Shelley Gordon: The Serengeti of the Sea, July 26, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-26, 2019

Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 26, 2019

My NOAA Teacher at Sea experience wrapped up yesterday with our 7th, and final, day of the cruise.  Our last day was another observation-only day where we travelled along two transects (lines 5 and 7) and recorded what could be seen from above the water.  I want to wrap up my experience by sharing some information about this observation technique and what I’ve learned about some of the living things we were able to observe on this trip. 

The Serengeti ecosystem in Eastern Africa is well known for its diversity of life and massive annual migrations.  On the wall of R/V Fulmar there is a large map of the three National Marine Sanctuaries (Cordell Bank, Greater Farallones, and Monterey Bay) off the coast of central California with the words “the Serengeti of the Sea” written at the bottom.  Like the Serengeti, the marine ecosystem in this area of the world supports a high diversity of life and intricate food webs.  Many of the species that thrive in these waters migrate from great distances, far greater than the well documented wildebeest migrations in Africa. 

A map of the protected areas off the central California coast.
Image from farallones.noaa.gov

The three National Marine Sanctuaries and adjacent state and federal parks protect a total of 10,676 square miles of habitat, helping to create a thriving ecosystem.  One thing that became clear to me on this cruise is that this is a massive amount of space!  To collect observation data, scientists sit on the flying bridge (or upper deck) and systematically record what they can see as the boat moves at a constant speed of ~10 knots along the transect.  Depending on the weather (we had days that were pretty foggy and other days that were overcast, but pretty clear), you can see several kilometers in any direction.  To complete an offshore observation line, it takes about 2.5 hours.  So, it is a full day to complete 2 observation lines, especially when you include the travel time to and from each line.  During that time, there are times when you can see very little other than wind-blown whitecaps on the surface of the water.  There are other times when there is a frenzy of activity.

(From left to right) Dani Lipski, Dru Delvin, Rachel Pound, Jaime Jahncke, Kirsten Lindquist, and Jan Roletto recording observation data from the flying bridge.

There are four roles is the observation data collection.  Sitting on the starboard side of the boat, Kirsten Lindquist’s job is to identify and describe all of the birds she observes within 200 meters of the side of the boat.  Some examples of “calls” she made include: “Common Murre, 3, zone 2, water” or “Western Gull, 1, zone 1, flying, 270°.”  To explain, she calls out the name of the bird, the number that she sees in the group, the relative distance they are from the boat (zone 1 or zone 2), and what they are doing (sitting on the water, flying, feeding, etc…).  This data is all recorded in the computer by Jaime Jahncke.  Dru Devlin and Jan Roletto (one on each side of the boat) are responsible for observing other things on the surface, including animals, boats, fishing gear, trash, kelp, etc…  An example of a call they relay to Jaime to record is:  “First cue blow, by eye, bearing 270°, reticle 5, observer 9, side 1, traveling, humpback whale, 2, 3, 2.”  There is a lot going on in this data, but it basically explains the observer has seen a group of humpback whales in the distance off the front of the boat (bearing 0°).  The group is swimming along the surface and the size of the group is between 2-3 individuals.  The observers use reticle markings, fine lines in the eyepiece of binoculars, to estimate how far the object is from the boat (reticle 14 is at the boat, reticle 0 is on the horizon).  Using the bearing and reticle numbers, the computer then can use the GPS location of the boat to estimate where that animal was at the time of the recorded observation.  Using all of this data collected over the course of time, scientists are able to put together a picture of where animals, birds, and other objects are frequently seen within the sanctuaries.  This can also help them identify changes in animal numbers or behavior, and/or the need for a change in management strategies.

An example of a map showing humpback whale observation data on ACCESS in 2018.
Image: Point Blue/ONMS/ACCESS

One of the seabird species we saw relatively frequently were Sooty Shearwaters.  These birds are interesting to me because the migrate to the sanctuaries from their breeding grounds in New Zealand, an amazing 6500 miles away!  What’s even more impressive is that their migration is not just from New Zealand to California; they actually complete a circular migration route, first traveling up the western Pacific toward Japan and the Artic, and then they drop down to the pacific coast of North America before returning to their breeding grounds in New Zealand.  We also observed Pink-Footed Shearwaters, which nest off the coast of Chile. 

Sooty Shearwaters taking off from the surface of the water.  Photo:  Dru Devlin

When we were out on the offshore transects beyond the continental shelf break, we were frequently able to observe Black-Footed Albatrosses.  These large seabirds are well known for their long migrations as well.  The population we observed in the sanctuaries nest in the Hawaiian Islands and visit the California coast to feed.  From dissecting Albatross boluses (regurgitated food) with students at Roosevelt, I had previously learned that their diet consists of a lot of squid.  Since squid are actively feeding at night, albatross also do a lot of their hunting at night.  I was curious how they could find their prey and I learned that they have an incredible sense of smell that they can use to detect food.  They are known to follow ships and feed on refuse in the wake, and this seemed to be apparent because when we were collecting samples at stations beyond the shelf break we were often joined by multiple albatrosses.  At one station, I counted 19 Black-Footed Albatrosses floating in a group near the boat.

Two Black-Footed Albatrosses near the boat. Photo: Dru Devlin
A Black-Footed Albatross in flight.
Photo: Dru Devlin

I was also very interested to learn about the way that albatrosses and other large seabirds (including shearwaters) conserve energy during their long flights.  Dynamic soaring allows them to gain energy from the wind above the ocean waves without flapping their wings.  We often observed these birds flapping their wings a few times and then soaring very close to the surface of the water before flapping again.  Apparently, in favorable wind conditions, these birds can us this method to fly great distances without flapping their wings at all, thus conserving energy.

Three humpback whales surfacing. Photo: Dru Devlin

Another animal that I was on the constant lookout for were whales.  These gigantic mammals have always captured my imagination.  On this cruise we were lucky enough to see quite a few humpback whales.  These large baleen whales are known for their acrobatic displays, occasionally launching their body out of the water in an action called breaching.  I was able to observe a few whales breaching, and also several instances of whales rolling on the surface of the water slapping their long flippers or tail at the surface.  One of the highlights was seeing humpbacks lunge feeding at the surface.  Lunge feeding is when the whale opens its mouth widely, engulfing a large amount to water and prey.  The whale then pushes the water out of its throat pouch, leaving the prey behind to consume.  One of the favorite foods of humpback whales is krill.  Using the Tucker trawl net at very deep depths, we were able to collect some large krill samples that will be analyzed back at the lab. 

There are several other species of whales that can be present in the sanctuaries at different times throughout the year, including blue whales, gray whales, fin whales, and minke whales, but we did not positively identify any of those species on this trip.  The scientists on board were specifically surprised that we did not see any blue whales, as they usually observe a few on cruises at this time of year.

