Dana Kosztur: Back to School, April 25, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

 

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 17-25, 2018

Science and Technology Log

Safety is very important on NOAA vessels. We did various safety drills while I was on board. We did a fire drill and a man overboard drill.  We also did an abandon ship drill where we reported to our assigned lifeboats. During one of these drills, I was required to put on a “Gumby” suit.  This survival suit is designed to keep you from getting hypothermia if you are to be in the water for long periods of time. For another drill, I donned a blindfold and found my way out my room and to the outside deck.  This drill was to simulate an emergency situation with no lights. It was pretty scary to walk through the boat in the dark.

 

The final day of fishing and camera drops proved to be awesome.  We had lots of fish on camera and caught fish all four times we dropped lines. I was able to collect the measurements and samples from those fish without any extra guidance. The mission scientist recorded and observed, but they didn’t have to assist me. Their confidence in me was a pretty great feeling.

The video below is an example of the videos collected by both SatCam and RIOT Cam.  These arrays have 6 cameras.  The video is the view from these cameras stitched together.  The top camera is not included in the panorama.  The NOAA scientists use the videos to count fish species they study during the SEAMAP reef fish survey.

 

Personal Log

As we were docking, I had mixed emotions as we approached the harbor. I disembarked in Tampa, Florida.  I was very excited to get back home but I knew my journey on Pisces was coming to an end. I am proud of myself for taking this trip. I am grateful for all the support from my family, friends, team teachers, and administration.  I would not have been able to sail without their help.  I learned so much more than I imagined and I will treasure the memories I made on this adventure. Being a Teacher at Sea increased my appreciation of Gulf of Mexico and I want to pass that on to my students.

 

Life at home has returned to normal.  I returned back to school this week.  I’ve spent a lot of time talking to my students about my experience aboard the ship.  They have asked tons of questions.  They are very interested in every aspect of my time at sea and loved all of the pictures and videos.   I love that they are so engaged in the lessons this week.  We are in the last month of school and it is often hard to keep the student’s attention. My Teacher at Sea tales and lesson plans have kept them focused and on task. They claim to have missed me and I, of course, missed them.

 

I do have a few pieces of advice for the others that have yet to embark on their Teacher at Sea journey.

  1. It is amazing.  You will love it.
  2. Bring a water bottle and a backpack. I used both of these almost constantly.
  3. Talk to everyone on the ship.  Every member of the vessel has valuable knowledge.
  4. Ask your students what they are the most curious about. After a brief overview of NOAA and the mission I was going on, I had my students write questions for me to get answered.  It was a great way to gauge what they were most interested in and these also make great conversation starters.

 

Did You Know?

If there are not enough male grouper in a given area, the largest or dominant female will change from a female to male.

Red Grouper
Red Grouper

Dana Kosztur: Science Lab at Sea, April 15, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 15, 2018

Weather Data from the Bridge

Lat: 29° 35.5335′ N Long: 084° 19.8126′ W
Air Temperature: 18.2°C (64.76°F)
Water Temperature: 20.43°C (68.77°F)
Wind speed: 28.11 knots (32.35 mph)
Conditions: stormy, Seas 7 to 9 feet

Science and Technology Log

While I have been at sea,  I have spent time exploring Pisces and getting to know the people on board. This research vessel is 209 feet long, 50 feet wide, and it has a draft of 20 feet.  It is large enough to hold 39 passengers. The crew of the vessel during my sail consists of 5 NOAA Officers, 5 deck crew, 5 engineers, 4 technicians, 2 stewards and 5 scientists.

NOAA Ship Pisces
NOAA Ship Pisces

Pisces is loaded with science equipment. It has the capability to run acoustic surveys, marine mammal surveys, and various fish surveys. The onboard wet lab is used to process the marine life brought in on trawls, long lines, or bandit reels. In the dry lab, the mission data is stored and processed by the scientists and survey technicians on the ship.  There is a side sample station on the starboard deck where the cameras and ROVs are launched and the trawls are deployed on its stern. The centerboard, on the hull underneath the ship, has mounted sensors that send back various types of data for the scientist to use. This vessel was also engineered to be quiet while underway so it won’t scare marine life. The ship shares the oceanographic, hydrographic and weather data it gathers daily to the outside world.

The Commanding Officer gave me a tour of the bridge.  The bridge is the navigation center. The vessel can be operated from one of four different stations. The science that is being conducted determines where the officer will navigate from. The technology on the bridge is quite amazing.  The dynamic positioning system allows the vessel to stay within certain parameters when supporting science missions. It functions almost like an auto-pilot to keep the ship in the proper position.

Bridge Center Navigation
Bridge Center Navigation
"Moo"ving the ship
“Moo”ving the ship

 

NOAA Ship Pisces is like a floating city.   I had the opportunity to explore the engine room with the ship’s first assistant engineer to see how this mini-city works.  He showed me how they process sewage and garbage aboard the vessel. I learned how the vessel creates its own water and power.  I saw the huge engines. This ship has two 8 cylinder engines and two 12 cylinders engines that power the ship. I also learned how the bilge/ballast system keeps the ship stable and how the bow thruster aids in steering

 

one of four engines on Pisces
one of four engines on Pisces

Personal Log

Most of the days pass quickly and I lose track of time.  I can’t believe I have been at sea for 10 days. Having a different type of workday is very unusual to me.  I have taught for almost 18 years so school days are what I know. It is different to work with adults all day instead of children.  It is a definite change of pace. Today is a slow day. We are currently standing-by due to a weather delay. We have moved closer to shore and are riding out the storm.  Hopefully, we will be able to be back up and running tomorrow.

I will surely miss the trips to the galley when I get home. I have probably gained five pounds on this trip. The stewards that cook on this ship do an amazing job.  It is nice to have already prepared meals. I have gotten spoiled by not cooking too. I know will miss the view when I get back to land. Watching the waves never gets old.  I could stare at the water all day. Even when it is stormy the ocean is beautiful.

Being away from home is hard.  It’s difficult not to harass my team teachers about my classroom while I am gone.  I know that my students are well taken care of but it is hard not to worry. The letters from my students, emails from family,  texts from my husband, messages from friends, and sweet videos from my granddaughter help me combat homesickness.

Did You Know?

The Gulf of Mexico is home to 21 marine mammals and 5 sea turtle species

Student questions

How many species of sharks are in the gulf?  There are approximately 49 shark species in the gulf.

Dana Kosztur: Unexpected Visitors, April 11, 2018

NOAA Teacher at Sea

Dana Kosztur

Aboard NOAA Ship Pisces

April 5-18, 2018

Mission: SEAMAP Reef Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 11, 2018

Weather Data from the Bridge

Lat: 29° 54.7331′ N Long: 087° 12.1562′ W
Air Temperature: 22.5°C (72.5°F)
Water Temperature: 21.29°C (70°F)
Wind speed: 5.8 knots (6.7mph)
Conditions: blue sky, flat seas

Science and Technology Log

This week I have learned a lot about the reef fish studied in this SEAMAP survey. I have learned how to weigh the fish and take various length measurements. I have also learned how to examine the gonads and distinguish a male from a female.  I can now properly remove the otolith bones from the otic capsule that is located at the base of the fish’s skull.

 

We have had some unusual catches that have provided great learning experiences as well.  The bandit reel caught a sharksucker on the line as it returned. This fish belongs to the Remora family.  It attaches to sharks and other marine animals. This was a really unusual creature to observe.

Dana and shark sucker
TAS Dana Kosztur displays a sharksucker captured on the bandit reel.

The camera arrays had fireworms hitch a ride to the deck from the bottom of the gulf. These guys look like large spikey caterpillars. They have venom in their bristles that can cause a painful sting.  

Fireworm
This fireworm hitched a ride on a camera array.

Personal Log

Today was a beautiful day.  The water is such a beautiful blue.  The sky was cloudless last night so I finally got to look at the stars.  The night sky seems much more vast and bright away from the light pollution on land.  The stars are amazingly bright. I am enjoying life on the ship but I do miss home. I have a greater respect for those that work away from home for long periods of time.  Teamwork and a positive attitude seem to be the lifeblood of this NOAA vessel and that makes it much easier to adjust.

Did You Know?

Many birds will often land on the vessel to rest during their migration route across the Gulf of Mexico.     

Barn swallows
Migrating barn swallows

Waves transmit energy, not water.

Cow at sea
Cow at sea

Questions from students:

Why do scientists need to know what types of fish are on the reef?  

It is important to manage and maintain the reef fish species because they are often over-fished.

Scamp grouper
Scamp grouper

 

Leah Johnson: Fish Identification & Pisces Farewell, August 1, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Saturday, August 1, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 033.995650
Longitude -077.348710
Water Temperature 24.37 °C
Salinity 36.179 ppt
Air Temperature 27.4 °C
Relative Humidity 83 %
Wind Speed 15.95 knots
Wind Direction 189.45 degrees
Air Pressure 1012.3 mbar

Science and Technology Log:
I am still amazed at the wealth of data collected aboard the Pisces on this survey cruise. I am getting better at identifying the fish as they are hauled up in the traps, as well as when I see these fish on video. Because of light attenuation, many fish look very different in color when they are underwater. Light attenuation refers to the gradual loss of visible light that can penetrate water with increasing depth. Red light has the longest wavelength on the visible light spectrum, and violet has the shortest wavelength. In water, light with the shortest wavelength is absorbed first. Therefore, with increasing depth, red light is absorbed, followed by orange, then yellow. Fish that appear red in color at the surface will not appear red when they are several meters below the sea surface where they are captured on camera.

For example, we hauled in some blackfin snapper earlier this week. At the surface, its color is a distinct red like many other types of snappers, and it has a black spot near the base of its pectoral fin. When I looked at the videos from the trap site, I did not realize that all of the fish swimming around with yellow-looking tails were the very same blackfin snappers that appeared in the traps! When I remembered that red light is quickly absorbed in ocean water and noticed the black spot on the pectoral fin and shape of the dorsal fin, it made more sense.

Top: Blackfin snapper collected from trap.
Bottom: Video still of blackfin snappers swimming near trap.

I tell my geology students every year that when identifying minerals, color is the least reliable property. I realize now that this can also apply to fish identification. Therefore, I am trying to pay closer attention to the shape of the different fins, slope of the head, and relative proportions of different features. The adult scamp grouper, for example, has a distinct, unevenly serrated caudal fin (tail) with tips that extend beyond the fin membrane. The tip of the anal fin is elongated as well.

scamp grouper

Scamp grouper

Another tricky aspect of fish identification is that some fish change color and pattern over time. Some groups of fish, like wrasses, parrotfish, and grouper, exhibit sequential hermaphroditism. This means that these fish change sex at some point in their lifespan. These fish are associated with different colors and patterns as they progress through the juvenile phase, the initial phase, and finally the terminal phase. Some fish exhibit fleeting changes in appearance that can be caught on camera. This could be as subtle as a slight darkening of the face.

The slight shape variations among groupers can also lead groups of scientists to gather around the computer screen and debate which species it is. If the trap lands in an area where there are some rocky outcrops, a fish may be partially concealed, adding another challenge to the identification process. This is no easy task! Yet, everyone on board is excited about the videos, and we make a point to call others over when something different pops up on the screen.

warsaw grouper

We were all impressed by this large Warsaw grouper, which is not a common sight.

I have seen many more types of fish and invertebrates come up in the traps over the past week. Here are a few new specimens that were not featured in my last “fish” post:

Did You Know?

Fish eyes are very similar to those of terrestrial vertebrates, but their lenses that are more spherical.

lens from fish eye

Lens from fish eye

Personal Log:

I love being surrounded by people who are enthusiastic about and dedicated to what they do. Everyone makes an extra effort to show me things that they think I will be interested to see – which I am, of course! If an interesting fish is pulled up in the trap and I have stepped out of the wet lab, someone will grab my camera and take a picture for me. I continue to be touched by everyone’s thoughtfulness, and willingness to let me try something new, even if I slow down the process.

me, standing on the deck at the stern

Me, on the deck of the ship. We just deployed the traps off the stern.

As our cruise comes to an end, I want to thank everyone on board for letting me share their work and living space for two weeks. To the NOAA Corps officers, scientists, technicians, engineers, deckhands, and stewards, thank you for everything you do. The data collection that takes place on NOAA fishery survey cruises is critical for the management and protection of our marine resources. I am grateful that the Teacher at Sea program allowed me this experience of a lifetime. Finally, thank you, readers! I sincerely appreciate your continued support. I am excited to share more of what I have learned when I am back on land and in the classroom. Farewell, Pisces!

Leah Johnson: Career Spotlight: NOAA Corps Officer, July 30, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

 Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Thursday, July 30th, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 34.18282
Longitude -76.13712
Water Temperature 25.62 °C
Salinity 35.3592 ppt
Air Temperature 29.8 °C
Relative Humidity 71 %
Wind Speed 13.23 knots
Wind Direction 159.25
Air Pressure 1013.2 mbar

Science and Technology Log:
Career Spotlight: I would like to introduce everyone to Ensign Hollis Johnson, one of the Junior Officers on NOAA Ship Pisces. She was kind enough to let me ask her a few questions about life at sea.

Ens Hollis Johnson

Ensign Hollis Johnson

Q: What is the role of a Junior Officer (JO) on this ship?

A: The primary duty of a JO is driving the ship. We are also the eyes and ears of the Commanding Officer (CO). We carry out standing orders, ensure ship safety, and also make sure the scientists are getting what they need for their survey work.

Q: Does this job description vary depending on the ship?

A: This is a generic fleet-wide description, and some ships are a little different. On hydrographic ships, there is more computer-based work with data collection. On fisheries ships, collateral duties are split amongst the JOs; for example, we have an environmental compliance officer, a safety officer, a movie officer, and a navigation officer.

Q: What do you like best about your job and being at sea?

A: I really like driving the ship. Few jobs offer this kind of an opportunity! I also like the fact that no two days are ever the same, so my job is a constant adventure. The best things about being at sea in general are the sunrises and sunsets, and the dolphins, of course.

Q: What do you find to be the most challenging aspect of your job and life at sea?

A: This job requires long hours. We can easily work 12-16 hour days, and while in port we still have to work some weekends. Because of this time commitment, we have to make sacrifices. But, we get that time back with our land assignments because there is more flexibility.

Q: When do NOAA Corps officers go to sea, and for how long do they stay?

A: After a 5-month training period, JOs are sent straight to sea assignments for 2 year periods. This can be extended or shortened by 6 months depending on what you are looking for in your next assignment. I extended my assignment at sea for 5 months so I could get my upcoming land assignment in California to work with dolphins for 3 years. After the land-based assignment, NOAA officers typically return to sea as operations officers, then back to land, then sea as executive officers, and so on. That is how you move up.

Q: What exactly will you be doing when you are on your next assignment in California?

A: The title of my position will be Cetacean Photo Specialist. I will be in La Jolla, CA, doing boat and aerial surveys, lots of GIS work and spatial surveys of marine mammal populations. I will participate in the center’s marine mammal stranding network. I will also be involved with outreach and education, which includes giving tours and presentations on scientific studies happening at the lab.

Q: Is life at sea different from what you expected?

A: Actually, it is easier than I thought it would be. I have always been a homebody and lived near my parents, I’m always busy here so time flies. I have internet and phone service so I still feel connected.

Q: Where did you go to college, and what degree did you earn?

A: I attended the University of Georgia, and earned a B.S. in Biology with a focus in marine biology.

Q: When / how did you decide to pursue a career in science?

A: When I was a kid I went to Sea World and fell in love with the whales and dolphins. I always loved animal planet. I also considered being a veterinarian for a while. I tried to be realistic because it is hard to land a career as a marine biologist, but I interned at a lot of places and made connections so I could do what I wanted to do.

Q: How did you find out about careers with NOAA?

In college, I took a summer course about marine mammals and toured a NOAA lab. About a year later, in June, my uncle saw the NOAA Ship Nancy Foster in port in Georgia, and I talked to someone on board about the work they were doing at sea. I immediately applied, interviewed, and was commissioned in January. It all happened very fast once I found out about it.

Q: You were one of the divers who recovered the missing trap this week. How long have you been diving?

A: I was certified to dive when I was 18. It is amazing, and something everyone should try. When I became an officer, the first thing I did was beg my command to send me to the NOAA Dive Center for training as a working diver.

Q: If a high school student is interested in a career like yours, what advice would you give?

A: Do a lot of volunteer work before you expect to get paid. You are investing in your future. If you want it bad enough you have to make sacrifices – but it will pay off. Make connections. If a marine biologist gives a presentation at your school, hang out after and talk with them. Ask for their email address and follow up. It’s a small world in marine research and networking is key.

Q: What is your favorite marine animal, and why?

A: I love thresher sharks and octopuses, but I’ll say Orcas. I’ve always found their species-wide diversity fascinating.

Personal Log:

There are so many people on this cruise who scuba dive and see amazing things below the sea surface. I have only snorkeled. I see dive certification in my future!

Did You Know?

The NOAA Commissioned Officer Corps is one of the seven uniformed services in the United States. Their motto is “Science, service, stewardship”.

map and control panel on the bridge

Chart and control panel on the bridge

Leah Johnson: Career Spotlight: Survey Technician, July 29, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Wednesday, July 29, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 033.707470
Longitude -076.827550
Water Temperature 25.8 °C
Salinity 37.1618 ppt
Air Temperature 29.2 °C
Relative Humidity 75 %
Wind Speed 16.08 knots
Wind Direction 25.88 degrees
Air Pressure 1013.2 mbar

Science and Technology Log:
Career Spotlight: I would like to introduce everyone to Danielle Power, the Survey Technician on NOAA Ship Pisces. She was kind enough to let me interview her today.

survey technician working in the acoustics lab

Editing map area coordinates in the acoustics lab

Q: What is the role of a survey technician (ST) on this ship?

A: The survey technician keeps track of scientific equipment and spaces. This includes calibrating sensors and maintaining and repairing equipment. When science parties are on the ship, the ST assists with data collection and oversees CTD operation.

Q: Does this job description vary depending on the ship?

A: Yes. On the Nancy Foster and other ships with big dive platforms, STs do a lot of diving and deck work. There are often two STs on board, each working a half-day shift. These STs do not work so intensively with fish. Hydrographic vessel STs deal with mapping and tide station installs.

Q: What do you like best about your job and being at sea?

A: My favorite thing about life at sea is that there are no bugs, and I don’t have to deal with allergies! I also meet awesome people on every cruise. Every trip is a little different, so I am always learning new things.

Q: What do you find to be the most challenging aspect of your job and life at sea?

A: Being at sea for a long time, all the time, is taxing.

Q: Is life at sea different from what you expected?

A: Yes. This job requires living with 20 other people in a confined space all the time, and it isn’t easy. I didn’t fully realize this back in college. I don’t have easy access to things I might want or need. I also have to give up certain aspects of social life. You can’t just take a day off, you have to take an entire leg of a cruise off (up to 2 weeks), which is a lot of money to not be making and a lot of work to be missing. So I have to miss some big events for important people in my life, like weddings and holidays.

Q: Where did you go to college, and what degree did you earn?

A: I graduated from Old Dominion University in Norfolk, Virginia. I earned a B.S. in biology with a concentration in marine biology.

Q: When / how did you decide to pursue a career in science?

A: In 6th grade, I went on a family vacation to Disney world. I went to Sea World, and it ignited my love for all things ocean. I have stuck with it ever since.

Q: If a high school student is interested in a career like yours, what advice would you give?

A: Work hard, and get a college degree that is relevant. Make sure you know that this is a job you truly want to do. Find internships and experience life on a ship before you commit. If you enjoy it, then make the most of the career and all of the opportunities that come with it.

Q: What is your favorite marine animal, and why?

A: An Octopus! Cephalopods are very intelligent creatures, and I love that they can blend into environments so well that they cannot be seen. They can change not just their color, but their texture. They are so interesting! They can go into small spaces, because they can fit anywhere their beaks fit and they use parts of their environment as tools.

survey technician working in the wet lab

recording data in the wet lab

Personal Log:
I am blown away by all of the different jobs that need to be filled while out at sea. Working on a boat was something that I never even considered when I was in high school. The idea just never occurred to me, and I didn’t know anyone at the time who did anything like this. There are so many interesting career opportunities that exist, and new types of jobs will develop as needs and technology change over time.

Read all about career opportunities with NOAA here!

Did You Know?

NOAA stands for “National Oceanic and Atmospheric Administration”. It officially formed in 1970, but the environmental agencies that came together to form NOAA originated in the 1800s. Learn more about NOAA’s history here.

Leah Johnson: Trap Recovery, July 27, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Monday, July 27, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 034.384490
Longitude -076.576130
Water Temperature 23.75 °C
Salinity -No Data-
Air Temperature 30.8 °C
Relative Humidity 62 %
Wind Speed 10.15 knots
Wind Direction 88.23 degrees
Air Pressure 1014.8 mbar

 Science and Technology Log:
As I mentioned in an earlier post, flexibility is key. Things don’t always go according to plan. Originally, we were going to head northeast from Morehead City Port, but the weather did not cooperate with us. We headed south to avoid a large storm, and then moved closer inshore. This forced us to choose some different areas to sample. Most of our sample sites are situated over the continental shelf between Cape Fear and Cape Hatteras. Tomorrow we hope to move to deeper waters beyond the shelf break.

Pisces cruise pathway so far. Image from Shiptracker.

Map of Pisces route so far. Image from Shiptracker.

On July 23, we lost a trap. After one of the deckhands threw the hook out to catch the buoy rope and started the winch, the rope went taut and then snapped. Occasionally this happens because the traps can shift and become wedged under or hooked onto a rocky ledge on the seafloor. We do our best to avoid this, but it happens. This is why it is important to have extra traps, cameras, and camera housings on board.

Map showing locations of the two lost traps. Image from Shiptracker.

Map showing positions of two lost traps. Water depth is shown in feet.

We planned to retrieve our trap the following day, but the storm chased us out of the area. Two days later, we lost a second trap! Unfortunately, this one was too deep to recover on a dive. The traps we deploy have zinc clasps that dissolve after ~24 hours, so fish can eventually exit the traps on the off chance that we are unable to retrieve them. Still, we don’t want to simply abandon traps on the seafloor or run short on gear, so we made plans to retrieve the first trap. We just had to remain patient and hope for calmer seas. Finally, our window of opportunity opened up today.

Zodiac dive boat

The small boat is on a davit on the 01 deck.

A small boat is located on 01 deck near the stern of NOAA ship Pisces. The deck chief oversees operations as it is lowered for the divers, the dive master, and deckhands to board. They take an inflatable buoy and rope with them, and then head out to the coordinates of the trap. The divers descended ~20 meters to the shelf where the trap was indeed wedged on a rocky ledge. First, the divers removed the two GoPro cameras that were attached to the trap. Next, they secured a rope attached to a buoy on the trap. The ship will then be able to use this buoy to retrieve the trap as typically done. The divers ascended the line and were picked up with the small boat.

dive boat returns after successfully locating the trap

The small boat returns after successfully finding the trap.

The deckhands then attached our standard buoys to the rope, and returned to the Pisces. The divers climbed up a rope ladder on the starboard side of the ship, and the small boat was hoisted up. We then hauled up the missing trap like we would any other. The trap was empty, and all of the bait was gone – not surprising after a 4-day soak!

Personal Log:

I make a point to stand near the bow of the ship and watch the sea and sky for a while every day. I usually see some flying fish, which are fun to watch. They zip out of the water, dart across the waves, and then dive back under. One of them landed on deck after a storm, so I had a chance to see one up close.

flying fish found on deck

Flying fish

The skies are beautiful, too. I have seen some impressive clouds and gorgeous sunrises and sunsets. The view is completely unobstructed, so I can just take it all in without distraction. I find it all very peaceful.

The skies at sea are stunning.

Did You Know?

After otoliths and tissue samples are collected from the fish we keep, the fish are filleted, frozen, and donated to local food banks.

removing tissue samples from a fish

Collecting tissues from a fish.

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

Leah Johnson: The Sampling Begins, July 22, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Wednesday, July 22, 2015

Weather Data from the Bridge:
Time 12:20 PM
Latitude 034.242730
Longitude -076.394350
Water Temperature 24.99 °C
Salinity 36.5532 ppt
Air Temperature 29.5 °C
Relative Humidity 80%
Wind Speed 15.45 knots
Wind Direction 229.54 degrees
Air Pressure 1012.5 mbar

Science and Technology Log:
As a fishery-independent survey, our task is to monitor the population of fish – mostly those of commercial value – at a wide variety of locations. While commercial operations provide some information based on their annual catch, a fishery-independent survey is able to conduct a broader assessment in a given area of the ocean, even though fewer fish are caught. Because there is no limitation on fish size and a wider array of locations are sampled, these surveys can be used in conjunction with reports from commercial fishing vessels to provide a better picture of changing fish populations over time.

I am on the second leg of the sampling survey in the Southeast Atlantic, and I am working the 6:00 AM – 6:00 PM shift. We will be setting traps and cameras in waters between Myrtle Beach, SC and Hatteras, NC. NOAA Ship Pisces left port at 2:00 PM on Tuesday, July 22. I stood near the bow of the ship as we headed out to sea, and watched flying fish zip through the spray. Once we left the sheltered waters near Morehead City Port, the seas became rough. High winds led to high swells, and we were unable to set any fish traps that afternoon. Because of these conditions, we changed our plans so that we could shelter behind a cape overnight. Flexibility is key!

Map of Pisces route upon departure on Tuesday, July 22.

Map of Pisces route upon departure on Tuesday, July 22. Source: Shiptracker

Today, skies were clear and the water was calm. We deployed a total of 18 traps in three areas over the course of the day. I helped to bait the chevron traps and line them up on the deck. Once the ship was over the chosen location, the traps and buoys were pushed overboard. Most of the traps today were deployed at a depth of ~25 meters. Six traps are deployed in an area, and are set at least 200 meters apart. The traps soak for 90 minutes, and then the ship circles back for the first trap. It is hauled up on the starboard (right) side, and the fish fall into a large tray placed beneath the trap opening.

The crew pulls up a trap.

The crew pulls up a trap.

We collected a variety of fish which had to be sorted, measured, and either kept for further sampling or returned to the sea based on the species. The bulk of the fish were black sea bass, but there was also a wide range of small fish (including scup, pinfish, and tomtate), red snapper, gag grouper, toadfish, and triggerfish. A small octopus came up with the second trap, which was exciting for the whole crew! One trap line snagged during retrieval, so a couple people may try to collect it on a future dive. The camera footage has been interesting too, as there are many fish that may swim near the trap but never enter. Therefore, the cameras provide additional data for the survey. Just today, a tiger shark was caught on tape!

A variety of fish in a chevron trap

A wide variety of fish are brought up in a chevron trap.

Personal Log
I have only spent one full day at sea so far, but I am enjoying every second of it. I am fascinated by all of the fish and other marine life. I spent some quality time watching dolphins jumping alongside the ship in the afternoon, and just looking out over the water. Sometimes the horizon is completely empty. Occasionally, I can see a lighthouse on a cape or another ship. Most of the time, we are surrounded by only sea and sky. The color of the water varies with weather conditions and water depth.

I have not experienced any sea sickness, and I am grateful for that. It was a little difficult getting used to the movement of the ship. I was definitely wobbling all over the place on day one. The swells were big though, so everyone was wobbling around with me. Putting food on my plate during dinner was especially challenging – and keeping it on my plate while walking to a table was more challenging still! However, my sea legs are improving, and I managed to do some yoga at sunset on the fly deck with a couple of the crew members! I didn’t fall over…. much. It was great way to wrap up the day. Keeping up with regular activities, like exercise, is really important while at sea. I am also growing used to the sensation of being rocked to sleep at night.

Did You Know?
The triggerfish earned its name because of its dorsal fin. If you press down on the first spine (a long, thin bone) at the front of the fin, it won’t budge. However, if you place your finger on a lower, shorter spine (the “trigger”), you can collapse the fin. Cool!

I love triggerfish!

I love this gray triggerfish!

Leah Johnson: Almost Time to Sail, July 7, 2015

NOAA Teacher At Sea
Leah Johnson
Soon Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: July 7, 2015

Personal Log

About Me

I am a science teacher at Naperville Central High School in Naperville, IL. My background is primarily in Earth Science, but I enjoy learning and teaching in all areas of science. Currently, I teach Principles of Biology and Chemistry to freshmen and sophomores, and two elective courses – Weather and Environment and Physical Geology – to juniors and seniors. I work with amazing people who are invested in science education and outreach, and they are very supportive of my upcoming adventure at sea!

