Victoria Cavanaugh: Newport, Oregon to Port Madison, Washington, April 17, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16-27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 17, 2018

Weather Data from the Bridge

Latitude: 44.64°N
Longitude: 124.04°W
Sea Wave Height: SW 3 ft at 5 seconds. NW swell 9 feet at 10 seconds.
Wind Speed: 11 to 14 kt. Gusts to 20kt.
Wind Direction: SSW
Visibility: 15 kilometers
Air Temperature: 7.8oC  
Sky:  AM showers, scattered clouds in PM.

Science and Technology Log

Though we were originally set to sail on Monday afternoon, predicted 10-15 foot swells for Monday evening delayed our departure from Newport, Oregon until Tuesday afternoon.  The extra time in Newport allowed me to spend some time in the Plotting Room aboard NOAA Ship Fairweather.  The Plotting Room is one of the main work areas for the hydrographers, the NOAA technicians who both plan the missions and then process data collected after each launch.


One of the friendly surveyors, Bekah, gave me an overview of the upcoming project which will focus on the area west of Prince of Wales Island.  The hydrographic survey technicians first receive an assignment, known as a project, from NOAA.  Next, technicians, break each project into “sheets,” or smaller sections, which are assigned to each technician or NOAA officer.  From there, the technicians further break down the sheets into “polygons.”  The polygons are like mini-sections of a given area of the map, and are sized depending on a number of factors including the amount and distance from the shoreline as well as the depth.  The polygons are assigned one-by-one to the survey launches to complete.

A Sheet from the Project
A Sheet Sectioned into Polygons (in Blue).  Notice the Topographical Markings on the Islands.

One of NOAA’s primary goals with hydrographic surveying and updating the charts is to obtain more accurate data on the Pacific seafloor and its features in order to promote safe marine navigation.  NOAA is part of the US Department of Commerce, and so updating navigational charts will help improve safe passage of all ships, especially commercial cargo ships.  As commercial ships grow larger and heavier and global trade continues to increase, improved navigational charts allow for increased shipping drafts (how deep the vessel extends below the water, which is a function of how much cargo they can load), which in turn creates a positive economic impact for the national economy.

Today, NOAA Ship Fairweather uses sonar to measure seafloor depths.  Previously, hydrographers used lead lines.  Essentially, lead lines were dropped over the ship’s rail and lowered until they rested on the seafloor.  While lead lines are occasionally still used today in very shallow areas close to shore, creating new seafloor maps with sonar allows for much greater precision, are much less labor intensive, and allow for continually measuring the depth.

ENS Linda Junge Holding a Lead Line

Personal Log

On Tuesday afternoon, at 14:00 (2pm), we set sail from Newport, Oregon and began making our way north to Port Madison, near Seattle Washington.  After spending a few days at dock in Newport, I was eager to get underway, and the rest of the crew, many of whom had been in Newport for much of the winter, also seemed eager to begin the season.  While the views leaving Oregon were spectacular, the wide open seas proved a bit of a challenge.  I quickly learned that heading to the open deck on the back of the ship, the fantail, was an ideal place to catch some respite from feeling seasick.  Later in the evening, the waves subsided a bit, and by morning the seas felt much calmer.

On the Dock in Newport, OR
A Beautiful Last Night in Newport
Passing Under the 982 meter long Yaquina Bay Bridge as We Leave Newport
Heading Out to the Pacific
Leaving Yaquina Bay
Some Really High Waves Crashing on the Fantail!
A Map Showing Our Departure Port (Newport) and Arrival (near Seattle)
On the Flying Bridge of the NOAA Ship Fairweather as We Depart Newport

Each day, the POD (Plan of the Day) is updated with important meetings, mealtimes, and general updates.  Emergency responsibilities are also posted, and one of the first things we did once we were underway at sea was practice drills for a fire and abandon ship.  As part of the abandon ship drill, I had to practice putting on the “survival suit.”

Most aboard NOAA Ship Fairweather work several four hour shifts or “watches” each day, and some may also work a few additional hours of overtime.  Perhaps for this reason, meal times seem a bit early with breakfast at 7am and lunch at 11am.  Dinner, when in port is at 4pm, and at sea, it’s at 5pm.   Meals are prepared in the ship’s galley (or kitchen), and served buffet style.  The crew eats together in the mess (or main dining area).  In addition to meals, snacks such as cereal, fruit, and icecream are available 24/7 and some additional options are available for those on night watches who may eat “night lunch.”  Meals are a great time to meet the many aboard Fairweather and better understand how the different teams–the wardoom, the engineers, the survery technicians, the deck, the stewards, the ET, and the visiting scientists–all work together.

Did You Know?

NOAA Ship Fairweather is celebrating its 50th birthday this year!  Fairweather was designed by the US Deparment of Commerce Maritime Administration and built in Jacksonville, Florida by Aerojet-General Shipyards.  Fairweather was commissioned in October 1968 and is homeported in Ketchikan, Alaska.  Fairweather’s sister ship is NOAA Ship Rainier which is also part of NOAA’s Pacific Fleet.