Gallery

Here are a few other images of animals that we saw and were able to capture in the camera lens.

Did You Know?

Scientists can use robots to explore the undersea environment?  From October 3rd-11th, scientists from the Greater Farallones and Cordell Bank National Marine Sanctuaries will be partnering with the Ocean Exploration Trust to learn more about life beneath the waves.  Working aboard the Exploration Vessel (E/V) Nautilius, the team will use remotely operated vehicles (ROVs) to explore deep-sea coral reef and sponge habitats.  And, we will be able to follow along live

Shelley Gordon: ACCESS Partnership, July 24, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 24, 2019


Applied California Current Ecosystem Studies (ACCESS) is a joint research project conducted by NOAA (Cordell Bank National Marine Sanctuary and Greater Farallones National Marine Sanctuary) and Point Blue Conservation Science. 

NOAA’s Office of National Marine Sanctuaries manages 13 sanctuaries and two marine national monuments, protecting a total of 600,000 square miles of marine and Great Lakes waters within the United States.  Four of the sanctuaries are in California.  Greater Farallones National Marine Sanctuary (GFNMS) is a large sanctuary that protects over 3,000 square miles of California coast and offshore marine habitat from San Francisco to Point Arena.  There are numerous beaches and costal habitats included in this sanctuary, as well as the Farallon Islands.  Cordell Bank National Marine Sanctuary (CBNMS) is a smaller sanctuary around Cordell Bank, a large offshore seamount approximately 22 miles from the coast.  Sitting at the edge of the continental shelf, Cordell Bank is approximately 26 square miles in size, and while you cannot tell it is there from the surface, it supports a huge diversity of brightly colored sponges, corals, anemones, and other invertebrates.  Both sanctuaries protect a wide variety of living organisms across the food chain, from phytoplankton to blue whales.

Cordell Bank and Greater Farallones NMS
Map of Cordell Bank and Greater Farallones National Marine Sanctuaries. Map taken from cordellbank.noaa.gov

Point Blue Conservation Science is a non-profit organization that is working to combat climate change, habitat loss, and other environmental threats by helping to develop solutions that benefit wildlife and people.  They work with local natural resource managers (like National Marine Sanctuaries) to help monitor and improve the health of the planet. 

Scientists from each of these organizations have come together to work on ACCESS.  This project, started back in 2004, collects data on the physical conditions and living things within GFNMS and CBNMS.  Scientists use this data to document wildlife abundance, monitor changes over time, and help inform decisions about conservation efforts.  For example, data collected on the location of whales can help create policies to reduce threats to whales, like ship strikes and entanglements.   There are many huge ships that come in and out of San Francisco Bay on a daily basis.  Scientists are currently working with the industry to support a reduction in ship speed, which can reduce the likelihood of whales coming into dangerous contact with ship hulls.  Another threat to whales are entanglement in fishing gear.  Legal commercial crab fishing using crab pots occurs within the sanctuaries.  In recent years there have been greater incidents of whales being entangled in the buoy lines that fisherman use to help them collect the crab pots from the bottom of the ocean.  As the result of a recent lawsuit filed by ­­­­­the Center for Biological Diversity, the commercial crab season ended early this year to try to help protect the whales.

Adult Common Murre
Adult Common Murre. Photo: Dru Devlin

An interesting, and possibly concerning, phenomenon is being observed on our cruise.  Kirsten Lindquist, the seabird expert on this cruise, has seen a great number of Common Murres on the water during our data collection observations.  However, she has noticed a lack of chicks.  Common Murres nest on rocky outcroppings and the chicks leave the nest 15-25 days after they hatch, before they are able to fly.  The chicks then float on the water are fed by their parents for several weeks until they can feed themselves.  Generally, at this time of year she would expect to see a large number of adult and chick pairings floating on the surface of the water together.  Today we saw quite a few chicks floating with an adult, but this has not been the case during the other days on this cruise.  It is unclear why there are fewer Common Murre chicks than are typically seen.

Did You Know?

Dani and Shelley deploy CTD
Dani Lipski and me deploying the CTD, a device used to measure water conductivity, temperature, and depth. Photo: Jaime Jahncke

Scientists use “conductivity” as a measure of how salty the ocean water is.  If the water is relatively cold and salty that is a sign of “good” upwelling conditions, meaning that the cold water from the deep ocean is moving up over the continental shelf, bringing a high concentration of nutrients with it.  The upwelling along the California coast is a main reason why there is such a diversity of ocean life here.

Shelley Gordon: Life on Board R/V Fulmar, July 23, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 23, 2019

Weather Data: Wind – NW 19-23 knots, gust ~30 knots, wind wave ~7′, swell SSW 1′ at 16 seconds; Partly sunny, with patchy fog early

R/V Fulmar
R/V Fulmar refueling at Spud Point marina in Bodega Bay.

During this week, I am living aboard R/V Fulmar.  The “research vessel” is a 67-foot catamaran (meaning it has two parallel hulls) with an aluminum hull.  This boat was specifically designed to support research projects in the three National Marine Sanctuaries along the central and northern California coast, and was first put in the water in 2007.  Normally, the Fulmar is based out of Monterey Bay harbor in the Monterey Bay National Marine Sanctuary.  However, this week she is being put to work on an ACCESS cruise in the two sanctuaries a little farther to the north, Cordell Bank and Greater Farallones.  

Fishing trawlers at Spud Point marina
Fishing trawlers at Spud Point marina.

Each evening, after a full day of collecting samples, the Fulmar motors back into the harbor for the night.  We are working out of two harbors on this cruise, Sausalito and Bodega Bay.  The vibe in each harbor is quite different.  Sausalito is full of private pleasure yachts, small sailboats, and live aboard boats/houseboats.  Spud Point marina in Bodega Bay is much more of a working marina.  The majority of the boats are large fishing trawlers.  It is currently salmon fishing season, and the boats that are working bring back their daily catch to the marina so that it can be transported to market.

The Fulmar is operated by two crew members on this cruise.  Clyde Terrell is the captain and Rayon Carruthers is the first mate.  In addition to the crew there have been 6-7 scientists on board, and myself.  Jan Roletto is a scientist from Greater Farallones, Kirsten Lindquist and Dru Devlin work at the Greater Farallones Association, and from Cordell Bank we have Dani Lipski and Rachel Pound.  Jaime Jahncke is lead Principal Investigator on ACCESS and works at Point Blue Conservation Scientist.  Kate Davis, currently a post-doc at the University of South Carolina, also joined the first half of the trip.