Outside of my career in science and education, I love painting, reading, traveling, horseback riding, and biking. I am lucky to be married to someone who shares many of my interests, and we have a couple awesome huskies, too!

Why Teacher At Sea?

I have always been fascinated with the ocean. I have spent many vacation hours snorkeling in Florida, Hawaii, and the Bahamas, and exploring tide pools along the Pacific Northwest coast. When I am home in the Midwest, I can often be found with my nose in a book about deep sea fish, or watching ocean documentaries. I heard about NOAA’s Teacher At Sea Program several years ago as a graduate student, and decided to apply during my second year of teaching high school. To my surprise and delight, I was admitted to the program. I am grateful for this opportunity to learn more about ocean life, and to share this hands-on experience with my students and others who are curious about marine life, careers at sea, and what it’s like to live on a boat for two weeks!

Enjoying the California Coast

Enjoying the California Coast

Assignment: Fisheries

On Monday, July 20, I will fly to North Carolina and meet up with the crew of NOAA ship Pisces. We will embark from Morehead City on July 21 and sail along the outer banks of the Carolinas. The purpose of this cruise is to monitor fisheries in the Southeastern waters of the U.S. We will be counting and measuring nearly all of the reef fish that are caught in traps, and determining the age and gender of a select number of fish. Underwater cameras will be used in addition to traps to establish a better survey of the local fish populations. I am very excited to participate in this research, and learn from a group of dedicated and highly-experienced individuals who have established careers in ocean science and sailing.

NOAA Ship Pisces, Photo courtesy of NOAA

NOAA Ship Pisces, Photo courtesy of NOAA

Sharing the Experience

When I write my next post, I will be in the Atlantic Ocean. I am looking forward to sharing my experiences with you, and I will do my best to answer any questions you have. Communication is critical to science outreach, so please come along for the ride by checking out my posts and the blogs of other Teachers At Sea who have documented their fascinating ocean adventures as well. Thanks for reading!

 Did You Know?

The Atlantic Ocean is the second-largest ocean on Earth, covering about 41,105,000 square miles. This area makes up nearly 20% of Earth’s surface!

Source: NOAA

Heidi Wigman: Fisheries Sciences, June 8, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015

Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico (24°29.956’N 083°320.601’W)
Date: June 8, 2015

Weather: 83° @ surface, E-SE winds @ 10-15 knots, seas 2-3 ft, average depth 123m

Science and Technology Log:

NOAA’s mission is three-fold: science, service, and stewardship.  By utilizing fisheries, hydrographic, and oceanographic scientists in the field, NOAA’s goal is to understand and predict changes in climate, weather, oceans, and coasts, while also putting forth a conservation effort towards coastal and marine ecosystems. This knowledge is shared with businesses, communities, and people, to inform on how to make good choices to protect our fragile earth.

sunset on the Gulf
Sunset on the Gulf
sunrise
Sunrise on the Gulf

The specific mission, for our current voyage, on the Pisces, is to survey fisheries at pre-determined sites throughout the Western portion of the Gulf of Mexico. The data from these surveys will be brought back to the lab in Pascagoula, Miss. and analyzed. Then determinations will be made for future surveys and studies. According to Chief Scientist, Brandi Noble, “These fishery independent surveys increase our knowledge of natural reefs in the Gulf of Mexico. We get a better picture of what’s down there and work with outside agencies to determine how to maintain the health of the fisheries.  Data gathered will be used in future stock assessments for the Gulf of Mexico.”

DSC_1071
Bottlenose dolphins in the Gulf

The methods used to gather data on this cruise are through the use of the camera array and the bandit reels.  The camera arrays are deployed at sites that have been mapped and sit at the bottom for a total soak time of 40 minutes.  This footage is analyzed and processed by scientists to determine what the conditions of the reef are and the species of fish present in the area and their abundance.  This gives a partial picture, but to get a complete and accurate report, fish need to be studied more closely.  The “Bandit Reels” provide a more hands-on approach and allow the scientists to get data on sex, maturity stage, and age of species.  Some of the fish are released after some initial measurements, but the commercially important species are dissected and samples are taken for further lab analysis.  Initial measurements made with anything brought aboard include total length (TL), fork length (FL), standard length, SL (from nose to caudal fin), and weight.

Removing the otolith to determine the age of the fish
Removing the otolith to determine the age of the fish
removing organs to determine sex and maturity
Removing organs to determine sex and maturity

A closer look at the data allows scientists to make predictions on fish populations and growth over time.  Some of the data we got on this trip were for the Lutjanus campechanus (red snapper) and for the Pagrus pagrus (red porgy).

sheet1
Lutjanus campechanus “Red Snapper”
sheet2
Pagrus pagrus “Red Porgy”

There are several ways to disaggregate the data to determine differences and similarities based on region, time, species, etc.  For our purposes, we’ll make some observations involving probability, proportion, and statistics.

Math Problem of the day: You are a scientist and have brought data back from the Gulf of Mexico to analyze in your lab.  You have three tasks: a) to get an average fish size based on weight (species specific) b)  to determine what the proportion is of the Standard Length to the Total Length of each species (hint: ratio of SL/TL; find average) c) determine the theoretical probabilities that the next Red Snapper will be  >1,100g, and that the next red Porgy will be <1,000g (hint: how many times does this happen out of the total catches?)

Coming Soon . . . Meet some of the crew behind the Pisces

Previous Answers:

Trigonometry of Navigation post: 18 m/s @ 34°SE

Bandit Reels post: about 14.6 nautical miles

The STEM of Mapping post: layback = 218m, layback w/ catenary = 207m

Underwater Acoustics: about 163 sq. meters

SCUBA Science: letter group A

Heidi Wigman: The Science of SCUBA, June 5, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015

Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico (25°32.388’N 083°38.787’W)
Date: June 5, 2015

Weather: 82° @ surface, NE winds @ 5-10 knots, seas 0-2 ft, chance of showers and Tstorms, average depth 77m

Science and Technology Log:

I first got my Open Water SCUBA certification in Santa Monica, CA at about 14 years old.  My dad and I would explore the waters off of Avalon on Catalina Island, and some offshore sites in Southern California.  As a freshman in college, I made my way up through PADI’s advanced course and into my certification as a PADI Rescue Diver.  Along the way, I had the chance to do several deep dives (depths below 100′), wreck dives, night dives, drift dives – it was an amazing experience.  Later in life, I had the chance to actually work underwater, and would spend 3-4 hours below the surface each day. No matter where I was sent, and what the visibility was (sometimes nil) I felt like I was in my element.  During the Reef Fish Survey cruise, we are not doing any dive operations, but I thought that it would be a good opportunity to look at some of NOAA’s dive missions and some of the science and math behind SCUBA.

NOAA marine archaeologist diving at the wreck of the USS Montana
NOAA marine archaeologist diving at the wreck of the USS Montana (photo: NOAA Ocean Explorer)

The use of scientific and research diving has been performed since 1952, with the invention of the Self-Contained, Underwater Breathing Apparatus (SCUBA).  Underwater operations have led to significant discoveries in marine science and beyond.  Some of the specific types of dives performed by NOAA are biological surveys and sampling, shellfish studies, botanical sampling, geological mapping, deployment, inspection, maintenance, and recovery of instruments, and archaeological site documentation and excavation.

NOAA research diver surveying the USS Monitor (photo: NOAA)
NOAA research diver surveying the USS Monitor (photo: NOAA)

Understanding the basic physics behind diving can help to guide a diver to make smart choices, and stay safe. Anyone that has plunged below the surface a few feet, has felt the pressure that is exerted on them; generally with a discomfort in the middle ear.  With diving, you not only have to deal with the atmospheric pressure, but hydrostatic pressure (pressure due to the weight of water), water density, temperature, buoyancy, and gas laws. During SCUBA diving, the body’s tissues absorb additional Nitrogen from air breathed under pressure.  Excess Nitrogen will remain in these tissues for a period of time depending on depth and duration of dive. Lucky for divers, the U.S. Navy developed a set of dive tables that can be used to determine safety limits with dive times, in order to account for decreasing the amount of Nitrogen in the body, and avoiding dive related traumas.  With our ever-increasing reliance on technology, it is important to have a working knowledge of dive table usage as well.

NOAA No-Decompression Dive Tables
{Fig. A} NOAA No-Decompression Dive Tables

*This lesson is to give a general and basic understanding of dive tables, NOT to instruct on the usage for purposes of diving

The idea behind dive tables is to use the maximum depth of a dive (even it is only momentarily), and determine the ABT (Actual Bottom Time); and in the case of a repetitive dive, the amount of surface time in order to release the residual Nitrogen from the body.  Keep in mind, ABT refers to the start time of the diver’s descent and ends when the diver begins a direct, uninterrupted ascent to the surface.

Let’s look at a scenarios for determining ABT for a diver that is only planning one dive in a 12-hour period:

Your dive team must recover a sampling device located in a bay, whose depth does not exceed 53ft.  At this depth, how long do you have to search for and recover the device without exceeding the U.S. Navy No-Decompression Limits?

{Fig. B} Chart 1 – used to find ABT at depth

[Answer: {Fig.B} if you round up to the depth of 55 ft, the team can stay under for 74min., any longer would require a decompression stop on ascent]

What if you want to go on a second dive later in the day? This is where you will look at the Letter Group Designation for a surface interval, based on the ABT at a certain depth.

At 10:13 am, dive team Alpha descends to conduct an inspection of their research vessel.  During the inspection, they accidentally drop a dive light.  The vessel is at anchor and the hard, sandy bottom is only 47ft deep, and the water is relatively clear. The divers recover the light, and complete their inspection. They begin their ascent at 10:52.  What is the Letter Group at the end of the dive? [Answer: {Fig.C} – Repetitive Group Designation is F].

{Fig. B} Chart 1-2
{Fig. C} Chart 1-2 – used to find surface interval

By Following column F {Fig. D}, you can see the times (represented in hours:minutes) to help plan surface interval for your following dive. So if you rested for 2hrs 45min after your first dive, and were planning a 60 depth on your second dive, you would have to plan for 41 minutes of ABT.

chart3
{Fig.D} Chart2-3 – moving from surface interval time to planning dive #2

Math Question of the Day: By using {Fig. A} the No-Compression Dive Table, try to figure out the following scenario:

Dive team Bravo plans to make an afternoon dive to complete the aquatic life census they started in the morning.  The diver’s surfaced from their first dive at 9:57 am, and determined that, following this dive, their Repetitive Group Designation (Letter Group) was E.  They anticipate re-entering the water at approximately 3:00pm.  What will their Letter Group be at the beginning of this next dive?

Previous Answers:

Trigonometry of Navigation post: 18 m/s @ 34°SE

Bandit Reels post: about 14.6 nautical miles

The STEM of Mapping post: layback = 218m, layback w/ catenary = 207m

Underwater Acoustics: about 163 sq. meters

Coming Soon . . . Fisheries Science

Heidi Wigman: Underwater Acoustics, June 4, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015


Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico (26°33.512’N 083°43.064’W)
Date: June 4, 2015

Weather: 82° @ surface, NE winds @ 5-10 knots, seas 0-2 ft, chance of showers and Tstorms, average depth 75m

Science and Technology Log:

The science behind underwater acoustics play a huge role in the operations of the Pisces.  Each of the five survey types (CTD, camera rig, sidescan, bandit reels and AUV) need accurate data about the depth and contours of the ocean floor.  Most people are familiar with the idea of how radar sends out a “ping” and waits for a return in order to determine a distance of an object.  This is not a new, or even a human invented design — bats, dolphins, and some whale classes use “echo location” to get information on food sources and predators.  As a pulse is emitted from the transmission source, it travels through the water at a certain speed, and as it encounters objects, returns as an echo.

ping transmit and return
“ping” transmit and return provided by C. Thompson

 As data is received, it can be read as a function of voltage output to time in seconds, but this type of information generally is not useful for operational purposes.  This two-way travel data needs to be converted to provide a graphical representation of the contour of the ocean floor, and the location of objects in the water. An algorithm turns all of this into usable data, that gives the viewer a depiction of what is under the vessel, and at what depth.

sonar imagery provided by Charles Thompson
sonar imagery provided by C. Thompson
echosounder depth measurement, provided by C. Thompson
echosounder depth measurement, provided by C. Thompson

In order to get depth (Z), you need to know about how fast sound travels (c) – and this can vary with environmental factors such as temperature, salinity, depth, turbidity, etc. The third variable is the time (t) in seconds that it takes from ping to return. The formula that is used to calculate the depth is Z = c*t/2.

speed of sound graphDuring our cruise, the sound speed value we are using (1540 m/sec) is the mean value of the measured sound speed vs. depth profile, with slight margin of error on the minimum values.  Therefore, any miscalculations based on the constant will provide a reading more shallow, rather than more depth.

The EK60 echosounder emits a frequency of 18kHz, with most of the power in an 11° conic sector directed downward(see diagram).  In order to find the area covered by the pulse, we first need to find the diameter (d) and the vertical depth (Z) or the max beam range (R).

sonar effective area; provided by C. Thompson
sonar effective area; provided by C. Thompson

Math question of the day: What is the area covered by one sonar ping from the Pisces? If you know that your vertical depth is 75m, and the bisect on the beamwidth (11°) angle, use some trigonometry to help find your radius. [Tan 5.5 = r/75].  Once you have the value of r, use the formula for area [A=3.14(r*r)]

Previous Answers:

Trigonometry of Navigation post: 18 m/s @ 34°SE

Bandit Reels post: about 14.6 nautical miles

The STEM of Mapping post: layback = 218m, layback w/ catenary = 207m

Coming soon . . . A trip underwater – A closer look at NOAA dive tables

Heidi Wigman: The Trigonometry of Navigation, May 29, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015


Mission: Reef Fish Surveys on the U.S. Continental Shelf
Geographical Area of Cruise: Gulf of Mexico (29°30.456’N  87°47.246’W)
Date: May 29, 2015

Weather: 80°, wind SE @ 8-13 knots , 95% precipitation, waves 2-3 @ 3 sec.

Science and Technology Log

During my time aboard the Pisces, I wanted to focus on the use of mathematics in the day-to-day shipboard operations, and during science ops.  I have been lucky to find math everywhere – even down to the amount of pressure it takes to open a water-safe door (which is a lot).  As the officers navigate the Pisces through the Gulf of Mexico, special attention needs to be on the vast number on oil rigs in the area, as well as getting the scientists to the designated drop points.  As a course is charted through the water, environmental effects (current and wind) can alter its final outcome.  Basically, this is where trigonometry comes in to play – a real-life application, and answer, to the notorious “when am I ever going to use this?”

Suppose that the Pisces is traveling at a cruising speed of 15 m/sec, due East, to get to the spot of deployment for a camera rig.  The ocean current is traveling in a Southern direction at 10 m/sec.  These values are the “component vectors” that, when added, are going to give a resultant vector, and will have both magnitude and direction.  If you think of the two forces acting upon each other as the legs of a right triangle, and the resultant vector as the hypotenuse, then using the Pythagorean Theorem will allow you to compute the resultant velocity.  Use a trig function (invTAN) to find the angle at which the Pisces needs to travel to get to its drop point. 

Personal Log

Time goes by slowly at sea – and that’s a good thing for me! I miss my family and friends, but this is an experience that I am enjoying each minute of. Thanks Pisces crew for being awesome!

Coming next . . . Bandit Reels, CTDs and AUVs – oh my!

am shift (0400-0800) plotting our course
AM watch (0400-0800) plotting our course
DSC_1027
Pisces cruising the Gulf of Mexico
navigation tools of the trade
Navigation tools of the trade

Heidi Wigman: Drill, Baby, Drill! May 26, 2015

NOAA Teacher at Sea
Heidi Wigman
Aboard NOAA Ship Pisces
May 27 – June 10, 2015


Mission: Reef Fish Surveys on the U.S. Continental Shelf
Geographical area of cruise: currently @ 30°22.081’N 088°33.789’W (Pascagoula, MS)
Date: May 26, 2015

Weather Data from Bridge: 82°, wind SW @ 10 knots , 90% precipitation, waves 3-5 @ 3 sec.

Science and Technology Log

We are 3 hours from raising anchor, untying from the dock, and heading out to sea.  Being aboard the Pisces for 2 days before departure turned out to be a blessing: getting to map out the lay of the 206′ labyrinth, hanging out with the crew, and even getting in a couple of runs around Pascagoula (even in the extreme humidity).

Yesterday was a day of dewatering drills, in case of lower-level compartment flooding.  We used the diesel and the electric pumps to run through set-up in the event of a flood in the engine compartment.  As the resident TAS, I don’t think that I would necessarily be relied upon to place gear in an emergency, but nevertheless, I wasn’t going to sit out and miss all of the fun.

Today we are running through a series of drills: fire, man overboard, and abandon ship.  Each of these events has a series of alerts that indicate what the emergency is, and all hands are to report to their designated muster areas – in the case of an abandon ship, that would be the life rafts.  Each of these drills also requires everyone to bring their immersion suits and PFD (Personal Flotation Device), and in my case, to don the suit.

Another training that we did today was to learn how to use the Ocenco EEBD (Emergency Escape Breathing Device) – basically a cool re-breather that fits in a pouch and provides about 10 minutes of fresh oxygen. This would generally be used in case of a fire, not if you are submerged.

So, with all of the drills and trainings, I feel ready for any major disaster that we may encounter while at sea.  Thanks NOAA Corps for making sure that I am safe and in good hands!

FRB - Fast-Rescue Boat
FRB – Fast-Rescue Boat
DSC_0995
Oscar – waiting to be the star in the man-overboard drill
DSC_0996
Life rafts awaiting
DSC_0997
Bright safety orange so you won’t miss it

Emina Mesanovic, Goodbye Pisces, August 1, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard NOAA Ship Pisces

July 20 – August 2, 2014

Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: August 1, 2014

Science and Technology Log

After the fish are weighted and measured some are returned to the sea and others are kept for further study. For the fish that are kept the Pisces scientists usually keep two parts of the fish the otoliths and a part of the gonads (reproductive organ).

As I mentioned in an earlier post the otoliths are the fish ear bones, which can be used to determine the age of the fish. The otoliths are located behind the eyes so scientists use a knife to cut through the head being careful not to break the otoliths. They are removed from the fish rinsed in water and put into a labeled envelops to be taken back to the lab for further study.

IMG_0761
White Grunt Otolith
imgres
Location of Fish Otolith. Picture from NOAA

Scientists are also interested in studying fish gonads to understand more about fish growth and reproduction, which is important for helping maintain a healthy fish population. You don’t want to catch fish before they are old enough to reproduce. The NOAA scientists use tissue teks to collect a small section of the gonads. Each fish is given a number based on the trap that it was caught in, this number is printed on the tissue tek and the envelop with the fish otoliths.

imgres-1
Diagram of fish gonads. Picture from marshall.edu
images
Tissue Tek, on the Pisces different species of fish get different colored tissue teks.

When the gonads are removed sometimes they are very small and thin and fit easily into the tissue tek but often times they have to be trimmed to fit. You don’t want to overfill the tissue tek because you may destroy the sample or cause it to spoil if the chemical preservative can’t get into the middle of the sample.

IMG_0878
Examples of tissue teks that were not properly prepared. Picture from NOAA.

Back at the lab scientists slice the tissue into thin strips and examine it under a microscope to determine development: presence of eggs, size of eggs.

Fish Gonads under the microscope. Picture from NOAA.
Fish Gonads under the microscope. Picture from NOAA.

Did you know that fish can be male, female or transgender. Some fish start out as females when they are young and become male as they mature.

Personal Log

I have to tell you, typing a blog while my body sways from one side to the other is very strange. I still have to take a Dramamine after I wake up and I have to sit down when the water gets rough, however life on the ship has gotten easier. We have been fortunate to have great weather for our two week cruise, it only rained on our last day out at sea. I can’t believe that tomorrow we will be back in Morehead City, North Carolina.

Sunrise on the top deck of the Pisces.
Sunrise on the top deck of the Pisces.

A warm thank you to all the crew and scientists aboard the Pisces. I have learned so much and will take back to my classroom a new excitement and love of the ocean. I will be able to introduce my students to what it means to be a scientist at sea and how what we learn in the classroom translates to what they can do in the future. I have enjoyed getting to know you and hearing about your lives. You are a talented group of people.

We saw some dolphins on Thursday night.
We saw some dolphins on Thursday night.

COOL CATCH OF THE DAY

a pair of butterfly fish (every time we have caught them they have come in a pair)
A pair of butterfly fish (every time we have caught them they have come in a pair)

Emina Mesanovic, The Dry Lab: Lights, Camera, Action! July 31, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA ship Pisces

July 20 – August 2, 2014

 Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 31, 2014

Weather Information from the Bridge

Air Temperature: 25.3C

Relative Humidity:98%

Wind Speed: 13.5 knots

Science and Technology Log

The dry lab is the technology center of the day shift. This is where chief scientist Zeb Schobernd works throughout the day to decide when and where to drop the traps. Dropping and retrieving traps is a real team effort, the night shift creates the maps, Zeb decides where to set the traps, the Pisces crew deploys and retrieves the traps and finally the fishery scientists collect and analyze the fish samples.

IMG_0763
Pisces crew deploying the trap
Pisces crew retrieving the trap.
Pisces crew retrieving the trap.

After 90 minutes in the water the traps are brought back to the surface and the wet lab gets to work on processing the fish while Chris Gardner a NOAA scientist takes the cameras into the dry lab for analysis. On this cruise we are trying to gather information on the fish populations off the coast of North and South Carolina. Fish can be an indicator of a good hard bottom habitat but what happens if the fish don’t go into the trap?

For various reasons fish may not go into the traps, this is where cameras come into play.Each trap has a large Cannon camera mounted on the back of the trap and a smaller go pro camera on the front.

IMG_0766

These cameras allow scientists to visually sea the sea floor as well as allowing them to see the fish that do not go into the traps. In the dry lab Chris plays the footage to confirm the habitat and fish presence. However the real work begins back in the lab when the scientists analyze the videos. Each video is watch and the number and type of fish is recorded. This data in addition to the caught fish gives NOAA scientists a better indicator of the quality of habitat in the Atlantic Ocean.

Sargassum Triggerfish
Sargassum Triggerfish
LIONFISH
Lionfish

The cameras are put into protective casing and the scientists have to make sure the case is fully closed to prevent any water from entering and destroying the cameras. The Go Pro camera has three different cases that can be use. From left to right they are the IQ Sub House Golem Gear which is approved for up to 150m, the middle case is called a Dive House and is approved for up to 60m and the far right case is the standard Go Pro Case and is approved for up to 40m. On this cruise we have been using the IQ Sub Golem Gear. You will notice that the camera has a number 5 written on it. Each camera is labeled (1-6) and corresponds with the traps that it will be attached too.

IMG_0828
Go Pro cases
IMG_0831
Go Pro camera

Personal Log

On Monday I was woken up at noon by the abandon ship drill. The ship does safety drills every week and for this drill we had to grab our life jackets and survival suits and head outside. I didn’t know what to expect from the drills since I was sick last Monday for the practice drills. We had to put on the life jackets but we didn’t have to put on the survival suits this time. The drill was over quickly and I headed down the wet lab to check out the traps. The cool catch of the day was a spiny lobster that wandered into one of the traps. Everyone was surprised to see the lobster!

COOL CATCH

Spiny Lobster
Spiny Lobster

SPOTLIGHT ON SCIENCE

Name: Adria McClain

Title: Survey Technician

Education/Training: Undergraduate degree in Biology; graduate degree in Meteorology & Physical Oceanography.

Where are you from? Born and raised in Los Angeles, California.

Adria with the Spiny Lobster
Adria with the Spiny Lobster

Job Description/Duties:  I am responsible for collecting, quality-controlling, and managing the ship’s meteorological data (temperature, atmospheric pressure, relative humidity, wind speed/direction) and oceanographic data (water temperature, salinity, current speed/direction, speed of sound in water). Additionally, I am responsible for the ship’s scientific equipment (e.g. conductivity, temperature, and depth (CTD) sensor, scientific seawater system) and the ship’s scientific software. I also assist the visiting Fisheries Biologists with sorting and measuring fish.

How long have you worked for NOAA? About six months.

How did you get into this work? I am also a commissioned officer in the U.S. Navy – I belong to the METOC (Meteorology & Oceanography) community. While I was on active duty, I did oceanographic surveys aboard the Navy’s research ships. I like doing science at sea so this job is a good fit.

What are your future plans (how long will you stay on the ship)? My crystal ball is a bit fuzzy right now so I don’t know how long I’ll be on this ship. I do plan to go back to grad school for a PhD in Earth Systems Science at some point in the future.

How many days are you out at sea? I believe we have 150 sailing days on the schedule for this fiscal year.

What is the most challenging part of your job? Being away from home for extended periods of time.

What do you do when you aren’t on the ship? U.S. Navy Reserve military duty. In my free time, I like to read and travel.

What is your favorite fish? The Smooth Lumpsucker (Aptocyclus ventricosus) 

Lumpsucker. Credit Adria McClain
Smooth Lumpsucker. Credit Adria McClain

 

Emina Mesanovic, Acoustic Lab: Let’s Make Some Maps, July 28, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA Ship Pisces

July 20 – August 2, 2014

 Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 28, 2014

Weather Information from the Bridge

Air Temperature: 27.5 C

Relative Humidity: 86%

Wind Speed: 15.03 knots

 Science and Technology Log

There is a lot of work that goes into allowing the fishery team to be able to set traps every day. The acoustics lab/ night shift is responsible for creating the maps of the seafloor that will be used the following day. The team consists of David Berrane a NOAA fisheries biologist, Erik Ebert a NOAA research technician, Dawn Glasgow from the South Carolina Department of Natural Resources and a Ph.D student at the University of South Carolina, as well as Mary a college student studying Geology at the College of Charleston and Chrissy a masters student at the University of South Carolina. This team is amazing! Starting at around 5:00 pm the day before they stay up all night mapping the ocean floor.

The night shift working together
The night shift collecting data

Every night Zeb Schobernd lets the night shift know which boxes they will work on. These boxes are created in the offseason by the research scientists, they base their selection on information from fishermen, the proximity to already mapped areas, weather and previous experiences. The first step in creating a bathymetric map is to create a line plan, which lets the ship know which area will be covered. The average line takes about half an hour to complete but they can take up to several hours. The ship drives along these lines all night long while the team uses the information that is gathered to create their maps.

So how do they get this information? The ship uses sonar to collect data on the water column and the ocean floor. The Pisces has a 26 multi-beams sonar system, which allows the research team to create a better picture, compared to using single beam sonar. The beams width is about 3 times the depth of water column. This means that depending on how deep the water is in any given location, it will determine how many lines need to be run to cover the area.

Multibeam sonar
Multi-beam sonar (picture from NOAA)

The picture below is one of the computer screens that the scientists look at throughout the night. It provides the sonar information that will then be used to map the floor. Sonar works by putting a known amount of sound into the water and measuring the intensity of the return. A rock bottom will yield a stronger return while a sand bottom will absorb the sound and yield a less intense return. In the image red means that there is a more intense return while blue and yellow signifies a less intense return. You will notice in the center screen there is a strong red return at the top of the beam this is because the ship is sending out the sound and it takes about four meters until you start recording information from the sea floor.

SIMRAD70 (multi-beam sonar)
SIMRAD (multi-beam sonar)

Finally before the maps can be created the team has to launch an XBT (expendable bathy thermograph) two times per box or every four hours. The XBT measures the temperature and conductivity of the water, this is important because sound travels at different rates in cold versus warm water. This information is then used when the scientists calculate the sound velocity, which is used to estimate the absorption coefficient of sound traveling through the water column.

 

Once the data is collected the team begins the editing process. First they have to remove random erroneous soundings in order to get an accurate map; they fondly call this process dot killing (this basically means getting rid of outliers). They do this by drawing a box around the points of data they want to remove and deleting the point. Next they apply tide data to account for the deviations in the tides, this information is obtained from NOAA and is based on the predicted tides for the area. Finally they apply the sound absorption coefficient.

Editing the data (killing dots)
Editing the data (killing dots)

The final product is put into GIS (Geographic Information Systems), which the chief scientists will use to determine where the traps should be set the following morning. On the map below blue indicates the deepest areas while red shows the shallowest. The scientists want to place the traps in areas where there is a large change in depths because this is usually where you will find hard bottoms and good fish habitats.

