Victoria Cavanaugh: Newport, Oregon to Port Madison, Washington, April 17, 2018

NOAA Teacher at Sea
Victoria Cavanaugh
Aboard NOAA Ship Fairweather
April 16-27, 2018

MissionSoutheast Alaska Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska

Date: April 17, 2018

Weather Data from the Bridge

Latitude: 44.64°N
Longitude: 124.04°W
Sea Wave Height: SW 3 ft at 5 seconds. NW swell 9 feet at 10 seconds.
Wind Speed: 11 to 14 kt. Gusts to 20kt.
Wind Direction: SSW
Visibility: 15 kilometers
Air Temperature: 7.8oC  
Sky:  AM showers, scattered clouds in PM.

Science and Technology Log

Though we were originally set to sail on Monday afternoon, predicted 10-15 foot swells for Monday evening delayed our departure from Newport, Oregon until Tuesday afternoon.  The extra time in Newport allowed me to spend some time in the Plotting Room aboard NOAA Ship Fairweather.  The Plotting Room is one of the main work areas for the hydrographers, the NOAA technicians who both plan the missions and then process data collected after each launch.

 

One of the friendly surveyors, Bekah, gave me an overview of the upcoming project which will focus on the area west of Prince of Wales Island.  The hydrographic survey technicians first receive an assignment, known as a project, from NOAA.  Next, technicians, break each project into “sheets,” or smaller sections, which are assigned to each technician or NOAA officer.  From there, the technicians further break down the sheets into “polygons.”  The polygons are like mini-sections of a given area of the map, and are sized depending on a number of factors including the amount and distance from the shoreline as well as the depth.  The polygons are assigned one-by-one to the survey launches to complete.

img_20180418_1151321.jpg

A Sheet from the Project

IMG_20180418_115152

A Sheet Sectioned into Polygons (in Blue).  Notice the Topographical Markings on the Islands.

One of NOAA’s primary goals with hydrographic surveying and updating the charts is to obtain more accurate data on the Pacific seafloor and its features in order to promote safe marine navigation.  NOAA is part of the US Department of Commerce, and so updating navigational charts will help improve safe passage of all ships, especially commercial cargo ships.  As commercial ships grow larger and heavier and global trade continues to increase, improved navigational charts allow for increased shipping drafts (how deep the vessel extends below the water, which is a function of how much cargo they can load), which in turn creates a positive economic impact for the national economy.

Today, NOAA Ship Fairweather uses sonar to measure seafloor depths.  Previously, hydrographers used lead lines.  Essentially, lead lines were dropped over the ship’s rail and lowered until they rested on the seafloor.  While lead lines are occasionally still used today in very shallow areas close to shore, creating new seafloor maps with sonar allows for much greater precision, are much less labor intensive, and allow for continually measuring the depth.

IMG_20180419_103240

ENS Linda Junge Holding a Lead Line

Personal Log

On Tuesday afternoon, at 14:00 (2pm), we set sail from Newport, Oregon and began making our way north to Port Madison, near Seattle Washington.  After spending a few days at dock in Newport, I was eager to get underway, and the rest of the crew, many of whom had been in Newport for much of the winter, also seemed eager to begin the season.  While the views leaving Oregon were spectacular, the wide open seas proved a bit of a challenge.  I quickly learned that heading to the open deck on the back of the ship, the fantail, was an ideal place to catch some respite from feeling seasick.  Later in the evening, the waves subsided a bit, and by morning the seas felt much calmer.

IMG_20180416_120612

On the Dock in Newport, OR

IMG_20180416_202433

A Beautiful Last Night in Newport

IMG_20180417_141802

Passing Under the 982 meter long Yaquina Bay Bridge as We Leave Newport

IMG_20180417_142159

Heading Out to the Pacific

IMG_20180417_142331

Leaving Yaquina Bay

IMG_20180417_162826

Some Really High Waves Crashing on the Fantail!

IMG_20180416_122629

A Map Showing Our Departure Port (Newport) and Arrival (near Seattle)

IMG_20180417_134549

On the Flying Bridge of the NOAA Ship Fairweather as We Depart Newport

Each day, the POD (Plan of the Day) is updated with important meetings, mealtimes, and general updates.  Emergency responsibilities are also posted, and one of the first things we did once we were underway at sea was practice drills for a fire and abandon ship.  As part of the abandon ship drill, I had to practice putting on the “survival suit.”

