Janelle Harrier-Wilson: Toro’s Tour and the Process of Fishing, October 2, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: October 2, 2014

Weather Data from the Bridge
Lat: 41° 16.5′ N  Lon: 071° 06.3′ W
Present Weather: Cloudy
Visibility: 6-8 nm
Wind:  020 at 28 knts
Sea Level Pressure: 1017.4 mb
Sea Wave Height:  2-3 ft
Temperature Sea Water: 18.4  C
Temperature Air:  14 C

Science and Technology Log

The Henry Bigelow before we left port last week.

The Henry Bigelow before we left port last week.

Have you been wondering how we fish? I know I have shared a lot about sorting the catch, measuring the length and weight of the fish, and taking other data from the fish, but I haven’t shared a lot of details about how we fish. It’s a pretty cool process that involves a lot of science and engineering to get to a place where we have fish coming down the belt in order for us to sort. Let’s take a look at what happens.

  1. Before the season begins, points are randomly predetermined where we will fish. Each of these points is called a station. The captain and the chief scientist work together to plan out which stations will be visited on each leg of the trip and in what order. We are currently on Leg II of the Autumn Bottom Trawl Survey. There are usually four legs each year.
  2. Once we arrive on station, the ship’s officer scouts for the best place to release the nets. The nets need a relatively flat bottom of the ocean floor with no obstacles like rocks that the net could get caught up on. How does the scouting take place? The ship is equipped with both single beam and mutli-beam sonar. The multi-beam sonar is used to create a three-dimensional map of the ocean floor. This map is used to find the best place for us to trawl.
  3. Next, we take data about that particular spot of the ocean. We either send down the CTD, which measures conductivity, temperature, and density of the water, or we do a bongo. The bongo is a set of nets that streams off the ship to collect plankton from the area of the ocean on station. The survey techs are in charge of conducting these tests and collecting the data from them. Before the cruise began, the stations that would have CTDs or bongos were predetermined.
  4. Once the CTD or bongo test has been conducted, we are ready to set out the nets. The nets are set out by the deck crew and involve a complex series of machinery and computers. Our chief scientist, Jakub Kircun shares this about the system and sensors: “Autotrawl System and Scanmar Sensors: Autotrawl is specifically designed to keep the tensions between port and starboard towing wires equal, therefore keeping the net from fishing crooked. Autotrawl will also be able to assist with hangs as it will automatically release wire during a tension spike. The (Scanmar) sensors on the net are used to check the geometry of the net, however that data is not directly tied with Autotrawl. Instead we monitor the sensors to check on a variety of net mensuration parameters, such as wing-spread, door-spread, headrope-height, headrope-depth, bottom-contact, and water-speed-through-trawl. All those parameters are analyzed by a computer program after each tow called TOGA (Tow Operation Gear Acquisition). If all the parameters are within the per-determined tolerances the tow is considered a representative tow. However if the values are outside of these tolerances then the tow would fail the validation and would need to be retowed.”
  5. Once the net is in the water, we  begin streaming. While we are streaming, we are moving slowly in the water, dragging the net behind us. We stream for 20 minutes. We can check the progress of the trawl by watching the sensor readouts. There are sensors in the net that send back live data to the ship.
  6. After we have streamed for 20 minutes, we then haul back the nets. This is the reverse process of when we set the nets out. The net slowly comes back in and begins to be wrapped up and stored. The deck crew puts ropes around the part of the net where the fish are and attaches the net to a crane. The crane moves the net over to the checker.
  7. Once the net is over the checker, the net is opened and the fish are dropped into the checker.
  8. From that point, the watch chief looks through the checker and decides what we will run. This means we don’t collect these things off the conveyor belt instead letting them collect at the end. This is done for the things we caught in large quantities.
  9. From that point, the fish from the checker are loaded onto the conveyor belt and up into the wet lab for us to sort through and process. While we are sorting and processing the fish, the ship is on its way to the next station. The distance between stations varies. We’ve had some that were just over a mile away and others that have been 20 or more miles away. Yesterday, we had a long steam (travel) between stations because the next station was 52 miles away. It took us several hours to steam to that station.

Personal Log

Are you wondering what it’s like to live on a ship? It’s actually pretty cool. I mentioned before that we are on 12-hour watches. While we are on watch, we pack up what we will need for the day in backpacks or other bags. Why? Well, we share rooms with people on the night watch. My stateroom has four bunks. Two of us are on day watch and two of us are on night watch. While the day watch is working, the night watch is sleeping. We don’t want to disturb them so they can get good “night” of rest, so we do not go back to the state room while the night watch is off duty. When we are off duty, they do not come back to the room, either. While we are on watch, we can be really busy sorting and working up a catch. However, depending on how many times we fish during a watch, we may have some free time as well. We have some down time while we are steaming to the next station, during the CTD and bongo tests, and while we are streaming. We jump to work once we start hauling back the nets. We had one day where we were really busy because we visited seven stations during our watch. Sometimes, we have more free time between steams. During that time we can read, have a snack, work on blog posts like I am doing, or sometimes watch a movie. We also have time to eat our meals on watch.

