Emily Whalen: Looking at Lobsters, Moving a 208-foot Boat, and Favorite Creatures, May 5, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: May 5, 2015

Weather Data:
Air Temperature:  8.4°C
Water Temperature: 5.1ºC
Wind:  15 knots NW
Seas:  1-2 feet

Science and Technology Log:

Lobsters!

This is a large female lobster.  The claw on the right is called the crusher and the claw on the left is called the ripper.  For scale, consider that this lobster is inside a standard 5-gallon bucket!
This is a large female lobster. The claw on the right is called the crusher and the claw on the left is called the pincer. For scale, consider that this lobster is inside a standard 5-gallon bucket!

Not everything that comes up in the net is a fish.  One of the things that we have caught many of on this trip is Homarus americanus, commonly known as the lobster.  Lobsters are invertebrates, which means they don’t have a backbone or an internal skeleton.  Instead, they have a hard outer shell called an exoskeleton to give their body structure and protect their inner organs.  Because their exoskeleton cannot expand as the lobster grows, a lobster must molt, or shed its shell periodically as it gets bigger.  In the first few years of their lives, lobsters need to molt frequently because they are growing quickly.  More mature lobsters only molt yearly or even every few years.

Another interesting fact about lobsters can regenerate lost body parts.  After a claw or leg is lost, the cells near the damaged area will start to divide to form a new appendage.  The developing structure is delicate and essentially useless while it is growing, but after a few molts, it will be fully functional.

This lobster lost a claw and is in the early stages of regenerating it.  What challenges do you think a single-clawed lobster might face?
This lobster lost a claw and is in the early stages of regenerating it. What challenges do you think a single-clawed lobster might face?
This is a lobster  that has almost completed regenerating a lost claw.
This is a lobster that has almost completed regenerating a lost claw.
This is a lobster with two fully functional claws.  Why do you think each claw has a different shape?
This is a lobster with two fully functional claws. Why do you think each claw has a different shape?

When we catch lobsters, we measure and record the distance from their eye cavity to the posterior end of the carapace.  Many of the lobsters we have caught are similar in size to those you would find at the grocery store, which typically weigh about a little more than pound.  Commercial fishermen can only keep male lobsters that are over 101 millimeters.  Can you guess why?  We have seen some smaller lobsters that measure about 50 millimeters, and also some much larger lobsters that measure as much as 150 millimeters!

These are the calipers used to measure the carapace of each lobster.
These are the calipers used to measure the carapace of each lobster.
This is one of the larger lobsters that we have seen.  Some lobsters can live to be over a hundred, although everyone's best estimate for this one was about 20 years.  I put my hand next to the claw for scale.
This is one of the larger lobsters that we have seen. Some lobsters can live to be over a hundred, although everyone’s best estimate for this one was about 20 years. I put my hand next to the claw so that you could see how big it is!  I wasn’t brave enough to put my hand any closer!

One of the members of my watch is Dr. Joe Kunkel, who is doing something called ‘landmark analysis’ on some of the lobsters that we have caught.  This process involves recording the exact location of 12 specific points on the carapace or shell of each lobster.  Then he compares the relative geometry different lobsters to look for trends and patterns.  In order to do this, he uses a machine called a digitizer.  The machine has a small stylus and a button.  When you push the button, it records the x, y and z position of the stylus.  Once the x,y and z position of all 12 points has been recorded, they are imported into a graphing program that creates an individual profile for each lobster.

Here I am using a digitizer to pinpoint 12 different landmarks on this lobsters carapace, or shell.   So far, the offshore lobsters seem to have different geometry than the onshore lobsters, even though they are the same species.
Here I am using a digitizer to pinpoint 12 different landmarks on this lobsters carapace, or shell. So far, the offshore lobsters seem to have different geometry than the onshore lobsters, even though they are the same species.