Finished map (red shallow, blue deep)
Finished map

Personal Log

I have spent the past three nights in the Acoustics/Computer Lab with the night shift mapping the ocean floor. While the ship sails along the plotted course, I have had the opportunity to see the sunrise and sunset on the Pisces as well as a lightning storm from the top deck.

images
Lighting on the ocean (picture from sciencedaily)

On Thursday night a little after midnight after launching the XBT we see decided to go onto the top deck of the Pisces to get a better look at the lighting storm in the distance. Even at night it was still humid and hot and as we climbed up to the top deck it was dark all around us until suddenly there would be a flash of color in the clouds and you could see everything, until it went dark again. We tried to take a picture but the lightening was just too fast for our cameras. This is the closest picture I could find to what it was like that night except the water was not calm.

 

SPOTLIGHT ON SCIENCE

Name: Erik Ebert                  Title: Research Technician

Erik editing data collected on Sunday July 26th.
Erik editing data collected on Sunday July 26th.

Education: Cape Fear Tech (Wilmington, NC)

How long have you worked for NOAA/NOS: 6th field season, 5th year

Job Summary: I work on ecosystem assessments throughout the Gulf of Mexico South Atlantic & Caribbean

– Team oriented production of ocean floor maps

– System setup & keeping the acoustic systems operating correctly

How long have you participated in this survey: Since 2010

What do you like about your job: That the data we collect, and the maps we create can be used again for different studies. The types of data we collect includes bathymetric data, information on the water column, & fish that populate the water column.

How many days are you at sea: 60 days (April-November)

What do you do when you are not on the boat: Process & produce fish density maps from the data collected during the cruises. I also work for National Ocean Services (provide data to policy & decision makers to the state of the ecosystem)

Most challenging about research on a ship: Being away from home is the biggest challenge.

What would be your ideal research cruise: My ideal research cruise would be a cruise similar to what we just completed in Flower Garden Banks in the Gulf of Mexico. It was a 3-year assessment of the reef ecosystem using ROV, Diving and Acoustics to study how the ecosystem changed over time.

Favorite fish: Trigger Fish “cool swimming behavior”

More information about See Floor Mapping   http://www.noaa.gov/features/monitoring_1008/seafloormapping.html

COOL CATCH

Crab with three sea anemones attached to its shell
Crab with three sea anemones attached to its shell

Emina Mesanovic, Wet Lab: Something Fishy Is Going on Here, July 23, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA ship Pisces

July 20 – August 2, 2014

Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 23, 2014

Weather Information from the Bridge

Air Temperature: 27.4 C

Relative Humidity: 85%

Wind Speed: 13 knots

 

Science and Technology Log

The goal of the Southeast Fishery Independent Survey (SEFIS) is to assess the location and abundance of different species focusing on snappers and groupers as well as collecting bathymetric data about the ocean floor that can be used in the future. The scientists are divided into day and night shifts, the night shift maps the ocean floor, while the day shift uses these maps to set traps and catch fish.

Traps on the back deck ready to go.
Traps on the back deck ready to go.

Each morning the scientists set up six chevron traps on the back deck of the Pisces, each trap is stocked with 24 menhaden, which serves as the baitfish. The traps contain the same amount of bait, two cameras one on the front and one on the back, and each trap stays underwater for 90 minutes. Chief Scientist Zeb Schobernd works in the dry lab to let the crew know when and where to drop the traps (more on this later).

Trap going down the rap into the water.
Trap going down the ramp into the water

When its time to retrieve the traps the crew of the Pisces works with chief scientist and the Bridge to retrieve the traps.  When you are on the deck waiting for the traps to be lifted on board you have to wear a safety helmet and life preserver. Once the traps on are on the deck the scientists really start to hustle. They remove the cameras from the traps and empty the trap into black bins.

IMG_0738
Chevron Trap being lifted onto the deck

Once we are in the wet lab the first step is to sort the fish by species. In the picture on below you will see 3 bins with red porgy, vermilion snapper, and trigger fish these are 3 of the 4 most common commercially important fish we catch the 4th is black sea bass.

Sorting the fish
Sorting the fish
Red Porgy, Vermillion, & Trigger Fish
Red Porgy, Vermilion Snapper, & Trigger Fish
Measuring the total length of the fish
Measuring the total length of the fish

Next we need to weight the sample in kilograms and record the total size of the fish in millimeters. The fish that are not being kept for further study are returned to the ocean. It can get very busy and messy in the wet lab when the traps produce a large catch. The goal is to process one trap before the next trap is brought on deck. The traps are dropped three times daily for a total of 18 traps caught per day; it is the scientist’s goal to completely process the traps before the completion of their 12 hours shift. Certain fish are of special interest to the scientists because they are commercially and recreationally important to the fishing community so these fish are set aside for further study. On Monday July 21st we caught a 10.47 kg Red Grouper, which is one of the fish that is studied in more detail.

Red Grouper caught on Monday July 21, 2014
Red Grouper caught on Monday July 21, 2014

For this fish in addition to recording the weight and total length, scientists also record the fork length and standard length. The scientists also collect the otoliths (ear bones) from the fish which are used to determine the age of the fish just likes rings on a tree are used to determine age. Finally scientists collect DNA and part of the gonads for additional study back at the laboratory.

 

 

 

 

 

 

Personal Log

My first few days on the Pisces have been busy and very exciting there is so much to see and learn. Everyone on board has been very friendly and welcoming. As I look out my window every morning all is see is blue for miles. Even though we are only 10-50 miles off the coast of North Carolina on any given day there is nothing out here but ocean. It’s impressive how vast the ocean is and how little we know about the geography of the ocean or the animals that inhabit the sea floor.

Leaving Morehead
Leaving Morehead City, North Carolina
Looking down from the top deck of the Pisces.
Looking down from the top deck of the Pisces.

 

 

 

 

 

 

 

 

 

 

 

We set sail from Morehead City, North Carolina at 10am on Sunday July 20th and I had a great view from the top deck of the Pisces as we left the harbor. After lunch we practiced the abandon ship and fire drills, however I was not able to participate because I was seasick. Did you know that seasickness occurs when our brain receives conflicting information from our body. Onboard the Pisces it doesn’t look like anything is moving so my eyes sent my brain a message that there was no movement, but my inner ear, which is responsible for balance, sensed the motion of the boat and this conflicting information caused my seasickness. By Monday I was feeling much better and I was ready to get to work.

The bunks in our stateroom
The bunks in our stateroom

Life on the Pisces is very comfortable. I am sharing a stateroom with Mary who is a great roommate. We each have our own bunk with a curtain for privacy as well as lockers for storage. Additionally our bathroom is located in our room, which was a wonderful surprise because I thought that we would all be sharing a single bathroom. There is a lounge across from our room with large comfy chairs and an impressive DVD collection, however I have been too tired from working in the wet lab to enjoy it yet. There is also a gym somewhere on the ship but I don’t think that I will ever have enough balance onboard the ship to use the gym safely. Stay tuned, tonight I’m going to spend the night mapping the ocean floor and I’ll let you know how it goes.


SCIENTIST SPOT LIGHT

Zeb Schobernd : Chief Scientist

Education: Masters from Earlham College and a Masters from College of Charleston in Marine Biology

How long have you worked with NOAA? Since 2007, started this project in 2010

Chief Scientist Zeb Schonberned in the dry lab
Chief Scientist Zeb Schonberned in the dry lab

How important is collaboration in your research? Being able to share and work together is a large part of the marine biology community. On this cruise for example we are collaborating with scientists from Beaufort as well as with local universities we have 2 volunteers from the College of Charleston sailing with us.

How long have you participated in this survey? Since the start of the SEFIS survey in 2010, currently in its 5th season.

Does your team change every year? The core group of research scientists stays the same, but the volunteers and lab assistants’ changes year to year.

How does the Pisces compare to other ships? The Pisces is larger than other ships I have worked on. It’s more comfortable, there is more space for scientists to spread out and work. Additionally the Pisces has the equipment need to map the floor, which makes determining where to drop traps more efficient.

How many days a year do you go out to sea? I spend about 45 days out at sea. 

What do you do when you are not out at sea? I work on processing the videos that were collected on the cruise; we need to identify the fish species that are on caught on camera. The cameras are often more valuable then the fish that we trap because some fish may never go in the trap so these videos allow us a better picture of the underwater ecosystem.

What is the biggest challenge about doing research at sea? The biggest challenge would be bad weather that impacts sea conditions. Also time away from home can be challenge on long cruises.

What would be your dream research cruise? I would like to be able to use a submersible to record videos of tropical fish for further study.

Any advice you have for students interested in marine biology as a career? Gain hands on experiences in the field by doing internships while in college to determine if this is what you really want to do. What I do on a day to day basis is very similar to what I experienced on a research cruise while I was in grad school.

Coolest catch: 6 Gilled Shark

Favorite fish: Groupers

COOL CATCH OF THE DAY

Shark sucker attached to Kate's arm.
Shark sucker attached to Kate’s arm.

Kevin McMahon: Midnight Mapping! July 13, 2014

NOAA Teacher at Sea

Kevin McMahon

Aboard the NOAA ship Pisces

July 5 – July 18, 2014

 

Mission: Southeast Fisheries Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 13, 2014

Weather Information from the Bridge

Air Temperature:            27.6 °C

Relative Humidity:         73%

Wind Speed:                  5.04 knots

 

Science and Technology Log

Someone is always working on the Pisces. When Nate Bacheler and the other fishery scientists have finished their work for the day collecting fish, it is show time for the hydrographers, the scientists who map and study the ocean floor. Their job is to map the ocean floor to help Nate find the best places to find fish for the next day.  Warren, Laura, David and Matt were kind enough to let me join them and explained how they map the ocean floor while on board the Pisces.

People have learned over the years that some fish like to hang out where there is a hard bottom, not a sandy bottom. These hard bottom areas are where coral and sponges can grow and it also happens to be where we usually find the most fish.

Instead of using a camera to find these hard bottom habitats, the mapping scientists use multibeam sonar. Here is a simple explanation on how sonar works. The ship sends a sound wave to the bottom of the ocean. When the sound wave hits the bottom, the sound bounces back up to the ship.

Since scientists know how fast sound travels in water, they can figure out how far it is to the ocean floor. If the sound wave bounces back quickly, we are close to the ocean floor. If the sound wave takes longer, the ocean floor is farther away. They can use this data to make a map of what the ocean floor looks like beneath the ship.

The neat thing about the Pisces is that it does not send down one sound wave only. It sends 70 waves at once. This is called multibeam sonar.

Single Beam versus Multibeam sonar.  Can you see why scientists like to use multibeam sonar?
Single Beam versus Multibeam sonar. Can you see why hydrographers like to use multibeam sonar? Credit: NOAA

So, now you know how sonar works in simple terms.

But it gets a little more complicated. Did you know that sound speed can be affected by the water temperature, by how salty the water is (the “salinity”), by tides, and by the motion of the ship?  Computers make corrections for all of these factors to help get a better picture of the ocean floor. But, computers don’t know the physical properties of our part of the ocean (because these properties change all the time) so we need to find this information and give it to the computer.

To find the temperature of the ocean water, the mapping scientists launch an “XBT” into the water.  XBT stands for “expendable bathythermograph.”  The XBT records the changes in water temperature as it travels to the ocean floor.  It looks like a missile.  It gets put into a launcher and it has a firing pin. It sounds pretty dangerous, doesn’t it!  I was excited to be able to fire it into the water.  But, when I pulled out the firing pin, the XBT just gently slid out of the launcher, softly plopped into the ocean, and quietly collected data all the way to the ocean floor.

 

Kevin McMahon nervously holding the XBT Launcher and waiting for the order to fire.
Kevin McMahon nervously holding the XBT Launcher and waiting for the order to fire.

                 

Kevin McMahon watches as the XBT gently plops out of the launcher.
Kevin McMahon watches as the XBT gently plops out of the launcher.

 

With the new data on water temperature, the hydrographers were able to create this map of the ocean floor.

Example of an Ocean Floor Map
Example of an Ocean Floor Map

 

In the map above, blue indicates that part of the ocean floor that is the deepest. The green color indicates the part of the map that is the next deepest. The red indicates the area that is most shallow.

Nate talks to the hydrographers early in the morning and then predicts where the hard bottom habitats might be. In particular, Nate looks for areas that have a sudden change in elevation, indicating a ledge feature.  If you had Nate’s job, where would you drop the 6 traps to find the most fish?  Look at the map below to see where Nate decided to deploy the traps.

 

The green dots are the spots where Nate dropped the traps in hopes of finding fish.
The green dots are the spots where Nate dropped the traps in hopes of finding fish.

 

To find out more about using sound to see the ocean floor and to see an animation of how this works, click on this link:

 NOAA: Seeing the Ocean Floor

               

Personal Log

 

We have now gotten into a regular routine on the ship.   The best part of the day for me is when we are retrieving the traps. We never know what we will see. Sometimes we catch nothing. Sometimes we find some really amazing things.

 

Here are a few of my favorites:

 

Closer view of sharksucker on my arm
Closer view of sharksucker on my arm

 

Somebody is crabby.
Somebody is crabby.

 

Sea stars with beautiful navy blue colors
Sea stars with beautiful navy blue colors

 

A pair of butterflyfish
A pair of butterflyfish

 

Did you know?

The ocean is largely unexplored.  Maybe someday you will discover something new about the ocean!

 

Emina Mesanovic, An Adventure Begins, July 13, 2014

NOAA Teacher at Sea

Emina Mesanovic

(Almost) Aboard NOAA Ship Pisces

July 20 – August 2, 2014

 

Mission: Southeast Fisheries-Independent Survey

Geographic area of the cruise: Atlantic Ocean

Date: July 13, 2014

 

Personal Log

Hello everyone! My name is Emina Mesanovic and I am so excited to have been selected by NOAA (National Oceanic and Atmospheric Administration) to be a part of the 2014 Teacher at Sea field season. July 20th can’t come fast enough.

I am very excited to share this experience with everyone on the blog this summer and back at school in the fall.  As I learn more about the research being done on the Southeast Fishery-Independent Survey (SEFIS), and my ship the Pisces, so will you!

During the school year I teach science at Danbury High School and I LOVE my job. The students at DHS are amazing and I enjoy watching them learn and grow as they explore science inside and outside the classroom.

Students collected physical, biological and chemical information on Long Island Sound for Project Periphyton.
Students collected physical, biological and chemical information on Long Island Sound for Project Periphyton.

In the classroom I try to give my students experiences and interactions with science content so that they can truly internalize the knowledge and be active participants in the learning process. I know that the experiences that I will have while on the cruise will enhance my ability to craft and deliver lessons, by incorporating current research into the classroom. My students are always more interested in topics that are current and relevant and I am looking forward to bringing back stories of scientists working collaboratively to study and solve problems.

Students collecting physical data on the Shepaug River for Project Periphyton.
Students collecting physical data on the Shepaug River for Project Periphyton.

When I am not teaching I enjoy being outdoors preferably near water. I love the beach and there is nothing I enjoy more then listening to the calming noise of the ocean while I read a good book. In planning a vacation my first thoughts are always is it near warm water and what cool and exciting things can I do there. That is how I found myself Zip-lining through the forest in the Dominican Republic and Ice Skating on the beach in San Diego.

Zip lining in the Dominican Republic
Zip lining in the Dominican Republic

 

Soon I will be heading out on the NOAA Ship Pisces into the Atlantic Ocean whereI will be find out more about the various jobs my shipmates have, information about ocean ecology, and life onboard a ship. Stay tuned and let me know if you have any questions.

Picture courtesy of NOAA
The Pisces my home for the next 12 days. Picture courtesy of NOAA

 

Kevin McMahon: GoPro Science! July 11, 2014

NOAA Teacher at Sea

Kevin McMahon

Aboard NOAA Ship Pisces

 July 5 – July 18, 2014

Mission: Southeast Fisheries Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 11, 2014

Weather Information from the Bridge

Air Temperature:           28.1 °C

Relative Humidity:         86%

Wind Speed:                 17.08 knots

 

Science and Technology Log

As mentioned earlier, we are trying to collect data about fish populations in the Atlantic Ocean, off the southeast coast of the United States. One way to do that is to catch fish in traps. But, wait. What if some of the fish don’t go in the trap?

To help get a better estimate of fish populations, scientists use technology used by skateboarders, surfers, and snowboarders – the GoPro camera.

GoPro Camera on Chevron Trap
GoPro Camera on Chevron Trap

 

There are two cameras mounted on the top of the trap. One is placed on the front of the trap. Another camera is placed on the back of the trap.

Because the video file is so large, I won’t be able to upload it to this blog. But here are some screenshots of what we see on the video.

 

GoPro Camera and Trap Heading into the Ocean
GoPro Camera and Trap Heading into the Ocean

 

This is what the camera sees as it is sinking to the bottom of the ocean.
This is what the camera sees as it is sinking to the bottom of the ocean.

 

Hello pufferfish!  This is a view of what we can see with the video camera.
Hello pufferfish! This is a view of what we can see with the video camera.

 

Sometimes the video helps explain why we do not have many fish in our trap.  In this photo, a tiger shark is swimming in front of the camera.
Sometimes the video helps explain why we do not have many fish in our trap. In this photo, a tiger shark is swimming in front of the camera.

 

So, how do you count fish on the video?  The fish can be very fast and they zoom in and out of view. The scientists use a procedure called MeanCount. They look at the video from minute 10 to minute 30. Every 30 seconds, they stop the camera and count the number of fish of each species that they are studying.  They then find the average number of those fish in this twenty-minute video segment.  This MeanCount allows them to better estimate the fish population of that species.

Spotlight on Ocean Careers

I have been fortunate to meet many interesting people while at sea. One of those people is Adria McClain, the survey technician on the Pisces. Listed below are her answers to questions that I asked about her job.

 

Adria McClain holding a spottail pinfish
Adria McClain holding a spottail pinfish

 

Tell us your name and where you grew up.

My name is Adria McClain and I was born and raised in Los Angeles, California.

 

What is your job title and could you explain what you do.

Survey Technician. I am responsible for collecting, checking, and managing the ship’s meteorological data (temperature, atmospheric pressure, relative humidity, wind speed/direction) and oceanographic data (water temperature, salinity, current speed/direction, speed of sound in water). Additionally, I am responsible for the ship’s scientific equipment (e.g. conductivity, temperature, and depth (CTD) sensor, scientific seawater system) and the ship’s scientific software. I also assist the visiting Fisheries Biologists with sorting and measuring fish.

 

What got you interested in doing this type of work?

I’ve always liked science and knew from an early age that I wanted to be a scientist. I studied Biology in college and Oceanography in graduate school – this job allows me to do work in both fields.

 

How can a student prepare to do this type of work?

Take lots of science and math classes in high school and in college. Take lots of English classes too! In the sciences, it is important to be able to communicate verbally and in writing. I would also recommend taking a basic seamanship course to learn about navigation, shipboard communication, tying knots, and safety at sea.

 

Why do you think it is important to study the ocean?

The reasons are many, but to name a few, the ocean influences Earth’s climate and weather patterns, the ocean harbors yet undiscovered species, and the ocean provides food for humans and countless other life forms.
What was your favorite subject or subjects in school, and why were they your favorite(s)?

All of them! I’ve always had a passion for learning. If I had to pick a favorite subject, it would be a tie between science and foreign languages. I liked science because I was always fascinated with the natural world and wanted to understand and be able to explain what I observed in nature. I liked foreign language study because I wanted to be able to communicate in more than one language.

 

What are your hobbies?

Reading, science, and travel.  I am also a Batman enthusiast and collect Batman comic books, movies, TV shows, as well as books about the mythology, philosophy, and psychology of Batman.

 

Tell us about what it was like when you were in 6th grade.

In my school district, elementary school included sixth grade. We stayed with the same teacher all day and the subjects we studied included social studies, math, science, reading, writing, music, and physical education.

“International Day” was one of my favorite days – once per year, each of the school’s 12 classrooms featured the food, art, and history of another country or culture. Each student received a “passport” and could choose which countries to visit that day.

What is your favorite sea creature?

The Smooth Lumpsucker (Aptocyclus ventricosus)

This cute blob is a Smooth Lumpsucker. Credit: Adria McClain
This cute blob is a Smooth Lumpsucker. Credit: Adria McClain

Adria explained to me that the Smooth Lumpsucker won’t be found on our current trip. Too bad. It looks pretty cool. She said that you can find it in much colder water, like the North Atlantic Ocean. To find out more about the Smooth Lumpsucker, you can click on this link:

Smooth lumpsucker

 

Personal Log

It has been fun and challenging living on a ship. It is VERY different from living on land.

My room is comfortable and I sleep on the top bunk.  The greatest part of all is when it is time to sleep. While you are lying down in bed, the waves will roll you gently from side to side. At the same time, the head of the bed will rise up and down too. And, if that wasn’t enough movement, we sometimes feel the ship slide left and right.

Because my room is on the bottom floor, the water from the waves will crash against the window. It makes a sloshing sound. With all the rocking and sloshing, I sometimes think that I am sleeping in a washing machine. So far, it has been a relaxing way to fall asleep.

I spend much of the day in the wet lab. Yes, you are right. It is wet in there. In the picture below, I am standing in the entrance to the wet lab.

 

This sharksucker can stick to humans too.
This sharksucker can stick to humans too.

 

This is where we collect data on the fish, like their weight and size. It is also where the scientists collect samples to help determine the age and reproductive health of certain species.

My favorite part of the wet lab is the fish waterslide. The fish that are returned to sea are dropped down a hole in the wet lab where they land on a jet stream of water and get launched back home.

Triggerfish returning to sea from the ship's  "waterside".
Triggerfish returning to sea from the ship’s “waterslide”.

We also have a dry lab. Yes, you are right again! No fish are allowed in here. This is where the scientists have their computers and where the video cameras are kept when they are not in their waterproof containers. Our chief scientist, Nate Bacheler, works on 5 computers at once when it comes time to decide where and when to drop the traps.

 

Nate Bacheler in the Dry Lab. Can you see the 5 computers that he uses?
Nate Bacheler in the Dry Lab. Can you see the 5 computers that he uses?

 

Did you know?

A team of 5 seventh graders from Sacred Heart School in South Haven, Mississippi named our ship the Pisces. They won a contest to name the ship by writing an essay and explaining why NOAA should choose the name that they selected.

 

Spencer Cody: NOAA Careers, June 10, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 10, 2014
 
Observational Data:
Latitude:  28˚ 4.545 N
Longitude:  90˚ 43.557 W
Air Temp: 28.4˚C (83.1˚F)
Water Temp: 25.4˚C (77.7˚F)
Ocean Depth:  148.0 m (486 ft.)
Relative Humidity:  80%
Wind Speed:  11.8 kts (13.6 mph)
Barometer:  1,011.1 hPa (1,011.1 mbar)

Science and Technology Log:

106_0247
Adria McClain, a survey technician, works on meteorological and oceanographic data collection in the acoustics lab.

It takes many different types of skill sets with many different types of backgrounds to make a NOAA mission like this a success.  Since it takes all kinds of people to get the job done, NOAA needs people with all of these backgrounds working together as a team for a common goal.  Maybe a NOAA career is in your future?

121_2160
Physical scientist Joe Tegeder is tracking the progress of one of the night-long mapping missions. Since the mapping grids commonly resemble a tightly-knit zig-zag of mapping trails, they are commonly referred to as “mowing the lawn.” Such a pattern is needed in order to properly map a given area.

Do you have an interest in meteorology or oceanography?  If so, NOAA needs you!  Meet Adria McClain; Adria is a survey technician who is responsible for collecting meteorological and oceanographic data and managing and maintaining the databases that store these observations.  She also helps integrate the Pisces’ system resources with each visiting science party.  She has an undergraduate degree in biology, a masters in physical oceanography and meteorology.  She was on active duty in the Navy for 10 years with the Meteorology and Oceanography Community or METOC.  During those ten years, she served two tours with the Naval Oceanographic Office where she was a hydrographer using sonar to make nautical charts for the Department of Defense.  She also served one tour at the Fleet Numerical Meteorology and Oceanography Center where she developed atmospheric and ocean models.  She states that she very much likes her job even though she still has a lot to learn about fish and fishery biology since she does not have a background in those areas.

124_2189
Lead fisherman Joe Flora is maintaining the weather deck by power washing surfaces. An advanced ship like the Pisces is a major investment in science and must be carefully maintained for future use.

Do you have an interest in the physical sciences and mapping?  If so, NOAA needs you!  Meet Joe Tegeder; Joe is a physical scientist who is responsible for using the acoustics equipment onboard specifically the ME-70 and the EK-60 in order to map fish habitat on the ocean bottom.  He has both an undergraduate and graduate degree in marine science.  He currently works for the Pacific Hydrographic Branch for NOAA where he primarily works with updating nautical charts in the U.S. waters of the Pacific.  Previously, he worked for the Naval Oceanographic Office where he helped map out harbors from around the world to develop anti-mining operations for possible future military missions.

Do you have an interest in doing the hands-on operational work required to carry out fisheries science?  If so, NOAA needs you!  Meet Joe Flora; Joe is the lead fisherman onboard the Pisces.  He helps implement all of the operational aspects of science missions by launching and retrieving science equipment, operating bandit reels, and cleaning and maintaining the ship in general.  He was with the Military Sealift Command for eight years where he worked on refueling ships and transport operations involving cargo and ammunition.  For the last nine years, he has worked in NOAA onboard the ships Thomas Jefferson, Gordon Gunter, and the Pisces.  He has been on the Pisces for six years.

103_0062
NOAA Corps officers are manning the bridge overseeing operations and ship resources. From left to right:  Ensign Johnson, Commander Fischel, and Lieutenant Commander Mowitt.

Do you have an interest in hands-on science and exploration?  If so, NOAA needs you!  Meet the NOAA Corps; they navigate the ship, allocate and coordinate the ship’s resources with the crew and the embarking science party, and most importantly make sure all hands are kept out of harm’s way by implementing proper safety procedures and protocols.  They bring all of the component parts together for a successful mission and try to make it as functional and as successful as possible.  Applicants to the NOAA Corps must possess a minimum of a four year degree with a minimum of 48 semester hours in science, math, or engineering coursework.  All of the officers onboard the Pisces have one thing in common:  they have a background in science, mostly biology and marine biology.  They also had to complete Basic Officer Training Classes after which they reported to a NOAA ship to serve onboard for two years where they learned watch duties and various other collateral duties along with all of the ship’s systems and operations.  In addition to assigned duties, they needed to know how to deploy and recover a diverse array of equipment including fishing gear, oceanographic instrumentation, sonar devices, and underwater cameras.  I could tell right away on the cruise that the officers had an inherent interest in science since they were always dropping in to see what we were working on exhibiting a genuine curiosity in the science that was going on.  NOAA officers are rotated out of their work positions spending a certain period of time out to sea and on land in varying geographical areas with alternating assignments.  This gives them a well-rounded experience in many aspects of NOAA’s mission.

124_2183
Members of the science party processing and recording fish specimens in the wet lab. Pictured from left to right are Paul Felts, John Moser, Adam Pollack, and Harriet Nash.

Do you have an interest in working with food preparation and presentation?  If so, NOAA needs you!  Meet Moises Martinez and Mark Potter; Moises is the chief steward.  His responsibilities include making sure there is enough storage for food, linens, and toiletries.  He is also responsible for hospitality onboard the ship and cleaning of the galley and mess.  He works with the second cook to preplan menus, but he really tries to take requests from the scientists and crew and responds accordingly.  He knows that there is not as much to do at sea during downtime as on land; so, he appreciates how much people look forward toward their meals; he tries to make everyone happy when possible.  He was in the Navy for eight years where he realized his interest in preparing food.  Later he worked two years in Italy with the Military Sealift Command as a cook and a baker.  When he came back to the United States, he found out that NOAA was trying to contact him to see if he was still interested in working for them.  He found this to be surprising since he had forgotten that he had applied through NOAA before he left for Italy two years prior.  He started out as a second cook for NOAA and has worked his way up the last six years.  Meet Mark; he is the second cook onboard the Pisces.  His responsibilities include cleaning, preparing food, cooking, and restocking.  He used to work in computer servicing but had to make a career change due to the economic downturn.  He liked preparing food; so, he decided to go back to school.  He went to Great Lakes Culinary Institute in Traverse City, Michigan, where he worked with some world class chefs to learn what he needed to know in order to work onboard the Pisces.  Prior to his assignment on the Pisces, he worked on freighters and research vessels in the Great Lakes for a couple of years.