The galley cooks up three meals a day for us. I have only made it in time for breakfast the first day before we started our 12-hour watches. We eat lunch before our watch starts and we eat dinner during our watch. The food is amazing. Dennis Carey is our head steward and chief chef, and he prepares awesome meals for us with his assistant, Luke. However, the galley is open all day, even when a meal is not being served. There are always snacks available like goldfish crackers, Chex mix, cereal, fresh fruit, and ice cream. Plus, there is bread, peanut butter, and jelly to make sandwiches. Sometimes there are pastries, cookies, or other desserts available, too. As you can see, we don’t have to worry about going hungry on the Henry Bigelow!

There is a lounge on board with six recliners and a television set. We can watch satellite TV and movies while we are here. There is also a television in the mess deck. It’s a tradition to watch The Price is Right during lunch time, for instance! We also have an exercise room that has weights, a treadmill, and a bicycle. I haven’t used the gym, but I have worked out with some of the other scientists on board. We can also do laundry, which is pretty important. We pack lightly since we don’t have a lot of room in our staterooms. As you can imagine, our clothes get a little smelly from working with fish all day, so it is nice to be able to do our laundry on board!

Careers at Sea

Ensign Estella Gomez shows volunteer Eric Smith how he plots the ship's course on the chart.

Ensign Estela Gomez shows volunteer Eric Smith how he plots the ship’s course on the chart.

Have you ever considered a career as a commissioned officer? Did you know that the NOAA Commissioned Officer Corps is one of the seven branches of the U.S. uniformed services? We have several officers on board including our commanding officer (the ship’s captain) and the executive officer. I had a chance to visit the bridge the other day, and Ensign Erick Estela Gomez shared what it is like to be part of NOAA’s Commissioned Officer Corps. Most of the officers have a background in science or math that aligns with NOAA’s scientific vision and purpose. To be part of the Corps, you have to have a science or math degree and apply to the program. If you are accepted, you go to training with the Coast Guard. Usually, there are 60 people as part of each training class, 40 from the Coast Guard and 20 from NOAA. The training is like boot camp and includes learning about how to be an officer as well as the science aspects of NOAA. One interesting thing Ensign Estela Gomez shared is that only about 10% of Coast Guard officers actually go out to sea. If you want to be out at sea and be a part of science, the NOAA Commissioned Officer Corp might be for you. Officers move through the ranks starting at ensign. Once an officer has passed training and certification, they can become an Officer On Deck (OOD), which means they can be on watch running the ship on their own.

Lt. Kuzirian takes the oath to accept his new rank as Lt. Commander.

Lt. Kuzirian takes the oath to accept his new rank as Lt. Commander.

As an officer on the bridge, there is a lot to do in terms of monitoring the different gauges and screens. There are radar monitors, engine and generator monitors, ship’s location, and mulitbeam sonar screens just to name a few. Also, the officer on deck has to watch the horizon for other ships and fishing gear in the water. Although there are computer systems to monitor the ship’s track and location, the ship’s location is still plotted on a paper chart. This is a backup in case of computer errors or other problems.

Yesterday, we had the opportunity to watch one of the officers, Lt. Stephen Kuzirian be promoted to Lt. Commander. This does not happen on board ship every day, so it was really cool to be a part of this ceremony. Lt. Commander Kuzirian has a background in oceanography. He currently works in Washington, D.C., but he joined us on this trip for a chance to be at sea and to assist the Henry Bigelow.

Toro’s Tour

Toro won the votes to make the trip on the Henry Bigelow. He thought you might like a tour of the some of the areas on board the ship. As he was working up the tour, the Captain was worried that Toro was a stowaway since he has not fulfilled any science duties while aboard ship!

Did You Know?

The Atlantic Torpedo is an electric ray. It is the largest growing electric ray, and can deliver a shock up to 220 volts!

Atlantic Torpedo Ray

Atlantic Torpedo Ray

Poll

Janelle Harrier-Wilson: Sunsets, Stars, and Analyzing Sea Life, September 29, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: September 29, 2014

Weather Data from the Bridge
Lat: 39° 34.6′ N  Lon: 072° 14.9′ W
Present Weather: cloudy
Visibility:  7-9 nm
Wind:  140 at  17 knts
Sea Level Pressure:  1010.9 mb
Sea Wave Height:  3-4 ft
Temperature Sea Water:  22.6 C
Temperature Air:  20.8 C

Science and Technology Log

Processing fish as the cutter

Processing fish as the cutter

We are continuing to trawl different areas of the Atlantic Ocean off the coast of the Southern New England area. I have graduated from recorder to cutter. This means that when we process the fish and other sea life that we catch, I get to cut fish open to examine them. I am working with Christine Kircun, and we trade off now almost every other tow taking turns to be the cutter and recorder. Christine has been an awesome teacher helping me learn how to properly cut into the fish, identify the sex and maturity of the fish, examine the contents of the fish’s stomach, and find the otoliths. Otoliths are small hard parts of a fish’s inner ear. They are found in cavities near the fish’s brain. The otoliths are collected and sent back to the lab to be analyzed. As the fish grows, the otolith gets different colored (clearer and white) growth rings  on it similar to a tree. Counting these can tell the age of the fish. Some fish have otoliths that are really easy to find and remove. Other types of fish are more difficult to find and remove, like windowpane flounder. For more information about how otoliths are used for age and growth, click here.

