Cathrine Prenot: A Fish Tale, Too Big to Fail. July 18, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard the Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: July 18, 2016

Weather Data from the Bridge:
Lat: 45º19.7 N
Lon: 124º21.6 W
COG: 11.2
Speed: 17.1 knots
Air Temp: 16.4 degrees Celsius
Barometer (mBars): 1019.54
Relative Humidity: 84%

Science and Technology Log

It is exciting to be out to sea on “Leg 2” of this cruise! The official title of our research is “2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem.” One of the key portions of this leg of the trip is to collect data on whether or not a piece of equipment called the “Marine Mammal Excluder Device” (MMED) makes any difference in the fish lengths or the species we catch. Here is how it works (all images from Evaluation of a marine mammal excluder device (MMED) for a Nordic 264 midwater rope trawl):

The catch swims towards the codend of the net and encounters the MMED

The catch swim towards the codend of the net and encounter the MMED

The catch encounters the grate; some go through the grate while others escape the net through the hatch (shown by the orange buoy).

Some of the catch go through the grate (to the codend) while others escape the net through the hatch (shown by the orange buoy).

Why is this important?  For example, if all of one type of fish in a trawl escape through this MMED, we would be getting a different type of sample than we would if the equipment was off the nets.  Our lead scientist, Dr. Sandy Parker-Stetter explained: “If all the rockfish go out the top escape panel, how will we know they were there?”   To collect data on this, we will be doing a lot of trawls—or fishing, for those non-sea faring folk—some with the MMED and others without it. These will be small catches, we need about 300-400 fish, but enough to be able to make a determination if the equipment effect the data in any way.

We have done a few trawls already, and here are some of the photos from them:

'Young of the Year' Hake

‘Young of the Year’ Hake

Pacific Hake sample

Pacific Hake sample

Wanted: must love fish. And science.

Wanted: must love fish. And science.

All of this reminds me of why we are so concerned with accurately estimating the population of a little fish. To illustrate, let me tell you a story—a story of a fishery thought too big to fail—the Great Banks Atlantic Cod fishery. Why don’t you click on Issue 2 of Adventures in a Blue World: A Fish Tale, Too Big to Fail.

Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail

Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail

Cod populations decreased to such a degree (1% of previous numbers), that the Canadian Government issued a moratorium on Cod fishing in 1992.  Our mission—to investigate of hake survey methods, life history, and associated ecosystem—is designed to prevent such a devastating result. We don’t want Hake or other species to go the same route.

Atlantic Cod circa 1920s: from here

Personal Log

We left the left the dock on Sunday at 1145, and made our way under the Newport Bridge and out to sea. It was really wonderful to watch the ship leave the harbor from way up on the Flying Bridge—the top-most deck of the ship. There are four tall chairs (bolted to the deck) at the forward end of the deck, an awning, and someone even rigged a hammock between two iron poles. It is rather festive, although again, there were no drinks with umbrellas being brought to us.

View of Newport, OR from the flying bridge of the Shimada

View of Newport, OR from the flying bridge of the Shimada

I didn’t have any problems with seasickness on my last voyage, but I did take some meds just in case. One of the researchers said that he doesn’t take any meds any more, he just gets sick once or twice and then feels much better. If you are interested, here is a link to my previous cartoon about why we are sea-sick, and how and why ginger actually works just as well as other OTC drugs. All I can say now is that I’m typing this blog in the acoustics lab, and the ship does seem to be moving rather alarmingly from fore to aft–called pitching.  Maybe I should find a nice porthole. In the meanwhile, you can read “Why are we seasick.”

 

Did You Know?

The end of the fishing net is called the codend.  Who knew?  This and many more things can be learned about fishing from reading this handy reference guide.

Caitlin Thompson: Introduction, July 25, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean, Off the U.S. West Coast
Date: July 24, 2011

Bell M.  Shimada

NOAA Ship Bell M. Shimada

This Sunday, I’m headed off to sea! The mission of my cruise is to survey Pacific hake (also called Pacific whiting) populations. Hake is a species of fish that supports a huge fishery off the West Coast. As it states on NOAA’s Fishwatch website, “The Pacific whiting (hake) fishery is one of the largest in the United States. Pacific whiting is primarily made into surimi, a minced fish product used to make imitation crab and other products. Some whiting is also sold as fillets.” I’ll leave from Newport, Oregon, and arrive two weeks later in Port Angeles, Washington. The ship, the Bell M. Shimada, belongs to the National Oceanic and Atmospheric Administration (NOAA). I get to go on the Shimada because of NOAA’s program Teacher at Sea (TAS), which sends teachers aboard research vessels so that we can increase our scientific literacy and bring our new knowledge back to the classroom. I can’t wait. I’ve never even spent a night aboard a ship, so this whole journey will be new for me.