Do you have an interest in engineering and mechanical systems?  If so, NOAA needs you!  Meet Jake DeMello; Jake is the chief engineer for the Pisces.  His responsibilities include maintaining any mechanical, propulsion, or electrical system.  He works to ensure that these systems are running safely and efficiently.  He has worked for NOAA for six years.  Prior to NOAA he worked in engineering on cruise ships and tankers.  He has a BA in marine engineering from the California Maritime Academy and is licensed as an unlimited chief engineer through the Coast Guard.

105_0117
The science party’s chief scientist, Kevin Rademacher, is coordinating from the dry lab a camera array drop with the bridge and the crew out on the weather deck.

Do you have an interest in science?  If so, NOAA needs you!  Meet the fishery research biologists onboard the Pisces; this includes the science party’s chief scientist and fishery research biologist, Kevin Rademacher, fishery research biologist Paul Felts, and fishery research biologist John Moser.  Other members of the science party include fishery biologist Adam Pollack and guest scientist Harriet Nash.  In order to be a fishery biologist, one needs a degree that includes courses such as limnology, ichthyology, fishery biology, and various other aquatic topics.  A background including technology, computer programming, and statistics is also useful when data analysis software is needed to produce maps and other displays of research data.  Having research experience that gives one the ability to do the data collection and processing, trouble-shooting, and analysis that is needed to carry out fishery research is also necessary.

121_2155
Jim Johnson works on the camera array after another full day of scheduled camera drops and data acquisition.

Do you have an interest in computers, computer programming, and electronics?  If so, NOAA needs you!  Meet Jim Johnson; Jim is an electronics technician for this mission.  His responsibilities include data downloading and maintenance and repair of the camera array system.  He started working for NOAA as a contractor and has been a NOAA employee for the last five years.  He has a four year degree in electronic engineering technology and a background in computers, technology, and computer programming.

Personal Log:  Unfortunately, my time on the Pisces is quickly coming to an end as the science carried out by the Pisces continues on for another leg of the SEAMAP survey.  I am so grateful for this experience and this remarkable program that NOAA has in place to provide such research experiences for teachers.  I look forward to developing materials in my classroom from this experience and making an impact on my students’ lives by sharing my experiences with STEM related NOAA careers.  I am also thankful to all of the crew and scientists of the Pisces for showing patience in everything from explaining basic ship operations and procedures to showing me how to carry out some of the science onboard.  The hands-on nature of the cruise made it an extremely valuable learning experience.  It is my hope that this program will continue offering such opportunities to educators well into the future.  I truly believe that the future of STEM-related jobs in the United States depends on programs like this to develop tomorrow’s scientists and engineers.

Spencer Cody: Science at Sea, June 1, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 1, 2014

Observational Data:

Latitude:  27˚ 50.503 N
Longitude:  93˚ 46.791 W
Air Temp: 26.3˚C (79.3˚F)
Water Temp: 23.3˚C (73.9˚F)
Ocean Depth:  126.8 m (416 ft.)
Relative Humidity:  84%
Wind Speed:  7.8 kts (9.0 mph)
Barometer:  1,009.5 hPa (1,009.5 mbar)

Science and Technology Log: 

It was not until the Pisces arrived at its first survey area off the coast of Texas that I was able to appreciate the volume of scientific data collection that this vessel could collect.  It took most of the 27th and all of the 28th to arrive at our initial survey area.  While in transit, the Pisces is constantly collecting data.  Data such as air temperature, wind direction, relative humidity, wind speed, and barometric pressure are recorded and periodically reported back to NOAA and the National Weather Service and from other marine vessels to improve data on meteorological events in the Gulf and weather forecasts.

In addition to collecting meteorological data, the Pisces uses a fishery acoustics system called the ER-60 to track depth and various sea floor features.  This system can also be used to monitor biomass such as fish, coral, and even plankton.  Once we arrived at our initial survey area within the SEAMAP survey grid, the amount of science conducted increased dramatically.  In the survey areas, the camera array is dropped to the sea floor to survey fish populations.  In most cases we are looking at fish habitat from 50 to 120 m deep.  Video and still photos are taken of fish attracted to the bait bag filled with squid.  To ensure that sampling is both consistent and unbiased for the survey, pictures and video are pulled at random from all four cameras on the camera array.  It is important that the same procedures are carried out throughout the SEAMAP survey gird concerning data collection in order to be able to reliably compare different survey areas and track species development and abundance.

In order to assist the camera array in obtaining accurate information about precisely how deep the camera array is when it is recording fish population data, a Temperature Depth Recorder or TDR is attached to the camera array to compare position in the water column to what the ship’s fishery acoustics system is displaying.  This is necessary in case the camera array has fallen off an underwater cliff or is hung up on some other topographic feature.

106_0233
The Conductivity Temperature and Depth or CTD submersible probe can measure the salinity of the water, temperature, pressure, plankton concentrations, dissolved gases, and water samples at different depths.

The Conductivity Temperature and Depth submersible aids the ship’s acoustic equipment in determining an accurate depth of the ocean bottom.  Since sound travels at different velocities in water that has different densities and temperatures, information regarding the salinity and temperature of the water must be fed into the ship’s fishery acoustics system to calibrate the system for it to accurately read the bottom depths.  If temperature or salinity are not taken into account, the depth will either be too shallow or too deep compared to the true value.

The Pisces not only has the ER-60 for fishery acoustics, but it also has a state of-the-art multi-beam echo sounder, the ME-70, that has 27 transducers that are aligned in a configuration allowing for scans of wide swaths of the ocean bottom.  In fact, the Pisces has engines that are specifically designed to run quietly enough to accommodate such advanced acoustic equipment.  The ME-70 is used for mapping various sample areas of the SEAMAP survey.

While the camera array can be used to measure the length of some of the fish viewed, it cannot reliably determine characteristics such as age or sex.  Determining age or sex just through appearance can be very tricky in the Gulf and is frequently unreliable.  Many species of fish will grow at different rates depending on available forage and other environmental factors.  This is an issue that is also commonly encountered among freshwater fish in South Dakota.  Complicating fish characteristics even further, many reef fish are one or the other sex at different phases of their lives.  They are not strictly male or female but change roles depending on complex physical or environmental factors.  With so many factors complicating these characteristics, live catches are necessary to determine the full story of what is going on with reef fish in the Gulf.

For live catches we use bandit reels.  Bandit reels are similar in concept to a standard fishing rod and reel except they are built for heavy duty sea fishing.  The reel and rod are attached to the side of the ship.  One hundred pound test line is used with a five pound sinker weight.  Each line for the bandit reels has ten hooks, a small float that keeps the hooks in a vertical column, and a large float that keeps the ten hooks just above the ocean bottom.   Again, in order to guard against bias in the results, we use the bandit reels with a set procedure.  For our survey we are using three bandit reels at a time each with ten hooks.  The bandit reel stations are in radio communication with the dry lab, where the chief scientist is coordinating the sampling, and the bridge, which is keeping the ship in position for the lines preventing lines from running under the ship.  Since we want to be as objective as possible without contributing to any type of bias in the sampling, each line was in the water for exactly five minutes.  Even though it may have went against every natural inclination of most fishermen and fisherwomen, we were not allowed to jig our lines or do anything that might attract more fish to our bait.  In addition to standardizing the number of hooks and the length of time spent fishing, three different sizes of hooks are used and rotated out from each bandit reel station; consequently, one of each of the three hook sizes is always being used for each survey area.

105_0180
White, nickel-sized disk-like structures called otoliths can reliably age fish. They are inner ear structures that grow in size as a fish ages allowing calcium carbonate deposits to form over the course of its life. Scientists can read these calcium carbonate deposit rings like rings in a tree to determine the age of the fish.  Credit Harriet Nash for the photo.
107_0275
After all the measurements are taken of the fish and their otoliths and gonads have been sampled, the information must be added to the database for use in the SEAMAP Survey. Credit Adam Pollack for the photo.

After five minutes of fishing, the lines are brought up and fish are tagged one through ten to keep fish identified with a specific hook and depth.  The tagged fish are then taken to the wet lab for measurement readings.  In the wet lab, fish length, weight, sex, and phase of reproductive development are recorded.  Since reproductive development, and sometimes even sex, can be difficult to determine, a sample of each fish’s gonads (ovaries or testes) are removed and placed in a labeled specimen vial for confirmation in the lab back on land.  The otoliths (inner ear bones) are removed from the fish, as well, in order to reliably age the fish back in the lab.  Once the measurements are recorded, they need to be added to the database to be compiled with the gonad and otolith specimens.  This is just a small piece of the monitoring that is occurring in the Gulf through NOAA.  The Gulf of Mexico is a remarkably diverse expanse of ocean and requires significant scientific research in order to understand and track fish populations and the habitat and forage that sustain them.  Without these types of intensive scientific studies on the ocean, we could not possibly manage or attempt to conserve a natural resource that we would, otherwise, have little to no understanding of.

Personal Log:

Since we had arrived off the coast of Texas a couple of days ago, we have been slowly back tracking to Pascagoula as we go through our survey areas.  The weather has been beautiful the last couple of days; however, sea swells do cause the boat to jostle around a bit.  Each day we see more species on the surface of the water and through our camera array under the water.  Since the science log is rather long for this post, I will talk more about life at sea and the different types of organisms we are encountering in future posts.

Did You Know?

Fish identification can be a tricky business in the Gulf of Mexico.  Many species of Gulf fish alter their physical appearance depending on their reproductive development, environmental factors, or phase of physical development.  Fish will even appear to have different patterns depending on whether they are viewed under our out of water.

Spencer Cody: A Sea of Uncertainty, May 28, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico

Mission:  SEAMAP Reef Fish Survey

Date:  May 28, 2014

 

Observational Data:

Latitude:  28˚ 1.564 N

Longitude:  92˚ 19.000 W

Air Temp: 26.2˚C (79.2˚F)

Water Temp: 23.3˚C (73.9˚F)

Relative Humidity:  90%

Wind Speed:  16.3 kts  (18.8 mph)

Barometer:  1,011.9 hPa (1,011 mbar)

Personal Log:

Aftermath of a fire early Sunday morning that destroyed most of the high school.  Credit Jill Cody for the photo
This is the aftermath of a fire early Sunday morning that destroyed most of the high school in Hoven.  My classroom is in the lower left of this picture.  Credit Jill Cody for the photo

I see the pictures, the video, and the news stories, and it is still hard to accept the reality of what happened Sunday morning.  For those of you who are not familiar with my town and the events surrounding it, our community suffered a great loss over the weekend by losing much of the high school to a fire.  Since I was on vacation when it happened and had to leave directly from that to the Pisces, I never saw the fire or the resulting damage, and I suppose reality will finally sink in three weeks from now when I see my school and classroom in person to see what science materials and equipment is salvageable.  My sympathies to those affected by this tragedy.  However, I am heartened by my community’s initial response of determination to rebuild our school and to continue our tradition of offering high quality education to rural South Dakota.  Though the future remains uncertain, I stand with those who support saving our school district and will be there to help see this transition through.  I will proceed with the NOAA Teacher at Sea program while keeping in mind that I am now helping move forward the recovery from this tragedy by advancing and enhancing the future of science education in Hoven and beyond.

Back in the Gulf, I flew into Gulfport, Mississippi, on Monday, May 26, and took a taxi to the Pisces in Pascagoula, Mississippi.  By chance I met a crewmember who noticed the NOAA Teacher at Sea t-shirt I was wearing at the airport.  He too had flown in on the same plane that I had from Atlanta.  He was very interesting to talk to learn about many of the diverse backgrounds needed to operate a ship like the Pisces.  In our conversation he had talked about why he joined NOAA and some of his past work that had given him the experience necessary for the job.  Since he is a crewmember on the deck crew, experience at sea and ship operations is a necessity.  The crew allows for day-to-day operations, ensures safety of the ship and the passengers, and assists with the research in its logistics and implementation where necessary.  The crewmember I talked to had extensive experience working at sea on cargo ships and looked forward to his future work with NOAA and was very interested in all the science that the Pisces carries out.  In general, the crew can be divided up into the following categories:  deck crew, officers, stewards, technicians, and engineering.  The deck crew carries out the implementation of operations and day-to-day maintenance of the decks.  The officers are members of the NOAA Corps, one of seven uniformed services of the United States.  The stewards maintain the galley (kitchen) and mess (dining room) providing meals to everyone on the Pisces.  The technicians process data and maintain data collection systems and other electronics.  Engineering operates and maintains the ship’s engines, equipment, and various electrical and operational systems.  Whether it is the deck crew, officers, stewards, technicians, or engineering, all are needed to make the science carried out by the science party possible.

100_0045
A picture of me on the top deck of the Pisces as we leave Pascagoula, Mississippi, for the Flower Gardens off the coast of Texas.  The USS America is in the background.  Credit Harriet Nash for the photo.

I arrived at the Pisces during the afternoon on the 26th.  This was very helpful in giving me some time to explore the area in Pascagoula and the ship before takeoff the next day.  I was assigned a very nice stateroom that I am sharing with another member of the science party.  I was surprised that our accommodations were so spacious.  We get our own desk, tv, sink, bathroom, and shower.  It reminded me of living in the college dorm my freshman year minus the group showers; so, I was more than pleased with the living arrangements.  Looking around Pascagoula directly adjacent to where the Pisces was docked, I was amazed at all of the heavy industry concentrated around the Pascagoula River.  The river hummed with activity day and night with trains, cargo ships, tugboats, oil and gas well repair work, ship repair work, fishing operations, and tourism.  It was quite remarkable to see where some of the goods that we buy in stores back in South Dakota first make their landing on the North American continent and to get a sense of the scale of the sea-based operations needed to make international trade possible.  The ocean is how you are able to sell your beans to Brazil or wheat to China.  It is the economical lifeblood that connects all of us, but we seldom think of what happens to our goods beyond the retail store or the elevator.  We just know the system works and take the infrastructure behind it for granted.  Though South Dakota is more than a thousand miles from the Gulf of Mexico, it is linked by trade with the rest of the world through the Gulf.

106_2291
The NOAA ship Pisces is a state-of-the art research vessel.  Even when in transit to a specific operational location, it is always recording data and making observations of the ocean and the atmosphere.

Onboard the ship I was able to explore the different decks.  The Pisces is a large ship, but it is not until you move around on the decks that you realize how much space is needed to carry out all of the diverse series of scientific operations.  The Pisces is equipped with a hydraulic crane with the ability to lift 10,000 pounds, which is needed to raise and lower science equipment and remove and replace the gangway, the walkway needed to board and get off the ship while it is docked.  The ship also has a giant spool called a net reel where they store the fishing nets used for trawling missions and a series of winches with thousands of feet of wire to lower scientific instruments into the depths of the ocean.  Even when the Pisces is not carrying out any specific operations while in transit to an operation point, the ship is utilizing every opportunity to gather data on the ocean and the atmosphere.  The Pisces is specifically designed to run quietly to allow for state-of-the-art acoustic sensors to gather information on topographic features of the bottom and even information on various types of biomass in the water column such as fish, plankton, and the different types of coral on the ocean bottom.  The ship is also always taking meteorological readings for scientific use, calibration, and navigation.  Wind speed, wind direction, relative humidity, water temperature, barometric pressure are just some of the observations that are constantly being compiled; therefore, even in the dead of night in our transit, the Pisces is carrying out valuable scientific research and monitoring.

Science and Technology Log:

We are enroute to the Flower Gardens, one of the northern most reef forming corals in the world.  In fact, the Flower Gardens were not officially documented to have extensive coral reefs until the early 1960s when researchers started to investigate rumors of coral reefs in the northern Gulf of Mexico.  What research divers found was amazing:  a pristine coral reef not touched by poaching or pollution.  We are scheduled to arrive at the reefs this evening, May 28.  We will begin the fish surveys using the camera array and bandit reels tomorrow, as well, to document fish populations among the coral reef structures.

104_0086
One means of surveying fish abundance and size is using this submersible camera array. It is equipped with four cameras that are used for random sampling for survey data.  The array is fitted with a bait bag filled with squid in order to attract fish such as grouper and snapper.

Did you know?

The world’s coral reefs contain a remarkably rich and diverse multitude of life, yet they are threatened by poaching, pollution, disease, invasive species, and increasing ocean temperatures and acidity.

Spencer Cody: From the Center of the Continent to the Edge of the Continental Shelf, May 9, 2014

NOAA Teacher at Sea

Spencer Cody

Soon To Be Onboard the NOAA Ship Pisces

May 27 – June 11, 2014

 

Mission:  Reef Fish Survey

Geographical Area of the Cruise:  along the continental shelf edge off the coast of Louisiana

Date: May 9, 2014

 

Personal Log:

Pole of inaccessibility…I admit I was shocked to see that South Dakota claimed such a dubious geographical title in a recent issue of National Geographic.  South Dakota is technically not the geographical center of North America; that title goes to North Dakota.  South Dakota, however, does carry the rather obscure title of being a pole of inaccessibility for the North American continent, the point farthest from all North American shorelines.  Basically, if you live in South Dakota, you live at least 1,000 miles from a coast…any coast!  Perhaps our isolation from the ocean is more than a physical measurement on a map.  How often do South Dakotans think of living on an ocean planet?  Indeed, our perception of the world is seemingly skewed considering we live smack in the middle of that 30% we call land.  Living in South Dakota, it is easy to forget about the ocean and its impact on our daily lives.  We live as far from it as one can in North America; yet, we are inseparably bound to it.  The seafood you eat, the nearly subconscious purchases of foreign goods you make, the moisture we receive, the crops you sell, and even a large portion of the air that we breathe link us all to the ocean’s central value in our lives; therefore, understanding the ocean and the ocean sciences is vital to our daily lives even to landlocked South Dakotans.

Stoney Butte, South Dakota
South Dakota, a sea of former and current grassland! (Credit Spencer Cody for photo)

Here is where the National Oceanic and Atmospheric Administration and the Teacher at Sea program come into play.  It has become obvious to me since my selection as a Teacher at Sea that very few people in this region associate NOAA with ocean research.  They seem to know that NOAA plays a role in researching the atmosphere such as working with the National Weather Service to forecast storms, but they never make a connection to the ocean even if it is the second word in NOAA’s namesake.

It is understandable that South Dakotans in general would assume this because the only exposure we have to NOAA in this part of the country deals with storm and weather forecasting.  In reality NOAA operates a fleet of ocean research vessels that cover the expanse of U.S. waters and beyond in order to increase our understanding of what we really have in our oceans and how it all interacts with each of its differing component parts.  Also, NOAA has its own uniformed service called the NOAA Corps, which keeps the fleet operational and aids and assists in ocean research.  My goals as a Teacher at Sea are twofold:  connecting NOAA’s oceanic and atmospheric work to the classroom and connecting students to the education and training-related pathways that could potentially lead to NOAA careers.  Essentially, I am to learn and document as much as I can on my cruise and use this experience to enhance the education of my students and to provide access to possible careers in oceanic and atmospheric work through NOAA.  I am greatly thankful and humbled to receive such an opportunity through the NOAA Teacher at Sea program.  This is truly a great opportunity for learning for both me and my school.

Spencer Cody Hoven, SD
I enjoy geology, paleontology, and many other sciences. It is probably a safe guess that a large dinosaur left this track behind.

More about me…I will be starting my ninth year of teaching in Hoven this August. I teach 7-12 science:  Earth, Life, Physical, Biology, Biology II, Chemistry, and Physics.  I enjoy teaching all of the varied sciences.  It is hard to get bored when you teach everything.  Hoven is a very nice town to live and teach in.  It reminds me a lot of growing up in Veblen, another small, rural South Dakota town.  I have always been an advocate for rural education and strongly believe that small schools like Hoven offer an exceptional learning environment for students.

Unfortunately, I will have to leave my wife, Jill, and my daughters, Teagan and Temperance, behind for a few weeks.  I will miss them, but also realize that my four-year old daughter being present on a research vessel would make any productive research almost impossible.  She is very rambunctious.

I am counting down the days until I fly out on the 26th to Pascagoula, Mississippi, where the Pisces will be leaving and returning after the mission is completed.  I am very excited about the research involved in my upcoming mission.  Researching fish species abundances associated with the topography of the Gulf of Mexico has so many implications because our mission is just a small piece of a giant survey puzzle that includes nearly the entire edge of the North American shelf in the Gulf of Mexico.  Ships in the survey area have been using many innovative ways of monitoring reef fish abundance.  I look forward to learning more about this technology and will report more on the subject once I am underway.  For more information about the Pisces, visit the Pisces homepage or track our movements using the NOAA ship tracker.

Isle Royale National Park Spencer Cody
My wife and two kids on vacation at Isle Royale National Park in the middle of Lake Superior.

 

 

Paul Ritter: Sixteen Days… July 31, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard NOAA Ship Pisces
July 16– August 1, 2013 

pisces team picture
Pisces team picture

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 31, 2013

Weather Data from the Bridge

8-01-13 ship data

Science, personal, Technology Log

Date: Wednesday July 31, 2013
One day before we leave but you would not know it on the ship.  We are business as usual.  Our team is somewhere off of the coast of Cape Canaveral, and we have three sets of traps to set before we can call it a day.  With NASA’s Cape Canaveral Space Center in the background, we began laying traps in a zigzag pattern over the top of an underwater rock formation that the acoustics lab found the night before.

Our day’s catch was much better than in days past due to the fact that we he had moved much closer to shore.  For some reason our leg of the expedition experienced an unusual upwelling of cold water upon the continental shelf where we were exploring.  Our temperatures for most of the trip ranged from 14 to 16 degrees Celsius. Once we traveled closer to shore our temperatures went up to around 19 degrees Celsius.  This change in location meant that the water on the ocean floor was warmer and warmer water means more reef fish that are hungry.  FISH ON.

Notably, something that stands out in my mind that has made the entire trip successful is the camaraderie of the acoustics, and the wet /dry lab teams.  You would not know by looking, that many of them had never met prior to this trip.  Arguably, these people are the best of the best in the marine biology industry, and none of them have egos. They are so fun to be around.  They are very much a family.  Every time someone enters either lab, a round of “HEY’S” is shouted out by the entire group, as if we had not seen each other in years.   It reminds me of the old television show Cheers, when Norm would walk in to the bar and everyone would yell his name “NORM”.  I loved that show.  Anyway, I would give almost anything to work, side by side, with these people the rest of my life.  I imagine that this group of scientist is exactly what all other researchers aspire to have.

At the end of the day, trap six, the last trap, was pulled and we finished with a haul of good ol’ Black Sea Bass.  You got to love it.  The time was 3:45 and it was time to pack it up and clean the labs.  As a team, we boxed all of the equipment up, we scrubbed everything from top to bottom, and did it with the same enthusiasm we had had the entire trip.  We got the word from James Walker, Chief Bosun on the Pisces, to get all of our gear ready to be put into cargo nets ASAP.  He informed us that we were scheduled to arrive at Mayport Naval Station for a 7:00 A.M. dock time.  It did not take long for all of us to amass the gear and ready it all for transport.

At some point after supper, which was crab legs, and rib eye steaks, Ryan Harris, the skilled fisherman, and I were walking the deck and realized that we were about to get wet from a storm.  Thinking quickly, we moved all of the non-waterproof materials inside the wet lab.  I told Ryan I would see him in the morning and headed to my stateroom.  For some reason I could not get to sleep.  I was exhausted but just could not shutdown.  Zach, my roommate, and I talked about going home and all of the things we were going to do when we got there, for around an hour and then called it a day.

The Pisces steamed through the night and we were right on time.  Grabbing a cup of coffee, I raced out to the ships observation deck so I could watch us come into the dock.  It was amazing.  The crew and the bridge worked flawlessly together to bring our ship, that we have called home for the last sixteen days, back dockside.  My hat goes off to them.  James directed everyone to get into their positions. A small rubber ball with a long lines attached was hurled by one of the men, who was on port bow of the ship, overboard and onto land.  Waiting on shore, several young Navy men caught the ball and pulled the rope onto land forming a tight rope between the ship and land that any member of the Wallenda family could walk.  As the onshore men placed the rope on the davit, the ship motored forward to use the rope to pull the ships aft to the dock.  Upon docking, the crew of the Pisces completed our landing by connecting the massive cables that were lifted by a crane on shore.  These cables allowed the ship to shut off her engines, that had been going nonstop for the last sixteen days, and run on shore power.  Ah quiet at last.  Just because we were tied to land, it did not mean that our jobs were over.

OLYMPUS DIGITAL CAMERA
Off loading the scientific equipment aboard the Pisces.

We still had to move the cargo nets with all of our scientific equipment to land, and then the arduous task of loading it all into the team moving van.  The task of loading the van should have taken hours but the phrase “many hands make light work” was reaffirmed as the entire scientific party jumped in and made light work of the job.  Once complete, we all gathered, took our last pictures, hugged, and said our goodbyes.  And just like that, I jumped in a minivan with five of the ship’s crew and Matt Wilson, the team hydrographer.

Within 20 minutes we were at the airport and all headed to our gates.  My flight from Jacksonville was relatively easy, with no issues but when I arrived at O’Hare the same could not be said.  I think at last count my gate was moved at least 3 times before I made my way to gate G1.  Twenty minutes before flight time, I noticed that we had not boarded the plane yet.  The gate attendants were scurrying around like a mouse running from my cats, and then the ominous “ding” came over the speaker.  “Ahh ladies and gentlemen, we are sorry about the delay but we are experiencing some mechanical issues with plane”.  “We will try to keep you informed as to the progress and hopefully get you on to your final destination quickly”.  “Thank you for your understanding”.  After an hour or so, we finally got the direction that we were again moving to another gate.

As we were walking to our final exiting point, I started talking to a couple of the flight attendants and asked them what had happened.  Apparently, my original plane had taken a goose missile to one of the engines and it totally destroyed any chances that plane would fly again in the next several weeks.  As you could imagine, the attendants said it was quite a stressful situation.  I, for one, am very thankful that they changed my plane.  Finally, I boarded my new plane and made my way to my seat.  I could not wait to see my wife who was waiting for me at the airport.  As we taxied down the runway, the pilot came on the planes intercom and informed us that she was going to try to speed up our flight time a bit.  Speed up a bit?  I guess.  Our scheduled flight was to take 45 minutes to travel from Chicago O’Hare to Bloomington Regional Airport.  Our captain did it in 25 minutes flat.  Woo hoo.  I am going to American Airlines to request that she trains the entire fleet.  Just before landing, as if I could have scripted it, our plane flew over my hometown of Pontiac, Illinois.  It was then at that moment, that I knew I was home.  I could not wait to see my wife.  The plane landed and we rolled to the gate.  I don’t think it was 3 minutes and we were all off of the plane.  I hurried out the door, ran through the terminal, and there she was.  My wife was smiling and more beautiful than ever before.  I had missed her and my girls so much.

I will miss my new brothers and sisters of our scientific team and ship’s crew.  My students, family and friends are going to be amazed by all of the stories, pictures and videos. I am excited that all of them and others are going to be able to participate in reading the data from the real research we did on board.  I could not be more thankful to NOAA for my opportunity to live my childhood dream.  As I write these last sentences of my blog I am welling up with tears.  For sixteen days, in July of 2013, I aboard the NOAA Ship Pisces got to be a Marine Biologist, and ocean explorer.  I will never forget it.

OLYMPUS DIGITAL CAMERA
Paul Ritter in front of the ‘Pisces’ sign

Did You Know?  

I took a lot of pictures on my trip and these are what I consider my top 20 photos.

IMG_4772
Paul Ritter in a “gumby” suit
OLYMPUS DIGITAL CAMERA
Playing Bean Bags on the Pisces
xbt launch
Warren Mitchell and Paul Ritter lock and load the XBT
OLYMPUS DIGITAL CAMERA
Me…. and my Moray
OLYMPUS DIGITAL CAMERA
Sea turtle off the port bow
OLYMPUS DIGITAL CAMERA
Paul Ritter and Shark Sucker in the wet lab of the Pisces
OLYMPUS DIGITAL CAMERA
Paul Ritter and a 24 lb. Red Snapper in the wet lab of the Pisces
OLYMPUS DIGITAL CAMERA
Paul Ritter setting Traps on the Pisces
OLYMPUS DIGITAL CAMERA
Paul Ritter getting to know a Blue Crab
OLYMPUS DIGITAL CAMERA
Paul Ritter driving the Pisces
OLYMPUS DIGITAL CAMERA
Sunset on the Pisces
OLYMPUS DIGITAL CAMERA
Catch of the day.
OLYMPUS DIGITAL CAMERA
Paul Ritter and Ryan Harris catching Bonito.
OLYMPUS DIGITAL CAMERA
Paul Ritter with a Palm Warbler
OLYMPUS DIGITAL CAMERA
Atlantic Spotted Dolphins
vlcsnap-2013-07-19-20h12m25s184
Nurse Shark caught on our Go Pro camera
IMG_4901
Paul Ritter – Safety drill aboard the Pisces
IMG_4787
Paul Ritter and some of the many Sea Stars.
IMG_4907
Common Octopus
OLYMPUS DIGITAL CAMERA
Paul Ritter catching a Barracuda aboard the Pisces.