The boat has 5 main areas.  The “bridge” contains the digital and physical equipment that the crew uses to steer the ship.  There are several computers that display radar signals and a GPS map.  In the main cabin there are bunks for sleeping, a marine head (bathroom) with a toilet, sink, and shower, a fully-equipped kitchen, and a lab/work area.  The back deck is where most of the equipment for sample collecting is stored and put to use when samples are being collected.  On the top deck there are life rafts and safety equipment, as well as an additional steering wheel.  This is also where the team sits to make observations as we move along the transects.  Finally, there are two engine rooms underneath the main cabin.

Shelley in immersion suit
Me, putting on the immersion suit. Photo: Jan Roletto

Safety on the boat is obviously very important.  Before we went the first day, I received a full safety briefing and I got to practice donning an immersion suit, which we would need to wear in the case of an emergency where we might need to evacuate the ship and be exposed to cold water for a prolonged period of time.  The immersion suit is like a full-footed, full-fingered, and hooded wetsuit.  The goal is to be able to get into the immersion suit in less than two minutes, which was actually a little more difficult than I expected given that once you have the full-fingered gloves on it is difficult to effectively use your hands to finish zipping up the suit.  Anyone working on the back deck collecting samples is required to wear a life jacket or float coat and a hard hat. 

The daily activities on the boat vary depending on your role.  In general, we have been leaving the marina between 6:30-7:00am and there has typically been a 1-2 hour transit to the first data collection station.  During that time the team is generally relaxing, preparing for the day, or employing their personal strategy to combat seasickness (napping, lying down, or sitting in the fresh air on the top deck).  I’ve been fortunate to feel pretty good on this trip and haven’t struggled with seasickness.  Once data collection begins, my role on the back deck has been a series of action and waiting.  Since we are using heavy tools to collect data at significant depths, we use a crane and cable to hoist the equipment in and out of the water.  The winch that unwinds and winds the cable can lower or lift the equipment at a rate of ~20 m/min.  For the most part while the equipment is away from the boat we are waiting, and at times we have lowered data collection tools beyond 200m, which means a travel time of ~20 minutes, down and back.

Jaime and Kirsten
Jaime Jahncke and Kirsten Lindquist recording observations along ACCESS transect 3N.

However, today we actually did observation-only lines, so I had a lot of time to relax and observe.  The weather also turned a little bit today.  We had pretty dense fog in the morning, and more wind and rougher seas than on previous days.  But, near the end of the day, as we reached Drake’s Bay in Point Reyes National Seashore, the fog suddenly cleared and Point Reyes provided some protection from the wind.  The marine life seemed to appreciate the sun and wind protection as well as there was a large group of feeding seabirds and humpback whales right off the point.  We ended the day on a pleasant, sunny ride along the coast and underneath the Golden Gate Bridge, docking for the night in Sausalito.


Did You Know?

Humpback whales are migratory.  The population we are able to see here migrate annually from their breeding grounds off the coast of Mexico.  They come each summer to enjoy the nutrient rich waters of the California coast.  Humpback whales thrive here due to upwelling of nutrients from the deep ocean, which helps supports their favorite food – krill!  Humpback whales feed all summer on krill, copepods, and small fish so that they can store up energy to migrate back down to the warmer tropical waters for the winter breeding season.  I hope they get their fill while they’re here since they won’t eat much until they return, next summer.

humpback whale tail.
A humpback whale tail. Photo: Dru Devlin

Shelley Gordon: A Day on the Back Deck, July 20, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 20, 2019

Weather data: Wind – variable 5 knots or less, wind wave ~1’, Swell – NW 7’@ 10sec / S 1’ @ 11sec, Patchy fog


Science Log

7:39am – We are about to pass under the Golden Gate Bridge, heading west toward the Farallon Islands.  Several small fishing boats race out in a line off our port side, hulls bouncing against the waves and fishing nets flying in the wind.  I am aboard R/V Fulmar in transit toward data collection point 4E, the eastern most point along ACCESS Transect 4.  The TTG (“time to go,” or the time we expect to arrive at 4E) is estimated at 1h53’ (1 hour, 53 minutes), a figure that fluctuates as the boat changes course, speeds up, or slows down.  

This is my second day on an ACCESS research cruise.  Yesterday I got my boots wet in the data collection methods used on the back deck.  The ACCESS research project collects various types of data at specific points along transects (invisible horizontal lines in the ocean). Today we will be collecting samples at 6 different points along Transect 4.  With one day under my belt and a little better idea of what to expect, today I will aim to capture some of the action on the back deck of the boat throughout the day. 

9:41am – Almost to Station 4E. “5 minutes to station.”  This is the call across the radio from First Mate Rayon Carruthers, and also my signal to come down from the top deck and get ready for action.  I put on my rain pants, rubber boots, a float jacket, and a hard hat.  Once I have my gear on, I am ready to step onto the back deck just as the boat slows down for sample collection to commence.  At this first station, 4E, we will collect multiple samples and data.  Most of the sampling methods will be repeated multiple times through the course of the day at different locations and depths (most are described below). 

deploying hoop net
Dani Lipski and Shelley Gordon deploy the hoop net. Photo: Rachel Pound

10:53am – Station 4EX. We finished cleaning the hoop net after collecting a sample at a maximum depth of 33m.  The hoop net is a tool used to collect a sample of small living things in deep water.  This apparatus consists of an ~1m diameter metal ring that has multiple weights attached along the outside.  A 3m, tapered fine mesh net with a cod end (small plastic container with mesh vents) hangs from the hoop.  Attached to the net there is also a flow meter (to measure the amount of water that flowed through the net during the sample collection) and a depth sensor (to measure the depth profile of the tow).  To deploy the net, we used a crane and winch to hoist the hoop out over the surface of the water and drop the net down into the water. Once the net was let out 100m using the winch, we brought it back in and pulled it back up onto the boat deck.  Using a hose, we sprayed down the final 1m of the net, pushing anything clinging to the side toward the cod end.  The organisms caught in the container were collected and stored for analysis back at a lab.  On this haul the net caught a bunch of copepods (plankton) and ctenophores (jellyfish).

Kate Davis preps samples
Kate Davis fills a small bottle with deep water collected by the Niskin bottle.