In my last post, I mentioned that there are left and right-eyed flounder. Summer flounder are left eyed, and winter flounder are right eyed. In a catch the other day, we had winter flounder. As we were working up the winter flounder, we discovered a left-eyed winter flounder! That was pretty cool to see since this is a more rare occurrence.

Winter flounder - a rare left-eyed winter flounder

Winter flounder – a rare left-eyed winter flounder

Winter flounder - a right eyed flounder

Winter flounder – a right eyed flounder

Before I left for my cruise, I received a CD with information on it including how to identify many of the common fish we catch at sea. I looked through that presentation several times, and I thought I was ready to identify the fish. However, I didn’t get really good at identifying fish until I saw them in person. For instance, there are several kinds of hake. So far, we have caught spotted hake, red hake, silver hake, and offshore hake. Each one looks slightly different, although the offshore and silver hake are the most similar. Red hake have a slight reddish appearance to their scales, and spotted hake have spots down their side. Now that I have seen each one in person, it is much easier to identify the different types of fish. Fish that seemed really similar in the presentation take on new meaning to you when you are holding them in your hand. It’s reminded me once again that when we are learning new things, the most important thing to do is dig in and try things out. You will learn so much more by doing things like experiments in chemistry and building things in engineering than you would by just reading about it or looking at pictures. I have also learned about the anatomy of fish by watching Christine first do the processing and now doing it myself. It’s really cool to see the insides of the fish and the different stages of growth and development. It’s also really cool to push the contents of the fish’s stomach out onto the board to examine what they have eaten!

I thought you might like to see a short video of the process of sorting the fish off the conveyor belt. You can see the fish coming up the conveyor belt from the checker and pouring onto the conveyor belt in the wet lab for sorting.

Careers at Sea

I have learned something really interesting about working at sea. The scientists onboard this cruise do not spend their entire time out at sea. In fact, most of the scientists go out once or twice in the spring and once or twice in the fall. Just like we are doing an autumn bottom trawl survey, there is also a spring bottom trawl survey. During the rest of the time, they work at the NOAA Northeast Fisheries Lab in Woods Hole, MA. It seems like a really cool balance between doing science in the lab with a pretty normal daily routine most of the year but then having the chance to go out to sea a couple of times a year in order to do field work and be part of an adventure. I did not know that opportunities like this existed. If you love to do science but don’t want to spend all of your time in the lab, a career like this might be really interesting to you. Most of the scientists have degrees in marine science/biology, biology, or other related fields.

Personal Log

After just a few short days, I have settled in to my routine here on the Henry Bigelow. It’s an exciting life because you never know what’s going to come up on the next trawl or what other cool things you will see out at sea. Sometimes, we have been really close to the shore, and you can see the lights of the cities off in the distance. Now, we are offshore, but even out here you aren’t alone. There are ships passing by most of the time, and at night you can see the lights from the other ships off in the distance.

One of my favorite things to do is to head up to the flying bridge to watch the sunset. The past few nights have had beautiful sun sets, and we have had time to enjoy them in between sorting and working up the fish. The flying bridge is the highest part of the ship. It’s above the main bridge where the ship is controlled from. When it’s clear, you can see for miles in every direction. There is also a picnic bench up there, so it’s a great place to sit and read a book while waiting for the next trawl to come in.

After my watch finishes at midnight, I also like to head up to the flying bridge. It’s one of the darker places on the ship at night. As your eyes adjust to the night, the stars begin to appear before you. Out here, the sky kisses the sea, and the stars rise out of the inky black of the ocean. I watched the constellation Orion rise up out of the Atlantic. It was inspiring. There are so many stars. It’s not like the light polluted skies of the Atlanta area. Even with the ship’s lights, you can still make out the bands of the Milky Way. I also saw two meteors streak through the sky the other night.

Did You Know?

The goosefish is an angler fish that lives on the ocean floor on the continental shelf and slope. It uses its angler to attract prey. It has a huge mouth compared to its body. It’s also called poor man’s lobster because the meaty tail of the fish resembles the taste of lobster.

Goosefish

Goosefish

Goosefish mouth

Goosefish mouth

Challenge Yourself

Think you have what it takes to figure out the age of a fish using otoliths? Try this interactive, and share how you did in the comments.

Poll

Janelle Harrier-Wilson: Learning about Life at Sea, September 26, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: September 26, 2014

Weather Data from the Bridge
Lat: 40° 11.3’N  Lon: 073° 52.7’W
Present Weather: CLR
Visibility: 10 nm
Wind: 326 at 5 knts
Sea Level Pressure: 1020.4 mb
Sea Wave Height: 2-4 ft
Temperature Sea Water: 20.4° C
Temperature Air: 23° C

Science and Technology Log

On the ship, there are two science watches: noon to midnight (day shift) and midnight to noon (night shift). I am assigned to the day shift. We left port late Tuesday afternoon, but we made it to our first trawl site a few hours later. When the nets brought back our first haul, I had a crash course in sorting through the fish. The fish come down and conveyor belt from the back deck to the wet lab. In the wet lab, the first thing we do is sort through the fish. The more experienced scientists are at the front sorting through the larger species and sometimes the more abundant ones. The largest species of fish go in large baskets, the medium sized ones go into large buckets, and the smaller ones go into smaller buckets. Each basket or bucket only has one species in it. During our first trawl, there was a smaller amount of fish to sort through, but we had a lot more fish the second trawl. It took us longer to sort through the larger fish.