Paul Ritter: Start Your Day the Right Way with the Pisces McMuffin, July 24, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard NOAA Ship Pisces
July 16– August 1, 2013 

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 24, 2013

Weather Data from the Bridge

7-24-13 ship data

Science and Technology Log
Date: Wednesday 7-24-2013

Zeb and Doug in the lab making the call.
Zeb and Doug in the lab making the call.

Woke up this morning around 6:15.  Worried that I overslept, I rushed as fast as I could to get to the aft deck for our daily trap baiting routine.  As I walked on deck, I quickly realized that no one else was on time either.  I knew something was amiss.  Immediately, I headed to the dry lab to find where the rest of the crew was located.  The day before we had to cut our expedition short due to high seas and heavy currents and today while the waves have calmed down the currents have not.  Zeb made the decision to wait until 8:15 to make our first drop of the day.  Quickly, traps one through six went into the water, and then came the waiting game. Ninety minutes went by and with fingers crossed we reeled in our chevron traps.  First trap in….. nothing.  Second trap….Nothing.  The third trap came to the surface and at first it appeared that we were skunked once again, but upon further inspection we had caught an Almaco Jack.  Almaco Jack (Seriola rivoliana) is a game fish that is in the same family as Yellowtail and Amberjack.  While I have not eaten this particular species of Jack, the crew tells me it is quite tasty.  An interesting fact about the Almaco Jack is that they remove their surface parasites by rubbing against the skin of passing sharks.  Nothing like asking for a shark to eat you.  Fourth trap was a big zero just like the first two, but the fifth trap had netted a Coney Grouper (Cephalopholis fulva) and Spider Crab (Libinia dubia).  Not many in our party had previously seen a Coney Grouper and it was exciting in the dry lab as the scientists all inspected our little five pound red beauty.  As for the Spider Crab, aka. Decorator Crab, I was shocked that it decided to ride the trap all the way to the surface, when it was small enough to escape at any point in time.  The Decorator Crab is so named for being a master of disguise.  This cunning little crustacean affixes to bits and pieces of seaweed, rock and other debris to disguise itself perfectly for the habitat that it lives in.  To me the Decorator Crab is one very cool little dude.  Even though our team found a couple of cool specimens it was not enough for us to spend the rest of the day there.  So Zeb made the call to head south.  Our next stop the waters of Florida.  It is estimated that it will take us around six hours to make the journey.

Me and My Coney
Me and My Coney
Say Hello to My Little Friend - Spider Crab
Say Hello to My Little Friend – Spider Crab

Personal Log

Cornhole
Cornhole anyone?

Having the lab clean and all of our chores completed we had to find a way to keep busy.  So what else could be better than playing Cornhole on the aft deck while traveling the waters south at 9.6 knots or about 11 miles per hour.  Zach, Julie, Patrick and I played about 10 rounds before we got tired and headed below deck.  I am sure you probably have wondered about life on the NOAA Ship Pisces.  There are several work schedules which people follow.  The crewmember’s position on the ship determines what shift they work.  It is possible to work two 4 hour shifts, an 8 hour shift or, 12 hours on, 12 hours off.  It just depends on your particular job on the shift.

Most all staterooms house two members of the crew.  Crewmembers are generally placed in staterooms where the other person in the room has an opposite schedule.  In other words, one person works when the other person sleeps.  This schedule seems to work well as long as the person who is awake does not disturb the person sleeping.  Each stateroom has its own private bathroom with a shower.  One thing that I have learned quickly is that it can be tricky to use the restroom while underway.  I do not want to go too in depth about using the privy but let’s just say this, it can be very tricky to use the restroom or shower for that matter, when you are bouncing off the walls from the waves outside.

Breakfast, lunch and dinner on the Pisces are served promptly at the hours of 7:00 a.m., 11:00 a.m. and 5:00 p.m.  The crew all make their way to the mess deck, where Moises, the Chief Steward, has an entire smorgasbord prepared and ready to eat.  Breakfast usually consists of a combination of eggs, pancakes, sausage, biscuits, English muffins, fried potatoes (hash browns), and BACON.  No breakfast would be complete without BACON.  The other day one of the NOAA scientists, Patrick Raley, suggested that I needed to try the Pisces McMuffin, which consists of bacon, egg, cheese and salmon on an English muffin. Well, when in Rome….  So I decided to have one for breakfast that day.  It was amazing.  I am here to tell you folks, if McDonalds finds out about this, you will find one on their menu.  Lunch and dinner consist of some meat (steak, crab, chicken, meatloaf, pork, scallops, and fish), vegetable (steamed, sautéed, or raw), some sort of potato, and a salad.

One thing I can tell you about being a field research scientist is that it is usually a messy job.  My clothes generally get destroyed every day.  Once on board, some species of the caught fish are simply measured for length and weight.  The real mess comes when we catch some of the more sought after species, which are more the focus of our study.  Each of these fish get a complete work up, including the collection of their otolith.  What is an otolith?  An otolith is basically a bone in the head of a fish that can tell us its age.  This bone would be similar to a person’s ear bone.   Why do we want to know how old fish are?  Knowing the age of any population allows biologists to better understand how populations react to various environmental and human pressures.  It allows us to be able to manage our natural resources in a sustainable way.

The Pisces McMuffin
The Pisces McMuffin

Anyway, it is not a good idea when you come to do your own expedition to bring new clothes or shoes.  It all will get very dirty.  Under the mess hall is the laundry facility.  I have already done one load of laundry since I have been on board and I am sure I will do many more before I head home.  To do laundry is no different from doing it at home with one exception.  Due to having only a few clothing items on this trip, I have to wash them all at the same time.  When my wife, Jodee, reads this, she will cringe, but I am not separating the whites, colors, lights or darks.

Did you know?

Did you know that otoliths are used to age fish?  How do we use otoliths to age a fish?  I would say it is like using tree rings to age a tree.  Do you want to give it a try?  http://www.afsc.noaa.gov/refm/age/ageinginteractive/pop_easy.htm



Paul Ritter: Lock and Load the XBT – The Joke is on Me, July 22, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard the NOAA Ship Pisces
July 16– August 1, 2013 

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 22, 2013

Weather Data from the Bridge

7-22-13 ship data

Science and Technology Log

Yesterday was a very exciting day.  After we dropped off our first traps, the ship’s officers brought the ship to a full stop and it was time to release the CTD.  What is a CTD?  CTD stands for Conductivity, Temperature, and Depth.  The CTD unit  is an array of sensors that is lowered to just above the bottom of the ocean to take a continuous profile of the water column.  Moments after the CTD reaches the bottom it is brought back to the surface and the deck hands bring it back on board the ship.  From here, the scientific crew can analyze the data from the CTD to determine the water conditions for the drop area.  On some expeditions, the CTD is fitted with a device that actually takes water samples at the different depths for chemical and biological analysis.   This information allows the scientists to get a complete picture of the water column where the traps are set and where the fish live.

What is a CTD? CTD stands for Conductivity, Temperature, and Depth.

Another instrument that is used by the ship is the Expendable Bathythermograph or XBT.  This device was used by the military for many years to measure the temperature of the water at various depths.  The most interesting thing about this probe is how it is deployed.

Warren Mitchell, a fisheries biologist for NOAA’s Beaufort Laboratory, decided it would be a good idea for me to be trained firsthand to deploy this vital instrument.  The first thing I had to do was put on my hardhat and safety vest and step on to the recovery deck.  At that point Warren called up to the bridge to ask for permission to drop the XBT.  The officers on the bridge gladly gave us permission and Warren then got me into a launching position with my feet spread apart and my elbow braced on hip.  The CO then happened to walk by and asked me if I had my safety glasses on, to which I immediately said yes.

It was at this point that Warren gave me permission to launch the XBT.  I was excited.  I was ready.  I could not wait for Warren to give me the signal.  The only problem was I did not know the signal and I could not find the trigger.  I did not know what to do.  I was getting worried.  Warren then repeated the orders “launch”.  “How?” I replied.  Tip the barrel forward, lean forward, he replied, and the XBT slid out of the tube into the water.

The joke was on me.  Here I had been led to believe that this was going to be some grand launch something just shy of the space shuttle taking off into space.  The reality was that the XBT just falls into the water.  Very non-exciting for me but everyone on the boat laughed for hours.  So did I.  It is good to be treated like one of the family.  After our final set of traps for the day, I ventured out to see what it is like to work in the acoustics lab.

Warren Mitchell NOAA Scientist instructs Paul Ritter on the proper use of the XBT.
Warren Mitchell NOAA Scientist gives instruction to Paul Ritter on the proper deployment of the XBT.

Personal Log

Monday 7-22-13

Nurse shark outside chevron trap.
Nurse shark outside our chevron trap.

To this point this expedition has been so amazing.  Would you believe there are 3 people aboard the NOAA Ship Pisces that live or once lived within 60 miles from my home town? Crazy I know.  We have had only one medium sized squall to this point with 3 to 5 foot seas.  We have brought up traps with tons of jellyfish, in which I got a nematocyst (jellyfish stinging cell) to the hand.  It was not too bad but I did feel a slight burning sensation.

We have had a number of different types of starfish, all of which I have never seen.  One particular trap that we sent to the ocean floor, while upon retrieval did not have any fish, but did have a secret to share.  After Julie Vecchio, one of our volunteer scientists replayed the video cameras that are on the top of the trap, we discovered that a nurse shark had been trolling the area around our trap. I have seen so many amazing things.  Several days ago we were hauling traps and just as we brought our trap up there was a sea turtle that came up to the boat.  I snapped a couple of photos, as quick as I could and then went right back to work.  It was not two minutes later and I saw a baby sea turtle the size of a fifty cent piece.  Immediately, the first thing that came to my mind was thought of Crush and Squirt from Disney’s Finding Nemo talking to me.

Crush: Okay. Squirt here will now give you a rundown of proper exiting technique.

Squirt: Good afternoon “Paul”. We’re gonna have a great jump today. Okay, first crank a hard cutback as you hit the wall. There’s a screaming bottom curve, so watch out. Remember: rip it, roll it, and punch it.

 Paul: Whoa! Dude! That was totally cool!

Turtle off the port bow.
Turtle off the port bow.

Tuesday July 23, 2013

Somewhere in the middle of the night the wind picked up and so did the waves.  I share a stateroom with Zach Gillum a graduate student from East Carolina University.  This kid is amazing.  We really have become great friends.

One of the great things about this trip is to be totally immersed in an expedition with like-minded people. We will all hang around waiting for traps, or eating dinner and start conversations about some environmental issue or ecological principle.  I sure wished I lived closer to my new friends.  Anyway, our stateroom window is about 4 foot above the waterline.  Many times during the night, our window was under the water as a wave passed by.  When we woke up, the wind and waves increased.  A four to seven foot wave is enough to make many run for the toilet.  So far so good for me when it comes to sea sickness.

I just hope we don’t find any bigger waves.  We gathered on the aft deck as we usually do but we delayed deployment, waiting for improvement in weather conditions.  The major problem we had was with larger waves comes the possibility of the traps bobbing up and down on the ocean floor.  With adverse conditions on pick-up, we are also more likely to drag traps across the bottom.  We set the first six traps, pulled them up and just as we had suspected not many fish.  Around 1:00 P.M. Zeb Schobernd, our Lead Scientist, made the decision to head to another location.   It just goes to show you that when you are at sea, you need to follow the 3 F’s.  Flexibility, fortitude, and following orders.

Waiting to work.
Waiting to work.

Did You Know?

Did you know that a jelly fish’s nematocyst are like mini speargun?

These little stinging cells fire when they come in contact with the surface of and organism.  Some jellyfish tentacles can contain up to 5000 or more nematocyst.

Paul Ritter: Teamwork, July 20, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard the NOAA Ship Pisces
July 16– August 1, 2013 

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 20, 2013

Weather Data from the Bridge

7-20-13 ship data

Science and Technology Log

OLYMPUS DIGITAL CAMERAEach day the fish traps aboard the NOAA Ship Pisces are baited and prepared with cameras, and sent to the ocean floor where they must sit for ninety minutes.  It is necessary to keep this time consistent for all locations and traps so we can compare apples to apples.  We call this a “control variable”.  The particular parameter that someone measures that is a constant and non-changing point of comparison in an experiment or scientific observation is a controlled variable for consistency.

After being on the bottom for the time allotted, the officers on the bridge drive the ship back to the number one trap and drives alongside the trap’s buoys.  Approximately, half way down the ship is the side sampling deck.  From the side sampling station, approximately halfway down the ship, we take a grappling tied to a long rope and hurl it over the side, aiming between the two buoys. It is important that we hit it on the first attempt.

If we miss, the ship has to take vital time to maneuver around to make another attempt at the buoys.  Have we missed?  Honestly, yes but only a couple of times.  If we have done our job correctly, we pull in the grappling hook and with it the buoys, and rope.  The buoys are then unhooked from the rope and the rope is threaded into a pot hauler, which is a large tapered wheel that grabs onto the rope without slipping.  The pot hauler then hydraulically pulls the rope and trap up to the surface.  Once at the surface, another hook and winch is connected to the trap and the entire rig is pulled up on the side sampling deck.  It is at this time that our team attacks the trap by taking off the cameras and unloading its cargo of fish.  If we have fish, they are taken to the wet lab and all the measurements are taken.  Once empty, the trap is carried to the main aft deck and prepared for the next round of trapping.  It really is a lot of heavy work but it is all worth it to understand the ecology of our ocean reefs.

Personal Log

OLYMPUS DIGITAL CAMERA
Patrick and I Working on a Red Snapper

7-20-13

Today started around 12:30 am.  It was not something that I intended to do.  The night before we went to bed around 10:00 pm.  I was sore and very tired from the long and hard day we had fishing.  For some reason I woke up and looked out the window and saw that it was very bright outside.  I thought it was daybreak and it was time to get up.  I looked at my clock and it said it was 12:30.  But that could not be.  It was too light outside for just pass midnight.  I actually thought my clock was broke so I fired up my computer to check the time.  Sure enough, it was 12:30.

The moon was so bright and reflecting off of the water in a way that the light was coming right into my room.  Crazy.  After the confusion, I finally made it back to sleep.  Around 5:30 my internal alarm clock went off.  I actually never need an alarm clock to wake up, ever.  For some reason I always have been able to just think about when I want to get up and I do.  Anyway, I got up, brushed my teeth and headed to work.

OLYMPUS DIGITAL CAMERA
Our Team in the Wet Lab

At 6:15, I met up with my brothers and sisters of the trap setting team which consists of Doug Devries – NOAA Scientist; Patrick Raley – NOAA Scientist; Jenny Ragland – NOAA Scientist; Julie Vecchio – volunteer Scientist; Zach Gillum – graduate student / Scientist, and me – the new guy scientist.  Have you ever watched Star Trek?  Usually each show’s scientific mission consists of Captain Kirk, Mr. Spock, Bones, Lt. Uhura, who are all in one color uniform, and a new guy who is in the red shirt.  The mission goes something like this.  Captain Kirk will say “Mr. Spock go check out the nondescript rock.  Bones see if you can get some readings on that green flower over there, Uhura please open up a channel to the ship, and New Guy, go check out that purple pulsating blob over next to the cliff.”  I really hope these guys don’t watch Star Trek…..

To be completely honest, it is nothing like Star Trek at all.  Our team is amazing.  I am very humble that they have accepted me into their family.  They are so fun to be around and I could not be more thankful for their friendship and guidance.  Each of us has to play many vital roles in the mission. This expedition would not work if we did not have each other to rely on.  I don’t want to let my teammates down, and I will do anything to make sure that does not happen.

Anyway, back to the traps…..  We set our first set of traps of the day and ninety minutes later we discovered that our return was not very good.  Our second set of traps, on the other hand, were much better and netted many fish.  Some of the fish included Black Sea Bass, Grey Trigger, Tomtate, White Grunt, and one of the most desirable fish on the market, the Red Snapper.  Red Snapper is a fish that can grow upwards of 40 lbs. and live as long as 50 years if it can escape being caught.  This amazingly beautiful red fish has had much pressure from commercial and sport fishermen and as a result their numbers have dwindled.  After speaking with Zeb Schobernd, our mission’s Chief Scientist, it is his hope that due to strict regulation of the harvest of the species, we will see an increase of the population.  The data we are collecting will help develop a better survey for reef fish populations in the future, especially grouper and red snapper..  Lunch was at 11:00 and what a lunch it was.  Crab legs, and prime rib.  Man, the crew of the Pisces eats very well and I am thankful.  My wife is a great cook, and I would say that the ship’s chief steward is a close second.  After lunch, we quickly we set our third series of traps and were able to increase our catch exponentially.  Dinner consisted of Jamaican jerk chicken, pork roast, green beans, lettuce salad, and cheese cake.  After dinner I took a little time to visit the team in the acoustics lab.  The acoustics lab is responsible for mapping out the ocean floor to determine where we should put traps out the next day.  I will probably touch more on them in my next blog.

Swabbing the deck
Swabbing the deck

Did you know?

Did you know that NOAA ships do not just stay in one particular location of the world?

The Pisces has sailed from Canada, to the Gulf of Mexico, and down to Venezuela and back.  Not to mention the Pisces is one of the fastest ships in the NOAA fleet capable of reaching speeds greater than 17 knots with a following current.

Paul Ritter: Getting Ready to Sail with the Pisces and Her Crew! July 16, 2013

NOAA Teacher at Sea
Paul Ritter
Almost on board NOAA Ship Pisces
July 16 – August 1, 2013

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise:southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 16, 2013

Personal Log

My name is Paul Ritter and I am Biology and Earth Science teacher at Pontiac Township High School, in Pontiac, Illinois.  I have an amazing wife by the name of Jodee and am the proud papa to my two girls, Baylee and Taylor.  Even though I have only been gone for one day, I miss them already.  Pontiac is located 130 miles south of Chicago on Interstate 55.  Our community, where my wife, children, and I were born and raised,  is the epitome of Corn Town USA.  With that being said, our community does have several distinctions that set us apart from being a typical agricultural town.  Pontiac is home to the National Pontiac Automobile Museum, the Wall Dogs Museum for international artists, the National Route 66 museum, and a museum call the War Museum that showcases our service men and women who were in all of the major wars of the USA.  Our town is the number two tourism town in Illinois behind Chicago.  The number two largest landfill in the USA calls Pontiac home.  We have a maximum security prison that houses around 1,200 inmates.  Caterpillar, among other industry, is a valued company that hangs its hat in Pontiac. It hardly seems possible but this is my 20th year of being a teacher. You know, for me teaching is just as exciting today as it was that first year in the classroom.

The Ritter Family
The Ritter Family

Being from the Midwest, people from my region associate NOAA with our planet’s weather.  In reality, NOAA is so much more.  NOAA plays a major role in Environmental Satellite Data, Marine Fisheries, Oceans, Weather, and Atmospheric Research.  NOAA is so vitally important to the sustainability of our world.   It is for this exact reason that I applied to be a NOAA Teacher at Sea.  It is my goal to find real ways to integrate the amazing work of NOAA into our classes. My specific mission is aboard the NOAA Ship Pisces with the Southeast Fishery-Independent Survey (SEFIS) group which is a fishery-independent monitoring and research program targeting reef fish in southeast U.S. continental shelf waters.  Initiated in 2010, SEFIS works cooperatively with the long-term and ongoing Marine Resources Monitoring, Assessment, and Prediction (MARMAP) sampling program to:

  • provide fishery-independent data to support reef fish stock assessments
  • perform reef fish ecology research, including, but not limited to
    • assessment of spatiotemporal distribution
    • habitat affiliation patterns
NOAA Ship Pisces was launched at VT Halter Marine, in Moss Point, Mississippi on December 19th, 2007, christened by Dr. Annette Nevin Shelby, wife of Senator Richard Shelby of Alabama. Commissioned on November 6, 2009, Pisces is the third of four new Fisheries Survey Vessels to be built by NOAA. The ship was named Pisces by a team of five seventh grade students from Sacred Heart School in Southaven, Mississippi.
NOAA Ship Pisces was launched at VT Halter Marine, in Moss Point, Mississippi on December 19th, 2007, christened by Dr. Annette Nevin Shelby, wife of Senator Richard Shelby of Alabama. Commissioned on November 6, 2009, Pisces is the third of four new Fisheries Survey Vessels to be built by NOAA. The ship was named Pisces by a team of five seventh grade students from Sacred Heart School in Southaven, Mississippi.

Monday July 15, 2013

I woke up extra early for some reason around 5:00 A.M even though the night before was a late night with the final night of my daughter Baylee’s play, the Little Mermaid.  Excited and anxious about leaving on my great expedition, I knew I needed to get out of the house or I was going to wake everyone else.  I headed to town and filled up the car with fuel.  Wanting to waste some time, I headed to some of our local stores to get some last minutes for the trip.  Around 8:30, Jodee and the girls drove me to the airport in Bloomington, Illinois.  It was exciting and sad at the same time.   I was very much looking forward to my expedition, but I wished I could take the family to be a part of the adventure.  We have had so many adventures together and I know they would have had a great time.  Maybe next time.  I flew from Bloomington to Chicago O’Hare International Airport and then finally landing in Jacksonville, Florida.  The ride from Bloomington to Chicago was quick and easy but the same could not be said for the next leg of the flight to Florida.

Our plane to Jacksonville was around 30 minutes late to land in Chicago and then when finally aboard we taxied around the runway for about 25 minutes.  It felt like we were on a behind the scenes tour of O’Hare.  I was waiting for the pilot to come over the announcements and say “Ladies and gentlemen if you look to your right you can see Lake Michigan”.  Finally in the air, somewhere over Georgia we hit the turbulence.  Man it was bumpy.  While this was going on, I took the opportunity to get to know the guy who was next to me in seat 11B.  Ironically, we went to the same college at the same time and lived in the same dormitory.  Small world.  We finally arrived in Jacksonville and off to the hotel I went.  You know it is funny,  I have been so fortunate to be able to travel to some amazing places, but I have never been on a ship in the ocean for pleasure or otherwise.  I am not really sure if I will get sea sick or not.  I’m thinking not, but I am guessing I will find out very quickly.

Tuesday July 16, 2013

Dr. Zeb Schobernd and the rest of the scientists are making their way down to meet me in Jacksonville to pick me up at the hotel.  Here is another very cool part of this trip….  Zeb’s hometown, which is Bloomington, Illinois, is only 35 miles from where my family I live.   From there we are headed to the Pisces which is in port to spend our first night on board.  I look forward to getting to know my new shipmates.

Did You Know?  NOAA does more than just weather? In fact, NOAA is involved in every aspect of our amazing world.  Here are some of their divisions. ·  National Environmental Satellite, Data, and Information Service ·  National Marine Fisheries Service ·  National Ocean Service ·  National Weather Service ·  Office of Oceanic and Atmospheric Research  

Jennifer Petro: Getting Ready to Set Sail, July 1, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA ship Pisces
July 1 – July 14, 2013

Mission: Marine Protected Area Survey
Geographic Area of Cruise: South Atlantic United States
Date:  July 1, 2013

Weather Data:
Air temperature: 28 Degrees C (82 Degrees F)
Barometer: 1013.1 mb
Humidity: 74%
Wind direction: SW
Wind speed: 11.29 knots
Water temp: 29.6 C
Latitude: 30.39°N
Longitude: 81.43°W

Science and Technology Log

Hello from aboard NOAA ship  Pisces.  We are gearing up to set sail so I will take this opportunity to introduce myself before we get underway!  My name is Jennifer Petro and I am an 8th grade Science Teacher at Everitt Middle School in Panama City , Florida.  I am particularly excited about this mission as I am working alongside scientists from the NOAA Southeast Fisheries Science Lab located on Panama City Beach.  I will also be working with scientist from Harbor Branch Oceanographic Institute as well as Woods Hole Oceanographic Institute. The focus of this mission is to survey fish and invertebrate populations in Marine Protected Areas (MPAs) from Florida to North Carolina.  We will also be doing mapping of new areas to determine future MPAs.

The scientist have been busy setting up and calibrating their equipment.  We will be using an ROV, Remotely Operated (underwater) Vehicle, to view the MPAs.  There are several cameras attached to the ROV which the scientist will use to identify and count species.  There are many feet of wire and cables being set up in the dry lab.

DSCF1919
NOAA Scientists Stacey Harter and Stephanie Farrington setting up equipment for ROV dives during our Marine Protected Area surveys.

Personal Log

Currently we are still at port and are scheduled to set sail in a few hours.  The Pisces is a rather comfortable vessel.  We arrived yesterday afternoon so I already have one night’s sleep on board under my belt.  I imagine things will change when we are out at sea, but for the moment she is gently swaying in port.  I share a room with one of the scientists and we in turn share a bathroom.  Pretty great so far! The Pisces is currently moored at NAS in Mayport , FL and is dwarfed in size to all of the naval vessels that surround her!

DSCF1922
NOAA Ship Pisces
NOAA ship Pisces
NOAA ship Pisces

Today’s post is going to be rather short.  My excitement is definitely building.  we set sail in just about an hour so my next post will be from sea!

Fair weather and calm seas to all.

Elizabeth Nyman: The NOAA Corps, June 4, 2013

NOAA Teacher at Sea
Elizabeth Nyman
Aboard NOAA Ship Pisces
May 28 – June 7, 2013

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: June 4, 2013

Weather Data:
Wind Speed: 18.11 knots
Surface Water Temperature: 27.51 degrees Celsius
Air Temperature: 18.2 degrees Celsius
Barometric Pressure: 1013.1 mb

Science and Technology Log

The weather has been rather difficult here over the past day or so. Yesterday, the winds were so bad that we had to cancel fishing from our bandit reels. We had winds up to 23 knots, or about 26 miles per hour! So far today’s weather seems to be much the same, so no fishing today either.

Gray day
It’s been a very wet and gray couple of days at sea.

We keep putting the camera array in the water, even though we can’t fish. But with the winds, waves, and current as strong as they are, the team has to be much more careful about getting the camera in the water and getting it back out again. The cameras are very expensive, so they have to take care that nothing happens to them. It’s been taking a couple of tries to get the boat lined up enough to get the camera array out of the water. Thus, the whole process takes much longer in the rougher weather.

deploying camera array
This is me helping to deploy the camera array in better weather.

Since the science has been a little slower than usual, I figured that I would use today’s post to talk a little bit more about the crew in command of the Pisces, and how the ship gets to these sometimes remote places to conduct our scientific research.

bridge window
The view from the bridge. Forecast: rain.

The ship’s officers come from the NOAA Corps. NOAA has its own commissioned officers, 321 in total, spread across 19 ships and 12 airplanes. I’d never known that NOAA had its own officers, so I’ve been fascinated to learn how the process works. In some ways, it’s similar to any other uniformed branch of service, with basic eligibility requirements – US citizenship, pass a medical exam, etc. There are also some that are a little more specialized to NOAA, though. For example, you need a bachelor’s degree, with at least 42 credit hours in “science, math, or engineering course work pertaining to NOAA’s missions.”

Applications are competitive, with those for the next cycle being accepted until August of this year. You have to be able to get and maintain a Secret level clearance to be a NOAA Officer, so they’re selective for a reason.

The officers have to be aware and involved with the scientific work on board. They’re responsible for putting the ship into position for the operations to occur. The scientific team selects sites for survey out here in the Gulf, but it’s the ship’s officers that put us in position to drop the camera and/or go fishing, when the weather allows. They also have to be aware of what’s going on with the science team, to make sure that our fishing lines don’t catch on the bottom of the boat, or that the cameras aren’t damaged when the deck crew raises and lowers the array.

The science only happens when everyone works together.

Personal Log

Life on a boat is different. There’s the obvious, with it taking a while to learn to walk again or with seasickness, if you’re so inclined. (I’ve been spared that misfortune so far, even with the bad weather!)

One thing unique to boats is the amount of different doors.

Doors?

There are a series of watertight doors, designed to protect the rest of the ship if a portion floods. These doors would hopefully contain any problems that occurred and keep the ship afloat. All of the doors that open to the outside are watertight.

watertight door
These doors can be very loud when you open them, so you have to be careful. The ship has crew working 24 hours a day, which means there’s always someone sleeping.