NOAA Ship Fairweather has a field season of about 220 days per year.  At 231 feet long, it can house roughly 57 crew and weighs 1591 tons!  While cruising, Fairweather averages 13 knots, and while surveying, the ship travels 6 to 10 knots.

By the way, you might be wondering what exactly is a knot.  As the story goes, ancient mariners used to tell how fast their ship was moving by throwing a piece of wood tied to a rope overboard and measuring how much time it would take the wood to travel from the bow (front) to the stern (back) of the ship.  According to historian Elizabeth Nix, by the 16th century, this method was updated to include knots tied at certain intervals in the rope that was thrown overboard.  Sailors began to count the knots to determine a ship’s speed, and eventually a “knot” became a nautical mile per hour.

Nautical miles, by the way, refer to the Earth’s circumference, and are different from “land miles” which reflect the distance it takes to walk 1,000 steps (according to the Romans) or 5,280 feet (according to Queen Elizabeth).  Today, one nautical mile is understood as 1,852 meters or 1.1508 miles.  Or, more practically, it is one minute of latitude (where 60 minutes of latitude = 1 degree).

A knot, then, is a measure of speed used by ships and planes.  A rate of one knot refers to covering a distance of one nautical mile in one hour.

Challenge Question #1:  Devotion 7th Graders — Can you convert the speed of your favorite land animal, your favorite sea animal, your favorite bird,  your favorite car/plane/boat, and this year’s Boston Marathon winner (male or female) to knots?  Show the work to justify your conversions and then create an illustration comparing your choices.




Helen Haskell: Data Acquisition Through Small Boat Surveying, June 12, 2017


NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

June 5 – 22, 2017

Mission: Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska – West of Prince of Wales Island

Date: June 12, 2017

Weather Data:

Temperature: 13°C

Wind 12 knots, 230° true

10 miles visibility

Barometer: 1016 hPa

90% cloud cover at 2000 feet

Location:  Dall Island, AK  54° 54.5’N  132°52.1W


Science and Technology Log:

The role of the Fairweather is to conduct hydrographic surveys in order to acquire data to be used in navigational charts. While the Fairweather has sonar equipment and collects lots of data in transit, much of the data collected on a daily basis is by using smaller boats, with a rotating crew of 3-4 people per boat. The Fairweather will sail to the research area and drop anchor, and for multiple days crews will use these smaller vessels to collect the raw data in an area.


“Sonar” was originally an acronym for Sound Navigation and Ranging, but it has become a word in modern terminology. The boats contain active sonar devices used by the NOAA scientists to calculate water depth, document the rocks, wrecks and kelp forests, and in general, determine hazards to boats. Ultimately their data will be converted in to navigational charts – but there is a significant amount of work and stages to be undertaken to make this a reality.

Attached to the small boats are Kongsberg Multi Beam Echo Sounders (MBES). These devices emit sound waves in to the water. The waves fan out and reflect off the bottom of the sea floor and return to the MBES. Based on the time it takes for the MBES to send and receive the sound waves, the depth of the sea floor can be calculated. As the boat moves through the water, thousands of pieces of data are collected, and collectively a picture of the sea floor can be built.

The pink line is the sea floor

It sounds simple, right? But I am beginning to understand more about the complexities that go in to a project of this scope. It would seem simple perhaps, to drive a boat around, operate the MBES and collect data. As I have quickly come to understand, there is a lot more to it.

As mentioned before, due to the weather conditions in the geographic area of study and routine maintenance, the Fairweather has a field season, and a dry dock season. During the non-field season time, data is analyzed from the previous seasons, and priorities and plans are made for the upcoming seasons. Areas are analyzed and decisions made as to which regions the Fairweather will go to and sheets are determined. A sheet is a region within the project area. Each sheet is broken up in to polygons. On any given day, one small boat will cover 1-3 polygons, depending on the weather, the complexity of the area, and the distance of travel from the Fairweather.


There are many parameters that the scientists need to consider and reconfigure to acquire and maintain accurate data collection. A minimum density of soundings (or ‘pings’) is required to make sure that the data is sufficient. For example, in shallow waters, the data density needs to be a minimum of five soundings per one square meter. At a greater depth, the area covered by the five soundings can be 4 square meters. This is due to the fact that the waves will spread out more the further they travel.

A coxswain will drive the boat in lines, called track lines, through the polygon. As the data is collected the ‘white chart’ they are working with begins to get colored in. Purple indicates deepest water. Green and yellow mean it’s getting less deep. Red indicates shallow areas, and black needs to be avoided. In the pictures below you can begin to see the data being logged visually on the map as the boat travels.


Make an analogy to mowing a lawn. There are areas of most lawns where it is easy to push the lawnmower in straight lines, more or less. The same can be said for here, to some extent. In the deeper waters, not close to shore, the boats can ‘color in’ their polygon using relatively wide swaths that allow the sonar data to overlap just slightly. Every time the boat turns to go back in the opposite direction, the MBES is paused, and then started again once the boat is in position, making a new track line. Close to the shore, referred to as near shore, there are usually more hazards. In these areas, speed is slowed. Due to the increased potential of rocks and kelp beds in an unknown area, the boats do something called half-stepping, in-effect overlapping the ‘rows’ – think about re-mowing part of that section of lawn, or mowing around tree trunks and flower beds. As a visual image comes up on the screen, the coxswain and the hydrographers can determine more where their next line will be and whether they should continue surveying that area, or if there are too many hazards.