Once the fish are sorted, we go to our cutter/recorder stations. At our stations, we sort through the buckets of fish one by one. Right now, I am a recorder. This means that I record the information about each fish into the computer. It’s a really cool computer system. First, the bucket it scanned. On the computer screen, a message pops up to tell us what type of fish should be in the bucket. If that is what we have, we say “Yes” to the prompt and continue. Then, we dump the contents of the bucket into a well waiting for inspection. The cutter pulls the fish out, one by one, and begins to take measurements. The first measurement is usually length. The tool for taking the measurements is integrated into the computer system. The fish are laid out on the ruler, and a sensor is tapped at the end of the fish. This sends the fish’s measurement to the computer. The Fish Measuring Board is a magnetic system. The tool that we use to measure the fish is a magnet. The board is calibrated so that when the magnet touches a specific area of the board, it will read the appropriate length. The computer then tells us what measurement to take next. Usually it is weight. On the other side of the Fish Measuring Board is the scale for the larger fish. There is also a small scale for smaller specimens. When the weight is recorded, the computer then prompts for additional measurements which are taken from the fish. During our second trawl, we worked up a bucket of summer flounder. One of the summer flounder was huge! I had not seen a flounder that big before!

One of the things that has really impressed me so far is the integration of the science and the technology. The computer system that records measurements is integrated into the ruler and scale right at the work bench (the fish measuring board). When we take samples from the specimen, a label is printed right at the station, and the sample is placed into either an envelope, zip bag, or jar for further handling. It reminds me of how technology makes the job of science more streamlined. I can’t imagine how long it would take for the processing and sampling of the fish if we had to take all of the measurements by hand! Technology is a valuable tool for scientists at sea.

Careers at Sea

Henry Bigelow Engine Room

Henry Bigelow Engine Room

We left port on Tuesday, September 23. Before we left, I had a chance to explore the ship and ran into chief engineer Craig Moran. He sent me to the engine room for a tour, and I met John Hohmann. John is the first engineer on the Henry Bigelow. He showed me around the engine room including the generators, the water system, and the shaft to the propeller. It was pretty quiet in the engine room since we hadn’t left yet, but it is a loud, warm place when the ship is at sea.

I had a chance to chat with John about his background in engineering. He has a specialization in marine engineering. Marine engineers really need to be a jack-of-all-trades when we are out at sea. If anything is not working right on the ship, they are called out to fix it. This can include any of the machinery in the engine room, the electrical systems, the water purification system, and even fixing the cooking equipment in the galley! Life at sea can be demanding as they can be called at any time day or night to fix an integral piece of machinery. However, engineers generally work 30 days at sea and then are home for 30 days. One thing John wanted you all to know is that there will always be jobs for engineers. If you are interested in marine engineering, it can help you travel the world. John has been all over the world to many interesting countries. The other thing that I found interesting is that he says you need to be able read and follow instruction manuals in order to fix an issue. He also said an essential skill for an engineer is problem solving. Marine engineering entails a lot more than I had initially thought, and it is really cool to be able to talk to John and learn about marine engineering from him first hand.

Personal Log

I arrived to the ship Monday evening (September 22). Since the ship wasn’t scheduled to leave port until the next day, most of the team was not on board yet. I was able to find my stateroom and get settled in. Tuesday, things started to pick up on ship. There was a dive at 9:00 to check the hull of the ship, so I had a chance to watch the divers slide into the water and later climb back out. The rest of the science team arrived just in time for lunch. I then had time to explore the ship (I found the important places: the laundry room and the gym!), and get to know the science team a little bit better. The ship started undocking around 16:00 (4:00 pm), and we were on our way to sea. We went up to the flying bridge, the highest deck on the ship, as we left Rhode Island. It was beautiful up there as we passed by Newport and the surrounding areas. There is an old lighthouse that is now used for event spaces, and a house built up on a small rocky island. At 17:00, it was dinner time. We eat our meals in the mess, and the meals are prepared in the galley. I knew I needed to eat a good meal because my watch for the night officially started at 18:00 and would last until 24:00.

The sea was pretty calm yesterday, so it was a good introduction to the ways of life on a ship. So far, I have not had any trouble adjusting to life onboard ship. I was worried about sea-sickness, but I came prepared and have felt great so far. A lot of the crew have mentioned that I should be fine, and that I’ve already found my sea legs. I think perhaps I have found my sea stomach but not my sea legs! I do periodically lose my balance when walking through the corridors. Thankfully, there are handrails everywhere to catch my balance just in case. Maybe I’ll find my sea legs in a few more days, but I am pretty clumsy even on land!

Janelle Wilson wears immersion  suit for abandon ship drill.

Trying on my Immersion Suit

Safety drills are also an important part of sea life. Each person has their own immersion suit and personal flotation device (PFD). These are in case we have to abandon ship. We need to be able to put our immersion suit on in 60 seconds. The immersion suit is kind of like a wet suit, but it has lights on it and other tools. There are also lifeboats on board. There are three types of emergencies we need to be prepared for: abandon ship, man overboard, and fire/other emergency. Just like we have fire drills at school to help us know where to go in the case of a fire, these drills help us prepare for emergencies.

Did You Know?