I teach seventh and eighth grade integrated science at Floyd Light Middle School, in the David Douglas School District, in Portland, Oregon. I earned my Master’s in Education at Portland State University and my Bachelor’s of Art in Environmental Science at Mills College, in Oakland, California. In between, I taught English at a public elementary school in Curico, Chile. I love science and I love teaching. As soon as I decided to become a teacher, I made up my mind to participate in TAS, because it will help me teach my students the importance and fun of science.

Caitlin Thompson

At a dragon boat race

When I’m not teaching, I paddle with a dragon boat team, spend time with friends and family, and ride my bicycle. I’m always looking for new projects and new things to learn. I’m lucky to live in a city as great as Portland, where there are always interesting events going on around town.

Bryan Hirschman, August 13, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 13, 2009

Weather Data from Bridge (0800) 
Visibility: 10 nautical miles
Wind: 6 knots
Wave Height: 1 ft
Wave Swell:  1-2 ft
Ocean temperature: 15.20C
Air Temperature: 14.20C

Science and Technology Log 

This is the net reel. The unit attaches with four bolts in each corner

This is the net reel. The unit attaches with four bolts in each corner

Life at sea can be very unpredictable. One minute everything is working great, and the next minute problems occur. Last evening a problem occurred with the net reel. The net reel is a large bull wheel that the nets roll into and out of when lowered in the water. The reel is spun by a huge engine that pulls the nets in when they are loaded with fish. This net reel is anchored to the boat with 16 huge bolts and nuts. Four of the bolts were found last night to be weakened during one of the daily inspections of ship’s mechanical instruments. The crew is constantly inspecting each piece of equipment to ensure the safest working conditions. Once this problem was seen all fish tows were canceled. We will be heading into port four days early to fix the problem.

An incorrect assembly of the bolts on the net reel

An incorrect assembly of the bolts on the net reel

A correct assembly of the bolts on the net reel

A correct assembly of the bolts on the net reel

Once in port the entire net reel will have to be lifted by crane and all the bolts will be replaced. The reel will then be lowered back in place and locked in place with nuts. Even though we are not fishing, other work on the ship is still occurring. The XBT (Expendable Bathythermograph) is deployed at regular intervals. This device sends depth and temperature data to a science laboratory to be recorded and used later (discussed in more detail in log 2).

Toxin-producing  phytoplankton pseudo-nitzschia.

Toxin-producing phytoplankton pseudo-nitzschia.

The HABS (Harmful Algal Bloom Sampling) research is also still being completed by Nick Adams, an oceanographer with NOAA. He takes water samples approximately every 10 nautical miles (1 nautical mile = 1.15 miles). After collecting the samples, he filters them for toxin and chlorophyll analysis. He also collects seawater for phytoplankton numeration and identification. His main focus is on toxin-producing genera, such as Pseudo-nitzschia and Alexandrium which are responsible for Amnesic Shellfish Poisoning and Paralytic Shellfish Poisoning, respectively.  At the end of the cruise, Nick will be able to create a map of the concentrations and locations of toxin- producing phytoplankton. This will then be compared with data from years past to determine patterns and trends.

Toxin-producing  phytoplankton Alexandrium

Toxin-producing phytoplankton Alexandrium

The phytoplankton themselves are not harmful to humans, but as they accumulate in the food chain there can be human-related sickness. If we eat the organisms that are eating the plankton that produce toxins, we can become ill. Not much is known about the cause of the toxin producers, but with more research like Nick’s, scientists continually increase their understanding and ultimately hope to prevent human sickness from these phytoplankton.