Data aquisition

Full coverage needs to be achieved as much as possible. At times this does not happen. This can be as the result of several factors. Kelp increases the complexity of data collection. Kelp often attaches to rocks, and there are large ‘forests’ of kelp in the areas being surveyed. As the sonar also ‘reads’ the kelp, it’s not possible to know the true location, size and depth of the rock the kelp is attached to, and in some instances, to determine if the kelp is free floating.


Steep slopes, rocks and kelp can also create ‘shadows’ for the MBES. This means that there are areas that no sounding reached. If possible the survey team will re-run a section or approach it from another angle to cover this shadow. At times, the rocky areas close to shoreline do not allow for this to be done safely.  A holiday is a term used by the survey crew to describe an area where data did not register or was missed within a polygon or sheet. During data collection, a day may be dedicated for boats to return to these specific areas and see if the data can be collected. On occasion, weather conditions may have prevented the original crew from collecting the data in the first place. Equipment malfunction could have played a role, as could kelp beds or hazardous rock conditions.

Survey crews are given several tools to help them navigate the area. Previous nautical charts are also superimposed on to the electronic chart that the surveyors are using. While many of these contain data that is out of date, it gives the crew a sense of what hazards in the area there may be. Symbols representing rocks and kelp for example are shown. The Navigable Area Limit Lines (NALL) are represented by a red line that can be superimposed on the map. Any area closer to shore than the NALL is not required to be surveyed.



The red line is the Navigable Area Limit Line. Areas inland of this line do not need to be surveyed, as they are known to be entirely non-navigable.

On occasion, surveying will discover a Danger to Navigation (DTON). This might include a rock close to the surface in a deeper water area that is not shown on any map and which may pose imminent danger to mariners. In these instances these dangers are reported upon return to the Fairweather, and information is quickly sent to the Marine Chart Division’s Nautical Data Branch.

During the course of the day, the scientists are constantly checking the data against a series of parameters than can affect its accuracy. Some of these parameters include temperature, salinity of the water and the tide levels. More about these parameters will be discussed in later blog postings.

Personal log

The first part of the day involves the stewards getting coolers of food ready for the survey crew who will be gone all day. The engineers have fixed any boat issues from the previous day and re-fueled the boats and the deck crew have them ready to re-launch. A GAR score is calculated by the coxswain and the crew, to determine the level of risk for the days launch. The GAR score examines the resources, environment, the team selection, their fitness, the weather and the mission complexity. Each factor is given a score out of 10. Added up, if the total is 23 or less, the mission is determined ‘low risk’, 24-44 is ‘use extra caution’, and greater than 45 is high risk. On the first day I went on a boat, as a first timer, the GAR score was a couple of points higher in the ‘team selection’ section as I was new.

Operational Risk Assessment Form

Another fascinating aspect of this research is the equipment on the ship needed to launch these small boats. Huge winches are needed to hoist the boats in and out of the water. Deck crew, with support from the survey crew are responsible for the boat hauling multiple times a day, and the engineers are on hand to fix and monitor the equipment.

After my first day out on the small boats, the data acquisition began not only to make more sense, but also my understanding of the complex factors that make the data collection feasible began to broaden. I had naively assumed that all the work was done from the Fairweather and that the Fairweather would be constantly on the move, rather than being anchored in one location or so for a few days. As we journeyed around small islands covered in Sitka spruce, I watched constant communication between the survey crew and the coxswain on the small boats. The survey crew are constantly monitoring the chart and zooming in and out so that the coxswain can get a better and safer picture of where to take the boat.   As well as watching the monitors and driving the boat, the coxswain is also looking ahead and around for hazards. There is a significant number of large floating logs ready to damage boats, and on occasion, whales that the boat needs to stay away from. It is a long day for all the crew.

Bekah and Sam monitor the incoming data to communicate quickly with Nick, the coxswain.

Aside from learning about the data acquisition being on the small boat, one of the joys was to be closer to some of the wildlife. While I will go in to more detail in later entries, highlights included catching glimpses of humpback whales, families of sea otters, and harbor seal pups.

Yes, I got to drive…in the purple area.

Fact of the day: 

While animals, such as bats, have been using sonar for thousands or millions of years, it wasn’t until the sinking of the Titanic that sonar devices were invented and used for the locating of icebergs.  During World War I, a French physicist, Paul Langévin, developed a tool to be able to listen for submarines. Further developments lead to sonar being able to send and receive signals. Since then, major developments in sonar technology have led to many different applications in different science fields.

Word of the day: Nadir

On small boat surveys, nadir is the term used to describe the ocean floor directly below the boat. It is the low point below the boat.   

What is this?

What do you think this is a picture of? (The answer will be in the next blog installment).