11:10am – Station 4ME. Dani Lipski just deployed the messenger, a small bronze-colored weight, sending it down the metal cable to the Niskin sampling bottle.  This messenger will travel down the cable until it makes contact with a trigger, causing the two caps on the end of the Niskin bottle to close and capturing a few liters of deep water that we can then retrieve back up at the surface.  Once the water arrives on the back deck, Kate Davis will fill three small vials to take back to the lab for a project that is looking at ocean acidification.  The Niskin bottle is attached to the cable just above the CTD, a device that measures the conductivity (salinity), temperature, and depth of the water.  In this case, we sent the Niskin bottle and CTD down to a depth of 95m. 

deploying the CTD
Dani Lipski and Shelley Gordon deploy the CTD. Photo: Rachel Pound

12:16pm – Station 4M. Rachel Pound just threw a small plastic bucket tied to a rope over the side of the boat.  Using the rope, she hauls the bucket in toward the ship and up over the railing, and then dumps it out.  This process is repeated three times, and on the third throw the water that is hauled up is collected as a sample.  Some of the surface water is collected for monitoring nutrients at the ocean surface, while another sample is collected for the ocean acidification project.

surface water sample
Rachel Pound throws a plastic bucket over the side railing to collect a surface water sample.

1:36pm – Station 4W. Using a small hoop net attached to a rope, Rachel Pound collected a small sample of the phytoplankton near the surface.  She dropped the net down 30ft off the side of the boat and then towed it back up toward the boat.  She repeated this procedure 3 times and then collected the sample from the cod end.  This sample will be sent to the California Department of Public Health to be used to monitor the presence of harmful algal blooms that produce domoic acid, which can lead to paralytic shellfish poisoning.

Tucker trawl net
Shelley Gordon, Dru Devlin, Jamie Jahncke, and Kirsten Lindquist prepare the Tucker trawl net. Photo: Kate Davis

2:54pm – The final sample collection of the day is underway.  Jaime Jahncke just deployed the first messenger on the Tucker trawl net.  This apparatus consists of three different nets.  These nets are similar to the hoop net, with fine mesh and cod ends to collect small organisms in the water.  The first net was open to collect a sample while the net descended toward ocean floor.  The messenger was sent down to trigger the device to close the first net and open a second net.  The second net was towed at a depth between 175-225m for ~10 minutes.  After the deep tow, a second messenger will be sent down the cable to close the second net and open a third net, which will collect a sample from the water as the net is hauled back to the boat.  The Tucker trawl aims to collect a sample of krill that live near the edge of the continental shelf and the deep ocean.

3:46pm – After a full day of action, the boat is turning back toward shore and heading toward the Bodega Bay Marina. 

5:42pm – The boat is pulling in to the marina at Bodega Bay.  Once the crew secures the boat along a dock, our day will be “done.”  We will eat aboard the boat this evening, and then likely hit the bunks pretty early so that we can rise bright and early again tomorrow morning, ready to do it all again along a different transect line!


Did You Know?

The word copepod means “oar-legged.” The name comes from the Greek word cope meaning oar or paddle, and pod meaning leg. Copepods are found in fresh and salt water all over the world and are an important part of aquatic food chains. They eat algae, bacteria, and other dead matter, and are food for fish, birds, and other animals. There are over 10,000 identified species of copepods on Earth, making them the most numerous animal on the planet.

Shelley Gordon: T minus 2 (days)…, July 17, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 17, 2019

Science Log

This year my summer is coming to an end with a bang!  Tomorrow I will drive over to Sausalito, California to join a team of scientists on a research cruise as a NOAA Teacher at Sea.  Over the course of the next week I will be on the deck of R/V Fulmar, a NOAA research vessel, off the coast of California in the Cordell Bank and Greater Farallones National Marine Sanctuaries.  From what I have learned so far, this high nutrient area of the ocean attracts a lot of different forms of life.  Whales, dolphins, sea turtles, and a wide variety of sea birds all migrate to this region to feed on the many forms of prey that thrive here.  

Migration Map
A sample of some of the animals that migrate to Cordell Bank National Marine Sanctuary

Scientific data collected on this trip will contribute to the Applied California Current Ecosystem Studies (ACCESS), a long-term research project which started back in 2004.  This unique project is studying the offshore ecosystem in two National Marine Sanctuaries, Cordell Bank and Greater Farallones.  Three times each year scientists systematically collect data, and the resulting dataset shows how the ocean environment is changing over time, and how various populations of organisms are responding.  The data also helps scientists understand how to better protect the National Marine Sanctuary ecosystems (learn more at www.accessoceans.org).

ACCESS data collection
ACCESS data collection, boat-based transects

Over the course of our 8-day cruise, scientists on the ship will collect data along 11 transects (according to the plans, we will not be collecting data on transects 8-10 on this map).  As the ship moves along each transect, various types of data will be recorded, including counts of what can be seen above water (birds, marine mammals, ships, and marine debris like trash, fishing gear, etc…) and what is underneath the surface (plankton, krill, fish, and nutrients).  In addition, we will collect data on ocean salinity, temperature, and acidity.   I can’t wait to share information about what I see and learn on this adventure.

Personal Log

My interest in joining this research trip is both personal and professional.  I grew up with family members that are keen observers of nature.  My dad is an avid bird watcher who diligently kept a life list and my mom finds great pleasure in observing and identifying flowers and plants.  While I can appreciate these interests, the environment under the ocean waves is what has always captivated my attention.  Although I grew up in the desert of Tucson, AZ, I had the opportunity to learn how to SCUBA dive from a high school teacher and I have been hooked on learning about the animals in the ocean ever since.  My personal favorites are Giant Manta Rays and Harlequin Shrimp.  The opportunity to briefly step into the shoes of a marine scientist is something I am really looking forward to.

Shelley and her mom
At the Arctic Ocean on a recent trip to Iceland with my mom

I work at Roosevelt Middle School in Oakland, CA, a public school that serves a uniquely diverse population (in any given year we have more than 20 different home languages spoken by our students and their families).  As an educator in this amazing place I aim to support our students in growing their personal skills so that they can become the creative leaders our community will need in the future.  While the marine sanctuaries I will be visiting on this trip are practically in our backyard, they can also seem a world away from daily life in Oakland.  Yet, our daily lives have a huge impact on the ocean environment.  By participating as a NOAA Teacher at Sea on the ACCESS cruise, I am excited to gain first-hand research experience in my “backyard” and be inspired with new ways to help make this information come to life in our classrooms.

Students observe seals
Aaliyah and Mohamad observe harbor seals at Salt Point State Park
Students collect barnacle data
Roosevelt Middle School 6th graders collect barnacle data at Point Pinole Regional Shoreline

Over the next week I will happily share what we are up to on the boat.  I would also love to bring questions to the research team, so please send any you have my way! 


Did You Know? 