You can tell a summer flounder from a winter flounder by the side the eyes are on the fish. You look at the fish as if it were swimming up right. Summer flounder eyes are on the left, and winter flounder eyes are on the right. Summer flounder are called left eyed, and winter flounder are called right eyed.

Challenge Yourself

What additional information can you find out about marine engineering careers at sea? What type of training do marine engineers need, and what schools offer marine engineering?

Poll

John Clark,Headed Home Early, October 1, 2014

NOAA Teacher at Sea
John Clark
Aboard NOAA Ship Henry B. Bigelow
September 23 – October 4, 2013

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: October 1, 2013

Science and Technology  Log 

A few hours into our shift midnight we get the word we have been expecting for several days – government shutdown. Our mission will be cut a few days short. That reality means the Bigelow has 24 hours to return to its homeport of Newport,  R.I.  It takes us 10 hours and we dock around 1 in the afternoon. With our fisheries operations suddenly declared over comes clean-up time, and we spend the next 6 hours of our shift cleaning up the on‐board fish lab. It is a time consuming but important process. The lab needs to be spotless and “fish scent” free before we can call our work finished on this cruise.  The lab is literally solid stainless steel and every surface gets washed and suds downed so there is no residue remaining.

Eau de fishes

Fish scales hiding under a flap!

Our work is inspected by a member of the crew. If it were the military, the officer would have had white gloves on I believe, just like in the old movies, rolling his finger over a remote spot looking for the dust we missed. But this is a shining stainless steel fish lab so there are two simultaneous inspections going on at once – the one with the eyes and the one with the nose.  It takes us twice to pass the visual inspection as small collections of fish scales are spotted in a few out-of‐the way areas. It takes us one more pass to clear the smell inspection. Up and down the line we walk, we can all smell the faint lingering perfume of “eau de fishes,” but we are having trouble finding it. We keep following our noses and there it is. Hiding under a black rubber flap at the end of the fish sorting line we find a small collection of fish scales revealed  when the flap is removed for inspection.  With that little section cleaned up and sprayed down the lab is declared done! There is a smile of satisfaction from the team. It is that attention to detail that explains why the lab never smelled of fish when I first boarded the ship 10 days ago nor has it smelled of fish at any time during our voyage. There is a personal pride in leaving the lab in the same shape we found  it. Super clean, all gear and samples stowed, and ready for the next crew to come on board – whenever that turns out to be.

The abrupt and unexpected end to the cruise leaves me scrambling to change my travel plans. Like the ship, I have a limited amount of time to make it home on my government travel orders. The NOAA Teacher at Sea team goes above and beyond to rebook my flights and find me a room for the night.

Personal Log 

On the serendipitous side, the change in plans gives me a little time to see Newport, a town famous for its mansions and the Tennis Hall of Fame.  My first  stop is  the Tennis  Hall  of  Fame.  My father was a first class  tennis  player who invested many  hours  attempting to

teach his  son the game. Despite the passion in  our  home  for  the  great  sport  we  never  made it  to  the  Tennis  Hall  of  Fame in  Newport.  Today I get the  chance to fulfill that  bucket  list  goal. I still remember being court side as a young boy at The  Philadelphia Indoor Championships watching the likes of Charlie Pasarell, Arthur Ashe, and Pancho Gonzales playing on the canvas tennis court that was stretched out over the basketball arena. There was even a picture of the grass court lawn of the Germantown Cricket Club from its days a USTA championship venue before the move to Forest Hill, NY. I grew up playing on those tennis courts as my father belonged to that  club. Good memories.

Clark Log 4b

There was also a  “court tennis” court, the game believed to be the precursor  to outdoor  tennis. Court  tennis derived from playing a  tennis  type  game  inside a walled‐in  court yard.  Using  the  roof and  the  wall and the open side windows to beat your opponent is all part of the game. I played court tennis as a  young teen. It’s a very unique game that is only played in a few spots now. There are only 38 court tennis courts in the world and Newport has two of them. If you like tennis, give court tennis a go if  you ever get the  chance.

The tennis court

Thoughts of a leisurely stroll evolve into a brisk walk as I head toward the ultimate and most famous Newport mansion: The Breakers, the 100,000 plus square foot summer home of the Vanderbilt family. This house has to be toured to understand the conspicuous consumption as a  pastime of the then super rich. My 2000 square foot  home would fit entirely inside  the  grand  hall  of  the  Breakers.  In  fact you could stack my home three high and they would still be below the Breaker’s ceiling. A ceiling inspired by Paris, a billiard room with walls of solid marble overlooking the ocean, a floor of thousands of mosaic floor tiles all put  down by hand one by one, a stair case from Gone With the Wind, and 20 bathrooms to choose from all speak  to the wealth and pursuit of elegance enjoyed by  the Vanderbilt clan. It is a lifestyle of a bye–gone era often referred to as the “Gilded Age.” It is  an apt description.

Clark Log 4dClark Log 4e

Clark Log 4g

After sightseeing, it’s off to the bus stop for my shuttle to the Newport Airport where I take off at dawn the next morning to head for  home. I’m  leaving  so  early that the complementary coffee isn’t out yet! After an uneventful flight comes the end to an amazing adventure. Nothing left now except laundry and memories. And lots of great ideas for lesson plans to work into my classes. Thank you NOAA Teacher at Sea Program for offering me the learning experience of a lifetime. I cannot wait to get back and share the experiences with my students.