Personal Log 

I am saddened to be cutting my journey earlier then expected, but I will leave the ship with fond memories of Pacific Hake, Humboldt Squid, and all the wonderful people who work on the ship. I am particularly grateful to the seven scientists who have gone out of their way to make me feel at home on the ship and have answered all of my questions. They are: the acoustic scientists: Dr. Dezhang Chu, Larry Hufnagle, and Steve de Blois; the fish biologists: Melanie Johnson and John Pohl; the oceanographers: Steve Pierce and Nick Adams. They are each extremely dedicated and passionate about their research and equally passionate about protecting our oceans and the organisms living there.

Scientists Steve de Blois, Larry Hufnagle, Dr. Dezhang Chu, and John Pohl

Scientists Steve de Blois, Larry Hufnagle, Dr. Dezhang Chu, and John Pohl

Challenge Yourself 
Volunteers play an integral role in supporting the environmental stewardship conducted every day by the National Oceanic and Atmospheric Administration. Across the United States and its coastal waters, opportunities exist for volunteers to take part in research, observation and educational roles that benefit science, our citizens and our planet.

Visit this website to see where you can help

hirschman_log4g

Bryan Hirschman, August 10, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 10, 2009

Weather Data from the Bridge (0800) 
Visibility: 4 nautical miles
Wind: 14 knots
Wave Height: 2 ft
Wave Swell:  5-6 ft
Ocean temperature: 14.40C
Air Temperature: 16.00C

Science and Technology Log 

Image of plankton taken with VPR

Image of plankton taken with VPR

Today, John Pohl, one of the fish biologists showed me the VPR (video plankton recorder). The camera is attached to the CTD (Conductivity, Temperature, and Depth), which is operated by Steve Pierce, a physical oceanographer, and Phil White, chief survey technician, who work the night shift. The CTD is a large apparatus which has room for many additional sensors and attachments. The CTD onboard the Miller Freeman has a dissolved oxygen sensor in addition to the VPR.

Image of plankton taken with VPR

Image of plankton taken with VPR

Each night Steve sends the CTD down to the seafloor (about 7 times) to collect data. He is most interested in determining the differing densities of water at different depths (depth is based on pressure, which the CTD measures). He then calculates the densities using conductivity and temperature. By measuring conductivity (how easily electric currents pass through the water sample being tested), Steve can get a measurement of that water sample’s salinity.  Density of water is then calculated from measurements of salinity, and temperature. An equation is used which relates the measurements so that density can be found if these other two values are known. Steve records all the data each night, and will use this information to study currents and their movements.

The VPR is a camera which records video as well as still pictures as it descends to the sea floor. The data are recorded, then uploaded to an external hard drive. The file is very large, as it takes about ten minutes to transfer all the data. The pictures and video will be used by biologists (not on board presently) to identify and determine the percentage of plankton (plankton consist of any drifting organisms) floating throughout the water column. Each time before we set out the fish nets, two people go to the bridge to look for marine mammals. If any are present the nets won’t be put into the water. A few tows have been cancelled due to the presence of marine mammals. This is a great step in keeping them safe. It is always special when I see dolphins or whales.

Here I am holding a sleeper shark.

Here I am holding a sleeper shark.

The only fish tow of the day (no marine mammals present) consisted of mainly Humboldt Squid and some Pacific Hake. Today we used a load cell to get a total mass; this is a device which hooks up to the net and crane. The load cell gives a mass of the entire haul. The majority of the load was released back into the water while a smaller sample was retained. The weights of the Hake and squid were then determined using bins and a balance. The scientists can use the subsample data to determine the data for the entire load.  Bycatch, defined as living creatures that are caught unintentionally by fishing gear, are occasionally found in the net. Today a rougheye rockfish was caught, and yesterday a sleeper shark were accidently caught. The scientists do a very good job of limiting bycatch using their acoustic data.

Personal Log 

A rougheye rockfish – what a pretty fish

A rougheye rockfish – what a pretty fish

I am enjoying the long hours of work, and have gotten into quite a rhythm. I also enjoy spending time with the hardworking and intelligent staff here on board. We work together as a team, and everyone enjoys their jobs. NOAA has chosen a great group of officers who set a very positive tone and make the ship a great workplace. I would love to take a sabbatical from teaching and work on a NOAA ship. I’m having a lot of fun and learning a bunch. I will take back a lot of positive experience to share with my students, family, and friends.