So far, it appears that lobsters that are caught inshore have different geometry than lobsters that are caught further offshore.  Typically, an organism’s shape is determined by its genes.  Physical variations between organisms can be the result of different genes, environmental factors or physiological factors like diet or activity.  Dr. Kunkel doesn’t have a certain explanation for the differences between these two groups of lobsters, but it may suggest that lobsters have different activity levels or diet depending on whether they live near the shore our out in deeper waters.  In recent years, a shell disease has decimated lobster populations south of Cape Cod.  This study may give us clues about the cause of this disease, which could someday affect the lobster fishery.

This is a grid that represents the digitization of a lobster.
This is a grid that represents the digitization of a lobster.  The single point on the right hand side represents the rostrum, which is analogous to the nose, and the two points furthest to the left represent the place where the carapace or shell meets the tail.

Moving Forward

In order to move from station to station as we complete our survey, the Bigelow has a powerful propulsion system different from most other types of ships.  Typically, a ship has an engine that burns diesel fuel in order to turn a shaft.  To make the ship move forward (ahead) or backward (astern), the clutch is engaged, which causes the shaft to spin the propeller.  The throttle can then be used to make the shaft spin faster or slower, which speeds up or slows down the boat.   Throttling up and down like this affects the amount of fuel burned.  For those of you who are new drivers, this is similar to how your car gets better or worse gas mileage depending on what type of driving you are doing.

Like this class of ship, the Bigelow has a giant propeller at the stern which is 14 feet across and has 5 blades.  However, the unlike most ships, the propeller on the Bigelow is powered by electricity instead of a combustion engine.  There are four electricity-producing generators on the ship, two large and two small.  The generators burn diesel fuel and convert the stored energy into electricity.  The electricity powers two electric motors, which turn the propeller. While the electricity produced powers the propeller, it is also used for lights, computers, pumps, freezers, radar and everything else on the ship.  There are several benefits to this type of system.  One is that the generators can run independently of each other. Running two or three generators at a time means the ship makes only as much electricity as it needs based on what is happening at the time, so fuel isn’t wasted.  Since the ship can speed up or slow down without revving the engine up or down, the generators can always run at their maximum efficiency.
Also, there is much finer control of the ship’s speed with this system.  In fact, the ship’s speed can be controlled to one tenth of a knot, which would be similar to being able to drive your car at exactly 30.6 or 30.7 mph.  Finally, an added benefit is that the whole system runs quietly, which is an advantage when you are scouting for marine mammals or other living things that are sensitive to sound.

Personal Log

I have seen a lot of fish on this trip, but it would be a lie to say that I don’t have some favorites.  Here are a few of them.  Which one do you think is the coolest?

This is a sea raven.  Most of them are brown and green, but this one was a brilliant yellow.
This is a sea raven. Most of the ones we have seen are  brown and green, but this one was a brilliant yellow
Windowpane flounder.  We have seen many types of flounder, but I think these look the coolest.
Windowpane flounder. We have seen many types of flounder, but I think these are the coolest.
Last night we caught 1,700 kilograms of mackerel like these on the Scotian Shelf!
Last night we caught 1,700 kilograms of mackerel like these on the Scotian Shelf!
I find the pattern on this cod particularly striking.
I find the pattern on this cod particularly striking.
How can you not love this little spoonarm octopus?
How can you not love this little spoonarm octopus?
This is a particularly colorful four-beard rockling!
This immature cusk eel will lose these colors and eventually grow to be a dull grey color.
These squid have chromatophores, which are cells that can change color.  You can see them in this picture as the reddish purple dots.
These squid have chromatophores, which are cells that can change color. You can see them in this picture as the reddish purple dots.
This lamprey eel has circular rasping teeth that it uses to burrow into its prey.  Even as they ride along the conveyor belt, they are trying to bite into an unsuspecting fish!
This Atlantic hagfish has circular rasping teeth that it uses to burrow into its prey. Even as they ride along the conveyor belt, they are trying to bite into an unsuspecting fish!
You can see the gills of this goosefish by looking deep into its mouth.  This fish has a giant mouth that allows it to each huge meals.  Some of the goosefish we catch have stomachs that are larger than their whole bodies!
You can see the gills of this goosefish by looking deep into its mouth. This fish has a giant mouth that allows it to each huge meals. Some of the goosefish we catch have stomachs that are larger than their whole bodies!
We have only seen one of these little blue lumpfish.  While most fish feel slippery and slimy, this one has a rough skin.
We have only seen one of these little blue lumpfish. While most fish feel slippery and slimy, this one has a rough skin.