Clark Log 4h

John Clark, September 27, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

Clark Log 3gMission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 27, 2013

Science and Technology  Log 

It’s going to be a busy night trawling and processing our catch.  Yippee. I like  being busy as the time passes more quickly and I learn about more fish. A large number of trawling areas are all clustered together for our shift. For the most part that means the time needed to collect data on one trawl is close to the amount of time needed for the ship to reach the next trawling area. The first trawl was a highlight for me as we collected, for the first time,  a few puffer fish and one managed to stay inflated so I had a picture taken with that one.

We found a puffer

We found a puffer

However, on this night there was more than just puffer fish to be photographed with. On this night we caught the big one that didn’t get away. One trawl brings in an amazing catch of 6 very large striped bass and among them is a new record: The largest striped bass ever hauled in by NOAA Fisheries! The crew let me hold it up. It was very heavy and  I kept hoping it would not start flopping around. I could just see myself letting go and watching it slip off the deck and back into the sea. Fortunately, our newly caught prize reacted passively to my photo op. I felt very lucky that the big fish was processed at the station I was working at. When Jakub put the big fish on the scale it was like a game show – special sounds were emitted from our speakers and out came the printed label confirming our prize  – “FREEZ – biggest fish ever “-‐-‐the largest Morone Saxatilis (striped bass) ever caught by a NOAA Fisheries research ship.  It was four feet long. I kept  waiting for the balloons to come down from the ceiling.

Catch of the day

Catch of the day

Every member of the science team sorts fish but at the  data  collection tables my role  in the  fish lab is one of “recorder”. I’m teamed  with  another scientist who serves  as  the “cutter”, in this  case Jakub. That person collects the information I enter into the computer. The amount of data collected  depends on  the quantity and  type of fish  caught in  the net. I help  record  data on length, weight, sex, sexual development, diet, and scales. Sometimes fish specimens or parts of a fish, like the backbone of a goose fish, are preserved. On other occasions, fish, often the small ones are frozen for further study. Not every scientist can make it on to the Bigelow to be directly part of the trip so species data and samples are collected in accordance with their requests.

Collecting data from a fish as large as our striped bass is not easy. It is as big as the processing sink at our data collection  station and it takes Jakub’s skill with a hacksaw-‐-‐yes I said hacksaw-‐-‐to open up the back of the head  of the striped  bass and retrieve  the  otolith, the  two small bones  found behind the head that are  studied to determine  age. When we  were  done, the fish was bagged and placed in the deep freeze for  further  study upon our return. On the good side we only froze one of the six striped bass that we caught so we got to enjoy some great seafood for dinner. The team filleted over 18 pounds of striped bass for the chef to cook up.

Too big for the basket

Too big for the basket

More Going On: 

Processing the  trawl is not the  only data  collection activity taking place on the  Bigelow.  Before most trawls begin the command comes down to “deploy the bongos”. They are actually a pair  of  closed end nets similar to nets used to catch butterflies only much longer. The name bongo comes from the deployment apparatus that holds the pair of nets. The top resembles a set of bongo drums with one net attached to each one. Their purpose, once deployed, is to collect plankton samples for further study. Many fish live off plankton until they are themselves eaten by a predator farther up the food chain so the health of plankton is critical to the success of  the ecological food chain in the oceans.

Processing

Processing

Before some other trawls, comes the command to deploy the CTD device. When submerged to a target  depth  and  running in  the water as the ship  steams forward, this long fire extinguisher sized  device measures conductivity and temperature at specified depths of the ocean. It is another tool for measuring the health of the ocean and how current water conditions can impact the health  of the marine life and also the food chain in the area.

Personal Log 

On a personal note, I filleted a fish for the first time today – a  flounder. Tanya, one  of the science crew taught me how to do it. I was so excited about the outcome that I did another one!

Processing fish

Processing fish

Clark Log 3gg

A mix of fish

A mix of fish

Paired trawl

Paired trawl

Learning to fillet

Learning to fillet

John Clark, September 25, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

The galley

The galley

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 25, 2013

Science and Technology  Log 

I was  told  that  the  first  12  hour night watch shift was the hardest for staving off sleep and those who spoke were right. Tonight’s  overnight shift seems to be flying by and I’m certainly awake. Lots of trawling and sorting this  evening with four sorts complete by 6am. One was just full of dogfish, the shark looking fish,  and  they  process  quickly  because  other  than  weight  and  length there is little request for other data. The dogfish were sorted at the bucket end of the job so determining sex had already been completed by the time the fish get to my workstation. Again I’m under the mentorship of Jakub who can process fish faster than I can print and place labels on the storage envelopes. The placement of the labels is my weakness as I have no fingernails and removing the paper backing from the sticky label is awkward and time consuming. Still tonight I’m showing speed improvement over last night. Well at least I’m getting the labels on straight most of the time.