(Answer from previous blog: part of a section of a dumbbell from the Fairweather workout room)


Acronym of the Day

HIC: Hydrographer In Charge












Stacey Klimkosky, July 20, 2009

NOAA Teacher at Sea
Stacey Klimkosky
Onboard NOAA Ship Rainier
July 7 – 24, 2009 

Mission: Hydrographic survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 20, 2009

Weather Data from the Bridge 
Position: 55°08.590’N, 161°41.110’W
Weather: OVC
Visibility: 10 nautical miles
Wind speed: 8 knts.
Waves: 0-1 ft.
Sea temperature: 8.9°C
Barometric pressure: 980.0mb
Air temperature: Dry bulb=9.4°C, Wet bulb=8.9°C

Science and Technology Log 

I am releasing the springs on the bottom sampler.  Asst. Survey Technician Manuel Cruz waits for the claws to open which will allow us to empty the “g stk M” (green sticky mud) into a bucket for observation.
I am releasing the springs on the bottom sampler. Asst. Survey Technician Manuel Cruz waits for the claws to open which will allow us to empty the “g stk M” (green sticky mud) into a bucket for observation.

One of the most interesting (and fun) mornings onboard Rainier happened during our first week at sea. After doing a few days of surveying from an anchorage off SW Ukolnoi Island, we began a transit to a new anchorage off of Wosnesenski Island. On the way, we took a series of bottom samples from Rainier’s deck. The purpose of taking a bottom sample is to determine the composition of the ocean floor.  It is important to record this data and combine it with bathymetric survey data so that ships will know whether or not the area is good for anchoring. A muddy or sandy bottom is best because the anchor can take hold. A stone-covered bottom is not desirable for anchoring because the anchor cannot dig in, and, if it does, there is this risk that it could break if caught under a large stone.

Taking bottom samples is a rather simple process.  We work in teams of three on deck.  One person is in the Plot Room to record data and prepare for the next sample. On deck, a crew member operates a winch that is attached to an A-frame.  At the end of the cable is a claw-like, spring-loaded bottom sampler that is lowered into the water. As it descends, the winch operator calls out depths to one of the two people taking the sample.  The depth is relayed to the bridge via radio.  When the claw hits bottom, the springs disengage and the claws clamp shut, holding a sample.  The person in the Plot Room listens for the direction “Mark”, and marks the sample’s position on the computer program.  As the sample is raised, the winch operator calls out the depths again.  This information is radioed to the bridge along with any corrections they must make to adjust the ship’s position.  For example, “50-straight up and down” means that the sampler is at 50 meters and the cable is straight up and down (the way you want it to be). A call of “aft” or “forward” means that the cable is coming up at an angle and the bridge must help to correct this.

Once the sample is raised, it is emptied into a bucket and examined for color and composition.  This is radioed to the Plot Room and recorded.  The bottom sampler is readied for the next drop as the Plot Room directs the ship to the next location and readies the computer program for the next data input. During our bottom sampling, the data was all recorded at “g stk M”—green, sticky mud.  It had a sulfuric smell, which, if you think about all of the volcanoes in the area, makes sense.

Personal Log 

This will be my final Ship Log, as we are scheduled to pull anchor this afternoon and start our transit to Kodiak Island. I can’t believe that the end of three weeks is coming to a close.  I was talking to the CO about the number of people and/or agencies who contribute to the production of an individual chart. There are large groups—like NOAA, the Coast Guard and the Army Corps of Engineers, for example.  There are also smaller groups and individuals as well.  Everything from sounding depths to buoy locations to shoreline topography to notes on the locations of buildings, lighthouses and even church steeples are included.  I’ve spent some time studying the current paper chart of the area we have been surveying (#16549:  Alaska Peninsula, Cold Bay and Approaches) and the most striking feature is, of course, the absence of data in the center. I can’t wait to acquire an updated copy when it is available (some sources say, depending upon the priority, could be up to three years; although the NOAA goal is “Ping to Chart in 90 days”). Knowing that I helped to play even a very small part in helping improve navigation safety is a great feeling!

I’d like to thank the officers and crew aboard Rainier for making my Teacher at Sea experience the adventure of a lifetime!  I’ve learned so much about life at sea from new friends who have been patient and hospitable. I leave with a great respect for all of the individuals who call Rainier both work and home for eight or nine months out of the year.  They are away from husbands, wives, children, friends and pets for a long time; however, the community that they have built aboard the ship seems to offset some of the wishing for home.  Safe Sailing and Happy Hydro, my friends!

Panorama of Pavlof Volcano and Pavlof Sister
Panorama of Pavlof Volcano and Pavlof Sister

Did You Know? 
If you are interested in learning more about hydrography and the work done on Rainier, here are some of my favorite links:

-NOAA’s hydrographic survey home page

-Interactive online activity about seafloor mapping

-Search for historic nautical charts and compare how they change from year to year.

