! Even the evenings we have fished have been relatively calm. It takes us about an hour to an hour and a half to process a haul of fish, and up to this point we average about one haul per night. That gives me quite a bit of down time! When I am on shift, that down time is usually spent in one of two places.

computer lab

The first spot is the computer lab in the acoustics room. This is the room where we wait for the haul to be brought in. I write the logs, lesson plan, check emails, and surf the web during quiet times.

lounge

This is the lounge. The cabinet under the TV has over 500 movies, and a movie is usually playing when I walk in. Behind the couch is a large bookshelf with several hundred books, so I have done a fair amount of pleasure reading as well.

When I am not sitting in one of these two places, I am usually running around the ship with my camera taking nature photos. Below are the best nature photos of the past three days.

Volcano

One of the coolest things about the Aleutian islands has to be the number of volcanoes that can be seen. This is the one on Unimak Island.

volcano2

A second picture of the same volcano.

coast

This is just a cool rock formation off of the coast. The Oscar Dyson has been hugging the coast the entire trip, which has been great for scenery.

gull

A gull skims the water by the Oscar Dyson.

gull2

A gull wings toward the Oscar Dyson

June 22
We resumed fishing today! These trawls brought in quite a few species that I had not seen before, along with the ever plentiful pollock.

Net

The net, filled with fish!

Jason by belt

Jason waits for the net to load the fish onto the conveyor belt.

Jason with flounder

Here, I am separating the arrowtooth flounder from the pollock.

skate

We managed to catch a skate in the net! Skates are very close relatives to sharks. We quickly measured it and then released it into the ocean.

skate 2

A second photograph of the skate.

lumpsucker

Do you remember the little lumpsucker from a few posts back? This is what an adult looks like!

lumpsucker2

The lumpsucker was slimy! I tried to pick it up with my bare hands, and the slime gummed up my hands so that I couldn't pick it up! Even with gloves designed for gripping fish I had trouble holding on.

lumpsucker3

A closeup of the lumpsucker

sculpin

This fish is called a sculpin.

crab

I finally saw a crab! None of us know what was attached to it, but the scientists believe that it was an anemone.

starfish

This is a starfish the net pulled up.

Science and Technology Log
There is no Science and Technology Log with this post.

Species Seen
Humpback Whales
Northern Fulmar
Gulls
Rockfish
Walleye Pollock
Lumpsucker
Arrowtooth Flounder
Atka Makerel
Salmon
Sculpin
Copepods
Isopods
Skate
Crab!!!

Reader Question(s) of the Day!

Today’s question comes from James and David Segrest, who are two of my homeschool students!

Q. What do you eat while you are on your adventures? Do you get to catch and eat fish?

The food is great! Our chef has a degree in culinary arts, and has made some amazing meals!

I wake up at 2:30 pm for my 4 pm to 4 am night shift, and usually start my day with a small bowl of oatmeal and a toasted bagel. At 5 pm, about two hours after breakfast, dinner is served, and I will eat a huge meal then too. Every meal has two main courses, a vegetable, a bread, and dessert. We have had a wide variety of main courses which have included bratwurst, steak, gumbo with king crab, fish, chicken parmesan, spaghetti with meatballs, and others!

We will often eat some of the fish we catch, usually salmon and rockfish since those provide the  best eating. The salmon disappears to the kitchen so quickly that I have not actually been able to get a photo of one! We have not caught a halibut in the trawl net yet, otherwise we would likely have eaten that as well. Yum! We have not yet eaten pollock, as it is viewed as being a much lower quality fish compared with the rockfish and salmon.

I’m out of questions, so please email me at jmoeller@knoxville-zoo.org with those questions please!

Jason Moeller: June 19-20, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 19-20, 2011

Ship Data
Latitude: 54.29 N
Longitude: -165.13 W
Wind: 12.31 knots
Surface Water Temperature: 5.5 degrees Celsius
Air Temperature: 6.1 degrees Celsius
Humidity: 97%
Depth: 140.99 meters

Personal Log

Welcome aboard, explorers!

To be honest, there is not a great deal to write about for the personal log. My daily schedule has settled in quite nicely! I get off work at 4 in the morning, shower, sleep until 2:30 in the afternoon, and then head down to the acoustics room where we track the fish. When we are processing a catch (see the science and technology section of this blog), I am in the fish lab wearing bright orange waterproof clothes that make me resemble a traffic cone.

fishing gear

Jason in fishing gear.

The rest of the time is down time, which is spent reading, working on the blog, learning about the ship, and dreaming up lesson plans that I can use to torment my students. I hope they are interested in a summer fishing trip, as that is the one I am currently planning.

Most of the blog work involves running around and taking photographs. My wife’s camera was soaked beyond repair during the prank that was pulled (see the previous post) as Sarah was holding the camera when the wave came over the railing. Fortunately, there was another camera on board.

Our survey is keeping us very close to the coast and islands of Alaska. As a result, I’ve gotten some gorgeous photos. This place is just beautiful.