Balloons are the most common type of trash spotted from the research boat!  Helium-filled balloons easily wriggle out of the hands or knots meant to hold them down and float high into the sky.  I’ve watched many a balloon do just that and wondered, what happens to those balloons once they are out of sight?  Convection currents in the air eventually deposit those same balloons into the ocean, where they become dangerous hazards.  Marine animals can eat the balloons by mistake and die.  Hopefully we’ll see way more whales than balloons on this trip!?!  Stay tuned…

Jenny Hartigan: Whales and Friends! July 30, 2017

NOAA Teacher at Sea

Jenny Hartigan

 Back home from the NOAA Ship R/V Fulmar

July 30, 2017

Mission: Applied California Current Ecosystem Studies: Bird, mammal, plankton, and water column survey

Geographic Area: North-central California

Date: July 30

Weather Data from the Bridge (my kitchen!):

Latitude: 37º 76.52’ N

Longitude: 122º 24.16’ W

Time: 0700 hours

Sky: partly cloudy

Wind Direction: N

Wind Speed: 0-5 knots

Barometric pressure: 1017 hPA

Air temperature: 56º F

Rainfall: 0 mm

Scientific Log:

The graduate students and interns on the Fulmar:

2017-07-25 10.47.06
Carina Fish. Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

 

2017-07-25 11.18.32
Hannah Palmer Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

I really enjoyed getting to know all the students, interns and young scientists on board the Fulmar. It was inspiring to learn about what they are studying in their programs at San Francisco State University, University of California at Davis (Bodega Marine Lab), and Sonoma State University. Carina Fish studies geochemistry and paleooceanography as she pursues a PhD in Geology at UC Davis. She is involved in Carbon 14 dating of deep sea corals at the edge of the Cordell Bank. Hannah Palmer (Bodega Marine Lab) is a PhD student at UC Davis studying ocean change in the past, present and future. Kaytlin Ingman studies ecology and marine biology in her graduate program at San Francisco State. Kate Hewett (BML) got her BA and MA in mechanical engineering, and now is working on a PhD in marine science at UC Davis. Sarayu Ramnath and Liz Max conduct experiments on krill at Point Blue Conservation Science and demonstrate their craft at the Exploratorium once a month. Emily Sperou studies marine science at Sonoma State. All these people brought great energy to the mission on board the Fulmar. It’s clear that the senior scientists really enjoyed teaching and mentoring them.

The other day I posed some questions about whale and porpoise behavior:

humpbackwhale_noaa_large
Photo credit: fisheries.noaa.gov

Why do whales breach? Some hypotheses include that whales breach to shed parasites, slough skin, communicate within their species, exhibit reproductive behavior or just for fun. The consensus within the scientific community is that whales breach to communicate with other whales.

2017-07-26 08.43.35
Dall’s porpoise off the bow Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

It’s pretty obvious that the CA sea lion we saw leaping and twisting as he swam behind the boat was enjoying himself surfing the stern wave, but what about porpoises swimming in front of the boat? The ship’s wake also pushes them forward so they can easily surf the water. They like to surf the bow wave – fun, fun, fun!

 

Surfing the bow – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

Other Creatures Seen on the Cruise:

Ocean sunfish (mola mola) This giant fish lives on a diet that consists mainly of jellyfish.

IMG_8285
No, it’s not an ocean creature! We found these balloons about 40 km out to sea. Marine mammals can mistake this for food and ingest it, resulting in harm or even death. How can we keep balloons from getting out here? Photo credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

Did you know?

When exploring the coast, you should keep a 100 meter distance from marine mammals. If the animal appears stressed you are too close.

Personal Log:

Well, it’s true. I’ve been home now for 3 days and it still feels like I’m bobbing on the ocean! Kirsten called this “dock rock” and I can see why.

As we arrived in port on the final day of the cruise, someone asked me, “What were some highlights of the week?” Well, here we go…

  1. I came into this hoping I would see whales, and I did! I was thrilled to see humpback and blue whales, whale flukes, and CA sea lions and Dall’s porpoises surfing the boat’s wake!
  2. I gained a much deeper understanding of the ecosystem monitoring being done and how it’s important for the management and preservation of species.
  3. I appreciate the professionalism and collegiality among the scientists. It inspires me to build coalitions among the school system, scientists and community partners to advance ocean literacy.
  4. I am so impressed by the impressive mentoring of the graduate students (and me!)
  5. And finally, I have great respect for the hard work involved in being on the ocean.

Thank you for teaching me how to assist in conducting the research, and including me in the group. It was fun getting to know you and I look forward to staying in touch as I bring this experience back to the classroom. I am doing a lot of thinking about bringing marine science careers back to the classroom.

IMG_7683
To all the crew on the Fulmar – thanks for an amazing experience! and… safety first ! Photo credit: B. Yannutz/NOAA/Point Blue/ACCESS

 

 

I loved hearing from you. Thanks for posting your comments!

Jenny Hartigan: Organisms from the Deep! July 27, 2017

NOAA Teacher at Sea

Jenny Hartigan

Aboard NOAA Ship R/V Fulmar

July 27, 2017

Mission: Applied California Current Ecosystem Studies: Bird, mammal, plankton, and water column survey

Geographic Area: North-central California

Date: July 27, 2017

Weather Data from the Bridge:

Latitude: 38º 19.820’ N

Longitude: 123º 03.402’ W

Time: 0700 hours

Sky: overcast

Visibility: 8 nautical miles

Wind Direction: NW

Wind Speed: 15-25 knots

Sea Wave Height: 3-5’

NW Swell 5-7 feet at 8 seconds

Barometric pressure: 1028 hPA

Air temperature: 63º F

Wind Chill: 51º F

Rainfall: 0 mm

 

Scientific Log:

As I described in another blog, the ACCESS cruise records data about top-level predators, plankton, and environmental conditions as indicators of ecosystem health. Today I’ll explain sampling of plankton and environmental conditions.

 

IMG_7858
Krill from the Tucker Trawl Photo credit: J. Jahncke/ NOAA/Point Blue/ACCESS

 

IMG_8048
a single krill. Photo credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

a small squid – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

There are two methods of collecting plankton. The Tucker Trawl, a large net with 3 levels is used to sample organisms that live in deep water (200 meters or more) just beyond the continental shelf. The collected krill and plankton are sent to a lab for identification and counting.

IMG_7993
Scientist Dani Lipski (left) and myself with the hoop net. Photo credit: C.Fish/NOAA/Point Blue/ACCESS

 

Another method of sampling producers and organisms is the hoop net, deployed to within 50 meters of the surface.

 

2017-07-27 09.15.22
Here I am with my daily job of cleaning the CTD. I also prepare labels for the samples, assist with the CTD, Niskin and hoop net, and Tucker Trawl if needed. Photo credit: C. Fish/NOAA/Point Blue/ACCESS

 

Deploying the CTD and hoop net – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

Environmental conditions are sampled using the Conductivity, Temperature and Depth (CTD) device. It measures conductivity (salinity) of the water, temperature and depth. The CTD is deployed multiple times along one transect line. Nutrients and phytoplankton are also sampled using a net at the surface of the water. I interviewed several scientists and crew who help make this happen.