Alaska Fun Facts 
Kodiak Island is, at 3,588 sq. miles, the second largest in the United States.  It is the oldest European settlement in Alaska and is known as Alaska’s “Emerald Isle”.  Before its “discovery” by Russian explorer Stephen Glotov in 1763, the island was occupied solely by the Sugpiaq (Alutiiq) people.  In 1912, Kodiak was caught in the drifting ash from the eruption of Novarupta Volcano which buried the island under 18 inches of ash.  A more recent natural disaster targeted the island in 1964, when a 9.2 earthquake struck Alaska and set off a tsunami.  This seismic sea wave virtually destroyed downtown Kodiak and its fishing fleet. Today, over 13,000 residents call Kodiak home.

Stacey Klimkosky, July 17, 2009

NOAA Teacher at Sea
Stacey Klimkosky
Onboard NOAA Ship Rainier
July 7 – 24, 2009 

Mission: Hydrographic survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 17, 2009

Weather Data from the Bridge 
Position: 55°13.449’N, 161°22.745’W (Wosnesenski Island)
Weather: OVC, H (overcast, hazy)
Wind: light
Seas: 0-1’
Sea temperature: 8.3°C
Barometric pressure: 1010.8 mb
Air temperature: 12.2°C dry bulb, 11.1°C wet bulb

Here is what the feature (shipwreck) looks like on a chart whose data has been “cleaned” and finalized.  “Wk” is the abbreviation used for wreck on a nautical chart.
The feature (shipwreck) on a chart whose data has been “cleaned” and finalized. “Wk” stands for wreck on the chart.

Science and Technology Log 

Throughout the day when you are on a launch collecting hydrographic survey data, there are terms and concepts that come up repeatedly—namely, low vs. high frequency and resolution.  The multi-beam sonar on the launches has dual frequencies—high and low.  This, combined with the fact that there are multiple beams instead of just one “pinging” off of the ocean bottom, allows the hydrographer to customize the technology for the conditions of the day.  Low frequency is used in deeper water.  The multi-beam is operated in high frequency in shallow water. According to my Hydrographer In Charge (HIC) on a recent survey, Barry Jackson, the depth at which you would change frequencies is about 50 meters.  Low frequency sends out fewer pings per second, but low frequency sound travels further through water.  Conversely, high frequency sends out more pings, but high frequency sound does not travel as far through the water. Therefore, high frequency gives you an image that is more precise.  Why would you want a higher quality image in shallower water?  As a navigator, it is important that the obstructions and underwater features closer to the surface be the most clear, for those are the ones that you are most likely to hit.

Underwater feature identified as a shipwreck by Rainier hydrographers in Elliot Bay, WA.  (l-r: 4m resolution; 2m resolution; 1m resolution)  Courtesy: ENS Shultz
Underwater feature identified as a shipwreck by Rainier hydrographers in Elliot Bay, WA. (l-r: 4m resolution; 2m resolution; 1m resolution) Courtesy: ENS Shultz

The day’s polygon (or survey area) data is also configured to be collected at a certain resolution.  Resolution, like frequency, affects the detail of an underwater feature.  The resolution also depends upon the depth of the water; however, there are more choices.  On Rainier, the resolution changes based upon depth at the following increments.  (On this mission, 4m resolution is the least.)  Note that there is some overlap. To demonstrate how applying different resolutions to the same feature can change how it is viewed, ENS Christy Shultz showed me the bathymetry (the topography of the Earth’s surface underwater) of a shipwreck surveyed in Elliot Bay, near Seattle, WA.  If you look at the corrected data for the object at 4 meter resolution and compare the same image at 2 and 1 meter resolution, you will see that as the resolution gets higher (the number actually gets lower), the image goes from being fuzzy to quite clear.

Chief Boatswain Jimmy Kruger demonstrates how to use a line-throwing device, the PLT.
Chief Boatswain Jimmy Kruger demonstrates how to use a line-throwing device, the PLT.

Personal Log 

There are some days when I do not go out on a survey launch.  These days are great for taking a peek around the ship to see what happens in different departments or to have safety drills and demonstrations.  Recently, we had the second of our weekly abandon ship and fire/emergency drills.  After the drills, the entire crew who was on board (not out on launches) watched a video clip about a piece of rescue apparatus called a PLT, or Pneumatic Line Thrower.  Then we all went to the fantail for a demonstration.  The PLT is a rescue device that a ship can use to get a line out to another ship or individual in distress. It uses compressed air to fire a line attached to a rocket-shaped weight. The demonstration and overall design of the PLT reminded me of a piece of historical rescue equipment familiar to many who live on Cape Cod, MA and other coastal communities–a Lyle gun.

A Lyle gun and Faking box (held the wound line)
A Lyle gun and Faking box

A Lyle gun is a small cannon that was used by the U.S. Lifesaving Service in the late 1800s to fire a lightweight line onto the mast of a sinking ship when conditions were too severe to launch a surf boat.  When the line was secured, a paddle-shaped board that contained instructions, a block and pulley and heavier lines were sent across.  After the line was secured to the mast, the lifesavers would assemble a breeches buoy to haul the sailors to safety across the raging seas. The breeches buoy was a large pair of canvas pants (breeches) secured to a life ring. A pulley system allowed the lifesavers to transfer one man at a time from ship to shore.  You can read more about lifesaving, the Lyle gun and breeches buoy here.