Most aboard NOAA Ship Fairweather work several four hour shifts or “watches” each day, and some may also work a few additional hours of overtime.  Perhaps for this reason, meal times seem a bit early with breakfast at 7am and lunch at 11am.  Dinner, when in port is at 4pm, and at sea, it’s at 5pm.   Meals are prepared in the ship’s galley (or kitchen), and served buffet style.  The crew eats together in the mess (or main dining area).  In addition to meals, snacks such as cereal, fruit, and icecream are available 24/7 and some additional options are available for those on night watches who may eat “night lunch.”  Meals are a great time to meet the many aboard Fairweather and better understand how the different teams–the wardoom, the engineers, the survery technicians, the deck, the stewards, the ET, and the visiting scientists–all work together.

Did You Know?

NOAA Ship Fairweather is celebrating its 50th birthday this year!  Fairweather was designed by the US Deparment of Commerce Maritime Administration and built in Jacksonville, Florida by Aerojet-General Shipyards.  Fairweather was commissioned in October 1968 and is homeported in Ketchikan, Alaska.  Fairweather’s sister ship is NOAA Ship Rainier which is also part of NOAA’s Pacific Fleet.

NOAA Ship Fairweather has a field season of about 220 days per year.  At 231 feet long, it can house roughly 57 crew and weighs 1591 tons!  While cruising, Fairweather averages 13 knots, and while surveying, the ship travels 6 to 10 knots.

By the way, you might be wondering what exactly is a knot.  As the story goes, ancient mariners used to tell how fast their ship was moving by throwing a piece of wood tied to a rope overboard and measuring how much time it would take the wood to travel from the bow (front) to the stern (back) of the ship.  According to historian Elizabeth Nix, by the 16th century, this method was updated to include knots tied at certain intervals in the rope that was thrown overboard.  Sailors began to count the knots to determine a ship’s speed, and eventually a “knot” became a nautical mile per hour.

Nautical miles, by the way, refer to the Earth’s circumference, and are different from “land miles” which reflect the distance it takes to walk 1,000 steps (according to the Romans) or 5,280 feet (according to Queen Elizabeth).  Today, one nautical mile is understood as 1,852 meters or 1.1508 miles.  Or, more practically, it is one minute of latitude (where 60 minutes of latitude = 1 degree).

A knot, then, is a measure of speed used by ships and planes.  A rate of one knot refers to covering a distance of one nautical mile in one hour.

Challenge Question #1:  Devotion 7th Graders — Can you convert the speed of your favorite land animal, your favorite sea animal, your favorite bird,  your favorite car/plane/boat, and this year’s Boston Marathon winner (male or female) to knots?  Show the work to justify your conversions and then create an illustration comparing your choices.

 

 

————————————————————————————————————————————–

Kaci Heins: Surveying and Processing, September 30 – October 3, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mrs. Heins Taking a CTD Cast


Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Tuesday, October 4, 2011


Weather Data from the Bridge

Clouds: Overcast 7/8
Visibility: 8 Nautical Miles
Wind: 21 knots
Temperature
Dry Bulb: 12.0 degrees Celsius
Barometer: 997.0 millibars
Latitude: 55.23 degrees North
Longitude: -133.22 degrees West

Science and Technology Log

Watching The Sonar

I was able to go out on another launch boat Sunday to collect survey data.  It was a beautiful day with amazing scenery to make it by far the best office I have ever been too.  Despite the fact that the ship is usually “off the grid” in many ways, the location of their work environment, or office, in Alaska is visually stunning no matter where you turn.  Keeping your eyes off the cedar trees and focused on the sonar in a launch can be challenging at times!  However, when there is a specific job to be done that involves time and money, then the scenery can wait until the job is finished.  During Sunday’s launch survey we had to clean up some “Holidays” and acquire some cross line data.

View Of the Data Acquired For the Ship On The Bridge

The word “Holiday” might lead to some confusion about what you might think we are doing when you read that word.  Holiday =vacation right?  In this case it is when there is a gap, or missing information, in the survey data that is acquired.  This poses a problem for the survey technicians because this leaves holes in the data that they must use for their final charts.  Holidays can be caused by the boat or ship being off the planned line, unexpected shoaling (or where the water gets shallow) so the swath width decreases, or a slope angling away from the transducer so that a return path for the sound wave is not possible.  The speed, direction, weather, swells, rocking of the boat, and the launches making wider turns than anticipated. It is easy to see where holidays occur as we are surveying because amidst the rainbow of color there will be a white pixel or square showing that data is missing.  When we are finished surveying or “painting” an area, we communicate with the coxswain where we need to go back and survey over the missing data or holidays.  If there are holidays or data is missing from the survey, then the survey technicians must explain why the data is missing in their final Descriptive Report.  This document covers everything that was done during the project from how the area was chosen to survey, what data was collected, what data wasn’t collected and why.  This is where holidays are explained, which could be due to lack of time or safety concerns.