Emily Whalen: Station 381–Cashes Ledge, May 1, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: May 1, 2015

Weather Data from the Bridge:
Winds:  Light and variable
Seas: 1-2ft
Air Temperature:   6.2○ C
Water Temperature:  5.8○ C

Science and Technology Log:

Earlier today I had planned to write about all of the safety features on board the Bigelow and explain how safe they make me feel while I am on board.  However, that was before our first sampling station turned out to be a monster haul!  For most stations I have done so far, it takes about an hour from the time that the net comes back on board to the time that we are cleaning up the wetlab.  At station 381, it took us one minute shy of three hours! So explaining the EEBD and the EPIRB will have to wait so that I can describe the awesome sampling we did at station 381, Cashes Ledge.

This is a screen that shows the boats track around the Gulf of Maine.  The colored lines represent the sea floor as determined by the Olex multibeam.  This information will be stored year after year until we have a complete picture of the sea floor in this area!
This is a screen that shows the boats track around the Gulf of Maine. The colored lines represent the sea floor as determined by the Olex multibeam. This information will be stored year after year until we have a complete picture of the sea floor in this area!

Before I get to describing the actual catch, I want to give you an idea of all of the work that has to be done in the acoustics lab and on the bridge long before the net even gets into the water.

The bridge is the highest enclosed deck on the boat, and it is where the officers work to navigate the ship.  To this end, it is full of nautical charts, screens that give information about the ship’s location and speed, the engine, generators, other ships, radios for communication, weather data and other technical equipment.  After arriving at the latitude and longitude of each sampling station, the officer’s attention turns to the screen that displays information from the Olex Realtime Bathymetry Program, which collects data using a ME70 multibeam sonar device attached to bottom of the hull of the ship .

Traditionally, one of the biggest challenges in trawling has been getting the net caught on the bottom of the ocean.  This is often called getting ‘hung’ and it can happen when the net snags on a big rock, sunken debris, or anything else resting on the sea floor.  The consequences can range from losing a few minutes time working the net free, to tearing or even losing the net. The Olex data is extremely useful because it can essentially paint a picture of the sea floor to ensure that the net doesn’t encounter any obstacles.  Upon arrival at a site, the boat will cruise looking for a clear path that is about a mile long and 300 yards wide.  Only after finding a suitable spot will the net go into the water.

Check out this view of the seafloor.  On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges.  That's where we dragged the net and caught all of the fish!
Check out this view of the seafloor. On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges. We trawled right between the ridges and caught a lot of really big fish!

The ME70 Multibeam uses sound waves to determine the depth of the ocean at specific points.  It is similar to a simpler, single stream sonar in that it shoots a wave of sound down to the seafloor, waits for it to bounce back up to the ship and then calculates the distance the wave traveled based on the time and the speed of sound through the water, which depends on temperature.  The advantage to using the multibeam is that it shoots out 200 beams of sound at once instead of just one.  This means that with each ‘ping’, or burst of sound energy, we know the depth at many points under the ship instead of just one.  Considering that the multibeam pings at a rate of 2 Hertz to 0.5 Herts, which is once every 0.5 seconds to 2 seconds, that’s a lot of information about the sea floor contour!