I have also learned to appreciate the smells of a load of fish. As we move the fish from the holding cell, to small baskets for weighing we are constantly splashed in the arms, face, mouth, eyes, etc. I find it pretty amusing every time I get splashed, or even better, when I splash John, Melanie, or Jake. It never grows old. The hardest portion of my day is determining what movie to watch while running on the treadmill (I finally mastered the art of the treadmill on a rocking boat and can leave the elliptical trainer alone). The boat has close to 800 movies to choose from.

Animals Seen Today 
Pacific White-Sided Dolphins, Rougheye rockfish, Humboldt Squid, Pacific Hake, Albatross, Sheerwaters, and Murres.

Poem of the Day 
Squid ink, squid ink!
O! How you make me stink!
You stain my face, you stain my clothes;
I must wash you off with a fire hose!

You make me scratch, you make me itch,
You even turn Melanie into a wicked witch!
(which is a horribly difficult thing to do—
She’s as gentle as a lamb in a petting zoo!)

Why not John, allergic to your ink!
Torment HIM with your venomous stink!
But no–not ME! All I want are Hake.
So torment instead “almost” graduate Jake!

But once again, though our dinner hour,
Because of you I must shower!

So I beg you, O squid, to hear my plea:
In the future, stay away from me!
Does that sound good?
Do we have a deal?
If not, well then—you’re my next meal.

Answers to Last Question 
Ribbon Barracudina, Pacific Hatchetfish, Baby Humboldt Squid

Bryan Hirschman, August 6, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 6, 2009

Weather Data from Bridge (0800) 
Visibility: 6 nautical miles
Wind: light
Wave Height: <1
Wave Swell: 2-3 ft
Ocean temperature: 15.90C
Air Temperature: 15.50C

Science and Technology Log 

John and Melanie sexing and measuring the fish

Melanie sexing and measuring the fish

Today the day started with a fish tow at 8:00 am. The acoustic scientists, Steve, Larry, and Chu, predicted the fish would be mostly myctophids, and wanted to be certain. The fisherman sent the net out and about an hour later the net was brought back. As predicted the net was filled with mostly myctophids. This is an important step in being able to determine the fish type and numbers using acoustic data only. Scientists will then be able to acoustically count fish populations for most schooling fish (Pollock, Pacific Hake, anchovies, and mackerel to name a few), with out using nets. After the nets are brought in the fish biologists (and me) get to work. We separate all the organisms into their own piles. We then count and weigh them, and log this into a computer using their scientific names. It’s amazing how Melanie and John (the fish biologists) can identify and recall the Latin names of these organisms.

Question: Do we just fish in random locations?

Answer: No, the acoustic scientists choose to fish in locations that appear to be different from previous fishing locations. The parameters which make them different are depth, color intensity, or pattern of the markings on their computer screens. The scientists get real-time acoustic pictures as the boat travels along on a pre-determined path (called a transect).  The more they can relate the graphs on the computer screens to the actual catch in the nets the less fishing which needs to be done.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

Here is the second tow consisting of Pacific Hake and Humboldt Squid.

Here is the second tow consisting of Pacific Hake and Humboldt Squid.

The second fish tow of the day produced Pacific Hake and Humboldt Squid. We weighed all the squid first (then quickly returned to the ocean), and 10 were randomly selected for a stomach dissection. The stomachs contained pieces of squid, Pacific Hake, and other unidentifiable fish. Another purpose of this cruise is to determine the effects of the squid on the Hake, and by looking at the stomachs the scientists will be able to determine the relationship between the squid and hake.  The third tow of the day involved an open net with a camera. The camera could record for an hour. The scientists then view the footage to estimate the size and quantity of the hake passing through the net. This is another method the scientists are using to verify their acoustic data.

Here I am holding the delightful meal of tuna.

Here I am holding the delightful meal of tuna.

I also had the chance to launch an XBT (Expendable Bathythermograph). This device is launched at the back of the boat. The sensor is released into the water and is attached by a tiny copper wire. As the sensor travels down the water column it sends the depth and temperature data to the bridge. This data is saved and used by physical oceanographers to better understand temperature profiles found in the ocean.