In addition to the watertight doors, some of the interior doors act as fire boundaries. They’re very, very heavy – I can turn the handle and lean into them and they don’t move. It’s heavy for a reason, though. We have A60 doors on the Pisces, which have been designed to withstand an open flame for up to an hour.

Not all interior doors are fire boundaries though, just as not all doors were meant to be watertight. For example, in the hallway that leads to my bunk, the stairwell to my deck has a fireproof door but my room itself only has a “normal” door. The other end of the hallway opens up to the outside, so it has a watertight door.

I’m definitely getting a workout every time I go in and out of a room!

Did You Know?

The United Nations has a specialized agency devoted to maintaining safety in maritime shipping called the International Maritime Organization, or IMO. The IMO regulates everything from pollution from ships to the design of the ships themselves.

Marsha Skoczek: There’s No Place Like Home, July 17, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6-19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of Florida.
Date:  July 17, 2012

Location:
Latitude:  30.4587N
Longitude:  80.1243W

Weather Data from the Bridge
Air Temperature:  26.8C (80.24 F)
Wind Speed:  10.8 knots (12.43 mph)
Wind Direction:  From the SE
Relative Humidity: 79 %
Barometric Pressure:  1017
Surface Water Temperature:  28.9C (84 F)

Science and Technology Log

South Atlantic MPAs

During the thirteen days we have been out to sea doing research, we have sent the ROV down both inside and outside of five different MPAs  from Florida to North Carolina and back again.  This allows the scientists to compare fish populations and densities both inside and outside of the MPAs.  Since we left Mayport Naval Station in Jacksonville, Florida, we have been averaging a distance from shore of between 50 and 70 nautical miles.  It will be fourteen days until we see land once again.  From this distance, the ocean seems to stretch on forever.  Gazing at the beautiful blue water, it is easy to forget an entire other world lies beneath us.  Not all of the ocean floor is flat, there is a small percentage that does have some elevation and structure.  The type of structures on the ocean floor determine what types of species will live there.

For this mission, we have mainly been studying areas within the mesophotic zone of the ocean ranging from 40 to 150 meters (130 – 500 feet) below the surface.  Temperatures here range from 12 – 23 degrees Celsius (50-70 F). Very little sunlight reaches the mesophotic zone, but zooxanthallae are still able to photosynthesize at this depth.  Corals and sponges will also filter feed using the abundant particulate organic matter drifting in the water column they will filter out and eat the plankton.

Tomtates hide in crevices.

The multibeam images help the scientists determine where to launch the ROV.  Areas with a change in elevation tend to indicate that there are rock structures below the surface.  It is around these rocks that the majority of fish prefer to live, so these are often the areas at which the scientists chose to collect data.

The ridges we have seen range in height from 1 meter to 5 meters.  The fish really like areas in the rock that have cracks, crevices and overhangs for them to hide.  Many times as the ROV approached the fish, they would scurry into a nearby hiding place.  I can’t help but imagine that the ROV with its bright lights and unnatural features must seem like an alien spacecraft to these fish that have never had contact with humans before.  But ROVs aren’t the only thing that these fish need to hide from.  I noticed that the larger fish that are toward the top of the food chain were not as skittish as the smaller reef fish.  Sometimes amberjacks and scamp would even follow the ROV as if curious about we were doing.  And lionfish never budged as the ROV passed unless it happened to be sitting in the ROV’s path.

Lobster hiding in rock. Notice how his coloring resembles the reef behind him.
Eel hiding under sponge
Scorpionfish against Diodogorgia

The fish are not the only living things that like these rocky habitats.  Usually when there are rocky surfaces, we find sponges, corals, hydroids and algae growing on top.  These creatures not only give the reef its beautiful appearance, but they also help to provide habitat as well.

Notice how the flounder blends in with the sand?
Sand tilefish make their burrows in the rubble under the sand.
Spider crabs on sandy bottom

Species that live in the sandy bottom habitat have their own set of adaptations. Animals such as the flounder and sea cucumbers have skin colorations that match the speckled appearance of the sand itself.  Sand tilefish carve out burrows from the rubble beneath the sand.  The spider crabs have a carapace that mimics the texture of the rocks it lives near.  The stingrays, with their low profile, sit on the sandy bottom and use their mouth to scour the sand in search of crabs and clams to eat.

Lophelia at artificial reef
Anemone at artificial reef
artificial reef

Artificial habitats are also full of life.  At the shipwreck we visited, not only did we see fish living here, we also saw anemone, tube worms, Venus flytrap anemone, hermit crabs, eels, Lophelia coral to name a few.  Other man-made habitats can help rebuild coral reefs.  John Reed has placed reef balls on the Occulina Reef in an effort to rebuild the original reef damaged by bottom trawling. These reef balls provide a structure for the corals to anchor themselves to and give the fish places to hide. Even oil platforms can be considered as an artificial reef structure giving a wide variety of species a sturdy structure to call home.

 

Personal Log

The Science Party

While aboard the Pisces I have learned to identify well over 100 different species of fish and invertebrates.   Andy and Stacey quiz me as we are watching the live footage, and I think I finally can tell the difference between a reef butterfly and a bank butterfly.  John frequently hands me a text book and challenges me to look up the species we see on the ROV live feed.  I am extremely appreciative of everyone being so helpful and sharing their knowledge with me.  Each of the scientists have taken the time to answer all of the question that I have.  The crew of the Pisces has also been wonderful to work with.  Everyone has done their best to make me feel at home. This has been such an amazing experience, I am excited to bring it all back to the classroom this fall!  I will never forget my time on the Pisces.

Ocean Careers Interview

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed John Reed and Stephanie Farrington.

John Reed

Mr. Reed, What is your job title?  I am the Research Professor in the Robertson Coral Reef and Research Program at Harbor Branch Oceanographic Institute (HBOI) at Florida Atlantic University (FAU).

Why did you decide to become a marine biologist?  I always knew that I wanted a career where I could do my work outside.  My biggest influence came when I was around 13 – 14 years old, I remember watching “The Undersea World of Jacques Cousteau” every Sunday night with my family and thinking that’s what I want to do!

What type of responsibilities do you have with this job?  Currently I am studying deep coral reefs as part of the Robertson Coral Reef and Research Program and several NOAA grants. My focus is primarily off the Florida coast and up through the Carolinas.  My objective is to protect and conserve deep sea coral ecosystems.  Around Florida alone, our group has discovered over 400 individual deep coral mounds some over 300 ft tall.  We have calculated that the area of these deep water reefs may exceed that of all the shallow water reefs in the United States combined.  These reefs habitats are incredibly diverse with hundreds of different species of bivalves, crustaceans and fish just to name a few.  Deep water hard corals grow very slowly, only about half an inch per year, core sampling has dated deep coral mounds at over 1,000,000 years old.  It is vital that we protect these deep reefs from destructive fishing methods such as bottom trawling or energy projects.

I also manage the archives for the biomedical marine division at Harbor Branch where we have over 35,000 deep and shallow marine specimens from around the world.  Each specimen has video footage of it in its natural habitat (in situ from the Johnson-Sea-Link submersible), still photos, museum samples as well as several smaller samples for our biomedical research.  We have discovered novel compounds from some of these marine organisms which may be future cures for cancer or other diseases.  Currently our chemists and biologists are working on the chemical compounds that we discovered in a deep water sponge that grows off Florida.  In the lab it is potent against pancreatic cancer which is a very deadly disease.

What type of education did you need to get this job?  I earned my Bachelors Degree in chemistry and biology from University of Miami and my Masters Degree in marine ecology from Florida Atlantic University.  My Masters Thesis was on The Animal-Sediment Relationship s of Shallow Water Lagoons and took me four years to study and wrote.  While working on my thesis, the Smithsonian had a branch at HBOI, so I would ask the scientists there for help in identifying the animals in my study.  Working with these scientists helped me make the connections that eventually get my job with HBOI.

What types of experiences have you had with this job?  I have been fortunate enough to travel the world visiting over 60 countries and collecting thousands of marine samples for biomedical research at HBOI.  I have been able to dive in the Johns0n-Sea-Link submersible to depths of 3000 ft and scuba dive to 300 ft.  My research on the deep water Oculina coral reefs off the east coast of Florida allowed me to use our submersibles as well as lock-out diving to study the growth rate and fauna associated with these deep water coral.  It is very humbling that my research on these reefs helped to establish the Oculina Marine Protected Area which was the first marine protected area in the world to protect deep sea corals, and more recently the 24,000 sq. mile deep sea coral habitat area of particular concern off the southeastern U.S.

What advice do you have for students wanting a career in marine biology?  Even if people tell you there are no jobs in marine biology, find a way to do it!  Follow what you are passionate about.  Get experiences as an undergrad, do internships, build your resume.  Make the effort!  Do things that are going to set you above everyone else.

When looking at graduate school, compare the course offerings of several universities.  Research the Principal Investigators (PIs) at those same schools and make contact with them.  Get a position as a Teaching Assistant or Lab Aide to build on your resume.  All of these things will help you to get the job you want once you graduate.

 

Stephanie Farrington

Ms. Farrington, What is your job title?  I am a biological scientist for John Reed at Harbor Branch Oceanographic Institute.

What type of responsibilities do you have with this job?  I accompany John on his research expeditions and help collect data.  When we return to HBOI, I analyze the data and program everything into GIS maps to give us a visual layout of the different habitats we saw and the species that live there.

What type of education did you need to get this job?  I earned my Bachelors Degree in biology and marine science from the University of Tampa.  My Masters Degree is in marine biology from the NOVA Southeastern University Oceanographic Center.  My thesis was on the Biogeography of the Straights of Florida which gave me a solid background in the marine invertebrates of our region.  This is one of the reasons John hired me to work with him.

What types of experiences have you had with this job?  I have been fortunate to travel in our Johnson-Sea-Link submersible six times, twice sitting up front in the bubble, one dive went down to 1700 feet below the surface.  I have also been on 8 research cruises since I started at HBOI two years ago.  I also had the opportunity to sail on the Okeanos Explorer for three weeks.

What advice do you have for students wanting a career in marine biology?  Marine biology is about collecting and analyzing data and doing research and there is so much cooler stuff in the ocean than just dolphins!

Marsha Skoczek: The Remotely Operated Vehicle, Our Eyes at the Bottom of the Ocean, July 13, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6 – 19, 2012

 

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of North Carolina
Date:  July 13, 2012

Location:
Latitude:  33.26104N
Longitude:  76.54810W

Weather Data from the Bridge
Air Temperature:  28.1C (82F)
Wind Speed:  4.5 knots (5.2mph)
Wind Direction:  From the SSE
Relative Humidity: 78 %
Barometric Pressure:  1021.1
Surface Water Temperature:  28.1C (82F)

Science and Technology Log

ROV with labels, photo credit UVP

Rather than fishing for multiple samples of each species from every Marine Protected Area (MPA) we stop at, the scientists opted to use a Remotely Operated Vehicle (ROV) to gather their data.  This also allows Stacey Harter and Andy David to get real time footage of the animals that inhabit each dive site as well as a more complete picture of the habitat itself.  Not only are we collecting data on the fish, but John Reed and Stephanie Farrington are taking data on all of the invertebrates we see such as sponges, corals, hydroids, crinoids, sea stars, urchins, and lobster. The ROV we are using for this expedition is called the Phantom S2.  It weighs about 300 pounds when out of the water with the dimensions of 24 inches in height, 55 inches in length and 33 inches in width.  The Phantom S2 uses the tether to power the two ½ horizontal horsepower electric motors and the two vertical 1/4 vertical horsepower motors and has a maximum speed of 2 knots (2.3mph) and because of the length of the tether, is limited to a depth of 1000 feet.  The ROV is equipped with a high resolution video camera with a 12x zoom as well as a digital still camera with strobe to collect high quality color images of anything the scientists need for their research.  On this cruise we are averaging about 450 still images and about seven hours of video daily.  Two lasers mounted at 10 cm wide help the scientists measure specimens without bringing them to the surface.

Setting up the ROV onboard the ship takes about a day.  This requires the ROV team of Lance Horn and Glenn Taylor from the Undersea Vehicles Program out of University of North Carolina Wilmington to arrive at least 24 hours in advance of departure so that they can have the ship’s crew load all of the ROV equipment with the crane.  From there they set up the components in the dry lab and begin running the tether cables from the ROV, which is located on the deck, to the computer, which is located in the dry lab.  We also have to run a line up to our GPS device  and our VHF radio that are both installed on the flying bridge, and yet another cable to transfer the digital images to the computer, and the power line for the ROV engines.  Once the research gets underway, it is not uncommon for Lance and Glenn to spend as many as 12 hours a day working on preparing for the dive, operating the equipment during the dive, and then processing all of the data after the dive.  It is hard work and takes great attention to detail.

The hydrophone gets lowered into the water while the ROV is on a dive.

In order to communicate with the ROV while it is underwater the operators deploy a Trackpoint hydrophone over the side of the ship which must be taller than the hull of the ship, which on the Pisces is over 28 feet tall.  This hydrophone picks up the X,Y,Z coordinates from the ROV then uses the data from antenna mounted on the fly bridge of the ship to create GPS coordinates for the ROV.

This information is plotted into the Hypack mapping system and is used by both the ROV driver as well as the bridge of the ship.  This helps the officer on deck know what heading the ship needs to be traveling so the ROV driver can maneuver the ROV to where the scientists want to go. Depth is calculated by the delay in time that it takes the hydrophone to get a signal from the ROV.

Lance Horn piloting the ROV

Driving the ROV takes great skill and concentration.  Not only do you have to watch the ROV display footage to make sure you don’t run into anything, but you also have to constantly be aware of your heading so you don’t get the ROV too far off course.  The tether keeping the ROV in communication with the ship also has to be monitored.  Getting the tether wrapped around a rock overhang or part of a mast on a shipwreck is of great concern.  If the tether is severed or becomes too entwined, the ROV could be lost.  The ROV driver is in constant contact with the crew on the back deck who are watching the tether line as well as the bridge so that any necessary course corrections can be made quickly and efficiently.  Having too much tether in the water can also lead to tangling, so the tether is marked in 50 foot increments, which allows the deck crew to know how much of the tether line to feed into the water.  On our cruise, the longest the ROV has been below the surface has been 3.5 hours. Because of the intense concentration it takes to drive the ROV, four consecutive hours is the limit that a driver can do in one sitting.  If the dive needs to be longer than four hours, Lance and Glenn would trade duties, so if Lance was driving, he would rotate out onto the deck to monitor the tether while Glenn takes over at the controls.

The ROV control console

The ROV requires three consoles of components to operate.  The first is the ROV control console.  This is where the driver controls the ROV itself.  On this panel are the two joysticks that control the movement of the ROV through the water.  The joystick on the left controls the up, down and side to side motion.  The joystick on the right controls the forward, reverse, as well as left and right.  There are also control switches to tilt the camera so that it is hanging vertically within the cage to take pictures of the ocean floor.

The scientists on this cruise want a “bottom” shot every two minutes.  This is their way of “collecting” random samples of the habitat while we are making our way along the transect line.  There are also controls switches to turn on and off the lights, turn on and off the laser, and to switch over from the video camera to the still camera so digital still pictures can be taken.  Directly above the control panel is a flat screen monitor showing the live footage from the ROV so the pilot can see where the ROV is below the surface.

A multibeam image with transect lines is loaded into the Hypack software so the ROV can be navigated to where the scientists need to collect their data.

The middle console has all of the navigation components.  There is a GPS unit displaying the coordinates of the ship at all times.   It also contains a Trackpoint acoustic tracking system that provides position data for the ROV.  This is not only helpful to the driver, but the scientists take waypoints throughout the operation to help them match up the data they recorded while watching the live video feed from the ROV with the still images, and the temperature and depth data taken by a small CTD attached to the ROV cage.

Also on this cabinet is a rackmount computer using Hypack software.  The scientists can load the multibeam sonar information and the transect coordinates into the navigation computer.  This software gathers and logs information from the ROV as well as other navigational electronics so the driver sees a real time image of where the ROV is in relation to the ship and features of interest on the sea floor.  This also gives both the driver and the scientists an idea of where we are in relation to the transect line.  If multibeam images were available and downloaded into the navigation computer, the chief scientist can use those to adjust our heading off the transect line if she feels the structures they need to study are on a different heading than originally plotted.

The ROV video console

The third console contains the controls for the digital still camera as well as the digital recording devices.  Steve Matthews, part of the science team, has been manning the still photography on this cruise.  When the scientists see something they want a close up picture of, they ask the driver to stop the ROV and position it so the still camera can be zoomed in for a close up shot.  This will help the scientists to make the proper identification of all of the different species we photographed while on this cruise.

For this research trip, video and still images are all the scientists need to assess the efficacy of the MPAs.  The Phantom S2 has other tools that can be used depending on how the scientist needs to collect their data.  The ROV can be fitted with a sonar device which can be used to located objects, such as ship wrecks or other lost items, at ranges farther away than the video can see.  Scientists can also elect to use the claw for sample collection, a plankton net to gather plankton, and a fish collection suction device.

Personal Log

Myself driving the ROV
We sent styrofoam cups to a depth of 250m. The cup on the right is the original size. As you can see my cup, at left, shrank by more than half.

The bottom of the ocean has such incredible diversity!  Before being invited to be a part of this research expedition, I had only read about all of the amazing things we have seen in text books.  The ROV has allowed us to travel to depths that are inaccessible to recreational scuba divers and to visit sites that not too many other people have been to.  Every day we see different species and habitats.  It is interesting to compare areas that are inside the MPAs with those that are outside of the MPAs.  Even though each day might seem like we are doing the same thing over and over again, I am anxiously awaiting a glimpse of something that I have never seen before.  For each depth we dive to, there is a new set of species and habitat to learn about.  The deepest dive we have been on so far this cruise was at the Snowy Wreck MPA at about 25 m (833 ft) below the surface.  This location was really cool because there is an old ship wreck here that is full of corals and anemones and all sorts of fish species.  We also had a little fun while at the depth and shrunk some styrofoam cups.  Stephanie Farrington is an amazing artist and designed these fabulous cups for us each to send down to shrink.

Ocean Careers Interview

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed Lance Horn and Glenn Taylor, ROV operators from University of North Carolina Wilmington (UNCW).

Lance Horn

Mr. Horn, what is your job title?  I am the operations director of the Undersea Vehicles Program at University of North Carolina Wilmington.  I started at UNCW in 1985 as part of NOAA’s Underwater Research Center (NURC)  as a hard hat diver.  In 1987, I joined UNCW’s scuba and ROV program which has now become the Undersea Vehicles Program.

What type of responsibilities do you have with this job?  As director, I am in charge of lining up jobs for us, maintaining the budget, and finalizing the contracts from each project.  I also pilot and maintain the ROV itself.

What type of education did you need to get this job?  I graduated from the Florida Institute of Technology with an Associate’s Degree in Underwater Technologies.  In this program, we studied compressors, hydraulics, welding, scuba and underwater photography.

What types of experiences have you had with this job?  This job has allowed me to travel all over the world and to see some really cool things under the ocean’s surface.  My favorite ROV dive so far was when I went to Antarctica to map the trash dumped at the bottom of Winter Quarters Bay.  Before people realized what kind of impact indiscriminately dumping their trash overboard was doing to the habitats on the ocean floor, ships used to come into port at Winter Quarters Bay and dispose of their trash in the ocean.  This includes very large items such as 55 gallon drums, fire hoses, conex boxes, and even a bulldozer that fell through the ice!  My job was to use the ROV to create a map showing the location of the large objects so that it could be determined if it would be possible to recover these items for proper disposal.  As part of this project, we also had to take the ROV outside of the bay to have an undamaged habitat to use as a control variable for comparison with the bay.  Outside of the bay was amazing.  We were diving under six feet of ice and got to see an environment that not many others have seen, including purple worms, white sponges, and anemone.  It was beautiful.

What advice do you have for students wanting a career with ROVs?  Not every job requires a four year degree.  You can still find a good job doing something you love. I have been successful doing what I do with a two year Associate’s Degree.  Florida Institute of Technology was not an easy school.  I worked hard to earn my degree.

Glen Taylor

Mr. Taylor, what is your job title?  I am an ROV pilot and technician with the Undersea Vehicles Program and UNCW.

What type of responsibilities do you have with this job?  In addition to piloting the ROV, my primary responsibilities are to maintain the three console units that house all of the digital equipment we need to control the ROV.  This includes any rewiring that needs to be done or the replacement of equipment either for repairing broken parts or upgrading to newer electronics.

What type of education did you need to get this job?  I earned my Bachelors Degree from Clarkson College of Technology.  I went to work for General Electric in New York.  I was transferred to GE in Florida after which I decided to retire from GE and become a scuba dive master.  I went to work for NURC in St. Croix but was transferred to UNCW when the St. Croix office was closed.  This is where I hooked up with Lance in 1993 and learned to operate the ROV.

What types of experiences have you had with this job?  I have also been fortunate enough to travel the world with the ROV.  Diving at the Edisto MPA this week is probably the highlight of my career in ROV operation.  The reef features were fantastic, the water was clear, we had hardly any current, the ship was able to remain on course.  It was perfect conditions.

What advice do you have for students wanting a career with ROVs?  First and foremost, follow your passion.  What do you get excited about?  I have been driving ROVs for almost ten years and I still love coming to work each day.  To be successful in this field, you need a strong background in computers and technology.  You can be trained to drive the ROV, but strong technology skills are essential.  Another good skill to have is problem solving and trouble shooting.  Things might go wrong in the middle of a dive, you have to be able to figure out a solution right there on the spot to keep the dive going.

 

Nicolle von der Heyde, June 21, 2010

NOAA Teacher at Sea
Nicolle Vonderheyde
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Nicolle von der Heyde
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Dates: Monday, June 21

Weather Data from the Bridge

Time: 0800 hours (8 am)
Position: Latitude: 28º 09.6 minutes N
Longitude: 094º 18.2 min. W
Visibility: 10 nautical miles
Wind Direction: variable
Water Temperature: 30.6 degrees Celsius
Air Temperature: 27.5 degrees Celsius
Ship’s Speed: 5 knots

Science Technology Log

Atlantic Spotted dolphins are the graceful ballerinas of the sea. They are just incredible! The Gulf of Mexico is one of the habitats of the dolphin because they live in warm tropical waters. The body of a spotted dolphin is covered with spots and as they get older their spots become greater in number.

Atlantic Spotted Dolphins
Atlantic Spotted Dolphins
Atlantic Spotted Dolphins
Atlantic Spotted Dolphins
Atlantic Spotted Dolphin
Atlantic Spotted Dolphin

Here you can see the spots on an older Atlantic Spotted Dolphin. To read more about dolphins go to http://www.dolphindreamteam.com/dolphins/dolphins.html

Because Dolphins are mammals they breathe air through a single blowhole much like whales. Dolphins live together in pods and can grow to be 8 feet long and weigh 200-255 pounds. Like whales, dolphins swim by moving their tails (flukes) up and down. The dolphin’s beak is long and slim and its lips and the tip of its beak are white. They eat a variety of fish and squid found at the surface of the water. Since dolphins like to swim with yellow fin tuna, some dolphins die by getting tangled in the nets of tuna fishermen.

Newborn calves are grey with white bellies. They do not have spots. Calves mature around the age of 6-8 years or when the dolphin reaches a length of 6.5 feet. Calving takes place every two years. Gestation (or pregnancy) lasts for 11 1/2 months and babies are nursed for 11 months.

While watching the dolphins ride the bow wave, Nicolle and I wondered, “How do dolphins sleep and not drown?” Actually, we found that there are two basic methods of sleeping: they float and rest vertically or horizontally at the surface of the water. The other method is sleeping while swimming slowly next to another dolphin. Dolphins shut down half of their brains and close the opposite eye. That lets the other half of the brain stay “awake.” This way they can rest and also watch for predators. After two hours they reverse this process. This pattern of sleep is called “cat-napping.”

Dolphins maintain a deeper sleep at night and usually only sleep for two hours at a time. This method is called “logging” because in this state dolphins look like a log floating in the ocean.

The 1972 Marine Mammal Protection Act (MMPA) prohibits the hunting, capturing, killing or collecting of marine mammals without a proper permit. Permits are granted for the Spotted Dolphins to be taken if it is for scientific research, public display, conservation, or in the case of a dolphin stranding. The maximum ffor violating the MMPA is $20,000 and one year in jail.

Atlantic Spotted Dolphin
Atlantic Spotted Dolphin

Personal Log

The best part of this trip is all the marine life I see in the Gulf. In the past few days, dolphins have been swimming up to the boat and riding the bow wave of the ship. They are so graceful and playful in the water. In addition to the Tiger Shark seen feasting on the dead Sperm Whale, I have seen quite a few sharks swimming in the water near our ship. One, called a Silky Shark, took the bait as some of the crew was fishing from the stern of the boat (shown to the left). It was hauled up so the hook could be taken out and released back into the water. The second was a baby shark swimming near the bow of the ship as I watched the dolphins in the distance. I also saw a shark swimming near the starboard side of our ship while the deckhands were hauling up one of the camera arrays.

The fourth shark was the most exciting. As the crew was working at the stern of the ship to release a line that was caught in the rudder, I looked over the stern to see a large shark very near the surface swimming toward the starboard (right) side of the ship. I hurried to look and to my surprise it was a giant Hammerhead! I never expected to see one of these in its natural habitat. Unfortunately, by the time I got my camera out, the Hammerhead was too far away and too deep to get a clear shot, but what a sight to see!

Hammerhead shark
Hammerhead shark
The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==
The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

I often mistake the fish shown on the left for sharks. Actually they are Cobia, also known as Lemonfish. Once in a while thefish approach the boat as we are hauling fishup on the bandit reel. I have also seen bojellyfish in the water as we are working on the starboard side of the ship and I spotted a brief glimpse of an Ocean Sunfish (Mola mola) from the bridge of the ship as I was talking to our Commanding Officer (CO). I wish I could have seen this fish up close. They are the largest bony fish in the oceans and as someone on the ship described, they resemble a giant Chiclet swimming in the water.

The smallest living things I have seen while at sea are the tiny creatures that live in the Sargassum, a type of seaweed that floats freely within and on the surface of the Gulf waters. The Sargassum provides a habitat for tiny creatures that are the foundation of the food web, even providing food for some of the largest animals in the sea like whales. The picture below on the left shows a giant patch of Sargassum, while the picture on the right shows some of the creatures that live within it including tiny shrimp, krill, and very small crabs.

Sargassum
Sargassum
Creatures that live within the sargassum including tiny shrimp, krill, and very small crabs
Creatures that live within the sargassum including tiny shrimp, krill, and very small crabs

Seeing all this life has been reassuring as the oil continues to gush into Gulf waters off the coast of Louisiana, however I can’t help but think what the overall impact of this spill will be for the future of the Gulf. Will we see the negative environmental impact spread to the Eastern Gulf? Are microscopic droplets of oil and chemical dispersants infecting the food chain beyond the area that we visibly see being impacted? These questions will be answered as NOAA scientists continue to collect and analyze the type of data that I am helping gather on this SEAMAP Reef Fish Survey. I feel so fortunate to be a part of this scientific endeavor.

Animals Seen

Silky Shark (Carcharhinus falciformis)

Hammerhead (Sphyrna mokarran)

Cobia (Rachycentron canadum)

Ocean Sunfish (Mola mola)

Krill, Shrimp, Crab (species unidentified)

Marsha Skoczek: Preparing to Set Sail Aboard NOAA Ship Pisces! June 5, 2012

NOAA Teacher at Sea
Marsha Skoczek
Soon to be Aboard NOAA Ship Pisces
July 6 – 19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of Florida
Date:  June 5, 2012

Personal Log

touch tank picture
Me at our saltwater touch tank.

Greetings from Olathe, Kansas!  My name is Marsha Skoczek and I am an instructor in the Geoscience Program at Olathe North High School.  High school students from all over Olathe apply to be a part of the Geoscience Program because they have a passion for the earth sciences.  Many of my students want to become a marine biologist or some type of ocean research scientist.  I teach Marine Biology and Oceanography, yes from the middle of the country, so in order to have a better understanding of the material I teach I applied to and was accepted for the NOAA Teacher at Sea Program.  I am fortunate enough to be preparing to set sail aboard the NOAA Ship Pisces as part of a research team investigating the Marine Protected Areas (MPA) off the Southeastern Atlantic states.