This is what the nautical chart for Cashes Ledge looks like. The numbers represent depth in fathoms.  The light blue lines are contour lines.  The places where they are close together represent steep cliffs.  The red line represents the Bigelow’s track. You can see where we trawled as a short jag between the L and the E in the word Ledge

The stations that we sample are randomly selected by a computer program that was written by one of the scientists in the Northeast Fisheries Science Center, who happens to be on board this trip.  Just by chance, station number 381 was on Cashes Ledge, which is an underwater geographical feature that includes jagged cliffs and underwater mountains.  The area has been fished very little because all of the bottom features present many hazards for trawl nets.  In fact, it is currently a protected area, which means the commercial fishing isn’t allowed there.  As a research vessel, we have permission to sample there because we are working to collect data that will provide useful information for stock assessments.

My watch came on duty at noon, at which time the Bigelow was scouting out the bottom and looking for a spot to sample within 1 nautical mile of the latitude and longitude of station 381.  Shortly before 1pm, the CTD dropped and then the net went in the water.  By 1:30, the net was coming back on board the ship, and there was a buzz going around about how big the catch was predicted to be.  As it turns out, the catch was huge!  Once on board, the net empties into the checker, which is usually plenty big enough to hold everything.  This time though, it was overflowing with big, beautiful cod, pollock and haddock.  You can see that one of the deck crew is using a shovel to fill the orange baskets with fish so that they can be taken into the lab and sorted!

You can see the crew working to handling all of the fish we caught at Cashes Ledge.  How many different kinds of fish can you see?
You can see the crew working to handling all of the fish we caught at Cashes Ledge. How many different kinds of fish can you see? Photo by fellow volunteer Joe Warren

 

At this point, I was standing at the conveyor belt, grabbing slippery fish as quickly as I could and sorting them into baskets.  Big haddock, little haddock, big cod, little cod, pollock, pollock, pollock.  As fast as I could sort, the fish kept coming!  Every basket in the lab was full and everyone was working at top speed to process fish so that we could empty the baskets and fill them up with more fish!  One of the things that was interesting to notice was the variation within each species.  When you see pictures of fish, or just a few fish at a time, they don’t look that different.  But looking at so many all at once, I really saw how some have brighter colors, or fatter bodies or bigger spots.  But only for a moment, because the fish just kept coming and coming and coming!

Finally, the fish were sorted and I headed to my station, where TK, the cutter that I have been working with, had already started processing some of the huge pollock that we had caught.  I helped him maneuver them up onto the lengthing board so that he could measure them and take samples, and we fell into a fish-measuring groove that lasted for two hours.  Grab a fish, take the length, print a label and put it on an envelope, slip the otolith into the envelope, examine the stomach contents, repeat.

Cod, pollock and haddock in baskets
Cod, pollock and haddock in baskets waiting to get counted and measured. Photo by Watch Chief Adam Poquette.

Some of you have asked about the fish that we have seen and so here is a list of the species that we saw at just this one site:

  • Pollock
  • Haddock
  • Atlantic wolffish
  • Cod
  • Goosefish
  • Herring
  • Mackerel
  • Alewife
  • Acadian redfish
  • Alligator fish
  • White hake
  • Red hake
  • American plaice
  • Little skate
  • American lobster
  • Sea raven
  • Thorny skate
  • Red deepsea crab

 

 

 

 

I think it’s human nature to try to draw conclusions about what we see and do.  If all we knew about the state of our fish populations was based on the data from this one catch, then we might conclude that there are tons of healthy fish stocks in the sea.  However, I know that this is just one small data point in a literal sea of data points and it cannot be considered independently of the others.  Just because this is data that I was able to see, touch and smell doesn’t give it any more validity than other data that I can only see as a point on a map or numbers on a screen.  Eventually, every measurement and sample will be compiled into reports, and it’s that big picture over a long period of time that will really allow give us a better understanding of the state of affairs in the ocean.

Sunset from the deck of the Henry B. Bigelow
Sunset from the deck of the Henry B. Bigelow

Personal Log

Lunges are a bit more challenging on the rocking deck of a ship!
Lunges are a bit more challenging on the rocking deck of a ship!