An Interview with a Scientist:

Danielle Lipski, Research Coordinator, Cordell Bank National Marine Sanctuary

IMG_7985 2
Dani and myself deploying the CTD Photo credit: C. Fish/NOAA/Point Blue/ACCESS

 

Why is your work important?

The many aspects of the ocean we sample give a good picture of ecosystem health. It affects our management of National Marine Sanctuaries in events such as ship strikes, harmful algal blooms and ocean acidification.

What do you enjoy the most about your work?

I like the variety of the work. I get to collaborate with other scientists, and see the whole project from start to finish.

Where do you do most of your work?

I spend 4 – 5 weeks at sea each year. The rest of the time I’m in the Cordell Bank National Marine Sanctuary office.

When did you know you wanted to pursue a career in science or an ocean career?

In high school I was fascinated with understanding why biological things are the way they are in the world. There are some amazing life forms and adaptations.

How did you become interested in communicating about science?

I want to make a difference in the world by applying science.

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

Silent Spring by Rachel Carson

 

An Interview with a Scientist:

Jaime Jahncke, Ph.D., California Current Director, Point Blue Conservation Science

FullSizeRender
Jaime checks the echo sounder for the location of krill. Photo credit: NOAA/Point Blue/ACCESS

 

Why is your work important?

We protect wildlife and ecosystems through science and outreach partnerships.

What do you enjoy the most about your work?

-being outside in nature and working with people who appreciate what I do.

When did you know you wanted to pursue a career in science or an ocean Science? 

I always wanted a career in marine science.

What part of your job did you least expect to be doing?

I thought whale study would not be a possibility, and I love whale study. (I started my career studying dolphin carcasses!)

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

The Story of the Essex – the history behind Moby Dick

An Interview with a NOAA Corpsman:

Brian Yannutz, Ensign, NOAA Corps

                   

2017-07-26 13.40.44
Brian on the bridge Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

    

2017-07-26 13.19.44 2
Brian retrieving party balloons from the ocean so they won’t harm wildlife. Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

The NOAA Commissioned Officer Corps (NOAA Corps) is a uniformed service of the United States which provides professionals trained in sciences and engineering. Brian has been working for the NOAA Corps for 3 years. He is responsible for the ship while on watch, and other duties such as safety officer.

 

Why is your work important?

Among other duties, I drive the ship and operate the winch to deploy the trawl and CTD.

What do you enjoy the most about your work?

I enjoy meeting new people.

Where do you do most of your work?

I’m based out of Monterey, and spend 60 – 90 days per year at sea. I spend 40 hours / week maintaining the boat.

What tool do you use in your work that you could not live without?

-the Vessel Inventory Management System, which is a maintenance program.

When did you know you wanted to pursue a career in science or an ocean career?

In the summer of eighth grade I went to visit relatives in Germany. It was my first time in the ocean. I also spent 15 days in the San Juan Islands.

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

-the movie “The Life Aquatic”

 

Let’s Talk about Safety:

Brian is responsible for safety aboard ship and it is a high priority. Before sailing I had to do an immersion suit drill where I put on a heavy neoprene suit in 3 minutes. When on deck everyone wears wear a Personal Flotation Device (PFD), which could be a “float coat” or a “work vest”. A “float coat” looks like a giant orange parka with flotation built in. A “work vest” is a life vest. If you are working on the back deck when the winch line is under tension, you must wear a hard hat. Most people wear waterproof pants and boots to stay dry when hosing down nets.

 

FullSizeRender 2 2
That’s me, wearing the “gumby” immersion suit! Photo credit: J. Jahncke/NOAA/Point Blue/ACCESS

 

Bird and Mammals Seen Today in the Bodega Bay Wetlands:

35 Egrets, 1 Great Blue Heron, 1 Snowy Egret, many Brandt’s Cormorants, many Western Gulls

Did you know?

A blue whale spout has the general shape of a fire hydrant, and a humpback whale spout looks more like a fan.

Personal Log:

I suppose you are wondering what I do in my free time. Between my tasks on board, eating, and blogging, I am pretty busy. Getting extra rest is a big deal, because it’s hard work just to keep your balance on a ship. Some evenings, I feel like I have been skiing all day long! I spend a lot of my time on the flying bridge watching wildlife through my binoculars, or chatting with the scientists and crew. It is fabulous to be out here on the ocean.

Highlight of Today:

Watching several Dall’s Porpoises surfing the wake in front of the bow!

Questions of the Day:

Why do porpoises swim in front of the boat?

Why do whales breach? (Breaching is a behavior that looks like jumping out of the ocean on their side.)

 

 

I love hearing from you. Keep those comments coming!

Jenny Hartigan: How to Record Whales and Birds… July 25, 2017

NOAA Teacher at Sea

Jenny Hartigan

Aboard NOAA Ship R/V Fulmar

July 25, 2017

Mission: Applied California Current Ecosystem Studies: Bird, mammal, zooplankton, and water column survey

Geographic Area: North-central California

Date: July 25

Weather Data from the Bridge:

Latitude: 38º 19.834’ N

Longitude: 123º 03.399’ W

Time: 0700 hours

Sky: overcast

Wind Direction: N

Wind Speed: 5-15 knots

Sea Wave Height: 3 feet becoming 2 feet or less

NW Swell 7-9 feet at 10 seconds

Barometric pressure: 1026 hPA

Air temperature: 65º F

Wind Chill: 48º F

Rainfall: 0 mm

Scientific Log:

One aspect of the ACCESS project is to collect data about top-level predators in the marine ecosystem. The scientists do this by recording observations of marine mammals and seabirds from the flying bridge (top deck) of the ship. I am going to tell you about the standardized method they have for recording observations so they can be quantified and compared year to year. Some of the categories include:

First Cue (The first thing you saw – either splash, spout, or body) .

Method (How did you see it? – by eye, binoculars, etc.) .

Bearing (relative to the bow of the boat: 0 – 360º)

Reticule (a scale that tells you how far it is away from the horizon)

Observer Code (Each scientist has a number).

Observer Side (port, starboard)

Behavior of the animal (traveling, milling, feeding, etc.)

Age (if you can tell)

Sex (if you can tell)

Species (humpback, blue whale, CA sea lion, etc.)

Counts (best, high, low)

2017-07-22 13.08.11 2.jpg
The flying bridge of the R/V Fulmar.       Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

Marine mammal and seabird scientists are trained observers for this task that requires complete concentration. I interviewed them to find out more about their jobs.

An Interview with a Scientist:

Jan Roletto, Research Coordinator, Greater Farallones National Marine Sanctuary

 

IMG_2520.jpg
Jan assisting with the Tucker Trawl.Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

Why is your work important?