In 2009 The National Oceanic and Atmospheric Administration (NOAA) established eight Marine Protected Areas to protect the spawning grounds for several species of Grouper, Snapper, and Tilefish.  These reef dwelling species are slow growing fish often not spawning until they are four or five years old.  Some species such as the Yellowedge Grouper can live to be as much as 80 years old!  Several other species such as the Snowy Grouper and the Speckled Hind Grouper are all born as females and do not change into males until they are older, making it a high priority that we protect their habitat so these species can live long enough to reproduce.

As fish are being harvested from the water beyond many of the species’ maximum sustainable yield, it is imperative that the natural habitats of these species are protected, not only so the fish populations can continue to thrive, but also so that scientists can have the time to research the life cycles of these fish in order to establish yearly limits based on scientific data before they are fished to extinction.

I am fortunate enough to be a part of a research expedition doing just that, we will be studying the habitat and fish population of five Marine Protected Areas (MPAs) to see if closing these areas to bottom fishing is a beneficial step in preventing the extinction of these species.

NOAA Ship Pisces

The team I will be working with is made up of scientists from the Panama City NOAA Fisheries Lab, the Harbor Branch Oceanographic Institute, University of North Carolina Wilmington, and the National Centers for Coastal Ocean Science.  Preparations for this research expedition began over a year ago when the scientists had to begin writing their proposal to fund this trip.  As you can imagine, working with scientists from multiple institutions takes time and careful planning.  Conference calls were made with the crew of the Pisces so details could be discussed about the operations needed to be performed, as well as other long distance communications with the Remotely Operated Vehicle (ROV) pilots and the mapping scientist from Charleston, South Carolina.

Data on our expedition will be collected by ROV to capture on video the fish and invertebrate populations in each MPA; water column data on temperature, pressure and conductivity will be collected by CTD profiling; and night time sonar mapping will be used to determine the most beneficial areas to launch the ROV on the following day.

As you can see, there is a lot of work to do during our two weeks at sea.  I am anxiously awaiting our departure next month so that I can witness first hand real ocean research.  This information will be invaluable as I prepare my students for their future careers as marine biologist and oceanographers!  Please follow along as we set sail on this most important adventure!

Sue Zupko: 8 Happy Birthday

NOAA Teacher at Sea: Sue Zupko
NOAA Ship: Pisces
MissionExtreme Corals 2011; explore the ocean bottom to map and study health of corals and their habitat
Geographical Area of Cruise: SE United States deep water from off Mayport, FL to Biscayne Bay, FL
Date: June 4, 2011

Weather Data from the Bridge
Wind Speed: 2.4 knots
Wind Direction: 29.45°
Visibility: 10 n.m.
Surface Water Temperature: 28.6°C
Air Temperature:29.6°C
Relative Humidity: 60%
Barometric Pressure:1017.80mb
Water Depth: 251.75 m
Salinity: 36.35 PSU
Dry/Wet Bulb: 26/23.5

Sunrise over the ocean; dark sky, puffy clouds, pink horizonWhile speaking with Captain Jeremy Adams this morning, I mentioned that today, June 4, is my grandson, Wyatt’s, birthday.  He happily stated that the good ship, Pisces, was born June 4, 2009.  Wyatt is one year older than this ship.  Happy birthday, Pisces and Wyatt.

Sue Zupko: 3 On the Pisces

NOAA Teacher at Sea: Sue Zupko
NOAA Ship: Pisces
Mission: Study deep water coral, Lophelia, in the Gulf Stream
Geographical Area of Cruise: SE United States in Gulf Stream from off Mayport, FL to south of St. Lucie Inlet, FL
Date: May 31, 2011
Weather Data from the Bridge
Clouds: Partly Cloudy
Wind Speed: 8 knots
Wind Direction: 020
Visibility:10 nautical miles (n.m.)
Swells: 3-4′
Barometric Pressure: 1018.4mb
Salinity: 126.9
Dry/Wet Bulb: 26.8/24

I am finally here on the Pisces.  The weather is perfect.  Puffy clouds, nice breeze.  I love being in the harbor.  There are ships all around us and there is always something going on.  We are berthed (parked) literally next to a missile cruiser.  Instead of having a gangway (walkway) directly onto our ship, we must climb up some metal stairs (no kidding–you have to be able to pull yourself up about two feet to get started), board this cruiser, then cut across to another gangway to go to the Pisces.

Walkway made of metal with holes and raised slats
Gangway

Although we have shown ID at the gate, and the entrance to the pier, we must show it again to get onto this ship.  There are a lot of guards.  The gangway is not the easiest thing to walk on even though there are railings on both sides.  The floor has slats that stick up and are easy to trip on.  I really had to watch my step.  Try carrying heavy gear while maneuvering on this.  We had to unload our cars and trucks and carry just about everything across these two gangways.  Thank goodness one of the crew was there to help me.  Would have been a struggle to get my duffel up those first few steps.

Looks like two aluminum pie pans stuck with the wide sides together
What is this?

What is this?  Vote using the survey on what this is a picture of.  It is an important object on our ship.

 

 

This is an eye wash.  Scientists often use chemicals in their work and if something splashes, they can step on a pedal and it opens up the top of this “waffle iron” and water eye-width apart rinses the chemical from their eyes.  It’s a handy safety device.

Sue Zupko: 2 Getting Ready to Go

Close up of sea shells in water at the shore
Sea Shells at the Shore

As a novice to sailing, I must rely on what the crew has told me to bring.  In case of having to abandon ship (that’s a comforting thought), I need a hat, long sleeved shirt, and long pants.  Seems like a good way to cover up and protect myself from the sun.  They say it might be cool on board so I’m bringing a sweatshirt and windbreaker.  When I say I’m going on a cruise, people instantly think of a big cruise liner with a pool and a huge auditorium.  NOAA Ship Pisces is 209 feet (63.8 m) long.  Sounds big until you think that that’s about the length of a hockey rink, 3/4 of a football field, or a bit more than four school buses.  No need for a swim suit or good clothes.  Not going swimming and the galley (dining room) is strictly casual.  The stateroom (bedroom) is small so don’t bring a big suitcase.  I bought a rolling duffel bag so it would collapse yet still roll in an airport.

In a way this will be like going to camp with a few differences.  For our fifth grade  it would be like going to the Great Smokey Mountain Institute at Tremont in Tennessee.  Tremont has bunk beds as does the Pisces.  I’ll be sharing a room with one female scientist rather than 40 girls and chaperones.  At Tremont you bring your own bedding.  On the ship, it’s  provided.  At least I won’t have to carry my sleeping bag though they did suggest bringing my favorite pillow.  At Tremont the staff feeds you great food.  I’ve heard you eat well on the Pisces and to make sure to work out.  At Tremont you study nature in the woods and streams.  On the Pisces, I’ll be surrounded by the ocean and will study nature above and below the surface.  In both places you must be prepared for a variety of weather conditions.  How to do that with one little suitcase?  I drove to Tremont and took lots of things in my van.  I must be more prudent packing for the Pisces since space is limited.  In both places it’s fun and exciting to learn new things and do scientific research.

My most important gear besides my clothes will be my camera and video equipment.  I have to carry those items on the plane rather than putting them in my duffel.  I want to bring back lots of pictures and video for my students to better understand the work we’ll be doing.  They can use this information in their technology projects.  My students made some interesting videos this year.  One was a “public service announcement” for the school to recycle old phone books rather than throwing them away.  Our school earned money in a recycling contest and we want to make sure to repeat that next school year.  Two other videos students created teach about the “seven habits“, a program our school uses to help inspire kids to be leaders and take responsibility for their lives.  Every year we have at least one video about the service dogs we raise for Canine Companions for Independence.  So, with a ton of video about corals and life aboard a ship, I can only imagine what they will choose to do.  Be sure to check back to see some of the projects they’ve developed as a result of this trip.

Margaret Stephens, May 28, 2011

NOAA Teacher at Sea: Margaret Stephens
NOAA Ship: Pisces
Mission: Fisheries, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Cape Hatteras, NC to St. Lucie Inlet, FL
Date:  May 28, 2011 (Last day!)

NOAA Ship Pisces. Photo credit: Richard Hall
NOAA Ship Pisces. Photo credit: Richard Hall

Weather Data from the Bridge
As of 06:43, 28 May
Latitude 30.15
Longitude 80.87
Speed 7.60 knots
Course 285.00
Wind Speed 10.77 knots
Wind Direction 143.91 º
Surface Water Temperature 25.53 ºC
Surface Water Salinity 36.38 PSU
Air Temperature 24.70 ºC
Relative Humidity 92.00 %
Barometric Pressure 1011.10 millibars
Water Depth 30.17 m
Skies: clear

r at Sea Margaret Stephens and Scientist David Hoke in Pisces attire.
NOAA Teacher at Sea Margaret Stephens and Scientist David Hoke in Pisces attire.

Science and Technology Log

These scientists are not only smart, but they are neat and clean, too! After completing final mapping and fish sampling on the second-to-last day, we spent the remainder of the time cleaning the wet (fish) lab, packing all the instruments and equipment, and carefully labeling each item for transport. We hosed down all surfaces and used non-toxic cleaners to leave the stainless steel lab tables and instruments gleaming, ready for the next research project. The Pisces, like other NOAA fisheries ships, is designed as a mobile lab platform that each research team adapts to conform to its particular needs. The lab facilities, major instruments and heavy equipment are permanent, but since research teams have different objectives and protocols, they bring aboard their own science personnel, specialized equipment, and consumable supplies. The primary mission of NOAA’s fisheries survey vessels, like Pisces, is to conduct scientific studies, so the ship’s officers and crew adjust and coordinate their operations to meet the requirements of each research project. The ship’s Operations Officer and the Chief Scientist communicate regularly, well before the project begins and throughout the time at sea, to facilitate planning and smooth conduct of the mission.

Gag grouper (top, Mycteroperca microlepis) and red snapper (Lutjanus campechanus) specimens, labeled for further study Photo credit: David Berrane
Gag grouper (top, Mycteroperca microlepis) and red snapper (Lutjanus campechanus) specimens, labeled for further study Photo credit: David Berrane

“Wet” (fish) lab aboard Pisces, cleaned and ready for next research team
“Wet” (fish) lab aboard Pisces, cleaned and ready for next research team

We made up for the two days’ delay in our initial departure (caused by mechanical troubles and re-routing to stay clear of the Endeavor space shuttle launch, described in the May 18 log), thanks to nearly ideal sea conditions and the sheer hard work of the ship’s and science crews. The painstaking work enabled the science team to fine tune their seafloor mapping equipment and protocols, set traps, and accumulate data on fish populations in this important commercial fishing area off the southeastern coast of the United States. The acoustics team toiled every night to conduct survey mapping and produce three dimensional images of the sea floor. They met before sunrise each morning with Chief Scientist Nate Bacheler to plan the daytime fish survey routes, and the fish lab team collected two to three sets of six traps every day. The videographers worked long hours, backing up data and adjusting the camera arrays so that excellent footage was obtained.  In all, we obtained ten days’ worth of samples, brought in a substantial number of target species, red snapper and grouper, recorded hours of underwater video, and collected tissue and otolith samples for follow-up analysis back at the labs on land.

Models

Scientists and engineers often use models to help visualize, represent, or test phenomena they are studying. Models are especially helpful when it is too risky, logistically difficult, or expensive to conduct extensive work under “live” or real-time conditions.

Divers exploring hardbottom habitat Photo Credit: Douglas E. Kesling, UNCWilmington, CIOERT
Divers exploring hardbottom habitat Photo Credit: Douglas E. Kesling, UNCWilmington, CIOERT

As described in previous logs, this fisheries work aboard Pisces involves surveying and trapping fish to analyze population changes among commercially valuable species, principally red snapper and grouper, which tend to aggregate in particular types of hardbottom habitats.  Hardbottom, in contrast to sandy, flat areas, consists of rocky ledges, coral, or artificial reef structures, all hard substrates. By locating hardbottom areas on the sea floor, scientists can focus their trapping efforts in places most likely to yield samples of the target fish species, thus conserving valuable time and resources. So, part of the challenge is finding efficient ways to locate hardbottom. That’s where models can be helpful.

The scientific models rely on information known about the relationships between marine biodiversity and habitat types, because the varieties and distribution of marine life found in an area are related to the type of physical features present. Not surprisingly, this kind of connection often holds true in terrestrial (land) environments, too. For example, since water-conserving succulents and cacti are generally found in dry, desert areas, aerial or satellite images of land masses showing dry environments can serve as proxies to identify areas where those types of plants would be prevalent. In contrast, one would expect to find very different types of plant and animal life in wetter areas with richer soils.

Recovering ROV aboard Pisces Photo source: http://www.moc.noaa.gov/pc/visitor/photos‐a.html
Recovering ROV aboard Pisces Photo source: http://www.moc.noaa.gov/pc/visitor/photos‐a.html

Traditional methods used to map hardbottom and identify fish habitat include direct sampling by towing underwater video cameras, sonar, aerial photography, satellite imaging, using remotely operating vehicles (ROV’s), or even setting many traps in extensive areas. While they have some advantages, all those methods are labor and time-intensive and expensive, and are therefore impractical for mapping extensive areas.

This Pisces team has made use of a computer and statistical model developed by other scientists that incorporates information from previous mapping (bathymetry) work to predict where hardbottom habitat is likely to be found. The Pisces scientists have employed the “Dunn” model to predict potential hardbottom areas likely to attract fish populations, and then they have conducted more detailed mapping of the areas highlighted by the model. (That has been the principal job of the overnight acoustics team.) Using those more refined maps, the day work has involved trapping and recording video to determine if fish are, indeed, found in the locations predicted. By testing the model repeatedly, scientists can refine it further. To the extent that the model proves accurate, it can guide future work, making use of known physical characteristics of the sea floor to identify more areas where fish aggregate, and helping scientists study large areas and develop improved methods for conservation and management of marine resources.

Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke

Conductivity, Temperature and Depth (CTD) Measurements

Another aspect of the data collection aboard Pisces involves measuring key physical properties of seawater, including temperature and salinity (saltiness, or concentration of salts) at various depths using a Conductivity, Temperature and Depth (CTD)  device.

Salinity and temperature affect how sound travels in water; therefore, CTD data can be used to help calibrate the sonar equipment used to map the sea floor. In other instances, the data are used to help scientists study changes in sea conditions that may affect climate. Increases in sea surface temperatures, for example, can speed evaporation, moisture and heat transfer to the atmosphere, feeding or intensifying storm systems such as hurricanes and cyclones.

Pisces shipboard CTD, containing a set of probes attached to a cylindrical housing, is lowered from the side deck to a specified depth. A remote controller closes the water collection bottles at the desired place in the water column to extract samples, and the CTD takes the physical measurements in real time.

Fresh Catch

Of all the many species collected, only the red snapper and grouper specimens were kept for further study; most of the other fish were released after they were weighed and measured. A small quantity was set aside for Chief Steward Jesse Stiggens to prepare for the all the ship’s occupants to enjoy, but the bulk of the catch was saved for charitable purposes. The fish (“wet” lab) team worked well into overtime hours each night to fillet the catch and package it for donation. They cut, wrapped, labeled and fresh froze each fillet as carefully as any gourmet fish vendor would. Once we disembarked on the last day, Scientist Warren Mitchell, who had made all the arrangements, delivered over one hundred pounds of fresh frozen fish to a local food bank, Second Harvest of Northern Florida. It was heartening to know that local people would benefit from this high-quality, tasty protein.

Careers at Sea

Crewmen Joe Flora and Vic Pinones
Crewmen Joe Flora and Vic Pinones

Many crew members gave generously of their time to share with me their experiences as mariners and how they embarked upon and developed their careers. I found out about many, many career paths for women and men who are drawn to the special life at sea. Ship’s officers, deck crew, mechanics, electricians, computer systems specialists, chefs and scientists are among the many possibilities.

Chief Steward Jesse Stiggens worked as a cook in the U.S. Navy and as a chef in private restaurants before starting work with NOAA. He truly loves cooking, managing all the inventory, storage and food preparation in order to meet the needs and preferences of nearly forty people, three meals a day, every day. He even cooks for family and friends during his “off” time!

First Engineer Brett Jones
First Engineer Brett Jones

Electronics specialist Bob Carter, also a Navy veteran, is responsible for the operations and security of all the computer-based equipment on board. He designed and set up the ship’s network and continually expands his skills and certifications by taking online courses. He relishes the challenges, responsibilities and autonomy that come along with protecting the integrity of the computer systems aboard ship.

First Engineer Brent Jones has worked for many years in the commercial and government sectors, maintaining engines, refrigeration, water and waste management, and environmental control systems. He gave me a guided tour of the innards of Pisces, including four huge engines, heating and air conditioning units, thrusters and rudders, hoists and lifts, fresh water condenser and ionizers, trash incinerator, and fire and safety equipment. The engineering department is responsible for making sure everything operates safely, all day and night, every day. Brent and the other engineers are constantly learning, updating and sharpening their skills by taking specialized courses throughout their careers.

Chief Boatswain James Walker
Chief Boatswain James Walker

Chief Boatswain James Walker is responsible for safe, efficient operations on deck, including training and supervising all members of the deck crew. He entered NOAA after a career in the U.S. Navy.  The Chief Boatswain must be diplomatic, gentle but firm, and a good communicator and people manager. He coordinates safe deck operations with the ship’s officers, crew, and scientific party and guests.

NOAA officers are a special breed. To enter the NOAA Commissioned Officer Corps, applicants must have completed a bachelor’s degree with extensive coursework in mathematics or sciences. They need not have experience at sea, although many do. They undergo an intensive officers’ training program at a marine academy before beginning shipboard work as junior officers, where they train under more experienced officers to learn ship’s systems and operations, protocols, navigation, safety, personnel management, budgeting and administrative details. After years of hard work and satisfactory performance, NOAA officers may advance through the ranks and eventually take command of a ship.

Operations Officer, Lt. Tracy Hamburger
Operations Officer, Lt. Tracy Hamburger
Junior Officer Michael Doig
Junior Officer Michael Doig

All the officers and crew aboard Pisces seem to truly enjoy the challenges, variety of experiences and camaraderie of life at sea. They are dedicated to NOAA’s mission and take pride in the scientific and ship operations work. To be successful and satisfied with this life, one needs an understanding family and friends, as crew can be away at sea up to 260 days a year, for two to four weeks at a time. There are few personal expenses while at sea, since room and board are provided, so prudent mariners can accumulate savings. There are sacrifices, as long periods away can mean missing important events at home. But there are some benefits: As one crewman told me, every visit home is like another honeymoon!

Personal Log

One size fits all?
One size fits all?

Navy Showers

I had expected that life aboard Pisces would include marine toilets and salt water showers with limited fresh water just for rinsing off.  I was surprised to find regular water-conserving flush toilets and fresh water showers. Still, the supply of fresh water is limited, as all of it is produced from a condensation system using heat from the engines. During our ship orientation and safety session on the first day, Operations Officer Tracy Hamburger and Officer Mike Doig cautioned us to conserve water.  They explained (but did not demonstrate!) a “Navy” shower, which involves turning the water on just long enough to get wet, off while soaping up, and on again for a quick rinse. It is quite efficient – more of us should adopt the practice on land. Who really needs twenty minute showers with fully potable water, especially when more than one billion people on our “water planet” lack safe drinking water and basic sanitation?

One size fits all?
One size fits all?

“Abandon Ship!”

One size fits all?
One size fits all?

The drill I had anticipated since the first pre-departure NOAA Teacher at Sea instructions arrived in my inbox finally happened. I had just emerged from a refreshing “Navy” shower at the end of a fishy day when the ship’s horn blasted, signaling “Abandon ship!” We’d have to don survival suits immediately to be ready to float on our own in the sea for an indefinite time. Fortunately, I had finished dressing seconds before the alarm sounded. I grabbed the survival suit, strategically positioned for ready access near my bunk, and walked briskly (never run aboard ship!) to the muster station on the side deck. There, all the ship’s occupants jostled for space enough on deck to flatten out the stiff, rubbery garment and attempt to put it on.  That’s much easier said than done; it was not a graceful picture. “One size fits all”, I learned, is a figment of some manufacturer’s imagination. My petite five foot four frame was engulfed, lost in the suit, while the burly six- foot-five crewman alongside me struggled to squeeze himself into the same sized suit. The outfit, affectionately known as a Gumby, is truly designed for survival, though, as neoprene gaskets seal wrists, leaving body parts covered, with only a small part of one’s face exposed. The suit serves as a flotation device, and features a flashing light, sound alarm, and other warning instruments to facilitate locating those unfortunate enough to be floating at sea.

Thankfully, this was only a test run on deck. We were spared the indignity of going overboard to test our true survival skills. I took advantage of the opportunity to try a few jumping jacks and pushups while encased in my Gumby.

Fish bet ‐‐ Rigged results? Photo credit: Jen Weaver
Fish bet ‐‐ Rigged results? Photo credit: Jen Weaver

Bets Are On!

These scientists are fun-loving and slightly superstitious, if not downright mischievous. On the last day, Chief Scientist Nate Bacheler announced a contest: whoever came closest to predicting the number of fish caught in the last set of traps would win a Pisces t-shirt that Nate promised to purchase with his personal funds. In true scientific fashion, the predictions were carefully noted and posted for all to see.  As each trap was hauled in, Nate recorded the tallies on the white board in the dry lab. Ever the optimist, basing my estimate on previous days’ tallies, I predicted a whopping number: 239.

I should have been more astute and paid more attention to the fact that the day’s survey was planned for a region that featured less desirable habitats for fish than previous days. Nate, of course, having set the route, knew much more about the conditions than the rest of us did. His prediction: a measly 47 fish. Sure enough, the total tally was 38, and the winner was………Nate!   Our loud protests that the contest was fixed were to no avail. He declared himself the winner. Next time, we’ll know enough to demand that the Chief Scientist remove himself from the contest.

 

Chief Scientist Nate Bacheler and red snapper, Lutjanus campechanus Photo credit: David Hoke
Chief Scientist Nate Bacheler and red snapper, Lutjanus campechanus Photo credit: David Hoke

 

Crewman Kirk Perry with Mahi‐mahi
Crewman Kirk Perry with Mahi‐mahi

Catching Mahi-mahi

Once the day’s deck work was over, a fish call came over the ship’s public address system. Kirk Perry, one of the avid fishermen among the crew, attached a line baited with squid from the stern guard rail and let it troll along unattended, since a fishing pole was unnecessary. Before long, someone else noticed that the line had hooked a fish. It turned out to be a beautiful mahi-mahi, with sleek, streamlined, iridescent scales in an array of rainbow colors, and quite a fighter. I learned that the mahi quickly lose their color once they are removed from the water, and turn to a pale gray-white once lifeless. If only I were a painter, I would have stopped everything to try to capture the lovely colors on canvas.

Goodbyes

We entered Mayport under early morning light. An official port pilot is required to come aboard to guide all ships into port, so the port pilot joined Commander Jeremy Adams and the rest of the officer on the bridge as we made our way through busy Mayport, home of a United States Naval base. Unfortunately, the pier space reserved for Pisces was occupied by a British naval vessel that had encountered mechanical problems and was held up for repairs, so she could not be moved. That created a logistical challenge for us, as it meant that Pisces had to tie up alongside a larger United States naval ship whose deck was higher than ours.  Once again, the crew and scientists showed their true colors, as they braved the hot Florida sun, trekking most of the gear and luggage by hand over two gangplanks, across the Navy ship, onto the pier, and loading it into the waiting vehicles.

The delay gave me a chance to say farewell and thank the crew and science team for their patience and kindness during my entire time at sea.

These eleven days sailed by. The Pisces crew had only a short breather of a day and a half before heading out with a new group of scientists for another research project. To sea again….NOAA’s work continues.

All aboard!

A big “Thank you!” to all the scientists and crew who made my time aboard Pisces so educational and memorable!

 

Science team. Photo credit: NOAA Officer Michael Doig
Science team. Photo credit: NOAA Officer Michael Doig

Links & Resources

http://www.marinecareers.net/links_degrees.php

Literature cited:

Dunn, D, Halpin, P (2009) Rugosity-based regional modeling of hard-bottom habitat. Marine Ecology Progress Series 377:1-11

Safety! I hope I never have to use that fire axe!
Safety! I hope I never have to use that fire axe!
Sky view from Pisces. Photo credit: David Hoke
Sky view from Pisces. Photo credit: David Hoke
View from Pisces: United States Navy’s Littoral Combat Ship
View from Pisces: United States Navy’s Littoral Combat Ship
Engineers Abe Goldberg and Bob Carroll
Engineers Abe Goldberg and Bob Carroll
Loading gear with crane & hoist
Loading gear with crane & hoist
Loading gear with crane & hoist
Loading gear with crane & hoist
Commander Jeremy Adams looks out from Pisces’ bridge Photo credit: Richard Hall
Commander Jeremy Adams looks out from Pisces’ bridge Photo credit: Richard Hall

1 Introduction to My Voyage on the Pisces

Laughing Gull flying over ocean as viewed from our ferry
Laughing Gull

I have a rare opportunity and a responsibility to teach others about our world.  Having been selected as a NOAA Teacher at Sea, I will be sailing aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Pisces as a scientist.  Andy David, the chief scientist on our expedition, who works for NOAA’s Fisheries Service, has assigned and will be assigning me duties.  Already I’ve participated in editing press materials, setting up a blog, pre-cruise meetings, and finding groups to Skype with from the ship.  On board ship some of my duties will include photographing and videotaping our activities.  Yeah!  My students will have lots of material from which to create projects.  I will be able to teach them about public access to information and my role in that from my blogging responsibilities.  Having raised service dogs, I am already familiar with many aspects of public access, but it has usually been wheelchair access to buildings.  Internet access for the blind hadn’t occurred to me.  Learning, always learning.

I teach grades 3-5 in a pull-out program for the gifted and talented.  Last week my 3rd grade students got to Skype with Andy David and asked him questions about the purpose of our cruise, what we would find there, how we would solve problems, how the ship is powered, and so much more.   The students seem very interested in sharks, dolphins, whales, and turtles.   Those species aren’t exactly what we are focusing on in our study of the deep water coral, Lophelia.   Andy said that we would probably see all those marine creatures. That hadn’t occurred to me; they weren’t on my radar since these species haven’t been mentioned in other blogs or information pages from this study.  They will be serendipitous meetings, and, although I didn’t think it possible,  my excitement level has increased.  I found a great web site about Lophelia.  Check it out.  It has easy reading, maps, pictures, and games.

Keep checking back for more on this exciting adventure.  I will post my blog entries as often as bandwidth will allow after we depart on May 31, 2011 to help you better understand about our mission and what we found.  We will return  June 11, 2011.  Until then, I will talk about things I plan to take and why.

Continue reading “1 Introduction to My Voyage on the Pisces”

Margaret Stephens, May 19, 2011

NOAA Teacher at Sea: Margaret Stephens
NOAA Ship: Pisces
Mission: Fisheries, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Cape Hatteras, NC to St. Lucie Inlet, FL
Dates of log: Thursday, 19 May through Saturday, 21 May, 2011

Here I am with the CTD equipment
Here I am with the CTD equipment

Weather Data from the Bridge
Position: Latitude 27.87, Longitude -80.16
Wind Speed 11.06 kts
Wind Direction. 131.46 º
Surface Water Temperature 26.88 ºC
Surface Water Temperature
Air Temperature 27.10 ºC
Relative Humidity 78.00 %
Barometric Pressure 1015.50 mb
Water Depth 28.05 m
Sky conditions: clear

Science and Technology Log

General Description of the Scientific Work Aboard Pisces
While at sea, the ship’s operations and scientific crews work in shifts 24/7 – yes, that’s twenty-four hours, every day, with ship operations, maintenance, data collection and gear deployment continuing day and night.
The scientific team, headed by Chief Scientist, Dr. Nate Bacheler, includes researchers who are mostly marine biologists specializing in fisheries. Each team member has complementary specialized skills such as acoustics (use of sonar for sea floor mapping), physical or chemical oceanography, underwater video camera operations, data management and analysis, and many aspects of fish biology.

The main mission of this research cruise is to study red snapper and related grouper species, fish that are of great importance economically and to the marine ecosystem in near shore areas off the southeastern coast of the United States. In particular, the team is studying where the fish are likely to be found (their spatial distribution patterns) and their numbers, or abundance, and population dynamics (how the populations change over time).