It seems like time is passing faster and faster on board the Bigelow.  I have been getting up each morning and doing a Hero’s Journey workout up on the flying bridge.  One of my shipmates let me borrow a book that is about all of the people who have died trying to climb Mount Washington.  Today I did laundry, and to quote Olaf, putting on my warm and clean sweatshirt fresh out of the dryer was like a warm hug!  I am getting to know the crew and learning how they all ended up here, working on a NOAA ship.  It’s tough to believe but a week from today, I will be wrapping up and getting ready to go back to school!

Emily Whalen: Trawling in Cape Cod Bay, April 29, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: April 29, 2015

Weather Data:
GPS location:  4251.770’N, 07043.695’W
Sky condition:  Cloudy
Wind: 10 kts NNW
Wave height: 1-2 feet
Water temperature:  6.2○ C
Air temperature:  8.1○ C

Science and Technology Log:

On board the Henry B. Bigelow we are working to complete the fourth and final leg of the spring bottom trawl survey. Since 1948, NOAA has sent ships along the east coast from Cape Hatteras to the Scotian Shelf to catch, identify, measure and collect the fish and invertebrates from the sea floor. Scientists and fishermen use this data to assess the health of the ocean and make management decisions about fish stocks.

What do you recognize on this chart?  Do you know where Derry, NH is on the map?
This is the area that we will be trawling. Each blue circle represents one of the sites that we will sample. We are covering a LOT of ground! Image courtesy of NOAA.

Today I am going to give you a rundown of the small role that I play in this process. I am on the noon to midnight watch with a crew of six other scientists, which means that we are responsible for processing everything caught in the giant trawl net on board during those hours. During the first three legs of the survey, the Bigelow has sampled over 300 sites. We are working to finish the survey by completing the remaining sites, which are scattered throughout Cape Cod Bay and the Gulf of Maine.  The data collected on this trip will be added to data from similar trips that NOAA has taken each spring for almost 60 years.  These huge sets of data allow scientists to track species that are dwindling, recovering, thriving or shifting habitats.

The CTD ready to deploy.
The CTD ready to deploy.

At each sampling station, the ship first drops a man-sized piece of equipment called a CTD to the sea floor. The CTD measures conductivity, temperature and depth, hence its name.  Using the conductivity measurement, the CTD software also calculates salinity, which is the amount of dissolved salt in the water.  It also has light sensors that are used to measure how much light is penetrating through the water.

While the CTD is in the water,  the deck crew prepares the trawl net and streams it from the back of the ship.  The net is towed by a set of hydraulic winches that are controlled by a sophisticated autotrawl system.  The system senses the tension on each trawl warp and will pay out or reel in cable to ensure that the net is fishing properly.

Once deployed, the net sinks to the bottom and the ship tows it for twenty minutes, which is a little more than one nautical mile. The mouth of the net is rectangular so that it can open up wide and catch the most fish.  The bottom edge of the mouth has something called a rockhopper sweep on it, which is made of a series of heavy disks that roll along the rocky bottom instead of getting hung up or tangled.  The top edge of the net has floats along it to hold it wide open.   There are sensors positioned throughout the net that send data back to the ship about the shape of the net’s mouth, the water temperature on the bottom, the amount of contact with the bottom, the speed of water through the net and the direction that the water is flowing through the net.  It is important that each tow is standardized like this so that the fish populations in the sample areas aren’t misrepresented by the catch.   For example, if the net was twisted or didn’t open properly, the catch might be very small, even in an area that is teaming with fish.

Do you think this is what trawl nets looked like in 1948?
This is what the net looks like when it is coming back on board. The deck hands are guiding the trawl warps onto the big black spools. The whole process is powered by two hydraulic winches.

After twenty minutes, the net is hauled back onto the boat using heavy-duty winches.  The science crew changes into brightly colored foul weather gear and heads to the wet lab, where we wait to see what we’ve caught in the net. The watch chief turns the music up and everyone goes to their station along a conveyor belt the transports the fish from outside on the deck to inside the lab. We sort the catch by species into baskets and buckets, working at a slow, comfortable pace when the catch is small, or at a rapid fire, breakneck speed when the catch is large.