An island shrouded by clouds.

An island shrouded by clouds.

waterfall

A waterfall falls off into the ocean.

Wind

Jason in front of an island. It was a bit windy, but at least it was sunny!

view

Mountaintops visible just above the island coast. Jake took this photo while I was in the fish lab.

sunset

Sunset over Alaskan waters.

Science and Technology Log

Pollock

Walleye Pollock waiting to be processed

We finally started fishing! As I mentioned in my very first blog, the Oscar Dyson is surveying walleye pollock, which is an important fish species here in Alaska. Walleye pollock make up 56.3% of the groundfish catch in Alaska, and is eaten in fast food restaurants around the world such as Wendy’s, McDonalds, and Burger King. It is also used to make imitation crabmeat.

Our first catch had a little over 300 walleye pollock, and we processed all of them. Three hundred is an ideal sample size for this species. If, for example, we had caught 2,000 pollock, we would only have processed 300 of the fish, and we would have released the rest of them back into the ocean.

The photo captions below will provide a tour of the fish lab as well as introduce blog readers to the data we wish to collect and how scientists aboard the Oscar Dyson collect it.

Conveyer belt

This is the conveyor belt. After the catch is pulled on board, it is loaded onto this conveyor belt and moved down the belt and into the lab. At this point, the scientists separate the pollock from the rest of the sea life that was accidentally in the net. Today, the majority of the "extra" sea life were brittle stars, sponges, and a few squid.

Gender Box

Once the pollock and other sea life are separated, they are moved to this box to be sexed. In order to do this, we would have to cut the fish open and look at the internal organs of the fish. Once this was done, females would go over the yellow sign on the right and into the box that was hidden behind it. The males went into the box on the left.

Length Station

Once we had determined the pollock's gender, we moved to the measuring station, which was on the other side of the last station. We laid each individual fish on the table on top of the ruler, and then measured the fish from the head to the fork of its tail. We recorded the length by tapping the table at the fork of the fish's tail with a sensor that we carried in our hand. A sensor in the table recorded the data and sent it to the computer monitor seen above the table.

measuring pollock

Jason measures a pollock on the board!

From this catch (we will do this for any following catch as well) we also took and preserved twenty stomachs from random fish. This was done in order to later analyze what the pollock had eaten before they died. We also took forty otoliths from random pollock as well. An otolith is the ear bone of the pollock, and it is incredibly important to researchers as they will tell the pollock’s age in a similar manner to the way a tree’s rings will.

This is a pollock otolith!

This is a pollock otolith!

Stored Otoliths

After removing the otolith from the fish, they were put into these vials. Each pair of otoliths received their own vial.

While looking at pollock is the main focus of the survey, we did run into some other neat critters in this haul as well!

Atka Makerel

This is an Atka Mackerel. We also caught a salmon, but I didn't get a good look at it. Our kitchen grabbed it!

Basket Star

This is a basket starfish. We were trawling close to the bottom and pulled it up in the nets.

Lumpsucker

This is a lumpsucker! They spend their lives on the bottom where they eat slow-moving animals such as worms and mollusks.

Arrowtooth Flounder

This is an arrowtooth flounder. These are not very good eating fish, and are not the flounder found in the supermarket. Check out the nasty teeth in the photo below this one!

Flounder teeth

I wouldn't want to be bitten by this fish!

Rockfish

Finally, this is a rockfish! The red snapper that we see in the marketplace is often this fish instead.

Species Seen

Albatross
Northern Fulmar
Gulls
Rockfish
Walleye Pollock
Lumpsucker
Arrowtooth Flounder
Atka Mackerel
Salmon
Pacific Grenadier
Squid
Shrimp
Basket Starfish

Reader Question(s) of the Day!

Today’s question is actually a request. It comes from Tish Neilson, one of our homeschool parents.

Hey Jason –
I had a super favor to ask of you. There is a little girl from Jackson’s school that is a 5th grader and she was recently diagnosed with leukemia. There have been some bracelets created for her that say “Going Bananas for Anna” to show support and several moms and I have gotten together and are putting together a scrapbook for her and trying to get as many people as possible wearing her bracelets in really cool places. Then we are having them take pictures to send to us to put in her scrapbook so she can she how far her bracelets have traveled and how many people are pulling for her. If it’s possible to do so and you would be willing to do it I would LOVE to try and get you a bracelet to take some pictures and send to me from Alaska. Her nickname is Anna Banana and she is always asking for pictures and such so that is why we came up with this idea.
Tish Neilson

Unfortunately, I had left for Alaska before I received the email, and as a result I do not have a bracelet. Hopefully, a sign will work just as well.

For Anna

Hi Anna! This is Unimak Island! It is one of the Aleutian Islands off the coast of Alaska! Hang in there, we are rooting for you!

Jason Moeller: June 14-16, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 14-16, 2011

Personal Log

Welcome back, explorers!