Did You Know? 
Rainier is like a small, self-contained floating city.  She generates her own power, treats her own waste water, and makes her own drinking water.  The ship is only limited by the amount of food and fuel on board.

Alaska Fun Facts 
As I noted in my Ship’s Log #2 on July 10, Wosnesenski Island has a herd of feral cows roaming its treeless hills and valleys.  Since then, I have been given more information about them.  The original bovines were probably brought here by the Osterback family in the early 1900s. The family lived an isolated lifestyle, raising blue fox to trade their pelts to London furriers. You can read more about one of the nine Osterback children, Lily, here.

One Saturday evening, the CO (Commanding Officer) granted shore leave for a beach excursion.  My fellow TAS, Dan Steelquist and I found what is, most likely, left of the Osterback homestead on Wosnesenski Island.
One Saturday evening, the CO (Commanding Officer) granted shore leave for a beach excursion. My fellow TAS, Dan Steelquist and I found what is, most likely, left of the Osterback homestead on Wosnesenski Island.

Stacey Klimkosky, July 14, 2009

NOAA Teacher at Sea
Stacey Klimkosky
Onboard NOAA Ship Rainier
July 7 – 24, 2009 

Mission: Hydrographic survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 14, 2009

Weather from the Bridge 
Position: 55°11.664’N, 161°40.543’W (anchored off SW Ukolnoi Island)
Weather: OVC (overcast)
Visibility: 10 nm
Wind: 28 kts.
North Seas: 2-3’
Sea temperature: 7.8°C
Barometric pressure: 1021.0 mb and rising
Air temperature: Dry bulb=12.8°C; Wet bulb=10.0°C

This is a survey launch lowered to deck level on a calm day. The bow and stern are attached to the davits by thick line.  Notice how you have to step across the space between Rainier and the launch.
This is a survey launch lowered to deck level on a calm day. The bow and stern are attached to the davits by thick line. Notice how you have to step across the space between Rainier and the launch.

Science and Technology Log 

The past few days have been “typical” Alaska weather—fog, drizzle, moderate winds.  This morning I was quite surprised when I looked out my stateroom porthole.  The weather was supposed to have calmed somewhat overnight; however, it was obvious that a good blow had picked up. White caps covered the water’s surface. I was scheduled for a launch, RA-4 (each of the launches has a number 1-6, RA being the abbreviation for Rainier), but I decided not to board at the last moment.  When the launches are lowered to the side of the ship, the bow and stern (front and back) are secured with line to minimize movement.  To board the launch, you have to step across a 1-2 foot gap from Rainier to the launch. Today’s conditions amplified the heaving and pitching motion of both the ship and launch and made the distance between too far for my short legs.  I chose safety over adventure today.

As the launches continued to be deployed, Rainier began to transit from our anchorage north of Wosnesenski Island to our previous anchorage position in a small cove off the southwest corner of Ukolnoi Island. Having the flexibility to change the ship’s direction was essential for the safe deployment of launches today.  Personnel and equipment could be protected from the force of the wind and waves (which topped 6’ at times).  Although disappointed that I did not make it onto my launch, I was given an opportunity to watch the deck crew in action. I learned that this morning’s weather was some of the worst that the crew has seen during this survey season, however, work can be completed in conditions that are more blustery than today.

As a member of a survey team, you have to put your trust in the deck crew and their talents and skills. Jimmy Kruger is the Chief Boatswain. He is in charge of the deck and its crew. In a way, he is like the conductor of an orchestra—he makes sure that each member of the crew is in the right place at the right time and that they begin their job at precisely the right moment.   As the day progressed, I began to wonder how the weather data from 0700 to 1400 (2 pm) changed, so I took a walk up to the bridge. My guess was that, although there were still whitecaps on the surface, wind speed and wave height would have decreased, since we had anchored on the south shore of one of the islands (which would serve as a buffer from the wind).  It seemed to me that the weather was so much worse this morning.  Not so. The wind speed had actually increased by a few knots, although the seas had decreased by about a foot. When I am up on the bridge, I always find something new to inquire about.  It’s a busy place—not necessarily busy with numbers of people, but with instruments, charts and readings. General Vessel Assistant Mark Knighton and ENS Jon Andvick were on the bridge.

We sought a better anchorage southwest of Ukolnoi Is. when a 30 knot wind picked up. White caps cover the surface, the flag blows straight out facing aft.
We sought a better anchorage southwest of Ukolnoi Is. when a 30 knot wind picked up. White caps cover the surface, the flag blows straight out facing aft.