If you guessed 'sponges', then you are correct!
This is the conveyor belt that transports the catch from the deck into the wetlab. The crew works to sort things into buckets. Do you know what these chunky yellow blobs that we caught this time are?

After that, the species and weight of each container is recorded into the Fisheries Scientific Computing System (FSCS), which is an amazing software system that allows our team of seven people to collect an enormous amount of data very quickly. Then we work in teams of two to process each fish at work stations using a barcode scanner, magnetic lengthing board, digital scale, fillet knives, tweezers, two touch screen monitors, a freshwater hose, scannable stickers, envelopes, baggies, jars and finally a conveyor belt that leads to a chute that returns the catch back to the ocean.  To picture what this looks like, imagine a grocery store checkout line crossed with an arcade crossed with a water park crossed with an operating room.  Add in some music playing from an ipod and it’s a pretty raucous scene!

The data that we collect for each fish varies.  At a bare minimum, we will measure the length of the fish, which is electronically transmitted into FSCS.  For some fish, we also record the weight, sex and stage of maturity.  This also often includes taking tissue samples and packaging them up so that they can be studied back at the lab.  Fortunately, for each fish, the FSCS screen automatically prompts us about which measurements need to be taken and samples need to be kept.  For some fish, we cut out and label a small piece of gonad or some scales.  We collect the otoliths, or ear bones from many fish.

It does not look this neat and tidy when we are working!
These are the work stations in the wet lab. The cutters stand on the left processing the fish, and the recorders stand on the right.These bones can be used to determine the age of each fish because they are made of rings of calcium carbonate that accumulate over time.

Most of the samples will got back to the Northeast Fisheries Science Center where they will be processed by NOAA scientists.  Some of them will go to other scientists from universities and other labs who have requested special sampling from the Bigelow.  It’s like we are working on a dozen different research projects all at once!

 

 

 

Something to Think About:

Below are two pictures that I took from the flying bridge as we departed from the Coast Guard Station in Boston. They were taken just moments apart from each other. Why do you think that the area in the first picture has been built up with beautiful skyscrapers while the area in the second picture is filled with shipping containers and industry? Which area do you think is more important to the city? Post your thoughts in the comment section below.

Rows of shipping containers. What do you think is inside them?
Downtown Boston.  Just a mile from the shipping containers.  Why do you think this area is so different from the previous picture?
Downtown Boston. Just a mile from the shipping containers. Why do you think this area is so different from the previous picture?

 

 

 

 

 

 

 

 

 

Personal Log

Believe it or not, I actually feel very relaxed on board the Bigelow!  The food is excellent, my stateroom is comfortable and all I have to do is follow the instructions of the crew and the FSCS.  The internet is fast enough to occasionally check my email, but not fast enough to stream music or obsessively read articles I find on Twitter.  The gentle rocking of the boat is relaxing, and there is a constant supply of coffee and yogurt.  I have already read one whole book (Paper Towns by John Greene) and later tonight I will go to the onboard library and choose another.  That said, I do miss my family and my dog and I’m sure that in a few days I will start to miss my students too!

If the description above doesn’t make you want to consider volunteering on a NOAA cruise, maybe the radical outfits will.  On the left, you can see me trying on my Mustang Suit, which is designed to keep me safe in the unlikely event that the ship sinks.  On the right, you can see me in my stylish yellow foul weather pants.  They look even better when they are covered in sparkling fish scales!

Seriously, they keep me totally dry!
Banana Yellow Pants: SO 2015! Photo taken by fellow volunteer Megan Plourde.
Seriously, do I look awesome, or what?
This is a Mustang Suit. If you owned one of these, where would you most like to wear it? Photo taken by IT Specialist Heidi Marotta.