This long-term monitoring of the ecosystem helps shape, define and enforce the regulations for the National Marine Sanctuaries.

What do you enjoy the most about your work?

I have the (long-term ecosystem) data when I assess damage and define restoration from oil pollution or boat grounding (incidents).

If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

Funding long-term data studies is a challenge, so I would like a marketing tool such as a fun TV program to market the excitement and drama of marine science.

When did you know you wanted to pursue a career in science or an ocean career?

I enjoyed studying marine mammal behavior, and did a Master’s in anatomy and physiology.

What part of your job did you least expect to be doing? – fundraising!

How did you become interested in communicating about science?

The only way to keep the project sustainable was to communicate in lay terms.

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

The Doc Ford stories by Randy Wayne White are about a marine biologist ex-CIA agent.

Whatever You Do, Don’t Run (True Tales of a Botswana Safari Guide) by Peter Allison.The stories are based on a Botswana saying “only food runs!”

 

An Interview with a Scientist:

Ryan Berger, M.Sc., Farallon Program Biologist, Point Blue Conservation Science

2017-07-25 10.57.50.jpg
Ryan waiting on the back deck while the Tucker Trawl collects krill. Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

Why is your work important?

We establish a baseline to more fully understand the effects of climate change on marine animals and thereby protect species.

What do you enjoy the most about your work?

My work feels meaningful, I like its diversity, and I enjoy mentoring the next generation of conservation scientists.

Where do you do most of your work?

-on the Farallones Islands, on the ocean and in the office.

What tool do you use in your work that you could not live without?

-a Leatherman, walkie-talkies and a write-in-the-rain notebook while I’m on the Farallones Islands.

If you could invent any tool to make your work more efficient and cost were no object, what would it be and why?

-a tool to see the eggs under the adult birds without disturbing them. You have to have a lot of patience as you wait for the bird to move so you can see if it’s sitting on an egg.

What part of your job did you least expect to be doing?

I did not expect to be an emergency responder for freeing entangled whales.

How did you become interested in communicating about science?

I found a field I’m passionate about and want to communicate an important message about being stewards of the environment for the next generation to enjoy.

What’s at the top of your recommended reading list for a young person exploring ocean or science career options?

The Education of Little Tree is about Native Americans, taking care of the environment.

Do you have an outside hobby?

I enjoy mountain biking, hiking and outdoor activities.

 

An Interview with a Scientist:

Kirsten Lindquist, Ecosystem Monitoring Manager, Greater Farallones Association

DSC_0933-e1407310373908
Kirsten spotting seabirds from the flying bridge. Photo credit: NOAA/Point Blue/ACCESS

Why is your work important?

Our Beach Watch and ACCESS program data informs NOAA about the effects of conditions such as oil spills on wildlife. Beach Watch is a citizen science program that extends along the California coast from Año Nuevo to Point Arena.

What do you enjoy the most about your work?

I like being in the field and teaching and communicating why it’s important.

What tool do you use in your work that you could not live without?  -binoculars!

When did you know you wanted to pursue a career in science or an ocean career?

When I was a young child I watched “Never Cry Wolf”, a movie about a science researcher named Farley Mowat. I was so taken by it that I told my mom, “I want to do that!”

How do you help wider audiences to understand and appreciate NOAA science?

I teach 150 volunteers through the Beach Watch program. 

Do you have an outside hobby?

I like cooking and outdoor activities. Some of the field sites I’ve been are in Antarctica studying penguins, and Guadalupe Island, Mexico, and Chile.

 

Personal Log:

I am enjoying getting to know the scientists and crew on board. Since I am curious to find out more about what they do, I spend a lot of my free time asking questions. They are interested to know what middle school students learn in science.

DSCN4862
                                                                          the fog bank                                                                                   Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

Every day I’m fascinated by life at sea. The fog off the California Coast is so dramatic. The other day we emerged from a huge fog bank into sunny skies where it was 15º F warmer!

I mentioned the galley the other day. It still fascinates me how compact everything is here on the boat. Everyone here has a sense of humor too. Check out the shark silverware we use!

2017-07-26 13.39.28
the galley Photo Credit: J. Hartigan/NOAA/Point Blue/ACCESS

 

2017-07-26 11.36.53
Shark silverware! Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

 

Animals Seen Today:                              

IMG_2537
Purple-striped Jelly – This small one was in the hoop net today, and we saw a larger one off the stern of the boat. Photo credit: J. Hartigan/NOAA/Point Blue/ACCESS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small organisms in the hoop net – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

Question of the Day:

How do you tell the difference between the blow (spout) of a blue whale and a humpback whale?

 

I love hearing from you. Keep those comments coming!

 

Jenny Hartigan: Whales and Birds Everywhere! July 23, 2017

NOAA Teacher at Sea
Jenny Hartigan
Aboard NOAA Ship R/V Fulmar
July 21 – July 28, 2017

 

Mission:  Applied California Current Ecosystem Studies: Bird, mammal, zooplankton, and water column survey

Geographic Area: North-central California

Date: July 23

Weather Data from the Bridge:

Latitude: 37.8591° N,

Longitude: 122.4853° W

Time: 0700

Sky: 100% cloud cover

Visibility: 8 nautical miles

Wind Direction: NW

Wind speed: 10-20 knots

Sea wave height: 2-4 feet

NW Swell 7-9 feet at 8 seconds

Barometric pressure: 30.02 inches

Sea Water Temperature: 58.6

Air Temperature: 52 degrees F

Wind Chill: 34 degrees F

Rainfall: 0mm

Scientific Log:

Saturday was my first day out, and it was an excellent day for wildlife observation. In fact, that is what I did for most of the day. A highlight of my day was seeing two blue whales spouting right in front of the Fulmar. I tried to get a photo, but they went below the surface quickly. Blue whales are the largest marine mammals, averaging 20-25meters long and blue grey in color. It is called a cetacean, which means it has flukes, (tail fin), and may or may not have a dorsal fin (the fin on the back or top of the body.) This is in contrast to pinnipeds, which are marine mammals that use their flippers to walk. The blue whale is a baleen whale, which feeds by chasing prey up to the surface of the water. There it forages by swimming with its mouth open to catch small invertebrates such as krill and copepods. The baleen in its mouth filters out the invertebrates from the water.

The whale we saw most often was the humpback whale. This baleen whale averages 11-13 meters in length, and is dark grey to black in color. I was so excited to observe 3 tail flukes of humpbacks today!

The scientists spotting marine mammals from the flying bridge.