This work expands the knowledge needed to guide decisions about how to protect and manage fisheries in a sustainable manner. Healthy, sustainable fish populations are essential to the economy, to the function of healthy ecosystems, and as high-protein (and tasty) food sources. In the past, many fish species have been overfished, resulting in dangerous declines in their populations.
The scientific work on board Pisces for this project is divided into three main areas. This log entry gives an overview of each of the three main areas of work, with a more detailed account of the acoustics, or mapping portion. Upcoming logs will describe the other phases in more detail.

  1. Acoustics – Using the science of sound with advanced sonar and computer technology, the acoustics team maps the sea floor and identifies areas likely to be good fish habitat.
  2. Fish survey – The survey team sets baited traps to catch fish, then collects them, identifies the species, and records essential data about the species of most interest.
  3. Underwater videography – The video team attaches cameras to the traps to view the kinds and activities of fish in the water and assess the type of sea bottom, such as sandy or hard, flat or “bumpy”, regular or irregular.
  4. After all this information is collected in the field, much of the painstaking, detailed analysis takes place back in the home labs and offices of the researchers.

Acoustics Work
Since acoustics is the first step used to identify specific sites to set traps for the fish survey, we’ll start here.
Throughout a long night shift, from 6 p.m. until the work is complete, often 7 a.m. or later the following day, the acoustics team uses sonar (SOund NAvigation and Ranging) and computer analysis to map the sea floor and identify promising areas to set traps for the fish survey. See a detailed description of the sonar equipment and procedures below.

Investigator Jennifer Weaver showing GIS model of sea floor contours
Investigator Jennifer Weaver showing GIS model of sea floor contours

At 5 a.m., the acoustics team meets with Chief Scientist Nate to report any sites they identified overnight and select the stations to sample with fish traps and underwater cameras during the day. The team then converts their data into a kind of route map that the helmsman (the ship’s “driver”) uses to steer the ship along the designated survey route.

The acoustics team members possess extensive knowledge about fish habitats, geography and geology of the sea floor, and computer and sonar technology. They also need to be aware of the interactions among wind, weather and currents and understand charts (marine maps) and ship’s navigation. They constantly communicate with the ship’s bridge via the internal radio network.

Fish survey team prepares baited traps at dawn
Fish survey team prepares baited traps at dawn

The acoustics lab houses work space large enough for five to ten people, banks of computer screens, servers, and large-scale display monitors projecting images from the sonar devices, real time navigation, and views from cameras positioned in work areas on deck.

Once the now-very-sleepy acoustics lab team wraps up its nocturnal work, the team members turn in for a day’s (or night’s?) sleep, just as the other teams’ daylight tasks begin in earnest.

Fish Survey Work
By 6 a.m., in the predawn darkness, the rear deck becomes a hub of concentrated activity, with sounds muffled by the early ocean haze and drone of the engines and generators. The four or more members of the fish survey team, still rubbing sleep from their eyes, assemble on the stern deck (rear of ship or fantail) to prepare the traps to catch fish for the day. Before the sun rises, floodlights illuminate the work of cutting and hanging menhaden, whole fish bait, in the traps, securing the underwater cameras in place, tagging each piece of equipment carefully and checking that everything is ready for deployment.

Chief Scientist Nate Bacheler directs trap deployment from the dry lab
Chief Scientist Nate Bacheler directs trap deployment from the dry lab

Chief Scientist Nate directs the deployment of the traps from the dry lab, where he faces a bank of computer screens displaying maps of the identified sampling route, the ship’s course in real time, and camera shots showing the personnel and operations on deck. By radio, Nate directs the deck crew to lower the traps at each of the designated sites.

The ship is steered along the sampling route, dropping traps in each of six locations. Each trap is left in place for approximately ninety (90) minutes. Once the last trap is lowered, the ship returns to the first location and raises the traps, usually following the same order. The deck crew members, together with the fish survey team, empty any catch and ready the traps for redeployment.
Chief Scientist Nate Bacheler directs trap deployment from the dry lab

Then the fish survey team, coordinated by Investigator Dave Berrane, sets to work sorting, weighing and measuring any catch and immediately releasing any fish not needed for further study.

Investigator Christina Schobernd views underwater video with Chief Scientist Nate Bacheler
Investigator Christina Schobernd views underwater video with Chief Scientist Nate Bacheler

Videography Work
As soon as the traps are hauled aboard by the deck crew, the wet lab team detaches and dries the cameras and hands them to the dry lab, where the videography team, headed by Investigator Christina Schobernd, removes the memory cards and transfers and makes duplicates of the video files on computer drives. All the teams take extreme care to label, catalog and back up everything carefully. Data management and redundancy are essential in this business. The scientists view some of the footage immediately to see if the cameras are working properly and to make any adjustments necessary. They also look for anything unusual or unexpected, any fish captured on camera other than those that made it into the trap, and they assess how closely the sea floor type matched what was expected from the acoustic team’s mapping work.

Christina works well into the night to back up and catalog all the day’s video recordings.

Detailed Description of Fisheries Acoustics Surveys

Multibeam sonar mapping the seafloor. Image courtesy of Jill Heinerth, Bermuda: Search for Deep Water Caves 2009.
Multibeam sonar mapping the seafloor. Image courtesy of Jill Heinerth, Bermuda: Search for Deep Water Caves 2009.

Fisheries Acoustic Surveys: Acoustic surveys help determine the relative abundance of target species and provide information to determine catch rates and guidance for fisheries management.

The equipment aboard Pisces includes two types of sonar devices that use sound waves to measure the water depth, shape or contours of the sea floor, and to a limited extent, fish groupings, or aggregations. Sonar operates using established knowledge about how fast sound travels in water under different conditions to develop a three-dimensional image of the shape of the sea floor. The first type is known as split-beam sonar, which uses sound waves at different frequencies to provide a picture of the underwater environment. Pisces has a Simrad EK60 echosounder.

The second, more sophisticated and expensive system involves Multibeam sonar mapping. Aboard Pisces is a Simrad ME70 device. Multibeam devices emit sound beams that forms an inverted cone, covering a larger area and providing a more complete picture of the sea floor than the series of vertical or horizontal sound signals that the split beam sonar provides. As described above, the bathymetric mapping surveys are conducted primarily during the night, from sundown until dawn, when fish sampling and other ship operations are not taking place. Ideally, this allows the science team to map out a route of sampling sites for the next day’s fish trapping work. At the end of the overnight shift, the acoustics team presents its findings to the Chief Scientist, who then coordinates the day’s activities with the fish team, the ship’s bridge, and the deck crew headed by the chief boatswain.

It’s called “multibeam” because unlike the first single-beam sonars, which sent out one signal or ping, multibeam sonar sends out a whole group of pings at once. Multibeam sonar can cover a larger area than a single beam can. Here’s a Quicktime movie of multibeam sonar: http://oceanservice.noaa.gov/education/seafloor-mapping/movies/multi_240.mov

Personal Log

I cannot say enough about how friendly and helpful everyone on board has been to this neophyte. It takes a while to adjust to any new environment, but being on a ship at sea has its own learning curve. Pisces, at 209 feet long, operates like a small town. Because it is out at sea for weeks at a time, all supplies and systems must be operating 24/7 to keep the ship and crew focused on the appointed mission and keep everyone on board safe, comfortable, and able to do their jobs.

I spent the first two days getting acclimated to the layout of the ship, safety practices, meeting the members of the scientific crew, adjusting to the rigorous schedule, and doing my best not to commit any grave offenses or make big mistakes that would make the work of this very patient group of dedicated professionals any more difficult than it is already.

Sleep Time Because the ship’s work continues round the clock, sleep time varies, depending on the person’s position and duties. It is important for everyone aboard to be mindful that at any hour of the day or night, it’s likely that someone is sleeping. The mapping crew began a 6 p.m. to 6 a.m. shift (or later, until the work is finished) on our second day at sea, and most of them will keep that difficult schedule for the entire cruise. Since I’m the lucky one to experience every aspect of the work, I’ll rotate through the various jobs and schedules. For the first few days, I’ll work with the fish survey team, from 6 a.m. until their work is completed, which may mean a break for supper at 5 p.m. followed by a few more hours of lab work to process all the day’s catch. My first day on the acoustics team, I’m scheduled to start at 4 a.m. assisting their nightly wrap up, as by the last few hours of their shift, they are quite tired.

Dining and Comforts Aboard Ship

Chief Steward/Chef Jesse Stiggens with a Pisces creation, a vegetable quiche.
Chief Steward/Chef Jesse Stiggens with a Pisces creation, a vegetable quiche.

Chief Steward Jesse Stiggens and Assistant Steward Michael Sapien create a terrific, appetizing menu for the three main meals and plenty of extras and snacks available at any hour.

The stewards are very accommodating, so anyone who will miss a main meal because of their work or sleep schedule can sign up in advance for the stewards to set aside a full plate of delicious food for them. The mess (dining room on a ship) is open all day and night, with coffee, cold beverages, an array of sandwich fixings, cereals and assorted leftovers kept chilled for anyone to microwave anytime they get a hankering for a nibble or a bigger bite. And…very important for morale … there’s a freezer stocked with ice cream, even Blue Bunny (a favorite in the South that I had not seen before) and Häagen-Dazs. There’s also a big screen television in the mess. The lounge area has computers, a conference or game table, a small library of books, a large screen television and several hundred movie titles, even new releases, for the crew to enjoy in their off time. Also available are wonderful reclining chairs, so comfortable, I wish I had time to use them. The one and only time I tried one out, the fire alarm went off for our first drill, and I haven’t had a free moment since.

Doomsday Came and Went: Saturday, 21 May, 2001….and Pisces work continues
CNN reports: After months of warnings and fear, the Day of Rapture, as predicted by apocalyptic Christian broadcaster Harold Camping, passed without apparent calamity. Judgment Day was to have started at 6 p.m., but as darkness fell on many parts of the world, it appeared that heaven could wait. At this writing, there have been no reports of people soaring upward to the skies, but plenty of folks are talking about it.

That includes those of us on Pisces. The possibility that Doomsday was approaching generated some good-natured kidding and gallows humor. We had some debate about when the end would begin. Since most of the ship’s instruments use Greenwich Mean Time (GMT) as a reference, we speculated that our end time might occur four hours later than east coast Daylight Savings Time (DST).

Everyone had their eyes on the clock and the horizon as first, the predicted doomsday hour of 6 p.m. DST came and went, and then, four hours later, 6 p.m. GMT passed without incident. Any apprehensions were put to rest, and now we have new fodder for discussion.

Special Challenges for Research at Sea
Many people have the idea that science is neat, pretty and conducted in sterile lab environments by other-worldly thinkers in clean white lab coats. That is decidedly not the case in fisheries work at sea. This section lists the special challenges (or, as, some optimists would say, “opportunities”) of conducting shipboard research. Each log will focus on or give examples of one or more challenges.

  • Limits of “shooting in the dark” – Imagine a vast, dark, deep, ever-changing, difficult-to-penetrate area, with living organisms moving about in and out, with all kinds of surface, bottom, and in-between conditions. That’s what underwater research involves. Examples: The mapping team thinks it has found great habitat for red snapper and grouper, so the survey team expects a bountiful trap. But up comes nothing but a trap still full of untouched bait. Or, the habitat conditions look promising, but the current is too strong to set the traps safely.
  • The Unexpected – It is often said that the only thing predictable in field research of this kind is unpredictability! You just never know….
  • Curiosity-seekers and just plain business – recreational and commercial boats – Not surprisingly, the areas of interest for NOAA fisheries research are often favorite fishing grounds for recreational fishermen, scuba divers, and active routes for commercial ships. Therefore, Pisces crew and helm (the person steering the ship) must always be on alert for other boat traffic. Example: On Saturday, a small recreational boat occupied by partiers pulled up nearly alongside Pisces. Despite polite cautions and requests from our bridge for the small boat to move away to a safer distance, the visitors just kept waving and cheering for a while.

Challenges to come in next logs:

  • Changing sea conditions, weather, waves and current
  • Fatigue
  • Limited daylight hours
  • Emergencies
  • More unpredictables

Links & Resources

Margaret Stephens, May 18, 2011

NOAA Teacher at Sea: Margaret Stephens NOAA Ship: Pisces
Mission: Fisheries survey, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Mayport, Florida to South of St. Lucie Inlet, Florida Date: Wednesday, May 18, 2011

Weather Data from the Bridge
As of 15:05 (3:00 p.m. EDT 18 May)
Wind Speed 11.17 knots
Wind Direction 68.31
Clear, Visibility 10+ miles
Surface Water Temperature 26.33 ºC
Air Temperature 22.10 ºC
Relative Humidity 65.00 %
Barometric Pressure 1011.20 mb
Water Depth 38.09 m

Science and Technology Log

NOAA Ship Pisces, Commissioned on November 6, 2009
NOAA Ship Pisces, Commissioned on November 6, 2009

The principal work of the Pisces involves fish – their habitats, distribution (where they are found) and their population dynamics (how and why their numbers change over time). Teams of scientists come aboard Pisces for a few days to two weeks at a time to study, monitor, and collect data on many marine species and conditions in the waters of the United States from the Gulf of Mexico, Caribbean, and South Atlantic as far north as North Carolina. This region is among the world’s most productive marine areas, with many important commercial and recreational fisheries. Pisces is outfitted with sophisticated equipment and instruments that allow scientists to conduct surveys of many marine species, study ocean conditions and marine habitats, and map the sea floor using bathymetric (underwater mapping) analysis. Their work provides vital information to help establish practices and policies to manage marine ecosystems protect species and habitats facing stresses from overfishing, pollution, and climate change, and maintain sustainable fishing practices. Pisces also observes and collects data on weather, sea conditions, and other environmental factors important to the fishing and other commercial interests, scientists, and coastal residents.

During this research cruise, Pisces will collect data primarily about red snapper and grouper species (known as the snapper-grouper complex) to assess their distribution and abundance, or population numbers. At present, the red snapper fishery is closed, meaning that commercial and recreational fishing of that species is prohibited, because overfishing had led to a severe decline in its population. Groupers, a group (no pun intended) of species, are popular, tasty and economically important fish caught by recreational and commercial fishing boats.

The first step in the scientific work is for the team to identify areas where those species are likely to be found, so that they can have a better chance of catching them to study further. The scientists, like good detectives, gather information from prior studies about the kinds of habitats those species prefer, and then they use advanced sonar techniques to find the most promising areas to survey. There will be more about their techniques, equipment and methodologies in the upcoming log entries.

The scientific party aboard includes eleven professionals, led by Chief Scientist Nate Bacheler, Ph.D. Nate and several of the team work out of NOAA’s National Marine Fisheries Service, headquartered in Beaufort, North Carolina. All of them look forward to spending a few or more weeks at sea each year for about a week or two at a time. The ship’s operations crew, headed by Commander Jeremy Adams, includes officers who manage the ship around the clock, ship’s engineers, deck crew and, most importantly, the stewards that keep everyone well fed all day, every day.

Personal Log

I’m so fortunate to be among a terrific group of dedicated scientists and crew as a NOAA Teacher at Sea. NOAA, the National Oceanic and Atmospheric Administration is like the NASA of the oceans. As a federal government agency funded by public dollars, its mission is to study and provide information to the public and decision-makers about the weather, climate, and management of marine resources vital to our survival and livelihoods. NOAA’s work affects everyone, as it helps us predict weather, track major storms, and alert people to potentially dangerous conditions.

Endeavor space shuttle launch 16 May, 2011 from Cape Canaveral, Florida. STS-134 Mission. Photo source: NASA
Endeavor space shuttle launch 16 May, 2011 from Cape Canaveral, Florida. STS-134 Mission. Photo source: NASA

The Teacher at Sea program provides educators the opportunity to share science with the public. It allows me and a lucky group of counterparts to work side by side with scientists, using cutting edge equipment and methods, to learn all about a research ship’s operations, and to alert students to career opportunities in scientific and marine-related fields.

Pisces ran into mechanical problems that kept her from leaving her home port of Pascagoula, Mississippi as scheduled. The superstitious among us might think that the date, Friday the 13th of May, had something to do with the delay. Then, as luck would have it, the space shuttle Endeavor’s new launch was set for just the time Pisces would have been approaching the area around Cape Canaveral, so Pisces and all other ship and air traffic were redirected to remain outside of the shuttle’s exclusion zone.
Endeavor space shuttle launch 16 May, 2011 from Cape Canaveral, Florida. STS-134 Mission. Photo source: NASA
Pisces finally arrived at the rendezvous point, the Mayport, Florida Naval Station late on Monday, May 16. I met the scientific team in town, and after clearing Navy security, we entered the base and set sights on the great-looking ship, our floating home for the next two weeks.

The scientists and crew have been warm and welcoming as I find my way around the decks and passageways, get my sea legs, and try to learn all I can about their research. They are so genuinely interested in sharing their knowledge and experience that it is impossible not to catch their enthusiasm.

NOAA Teacher at Sea, Margaret Stephens, aboard the Pisces
NOAA Teacher at Sea, Margaret Stephens, aboard the Pisces
NOAA Ship Pisces, Commissioned on November 6, 2009
NOAA Ship Pisces, Commissioned on November 6, 2009

We’ve had our first fire drill, where the ship’s alarm sounds for a deafening ten seconds, and we all scramble (walking briskly, never running) to our muster locations to make sure everyone is present and safe. Next up: an Abandon Ship drill that involves our donning an unwieldy one-size-supposedly-fits-all survival suit in under sixty seconds. The suit is otherwise known as a “Gumby” – you can figure out why!

Links & Resources

Elizabeth Warren, July 15, 2010

NOAA Teacher At Sea: Elizabeth Warren
Aboard NOAA Ship Pisces

Mission: Reef Fish Surveys
Geographical Area of Cruise: Gulf of Mexico
Date: July, 15 2010

A case of the Upy-Downy’s

By breakfast on the last day we had already spotted land.

Land Spotted
Land Spotted
Crew of the Pisces
Crew of the Pisces

I went up to the flying deck and could not have been more disappointed to see the Mississippi Coast. I couldn’t believe how quickly my trip went by. I learned a lot!

Scientists on my cruise
Scientists on my cruise

The crew of the Pisces and the NOAA scientists were some of the nicest (even with all the teasing) people I have ever met. I’m so grateful that I was able to have this experience. I said goodbye to as many of the crew I could find, many take off as soon as they get into port or go to sleep, and each one told me I should come back again. I would love to! I’ve already asked and plan on applying again for next year.

Now, I’m home in Seattle, Washington. . As I was flying in,  I was greeted by one of the reasons I live on the West Coast.

Mount Rainier
Mount Rainier

As a result of having been aboard a ship,  I have a case of the upy-downy’s (getting my land legs back). The world keeps moving like I’m still on board the ship. The upy downy’s are also affecting my mood.  I’m happy to be home, sleep in a real bed, see my family and my neph-puppy but I’m also sad that my adventure is over. I can’t wait to get back in the classroom and share all that I have learned with my students!

Thank you for reading my blog and again thank you to NOAA and the Pisces!

Anne Marie Wotkyns, July 10-11, 2010

NOAA Teacher at Sea
Anne Marie Wotkyns
Onboard NOAA Ship Pisces
July 7 – 13, 2010

NOAA Teacher at Sea: Anne Marie Wotkyns
NOAA Ship Pisces
Mission: Reef Fish Survey
Geographic Area: Gulf of Mexico
Date: Saturday July 10, Sunday, July 11, 2010
Latitude: Saturday 27⁰54.8057 N Sunday 27⁰51.098 N
Longitude: Saturday 093⁰18.2990 W Sunday 093⁰04.100 W

Weather Data from the Bridge

Air Temperature: Saturday 30.3⁰C Sunday 30.4⁰C
Water Temperature: Saturday 30.5⁰C Sunday 30.35⁰C
Wind: Saturday 2.55 knots Sunday 1 knot
Other Weather Features:
Saturday 62% humidity, cloud cover 20% Sunday 67% humidity, cloud cover 35%
Saturday Swell Height .2 meter Sunday .4 meter
Saturday Wave Height .05 meter Sunday .25meter

Science and Technology Log

Temperature Depth Recorder
Temperature Depth Recorder

Temperature Depth Recorder
Temperature Depth Recorder

There are several types of sensing equipment we have been using on this cruise. Each time we drop the camera array at a site attached to the array is a little device called a Temperature Depth Recorder or a TDR. As the camera array sinks to the bottom, the TDR records the temperature and depth. When the camera array is brought back on board the ship one of the scientists, or one of us teachers, unclips it and brings it into the lab. To get the information off you hit it once with a magnet that communicates with the chip inside telling it you want to download the information. Then you place a stylus on the device and it downloads the information to the computer. The data is saved under the name of the site and then the information is entered into a spreadsheet that converts the information from the psi(pounds per square inch) to meters of depth. To clear the TDR you hit it four times with the magnet and when it flashes red it is clear! Liz and I learned to do this the first day we did stations and we usually took turns entering the information. This was done 8 times on Saturday and 7 times on Sunday.

At every station, a CTD is also dropped into the water. A CTD (Conductivity Temperature Recorder) gives a hydrographic profile of the water column. The CTD is attached to the bottom of a rosette or carousel that also contains water sampling bottles. Attached to the rosette is a conductive wire that sends information to the lab. Mike, the survey technician, comes into the lab after every camera array is dropped and runs the CTD process. The CTD is placed in the water and allowed to acclimate for 3 minutes before they begin taking readings. The CTD is dropped to the bottom of the seafloor and then raised again. Mike monitors this from the dry lab. Once a week he uses the water bottles to take water samples. To take a sample he uses a remote from inside the dry lab to trigger the bottles at a given depth to close them. The CTD can also be programmed to close different bottles at different depths. It was very interesting to watch the EK60 echo sounder screen as the CTD lowered and raised.

Data from CTD
Data from CTD

CTD
CTD

Each morning, Chief Scientist Kevin goes through the video footage from the previous day. For each site he identifies what the bottom substrate was (“sandy flat bottom”, “coralline algal bottom”, “malacanthus mounds,” etc) and then he identifies briefly any fish that he sees. When he is doing this, he will call us over and explain how he can tell what the species is or what behavior a fish is exhibiting.

Video footage
Video footage

Video footage
Video footage

Saturday, we dropped the camera array at 8 different stations on Bright Bank sites. The two chevron fish traps brought up NO FISH! On the bandit reel we caught one fish. It was a sand tile fish, Malacanthus pulmieri, a “banana shaped” bottom dweller that lives in large rock-covered mounds. Wearing rubber gloves, I weighed and measured him quickly and then we threw him back alive. He was 494 mm (49.4 cm) long and weighed .550 kg. I’m not very comfortable touching the fish or the bait we’ve been using, so I was quite proud of myself!

Sand-tile fish
Sand-tile fish

Measuring
Measuring

Weighing
Weighing

Frustrated Kevin
Frustrated Kevin

That was the only fish we caught all day! Today was a little frustrating. It even got Kevin a little down!

Sunday brought our last day of work on the reef survey. The Pisces was on the north half of Geyer Bank, still off the coast of Louisiana. I was determined to fully participate in all aspects of the science, so I bravely donned my gloves and baited the bandit reel’s 10 hooks with chunks of mackerel. We were positive we would catch more fish today!

Baiting the bandit reel
Baiting the bandit reel


The camera cage came up with some interesting “hitchhikers” aboard. One was a round sponge, about the size of a softball. At first we thought it was a rock, but when I grabbed it, it was soft and squishy. Sponges are filter feeders which draw in water through many small , incurrent pores. Food and oxygen are filtered out and then exit through one or more larger excurrent openings.

In the fish lab, Kevin found a large cymothoid isopod, a crustacean that attaches to fish using its hook-like legs and scavenges food as the fish feeds. It reminded me of a cockroach more than a “rolly-polly”, the land isopod found in our gardens.

Cymothoid isopod
Round sponge

Cymothoid isopod
Cymothoid isopod

The day continued with seven camera drops, the bandit reel deployment, and two chevron fish traps. Despite positive thinking and Liz doing her “fish dance,” both fish traps came up empty. So the 2nd bandit reel was our last chance for fish. We were excited to see the “fishing pole” part of the reel bouncing up and down. It was reeled in and here’s what we caught!

Barracuda
Barracuda

Barracuda
Barracuda

It was a great barracuda, Sphyraena barracuda, 939 mm (93.9 cm) long and weighing 3.49 kg. Joey measured and weighed it, carefully avoiding its sharp teeth. He released the large predator and our last catch quickly swam away.

An interesting souvenir I will be taking home are some fish otoliths. Otoliths are fish earbones. Bony fish lay down layers of bone on their otoliths as they age, similar to the rings on a tree. Scientists use the otoliths to determine the age of a fish. Kevin collected the otoliths from a yellowedge grouper one of the crew caught and gave one each to Liz and I. Then he helped me remove the otoliths from a red porgy – quite a messy procedure, but very rewarding to cut open the skull and see the earbones!

Otoliths
Otoliths

In tomorrow’s log, I’ll share what we learned on our tour of the engine room, and about the different job opportunities on the ship.

Personal Log

Two nights ago, the ship’s captain (Commanding Officer Jerry Adams) had invited Liz and I up to the bridge to help “steer” the ship. He explained that we were driving a 52 million dollar vessel with 30 lives on board, so we were feeling pretty nervous! The Pisces was moving to the next day’s work area so the bridge crew would be driving all night. I got to steer first, my hands tightly gripping the wheel Captain Jerry and Ensign Kelly Schill explained how to drive and the proper language to use. When steering, you are following a set course using a gyroscopic compass as well as a digital heading read out. You are steering the rudder by degrees. The heading is stated in single digits so 173 would be one seven three.

We were sailing at night, so all the bridge lights were kept turned off to better see the lights of other boats and oil rigs. The bridge crew even had red flashlights so they wouldn’t ruin their night vision. Liz and I both got a chance to steer the ship in circles. I even did a Williamson turn, which is done when there is a man overboard. You turn 60⁰ in one direction and then turn the other direction so you are back on your reciprocal course to pick up the person who is overboard. While I was doing this, the ETA (estimated time of arrival to our next destination) display changed from “ 6:10 am” to “NEVER.” We both laughed pretty hard about that!

The Dynamic Positioning system (similar to an automatic pilot system) is called Betty. She can talk to the crew on the bridge and is reportedly extremely polite. I find is amazing how the ship can maintain such a steady course, with the computers adjusting for the constant changes in current, wind, and other factors which affect the ship’s steering. The DP also keeps the Pisces in one place when we are at a science station. The Captain promised to show us more about the DP on our next bridge visit. Everything on the bridge is electronic. You can click a button and see how much fresh water is on board, how much fuel, which engines are working and even wake someone up! The technology is truly amazing. I keep thinking about my grandfather who sailed in the Swedish Merchant Marines in the 1930’s. What would he have thought all this?

Where has Pascy the penguin been in the last 2 days? Check out his pictures!


Pascy helps me write my log entry out on the back deck at sunset!

Safety is very important! Pascy wears his hardhat whenever he works out on the deck with equipment.


On the lookout for other ships and oil rigs!


Pascy helps with the Pisces’ navigation. He’s double checking the computer’s course.


Pascy in the captain’s chair on the bridge.


Pascy at the helm of this $52 million dollar ship!

Elizabeth Warren, July 11-12, 2010

NOAA Teacher At Sea: Elizabeth Warren
Aboard NOAA Ship Pisces

Mission: Reef Fish Surveys
Geographical Area of Cruise: Gulf of Mexico
Date: July 11-12,  2010

Winding down

NOAA SHIP: Pisces
Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico
Date: Sunday, July 11th- Monday July 12th, 2010

Weather Data from the Bridge:
Temperature: Water: 30.4 ℃ (which is 86.9℉ ) Air: 30.5 ℃
Wind: 1 knots
Swell: .2 meters
Location: 27. 51° N, 93.04° W
Weather: Sunny, Humidity 67%, 35% cloud cover

Science/Technology Log:
On Sunday, Anne-Marie and I were given a tour of the Engineering spaces. The Pisces has an integrated diesel electric drive system. There are two propulsion motors on the shaft that generate 1,500 horsepower each that are electric. Chief Engineer Garret explained that it is similar to a little remote control toy boat, except of course that the Pisces is much bigger. The Pisces is 208.6 feet long, 50 feet wide (breadth), and the Captain standing in the bridge is 37 feet above the water.

Propulsion Motor
Propulsion Motor

There are 4 generators on board, two 16 cylinder and two 14 cylinder that runs what the Chief Engineer called the “hotel load”, keeping the lights on. Another really cool thing about the Pisces is that it was designed to be a quiet vessel because underwater noise can