That’s it for now!  What topics would you like to hear more about?  If you post your questions in the comment section below, I will try to answer them in my next blog post.

John Clark,Headed Home Early, October 1, 2014

NOAA Teacher at Sea
John Clark
Aboard NOAA Ship Henry B. Bigelow
September 23 – October 4, 2013

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: October 1, 2013

Science and Technology  Log 

A few hours into our shift midnight we get the word we have been expecting for several days – government shutdown. Our mission will be cut a few days short. That reality means the Bigelow has 24 hours to return to its homeport of Newport,  R.I.  It takes us 10 hours and we dock around 1 in the afternoon. With our fisheries operations suddenly declared over comes clean-up time, and we spend the next 6 hours of our shift cleaning up the on‐board fish lab. It is a time consuming but important process. The lab needs to be spotless and “fish scent” free before we can call our work finished on this cruise.  The lab is literally solid stainless steel and every surface gets washed and suds downed so there is no residue remaining.

Eau de fishes
Fish scales hiding under a flap!

Our work is inspected by a member of the crew. If it were the military, the officer would have had white gloves on I believe, just like in the old movies, rolling his finger over a remote spot looking for the dust we missed. But this is a shining stainless steel fish lab so there are two simultaneous inspections going on at once – the one with the eyes and the one with the nose.  It takes us twice to pass the visual inspection as small collections of fish scales are spotted in a few out-of‐the way areas. It takes us one more pass to clear the smell inspection. Up and down the line we walk, we can all smell the faint lingering perfume of “eau de fishes,” but we are having trouble finding it. We keep following our noses and there it is. Hiding under a black rubber flap at the end of the fish sorting line we find a small collection of fish scales revealed  when the flap is removed for inspection.  With that little section cleaned up and sprayed down the lab is declared done! There is a smile of satisfaction from the team. It is that attention to detail that explains why the lab never smelled of fish when I first boarded the ship 10 days ago nor has it smelled of fish at any time during our voyage. There is a personal pride in leaving the lab in the same shape we found  it. Super clean, all gear and samples stowed, and ready for the next crew to come on board – whenever that turns out to be.

The abrupt and unexpected end to the cruise leaves me scrambling to change my travel plans. Like the ship, I have a limited amount of time to make it home on my government travel orders. The NOAA Teacher at Sea team goes above and beyond to rebook my flights and find me a room for the night.

Personal Log 

On the serendipitous side, the change in plans gives me a little time to see Newport, a town famous for its mansions and the Tennis Hall of Fame.  My first  stop is  the Tennis  Hall  of  Fame.  My father was a first class  tennis  player who invested many  hours  attempting to

teach his  son the game. Despite the passion in  our  home  for  the  great  sport  we  never  made it  to  the  Tennis  Hall  of  Fame in  Newport.  Today I get the  chance to fulfill that  bucket  list  goal. I still remember being court side as a young boy at The  Philadelphia Indoor Championships watching the likes of Charlie Pasarell, Arthur Ashe, and Pancho Gonzales playing on the canvas tennis court that was stretched out over the basketball arena. There was even a picture of the grass court lawn of the Germantown Cricket Club from its days a USTA championship venue before the move to Forest Hill, NY. I grew up playing on those tennis courts as my father belonged to that  club. Good memories.

Clark Log 4b

There was also a  “court tennis” court, the game believed to be the precursor  to outdoor  tennis. Court  tennis derived from playing a  tennis  type  game  inside a walled‐in  court yard.  Using  the  roof and  the  wall and the open side windows to beat your opponent is all part of the game. I played court tennis as a  young teen. It’s a very unique game that is only played in a few spots now. There are only 38 court tennis courts in the world and Newport has two of them. If you like tennis, give court tennis a go if  you ever get the  chance.