 

Cassin’s auklets and humpback whales – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

Marine mammals seen Saturday:

6 blue whales

23 humpback whales

22 unknown whales

several harbor porpoise

4 California sea lions

 

Layman’s albatross – Video credit: J. Jahncke/NOAA/Point Blue/ACCESS

Birds seen Saturday:

Cassin’s auklets

Black–footed albatross, layman’s albatross

Western gulls

Hearman’s gull

Common murre – including the first murre chicks of the season the ACCESS crew has sighted.

Many marine animals tend to be found where upwelling occurs. Deep ocean nutrient-filled waters are brought to the surface by changes in sea floor topography, winds and currents. These nutrients fertilize phytoplankton (tiny plant life) that serves as the base of the food web. Whales return to these areas to feed on the small invertebrates that flourish there. These hotspots occur just off the Ca Coast. Protecting and managing these ecosystems is one major reason we have established National Marine Sanctuaries such as The Greater Farallones National Marine Sanctuary, Cordell Bank, and Monterey Bay. In a later post, I’ll tell you more about the procedures the scientists use to observe and record the mammal and bird sightings.

Personal Log:

That’s me, in front of the Fulmar!

I settled into my berth onboard the R/V Fulmar. The ship can sleep 10 people, has a galley (shipspeak for kitchen), a wet lab (place to conduct experiments that are wet!) and one head (shipspeak for bathroom). Although the ship is only 67 feet long, the scientist and crew work together so efficiently that it is very comfortable. It has everything we need. I am rooming with Dani Lipski, who is one of the scientists. I’m on the bottom bunk. I’ll introduce her to you later on. She has spent a lot of time teaching me how to use the equipment to take samples. She has graciously answered my millions of questions!

My bunk on the bottom. Do you see the ladder to the escape hatch on the right?

I am delighted to find that I am not feeling seasick. My doctor did prescribe me the patch to wear behind my ear, and I guess it’s working! In any case, I’m not taking it off to test it out. We have had some pretty bumpy experiences transiting to sampling sites and so far so good.I have learned to always keep one hand on the boat when walking around, and not to go below deck when the ship is moving. It surprises me to experience what a workout my legs are getting simply by working to maintain my balance. Even while sitting here writing on my computer I have to constantly engage my legs so I don’t fall over.

Did you know?

The Traffic Separation Scheme (TSS) separates ship traffic going in opposite directions, much like a median strip separates opposing lanes of cars on a freeway. The TSS is marked on nautical charts so that traffic proceeds safely.

I love hearing from you. Keep those comments coming!

Jenny Hartigan: Ready to ACCESS the Seas! July 18, 2017

NOAA Teacher at Sea

Jenny Hartigan

Aboard NOAA Ship R/V Fulmar

July 21 – July 28, 2017

 

Mission:  Applied California Current Ecosystem Studies: Bird, mammal, zooplankton, and water column survey


Geographic Area:
North-central California

Date: July 18

Weather Data from the “Bridge” (My Kitchen): 22.4 degrees Celsius, Wind: kts, Air pressure: 1018 hPa, Humidity: 56%, partly cloudy, Rainfall: 0 mm

 

Personal Log

Hello! My name is Jenny Hartigan and I am getting ready to travel Friday on the Research Vessel Fulmar with the ACCESS program. I’ll explain the program below.

I am a middle school integrated science teacher at Lincoln Middle School in Alameda, CA. This year will be my 19th year of full-time teaching, although I became a teacher in 1991. I’m looking forward to seeing my eighth grade and Environmental Science students in August!

Outside of teaching, I have been married to my wonderful husband Mike for 24 years, and we have 2 “children”: Cari (21 years old and a fourth-year civil engineering/architecture student at Carnegie Mellon University) and Calder (16 years old and a senior at Alameda High School). Kody (AKA “goofiest dog in the world”) makes us laugh every day. We enjoy hiking and building things together; I also enjoy swimming, reading, watching movies and growing my own vegetables.

Why am I doing this?

I believe science should be relevant to students’ lives. Four years ago I developed an environmental science class generously funded by NOAA. 7th and 8th grade students participate in an environmental stewardship project. Since our campus borders the San Francisco Bay, students have immediate impact on our local watershed by removing non-native plants, planting native plants and analyzing litter. They also communicate the importance of taking care of our national marine sanctuaries to the public. We are an Ocean Guardian School!

I am excited to be selected for the Teacher at Sea program and have the opportunity to assist with research in a marine sanctuary, as well as learn about marine science careers. Thank you to NOAA for giving me this opportunity to step out of my comfort zone and stretch my horizons. My students will be interested to learn about people involved in science outside of school (there may be questions about sharks, too!) I can’t wait to get back and share it with them.

Personally I am hoping to see whales on this trip! My chances seem pretty good since friends have seen humpbacks off Baker Beach (near the Golden Gate Bridge) recently. I don’t know if I’ll get seasick. I have spent 3 days sailing on the Chesapeake Bay without getting sick, but that may be different from the Pacific Ocean! I have meds and lots of support from the scientists and crew just in case. Also, I’ve never blogged before, so I will be learning a new skill.

 Science and Technology Log

Did you know the Applied California Current Ecosystem Studies Survey (ACCESS) is a partnership that supports marine wildlife conservation and healthy marine ecosystems in northern and central California by conducting ocean research to inform resource managers, policy makers and conservation partners? ACCESS data is used to determine the severity of harmful algal blooms that affect the commercial fishing industry, protect whales from ship strikes, and assess how the ecosystem responds to changing ocean conditions. An example of how NOAA data is used to learn about the effects of water temperature on ecosystems is found at https://www.nwfsc.noaa.gov/news/features/food_chain/index.cfm.

The R/V Fulmar is a 67’ Teknicraft hydrofoil-assisted, aluminum-hulled catamaran homeported in the Monterey Harbor. It carries 2-3 crew members, 27 passengers and has 10 berths (that’s beds!) and serves the Monterey Bay, Greater Farallones and Cordell Bank national marine sanctuaries. The boat is named after the northern fulmar, a gull-like bird related to an albatross that lives in the North Pacific Ocean. A catamaran has two parallel hulls instead of one hull like a traditional ship. This construction can reduce wave-induced motion. (I hope that helps to offset seasickness!) My duties will be to assist the scientists, stand watch and do housekeeping activities.

 

boat

R/V Fulmar

http://www.sanctuarysimon.org/

 

Northern Fulmar

Northern Fulmar

https://www.allaboutbirds.org/

Where am I going?

We will be sampling transects off the coast of North-central California between Sausalito and Bodega Bay on an 8-day research cruise. What is a transect, you wonder? Transects are lines along which measurements and observations are made, and are located in hotspots of marine animal activity. We will operate on transects 1-12 and N1-N7. If you’d like to find out where that is, look at the ACCESS map below.

ACCESS

http://www.accessoceans.org/

 

I can’t wait to hear your questions and comments. Please write, and I’ll respond to you!