Ship Hydrographic Survey

This launch was a little different because we were cleaning up holidays from the Rainiers’ multibeam.  Not only do the smaller survey boats collect sea floor surface data, but the Rainier has its own expensive multibeam sonar as well.  The ships sonar is called a Kongsberg EM 710 and was made in Norway.  Having the Rainier fitted with a multibeam sonar allows the ship to acquire data in deeper water and allows for a wider swath coverage.  The lines that are surveyed on the ocean floor are also much longer than those in a launch.  This means that instead of taking around 5-10 minutes to acquire a line of data, it can take around 30 minutes or more with the ship.  This is great data because again, the ship can cover more area and in deeper water. We also took the ships previous data and ran cross lines over it.  The importance of running a cross line over previous survey data helps to confirm or deny that the data acquired is good data.  However, there is a catch to running a cross line.  To confirm the data they have to use a different system than what was used before, the cross line has to be conducted on a different day, and it has to be during a different tide.  All of this is done to know for sure that the data is acquired has as few errors as possible before the projects are finished.

Rainier Multibeam Sonar

Personal Log

Each day when the scientists go out and survey the ocean floor they acquire tens of gigabytes of information!  The big question is what is next after they have acquired it all?  When they are on the launch they have a small external hard drive that holds 500 gigabytes to a terabyte of information plugged into their computer.  At the end of the day all their information and files are downloaded to this hard drive and placed in a water tight container in case it happens to get dropped.  Keeping the newly acquired data safe and secure is of the utmost importance.  Losing data and having to re-survey areas due to a human error costs tens of thousands of dollars, so everything must get backed up and saved constantly.  This is where I have noticed that computer skills and file management are so important in this area of research.

Once we get off of the boats the data is brought upstairs to what is called the plot room.  This is where all the survey technicians computers are set up for them to work on their projects.  The technicians that are in charge of downloading all the data and compiling all the files together is called night processing.  There are numerous software programs (tides, CTD casts, POS, TPU, Hypack,) and data from these programs that all have to be combined so that the technicians can produce a finished product for the Pacific Hydrographic Branch (part of Hydrographic Surveys Division), who then process the data some more before submitting to Marine Charting Division to make the final chart. The main software program that combines all the different data is called Caris and comes out of Canada.  Once all of the data has been merged together it allows the technicians start cleaning up their data and produce a graphic plan for the launches to follow the next day.  Every movement on the keyboard or with the mouse is very important with surveying because everything is done digitally.  Numerous new files are created each day in a special way so that anyone that reads the name will know which ship it came from, the day, and the year.  File management and computer skills are key to keeping the flow of work consistent and correct each day.

Hydrographic Survey Data In Caris

We have also had numerous fire drills while on the ship.  This is very important so that everyone knows where to go and what to do in case of an emergency.  They had me help out with the fire fighters and the hose this time.  I learned how to brace the fire fighter so that the force from the hose doesn’t knock them over.  I never knew that would be an issue with fire fighting until this drill.  I learn so many new things on this ship every day!

Fire Drill Practice

Student Questions Answered


Kingfisher

Animals Spotted

Kingfisher

Sea Otters

Question of the Day

David Altizio, May 19 – 20, 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA Teacher at Sea: David Altizio

NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Dates: Wednesday, May 19 and Thursday, May 20

Weather Data from the Bridge

Position: Customhouse Cove                       Position: Behm Canal
Time: 0800 on 5/19                                        Time: 0800 on 5/20
Latitude: 550 05.97’ N                                   Latitude: 55017.77’N
Longitude: 1310 13.8’ W                                Longitude: 130058.03’W
Clouds: Overcast                                               Clouds: Mostly Cloudy
Visibility: 10 miles                                           Visibility: 10 miles
Winds: 6 knots from the SE                            Winds: 14 knots from the SW
Waves: Less than one foot                              Waves: Less than one foot
Dry Bulb Temperature: 13.00C                   Dry Bulb Temperature: 12.50C
Wet Bulb Temperature: 12.50C                   Wet Bulb Temperature: 10.50C
Barometric Pressure: 1010.5 mb                Barometric Pressure: 999.9 mb
Tides (in feet):                                                      Tides (in feet):
High @ 0447 of 14.6                                        High @ 0558 of 14.0
Low @ 1128 of ‐0.7                                           Low @ 1233 of 0.2
High @ 1802 of 13.2                                         High @ 1909 of 13.9
Low @ 2349 of 4.0
Sunrise: 0429                                                      Sunrise: 0418
Sunset: 2055                                                        Sunset: 2102