June 14

I think I posted my last log too soon, because as soon as I hit the send button interesting things began to happen. First, I was called up to see some Mountain Goats feeding in the wild! I was able to take a picture of them as well! (Well, kind of…)

goats

The mountain goats were so far away I had to use binoculars just to spot them. If you can spot the two tiny white dots to the right of the snow, that is them! There is also one that is on the left hand side in the middle of the photograph. You will have to take my word for it.

While this was going on, the professional members of the science team were still calibrating the sonar that we are going to use to catch the fish! I have explained the process in the captions of the following photographs.

sonar balls

Calibrating starts with these little balls. The one used to calibrate our sonar was made of Tungsten (like the black ball at the top)

Pole

The ball was suspended underneath the water on three poles, placed in a triangular shape, around the ship. This is a photo of one of the poles.

Screen.

Once the ball was placed underneath the boat, the scientist swept sound waves off of the ball and used the above screen to see where the sound waves were striking the ball and reflecting. This allowed them to adjust the sound waves to hit the ball (or out in the ocean, the fish) exactly where they wanted it. This optimizes the amount of sound coming back to the boat and paints a better picture of what is under the water.

The process took several hours, but once we finished, we headed back out to sea to start the two-day journey towards our first fishing spot!

June 15-16

The most common sight off of the boat for the past two days has been this one.

Water

Water, water, everywhere

We are currently in Unimak Pass, which will lead us to the Bering Sea! Unimak Pass is the fastest sea route from the United States into Asia, and as a result is a common merchant route between Seattle and Japan. It is also the best way to avoid rough seas and bad weather when travelling between the Gulf of Alaska and the Bering Sea, as it receives some cover from the landmass.

The Bering Sea likely needs no introduction, as it is arguably the best crab fishing waters on the planet and is well-known from the television show The Deadliest Catch. Aside from crab, the Bering Sea is teeming with life such as pollock, flounder, salmon, and halibut. As a result of this diverse and tasty biomass, the Bering Sea is an incredibly important area to the world’s fisheries.

Steaming towards our destination has kept us away from any land, but there are still things to do and to see! We did a second dry cast of the net, but this time two different pieces of equipment were tested.

The net

The first piece of equipment was a special net for taking samples. The net has three sections, called codends, which can be opened and closed individually. You can see two of the codends in this photo. On top of the green net, you should see black netting that is lined with white rope. These are the codends.

net 2

This is a better view of the codends. The codends are opened and closed using a series of six bars. When the first bar is dropped, the first codend is able to take in fish. When the second bar is dropped, the codend is unable to take in fish. The bar system has not worked incredibly well, and there is talk of removing one of the codends to make the net easier to use.

camera

The second piece of equipment was this camera, which was attached to the net. It allowed us to see what was coming in the net. Even though this was a dry run and we were not catching anything, I still saw a few Pollock in the camera!

Even though this was a test run and we did not catch any fish, the birds saw the net moving and came to investigate. The remaining photographs for the personal log are of the several species of birds that flew by the boat.

Bird 1

A Northern Fulmar flies alongside the Oscar Dyson

Bird 2

An albatross (by the thin wire just below the spot the water meets the horizon) flies away from the Oscar Dyson

Bird 3

Fulmar's and Gulls wheel about the Oscar Dyson, looking for fish.

Science and Technology Log

This section of the blog will be written after we start fishing for Pollock in the next day or so!

New Species

Mountain Goats

Northern Fulmar

Albatross

Gulls

Reader Question(s) of the Day!

First, I owe a belated shout out to Dr. John, Knoxville Zoo’s IT technician. He lent me the computer that I am currently using to post these logs, and I forgot to mention him in the last post. Thanks Dr. John!

The two questions of the day also come from Kaci, a future Teacher at Sea with NOAA.

1. What is it like sleeping on the boat?

A. Honestly, I am being jostled around quite a bit. Part of this is due to the way the beds are set up. The beds go from port to starboard (or right to left for the landlubbers out there) instead of fore to aft (front to back). This means that when the boat rolls, my feet will often be higher than my head, which causes all of blood to rush to my head. I still haven’t gotten used to the feeling yet.

Part of the jostling, though, is my fault. I had heard that most individuals took the bottom bunks given the option, and since I was one of the first individuals on board, I decided to be polite and give my roommate, who outranked me by some 10-15 years at sea, the bottom bunk. It turns out that the reason people pick the bottom bunk is that the top bunk moves around more since it is higher off the floor. I’ve heard stories about people being thrown from the top bunk in heavy seas as well.

The most comfortable place to sleep has turned out to be the beanbag chair in the common room. It is considered rude to go into your room if your shift ends early, as your roommate may still be sleeping. My shift ended two hours early the other night, so I sat down on the beanbag chair to catch some zs. The ship’s rocking was greatly reduced by the bean bag chair, and I slept very well for the next couple of hours.

2. Is it stressful so far?

A. The only stressful part of the trip so far has been the seasickness, which I have not yet been able to shake. The rest of it has been a lot of fun!