Sorting fish

Sorting fish

In  addition  to  the  dogfish,  we  have  processed  large  quantities  of  skate  (the  one  that  looks  like a  sting  ray to me), left  eyed flounders, croakers (no relation to the frog), and sea robins of which there are two types, northern and stripe. The sea robins are  very colorful with the  array of spines just behind the  mouth. And yes it hurts when one of the spines goes through your glove. Sadly for me sorting has been less exciting tonight.  With  the big fish being grabbed off at the front of the line there has been little left for me to sort. I feel like the goal keeper in soccer  – just  don’t let them get past me. To my great surprise, so far I’ve experienced no real fear of touching the fish. The gloves are very nice to work with.

Species in specific buckets

Species in specific buckets

And let us not overlook the squid. There have been pulled in by the hundreds in the runs today. There are two types of squids, long fin (the lolligo) and short fin (the illex). What they both have in common is the ability to make an incredible mess. They are slimy on the outside and  inky on the inside. They remind me of a fishy candy bar with really big eyes. And  for all the fish  that enjoy their squid  treat the species  is,  of  course,  (wait  for  it) just  eye  candy.  The  stories  about  the  inking  are  really  true. When  upset, they give  off ink; lots of ink. And  they are very upset by the time they reach the data collection stations. If you could bottle their ink you would  never need  to  refill your pen  again. They are also  very, very  plentiful which  might explain  why there are no requests to collect additional data beyond  how long they are. I guess they are not eye candy to marine scientists. However, there vastness is also their virtue. As a food source for many larger species of marine life, an absence of large quantities of squid in our trawling nets would be a bad sign for the marine ecosystem below us.

Safety equipment

Safety equipment

When the squid are missing, our friend the Skate (which of  the four  types does not  matter)  is glad to pick up  the slack on  the “messy to work with” front. As this species makes it down the sorting and data collecting line the internal panic button goes  off and they exude this thick, slimy substance  that covers their bodies and makes them very slippery customers at  the weigh stations.  It turns out the small spines on the tails were placed there so that fisheries researchers could have a fighting chance to handle them without dropping. Still, a skate sliding onto the floor is a frequent event and provides comic relief for all working at the data collection stations.

Clark Log 2There was new species in the  nets tonight, the  Coronet fish which looks like  along  drink straw with stripes  and a string attached to the back end. It is  pencil thick and about a foot long without the string. We only caught it twice during the trip. The rest of the hauls replicate past  sorting as dogfish, robins, skates, squid, croakers, and flounder are the bulk of the catch. I’ve been told that the diversity and size of the trawl should  be more abundant as we steam along the coastline heading north  from the lower coast of  New Jersey. Our last trawl of the shift, the nets deployed collect two species new for our voyage, but ones I actually recognized despite my limited knowledge of fish – the Horseshoe Crab and a lobster! I grew up seeing those on the Jersey shore.  We only got one lobster and after measuring  it we let  go  back  to  grow  some  more.  It  only  weighed in at less than two pounds.

Personal Log 

The foul weather suit we wear to work the line does not leave the staging room where they are stored as wearing them around the ship is not  allowed. After  watching others, I have mastered the art  of  pushing the wader pants over the rubber boots and  thus leaving them set-‐up  for quick donning and  removal of  gear  throughout  the shift.

While the work is very interesting on board, the highlight of each  day is meal time. Even though I work the night  shift (which ends at  noon) I take a nap right after my shift so I can  be  up  and  alert in  time  for dinner. My favorite has been  the T-‐bone steaks with Monterey seasoning and  any of the fish cooked up from our trawling like scallops or flounder. The chef, Dennis, and his assistant, Jeremy serve up some really fine cuisine. Not fancy but very tasty. There is a new soup every day at  lunch and so far my favorite has been the cream of tomato. I went back for seconds! Of course, breakfast is the meal all of us on the night watch  look forward  to  as there is no  meal service between midnight and  7am. After 7 hours of just snacking and  coffee, we are ready for  some solid food by the time breakfast  is served.

Seas continue to be  very calm and the  weather sunny and pleasant. That’s quite a surprise for the North Atlantic in the fall. And  the sunrise today was amazing. The Executive Officer, Chad Cary, shared that the weather we are experiencing should continue for at least four more days. I am  grateful  for  the  calm weather – less  chance  to  experience  sea  sickness.  That is something I’m determined to avoid if possible.

John Clark, Hi Ho, Hi Ho It’s Off to Work We Go, September 24, 2013

NOAA Teacher at Sea
John Clark
Aboard NOAA Ship Henry B. Bigelow
September 23 – October 4, 2013

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 24, 2013

Survival suits!

Survival suits!

Science and Technology  Log 

Today is my first full 12 hour shift day. I’m on the night crew working midnight to noon. Since we left port yesterday I’ve been  trying to  adjust my internal clock for pulling daily “all night”ers.  On Monday, after we  left port, safety briefs for all hands occurred once we made it out to sea and I got to complete my initiation into the Teacher at Sea alumni program  – the donning of  the Gumby suit as I call it. It is actually a bright red wet suit that covers your entire body and makes you look like a TV Claymation figure from the old TV show. In actuality it is designed to help you survive if  you need to abandon ship. Pictures are  of course taken to preserve this rite of passage.

The Henry B. Bigelow is a specially-built NOAA vessel designed to conduct fisheries research at sea.  Its purpose is to collect data that will help scientists assess the health of the Northern Coastal Atlantic Ocean and the fish populations that inhabit it. The work is invaluable to the commercial fishing industry.