When you are standing on the bridge with a gusty wind coming at you, you immediately think of the anchors.  Rainier’s anchors are made of steel.  They weigh 3,500 lbs. EACH!  The anchors are attached to the ship by a very thick chain.  Chains are measured in a unit called a shot. A shot equals 90 feet, and each of Rainier’s shots weighs about 1,100 lbs.  There are 12 shots per anchor. (So, can you calculate the approximate weight of the total of Rainier’s shot? How about the total length of the chain?)  The depth of this small cove is between 9-10 fathoms.  This is important in determining the scope, or ratio of the chain length to the depth of the water. According to ENS Andvick, when a vessel drops anchor, the length of the shot cannot be the exact distance between the vessel and the seafloor.  An amount of “extra” chain must be released so that some of it sits on the seafloor, producing a gentle curve up to the vessel.  This curve is called a catenary. The extra chain allows the ship move with the wind and/or waves and provides additional holding power.  If either wind or current becomes too strong for the anchor, it will drag along the seafloor.  If the ship has too little scope it will pull up on the anchor instead of pulling sideways along the sea floor. The anchor chain lies on the bottom and when the ship pulls on the anchor it must lift the heavy chain off the bottom.  If there is enough chain that the ship does not lift all the chain off the sea floor, it will lower the effective pull angle on the anchor. By increasing the scope of chain that is out, the crew is increasing the amount of weight the ship must lift off the sea floor before pulling up on the anchor.

Personal Log 

I have to say that today was kind of an emotional one for me—because I did not go out on the launch. In a way, I feel like I let my team down.  The others who went surveying on RA-4 had to do it without me.  Even though my work as a Teacher at Sea may not be as significant as that of the crew members or hydrographers, I’m feeling like I am a part of the team more and more each day. That is in contrast to being an observer (which I still do plenty of!).  As I kept busy throughout the day on the ship, I thought about RA-4 and what they were doing, what the conditions were like, if they liked what was in the lunch cooler today? I also realize and appreciate, however, that safety is the most important practice here on Rainier and when you don’t feel safe, you should never proceed.

Did You Know? 
The crew on Rainier is organized into six separate departments:  Wardroom (Officers), Deck, Electronics, Engineering, Steward and Survey.  There are photographs of each person on board along with their name and title posted for all to see.  They are organized by department as well as a “Visitors” section.  There are several other visitors on board besides me and Dan Steelquist (the other Teacher at Sea) including hydrography students and officers from the Colombian and Chilean Navies.

Alaska Fun Facts 

  1. Pavlof Volcano is one of the most active of Alaska’s volcanoes, having had more than 40 reported eruptions since 1790. Its most recent activity was in August 2007.
  2. You can learn more about the volcanoes of the Alaska Peninsula here.

Stacey Klimkosky, July 10, 2009

NOAA Teacher at Sea
Stacey Klimkosky
Onboard NOAA Ship Rainier
July 7 – 24, 2009 

Mission: Hydrographic survey
Geographical area of cruise: Wosnesenski & Ukolnoi Islands, Alaska
Date: July 10, 2009

Weather from the Bridge 
Position: 55°11.715’N, 161°40.554’W
Weather: Foggy
Visibility: < 0.5 nautical miles
Wind speed: 7knts
Swells: 0-1 ft.
Waves: 0-1 ft.
Barometric pressure: 1022.8 mb
Air temperature: Wet bulb = 9.4°C; Dry bulb = 10.0°C

An example of polygons.  The land is the southwest corner of Ukolnoi Island.  Note how the polygons nearest to land somewhat follow its contours.  Remember, these are uncharted waters.
An example of polygons. The land is the southwest corner of Ukolnoi Island. Note how the polygons nearest to land somewhat follow its contours. Remember, these are uncharted waters.

Science and Technology Log 

If you have spent any time reading the Ship Logs from other Teachers at Sea, you are probably familiar with the fact that each involves a different type of work. On Rainier, we are focused on conducting hydrographic surveys. This means that we collect data on the characteristics of the ocean bottom as well as the nearby coastline.  We work seven days a week; from early morning and well into the evening.  There are six launches (30 foot aluminum boats) on Rainier, each with a multi-beam sonar attached to the bottom of the hull.  One of the launches has the capability to conduct surveys with side scan sonar. Each day, crew members work from what is called the POD (Plan of the Day). The POD is issued the evening before by the FOO (Field Operations Officer). Usually, four launches are sent out daily to collect multi-beam sonar data.  On board are the Coxswain (drives the launch); the Survey Technician (in charge of data collection), the Assistant Survey Technician (AST) and the Teacher at Sea (me).

To give you an idea of what a survey day is like, here is a brief summary.  Each day, the launch party is given a set of “polygons” to survey.  A polygon is an imaginary closed area.  You may remember this from geometry class.  The polygons drawn on the working charts generally follow the contours of the islands. It is impossible for the Survey Technicians who created the polygons on a survey area or “sheet” to know how the contours look underwater.  Why? Much of our survey work is in uncharted waters, which mean that no one has ever mapped the ocean floor in this area of Alaska. Thus, the work can be dangerous and every effort must be made to ensure the safety of all.

As the launch moves forward, the multi-beam projects a rendition of the ocean bottom in the form of a line (screen on right). I am taking a turn at making sure the beam remains within certain parameters (screen to right).
As the launch moves forward, the multi-beam projects a rendition of the ocean bottom in the form of a line (screen on right). I am taking a turn at making sure the beam remains within certain parameters (screen to right).