Science and Technology Log

On Wednesday, May 19, I was able to go out on a small boat launch. Four such boats were deployed from the Fairweather that morning. They all use 400 kilohertz multi‐beam sonar to map the bottom of the channels we are currently in, near Ketchikan, AK. This type of SONAR sends out 512 beams/ping of sound, and is most effective in shallow water. The area or swath that can be scanned at anytime is about 5 times the depth of the water. Therefore in shallow water the swath is much narrower and in deeper water the swath is much wider. Most of the work today on all of the launches was filling in small areas in the chart in which data was missing or not dense enough to complete the project. These areas are referred to as “holidays”, because they are areas where previous survey launches have been through the area and the data was not good enough. Some possible reasons for this could be that they are areas where acoustic noise was picked up by the multi‐beam SONAR, or where shadows were cast from the surface bedrock or boulders on the bottom of the channels. The area that we surveyed first is called Cascade Inlet.

Me on a small boat (launch) to survey the bottom of channels around

Me operating the multi‐beam sonar on the small boat launch

Not only did I get to use the computers on board to operate the SONAR and collect data, I was also able to deploy an instrument called a CTD that measures the conductivity, temperature and density of the water. This is very important because the speed of sound in water changes depending on the waters temperature density and conductivity. For example, the top layer of the water is typically a little warmer, less dense and less salty than deeper water due to influences from rain and inputs from rivers. When using SONAR you must know all of these factors in order to understand the speed at which sound waves will travel through the water. The sound waves will travel faster in cold deeper water, and the computer models take this into account before finalizing a chart. Ideally when using the CTD the sample must be taken at a depth that is greater than any spot you have surveyed so as to have a complete profile of these factors.

Me on a small boat (launch) pulling the CTD sampler back onto the boat.

In the afternoon we spent most of our time performing shoreline verification of small features around an area called Hog Rocks that have been previously identified. Here we used GPS (Global Positions Satellites), latitude and longitude, azimuth bearings, elevation and photos. As the name implies we were visiting small features to double check their exact location and exact heights.

On Thursday, May 20 I was scheduled to go out on a launch boat again but things did not go accordingly. There was a problem with the Davit, a mechanical crane that picks the 7 ton, 28 foot survey launch off the decks of the Fairweather and deploys them into the water. Since I was unable to go out and scan shallow water from the launch, I stayed on the Fairweather to scan and plot deeper water (approximately 400 meters) in and around Behm Canal. From the plot room of the ship I helped operate the computer, by starting and stopping the collection of data. In addition to filling in “holidays” we also mapped some cross lines. Cross lines are lines that run perpendicular to the main channel and are a means of verifying previous scans or quality control.

Example of shoreline features near Hog Rocks that we were verifying from the launch boats

Me, in the plot room on the Fairweather, collecting data.

Personal Log

I can’t say that the launch on May 19 was fun, but it was very cool and interesting. One thing no one told me was that after the morning rain was over that the sun would come out and it would reach almost 60 degrees, and that I should have brought sunscreen and a hat: warmer than it was in NY on this day. I now know for future launch days. I am usually going to be scheduled on a different launch team, doing slightly different tasks each day.

For now I just finished dinner, and yes it was very good again. In the meantime I am awaiting a debriefing of the day’s launches, and then hang out until bed. Before going to bed I went up to the highest deck on the Fairweather, called the flying bridge and watched one of the most beautiful sunsets unfold in front of my eyes.

What else, is on my mind…..Well SE Alaska is ridiculously beautiful, this coming from someone who has traveled a lot and used to work in the Grand Canyon. All over the place there is something new to see. I am still waiting for major whale sightings. Tuesday night before bed I caught a glimpse of some tails of a few porpoises (similar to dolphins), and Wednesday morning at the safety meeting on the stern of the boat (back) I sort of saw a whale surface for a moment. On Thursday, again at the safety meeting on the stern, a few of us saw a humpback whale at a distance breach the water a few times.

While at port, a picture showing the Davit, that picks up the launch boats to deploy them

Sun set on the Fairweather on May19

Bald eagle taking off on May19 from a shoreline feature we were verifying