The Bigelow in port

The Bigelow in port

Yesterday, I learned how we will go about collecting fisheries data. Our Chief Scientist, Dr. Peter Chase, has selected  locations for sampling the local fish population and the ship officers have developed a sailing plan that will enable the ship to visit all those locations, weather permitting, during the course of the voyage. To me its sounds like a well-‐planned  game of connecting the dots. At each target location, a trawling net  will be deployed and dragged near the bottom of the sea for a 20 minute period at a speed of 3 knots. Hence the reason  this voyage is identified as a bottom trawl survey mission. To drag the bottom without damaging the nets is not easy and there are five spare nets on board in case something goes wrong. To minimize the chance of damaging the net during a tow, the survey technicians use the wide beam sonar equipment to survey the bottom prior to deployment. Their goal is to identify a smooth path for the net to follow. The fish collected in the net are sorted and studied, based on selected criteria, once on board. A  specially designed transport system moves the fish from the net to the sorting and data collection stations inside the wet lab. I’m very excited to see how it actually works during my upcoming shift.

The big net.

The big net.

Work is already underway when our night crew checks in. The ship runs 24/7  and the nets have been down  and trawling since 7pm. Fish sorting and data collection  are  already underway.  I don my foul  weather gear which  looks  like a set of waders used for British fly fishing.  There is also a top jacket  but the weather is pleasant  tonight and the layer is not needed. I just need to sport some gloves and get to work. I’m involved with processing  two trawls of fish right away. I’m assigned to work with an experienced member of the science team, Jakub. We will be collecting information on the species of fish caught on each trawl.  Jakub carries out the role as cutter, collecting the physical  information or fish parts needed by the scientists. My role is recorder and  I enter data about the particular fish  being evaluated  as well package up  and  store the parts of the fish  being retained  for future study.

Ship equipment

Ship equipment

Data collection on each fish harvest is a very detailed. Fish are sorted by species as they come down the moving sorting line where they arrive after coming up the conveyer belt system from the “dump”  tank, so  named  because that is where the full nets deposit their  bounty. Everybody on the line sorts fish. Big fish get  pulled off  first  by the experienced scientists at  the start  of  belt  and then volunteers such as I pull off the smaller fish. Each  fish  is placed  into  a bucket by type of fish. There are three types of buckets and each bucket has a  bar code  tag. The  big laundry  looking  baskets  hold  the  big  fish,  five  gallon  paint buckets hold  the smaller fish, and  one gallon  buckets (placed  above the sorting line) hold  the unexpected  or small species. On  each  run  there is generally one fish  that is not sorted  and  goes all the way to the end untouched and unceremoniously ends up in the catch-‐all container at the  end of the  line. The watch leader weighs the buckets and then links the bar code on the bucket to the type of fish in it. From there  the  buckets are  ready for data  collection.

Clark Log 1d

The sorting line

After sorting the fish, individual data collection begins “by the bucket” where simultaneously at three different stations the sizing, weighing, and computer requested activities  occur. By  random sample certain work  is  performed on that fish. It  gets weighed and usually opened up to retrieve something from inside the fish. Today, I’ve observed several types of  data collection. Frequently requested are removal of  the otolith, two small bones in the head that  are used to help determine the age of  the fish. For bigger fish with vertebra,  such  as  the  goose  fish,  there  are periodic  requests  to  remove a  part  of  the backbone and  ship  it off for testing. Determining sex is recorded  for many computer tagged  fish  and  several are checked stomach contents.

Of the tools used to record data from the fish, the magic magnetized measuring system is the neatest. It’s  rapid  fire  data  collecting  at  its  finest.  The  fish  goes  flat  on  the measuring  board;  head  at  the  zero point, and  then a quick touch  with  a magnetized block at the end  of the fish  records the length  and  weight. Sadly, it marks the end of tall tales about the big  one that got  away and keeps getting bigger as the story is retold. The length of  the specimen is accurately recorded for  posterity in an instant.

 

clark 1e

Personal Log

Flying into Providence  over the  end of Long Island and the  New England coast line  is breath taking. A jagged,  sandy  coast  line  dotted  with  summer  homes  just  beyond  the  sand dunes. To line  up  for  final  approach we  fly right over Newport where  the  Henry B. Bigelow is berthed at the  Navy base  there. However, I  am  not  able  to  spot  the  NOAA  fisheries  vessel that  will be my home for the next two weeks from the air.Clark Log 4b

I arrive a day prior  to sailing so I have half a day to see the sites of Newport, Rhode Island  and  I know exactly where  I’m headed – the Tennis Hall of  Fame. My father was a first class tennis player who invested  many  hours  attempting  to  teach  his  son  the  game.  Despite  the  passion in  our  home  for  the great sport we  never made  it to the  Tennis Hall of Fame in Newport. Today I fulfilled that bucket  list  goal. I still remember being  court side  as a  young boy at The  Philadelphia  Indoor Championship watching the likes of  Charlie Pasarell, Arthur  Ashe, and Pancho Gonzales playing  on the canvas tennis court that was stretched out over the basketball arena. Also  in  the museum, to  my surprise, was a picture of the grass court lawn of the  Germantown Cricket Club from its days as a USTA championship venue. I  grew up playing on  those  grass tennis courts as my father  belonged to that  club. After seeing that picture, I left the museum knowing my father  got  as much out  of  the visit  as I did.