Personal Log 

Today was a great day. The seas were calm, I slept well last night, and the food was great. I even got to exercise for 1.5 hours. The exercise room has a television hooked up to watch movies, and it made using the elliptical trainer and stationary bike much more enjoyable. I also had a great time working with the fish biologists. We were throwing and catching squid like the professionals who work at Pike Place Market in Seattle.  Best of all was dinner, freshly caught tuna, which I got to filet.

Animals Seen Today 
Dolphin, Mola-mola, Albatross, Sheerwaters, Slender Barracudia, Ribbon Barracudina, Blackbelly Dragonfish, Pacific Hake, Lanternfish (myctophids), Salps, Sunrise Jellyfish, Purple Cone Jellyfish, Wheel Jellyfish, Humboldt Squid, Black-eyed Squid, Pacific Hatchetfish, and Spiny Dogfish shark.

Question of the Day : Can you identify the animals in the photo?

Question of the Day : Can you identify the animals in the photo?

Answer to the last question: Lancetfish

Bryan Hirschman, August 4, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 4, 2009

hirschman_log1Weather Data from the Bridge (0800) 
Visibility: 10 miles
Wind: 2 knots
Wave Height: <1 ft
Wave Swell: 3 ft
Ocean temperature: 15.50C
Air Temperature: 15.50C

Science and Technology Log 

Here I am holding a Pacific Hake.

Here I am holding a Pacific Hake.

We will be conducting several types of oceanographic sampling during our cruise: 2-3 Pacific hake tows per day (weather permitting), an open net tow where fish are viewed through a camera, XBTs: Expendable Bathythermograph (take temperatures at various depths), HABS: Harmful Algal Bloom Sampling, CTD: Conductivity, Temperature, and Density (also at various depths), and a Multiple Opening Plankton Net (collects living organisms at various depths). We will also release a Surface Drifter: floats with currents and sends information about currents via satellite.

The tows, XBTs and HABS are done from 7:00 am to 9:00 pm, while the CTD and plankton net are used during nighttime hours. By working in daytime and nighttime shifts the scientists are maximizing the boat’s usage. I was fortunate enough to help with the plankton net last night. Five samples were collected while I observed. Each sample was labeled and preserved for later use in a laboratory. Observed were amphipods, copepods, shrimp, and crab larvae.

Can you identify the animal I’m holding?

Can you identify the animal I’m holding?

Our first Pacific hake tow came at approximately 8:00 am. The acoustic scientists use four transducers that are attached to the bottom of the boat.  Each transducer sends out pulses of sound at a different frequency toward the bottom of the sea floor. The sound pulse then travels back to the boat and is recorded onto graphs. Fish and other biological organisms also reflect sound pulses. Each type of fish gives off a different signal depending on its size, shape, and orientation. The fish are then identified on a computer using acoustic analysis software. The strength of the sonar signal helps determine the biomass and number of fish. When the chief scientist see an interesting aggregation of fish to tow on, he calls the bridge (the brains of the boat–this is where the boat is controlled) and reports the latitude and longitude of where he wishes to fish. The ship then turns about and the deck hands work to lower the tow net and prepare to collect fish at the depth the scientists observed the fish.

Here, I’ve got a Humboldt Squid.

Here, I’ve got a Humboldt Squid.

After the fish are collected, the Pacific hake are weighed and counted.  A sub-sample of about 300 Pacific hake is sexed and lengthed. Another sub-sample of about 50 Pacific hake is weighed, sexed, and lengthed; sexual maturity is determined by observation of the gonads, and ear bones are removed – this will enable scientists to determine the age of the fish.  About 10 Pacific hake have their stomach contents sampled as well. All this information is collected and used by Fishery Biologists to determine the population dynamics of the overall Pacific hake stock. The acoustic scientists also save all their data in an acoustic library. This will help scientists to analyze the Pacific hake biomass (population) while minimizing how many live specimens they need to collect. In total we completed three tows today. That’s a lot of Pacific hake to measure, weigh, and sex.

Personal Log 

The ship is loud. Sleep was hard to come by last night. Living in quiet Vermont has made me a light sleeper. I need to work on adjusting to the constant noise. The food and staff are great. Everyone takes pride in their ship and the work which is done on the ship.

Question of the Day 
Can you identify the beast in the picture to the picture?

Animals Seen Today 
Pacific Hake, Humboldt Squid, Myctophids, Breaching Whale (too far away to identify; most likely a Humpback)