The coxswain begins by driving the launch near the area where we will start surveying for the day. Before we begin, we must take a CTD cast.  CTD stands for Conductivity Temperature and Depth. The water’s salinity, temperature and depth can all affect the multi-beam data.  The composition of the water column varies from location to location.  Some areas may be affected by glacial runoff and therefore be fresher and colder at the surface than others, for example.  Sound travels faster in warmer, saltier water, therefore; we must know the levels of each of these variables, as well as depth (pressure) in order to obtain an accurate set of multi-beam data.  The CTD data is applied to the multi-beam data to correct for sound speed changes through the water column.  This occurs later in Rainier’s Plot Room where all of the launch data is processed.  Casts are made every four hours or before beginning an acquisition for the day.

After the CTD data has been downloaded the coxswain begins to “mow the lawn”.  The launch is driven in lines that are as straight as possible, overlapping the previous pass a little so there are no gaps, or “holidays” between passes. As the launch moves forward, the multi-beam produces a series of pings which create a swath (a triangular shaped path of sonar beams).  The widest base of the triangular swath is on the ocean bottom with the launch at the top.  As the pings bounce back, they create various images that determine depth. The work requires constant adjustments and vigilance, since underwater features may present themselves at any time.  We do not want to hit them.  The area we were surveying when this shot was take was between 20 and 50 meters (greens and darker blues). 

By watching the swath, the technician and coxswain can determine the approximate depth below, including any features like rocks, shoals, or underwater peaks and valleys. If you use a ROYGBIV (rainbow) color scheme, the points closest to the surface(less than 8 meters) show up in red.  The more submerged the features or ocean bottom are, the more the colors move toward the deepest blue.  For example, the lightest greens begin the depth range at 20-35 meters.  This is especially helpful where there is no previous data. Can you think about why a coxswain might be very interested in knowing the places where the colors on the screen are turning from green to yellow to orange?

When a polygon is finished, it should look like it has been “painted in” with colors representing various depths and features of the ocean bottom.  After completing a polygon, the data is saved and we move on to another polygon; take a CTD cast and start the whole process all over again.  We return to Rainier by 16:30 (4:30 pm) unless weather and sea conditions are favorable, in which case the FOO can decide to run late boats until 17:30 (5:30 pm).  The data is then handed over to the Night Processing crew who apply filters and correctors to the raw data. The tide and sound velocity are the main culprits in skewing data. In addition to tide and sound, things like bubbles in the water, schools of fish and kelp beds (of which we’ve seen many) can also affect how “clean” the data is.  This is just a preliminary check. If the data is bad, we have to go out and survey the polygon again. After many days (sometimes weeks and months) of processing and checking, the data is used to create high-resolution, three-dimensional models of the ocean floor (on paper or computer).  These models will eventually leave Rainier and will be used by NOAA’s Pacific Hydrographic Branch to create nautical charts for mariner’s use.

The CTD is lowered on a winch at 1 meter/second.  After retrieving the CTD, I prepare it for downloading.
The CTD is lowered on a winch at 1 meter/second. After retrieving the CTD, I prepare it for downloading.

Personal Log 

I feel like I’ve been on Rainier for a long time, even though it’s only been six days since we left the dock in Seward. There is a definite routine established from when I wake up at 06:15 until I go to sleep around 11:00. My head is bursting at the seams with new knowledge and things to remember and keep straight.  It’s great to be a student again—everything is new.  The technology component of Rainier’s mission is nothing short of mind-bending.  How the survey technicians can keep all of the programs and how to use them straight, I don’t know.  I have pages of “cheat sheets” to use to help me remember what to click on and in what order.  Anyone who loves technology would love the job of survey technician.  This is especially true here in the Pavlofs where you might be the first person to discover an interesting underwater feature or maybe a shipwreck.  That would be “wicked cool”, as my students would say.

I have been on three different launches with three different teams. I bring this fact up because, although each team has the exact same goal in mind (collecting accurate hydrographic survey data), each individual tackles the tasks somewhat differently.  For example, one coxswain might like to maneuver the launch so that the edge of the multi-beam sonar’s swath touches the inside edge of the polygon. Another might make their first line by maneuvering the launch straight up the middle of the polygon’s edge. Another example involves how survey technicians control the parameters of the multi-beam.  Some like to adjust the settings manually and some like to use the auto pilot.

Did You NOAA (Know)? 
RAINIER is operated by officers of the NOAA Corps.  NOAA Corps is the smallest of the seven uniformed branches of the U.S. Government.  It can trace its roots back to the presidency of Thomas Jefferson, who, in 1807, signed a bill for a “Survey of the Coast”.  This eventually became the Coast and Geodetic Survey.  Men were needed to commit to long periods of time away from their families to survey the growing nation’s waterways and coastlines. Instead of using multi-beam sonar, they lowered lead weights on ropes marked off in increments to measure ocean depth called leadlines.  To watch an excellent movie on the history of NOAA and surveying, go to the website.

Alaska Fun Facts 
On the Wosnesenski Island, we have seen many feral cows.  According to some of the crew, there once was a homestead on this remote, treeless island.  When the family left the island, the cows remained.  No one takes care of them.  There are other documented feral cow herds on other islands in the Aleutian Chain, including Chirikof Island, near Kodiak Island.  Do you think you would like to live on an island that has no trees?  Why or why not?