The tennis court

Thoughts of a leisurely stroll evolve into a brisk walk as I head toward the ultimate and most famous Newport mansion: The Breakers, the 100,000 plus square foot summer home of the Vanderbilt family. This house has to be toured to understand the conspicuous consumption as a  pastime of the then super rich. My 2000 square foot  home would fit entirely inside  the  grand  hall  of  the  Breakers.  In  fact you could stack my home three high and they would still be below the Breaker’s ceiling. A ceiling inspired by Paris, a billiard room with walls of solid marble overlooking the ocean, a floor of thousands of mosaic floor tiles all put  down by hand one by one, a stair case from Gone With the Wind, and 20 bathrooms to choose from all speak  to the wealth and pursuit of elegance enjoyed by  the Vanderbilt clan. It is a lifestyle of a bye–gone era often referred to as the “Gilded Age.” It is  an apt description.

Clark Log 4dClark Log 4e

Clark Log 4g

After sightseeing, it’s off to the bus stop for my shuttle to the Newport Airport where I take off at dawn the next morning to head for  home. I’m  leaving  so  early that the complementary coffee isn’t out yet! After an uneventful flight comes the end to an amazing adventure. Nothing left now except laundry and memories. And lots of great ideas for lesson plans to work into my classes. Thank you NOAA Teacher at Sea Program for offering me the learning experience of a lifetime. I cannot wait to get back and share the experiences with my students.

Clark Log 4h

John Clark, September 27, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

Clark Log 3gMission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 27, 2013

Science and Technology  Log 

It’s going to be a busy night trawling and processing our catch.  Yippee. I like  being busy as the time passes more quickly and I learn about more fish. A large number of trawling areas are all clustered together for our shift. For the most part that means the time needed to collect data on one trawl is close to the amount of time needed for the ship to reach the next trawling area. The first trawl was a highlight for me as we collected, for the first time,  a few puffer fish and one managed to stay inflated so I had a picture taken with that one.

We found a puffer
We found a puffer

However, on this night there was more than just puffer fish to be photographed with. On this night we caught the big one that didn’t get away. One trawl brings in an amazing catch of 6 very large striped bass and among them is a new record: The largest striped bass ever hauled in by NOAA Fisheries! The crew let me hold it up. It was very heavy and  I kept hoping it would not start flopping around. I could just see myself letting go and watching it slip off the deck and back into the sea. Fortunately, our newly caught prize reacted passively to my photo op. I felt very lucky that the big fish was processed at the station I was working at. When Jakub put the big fish on the scale it was like a game show – special sounds were emitted from our speakers and out came the printed label confirming our prize  – “FREEZ – biggest fish ever “-‐-‐the largest Morone Saxatilis (striped bass) ever caught by a NOAA Fisheries research ship.  It was four feet long. I kept  waiting for the balloons to come down from the ceiling.

Catch of the day
Catch of the day

Every member of the science team sorts fish but at the  data  collection tables my role  in the  fish lab is one of “recorder”. I’m teamed  with  another scientist who serves  as  the “cutter”, in this  case Jakub. That person collects the information I enter into the computer. The amount of data collected  depends on  the quantity and  type of fish  caught in  the net. I help  record  data on length, weight, sex, sexual development, diet, and scales. Sometimes fish specimens or parts of a fish, like the backbone of a goose fish, are preserved. On other occasions, fish, often the small ones are frozen for further study. Not every scientist can make it on to the Bigelow to be directly part of the trip so species data and samples are collected in accordance with their requests.

Collecting data from a fish as large as our striped bass is not easy. It is as big as the processing sink at our data collection  station and it takes Jakub’s skill with a hacksaw-‐-‐yes I said hacksaw-‐-‐to open up the back of the head  of the striped  bass and retrieve  the  otolith, the  two small bones  found behind the head that are  studied to determine  age. When we  were  done, the fish was bagged and placed in the deep freeze for  further  study upon our return. On the good side we only froze one of the six striped bass that we caught so we got to enjoy some great seafood for dinner. The team filleted over 18 pounds of striped bass for the chef to cook up.

Too big for the basket
Too big for the basket

More Going On: 

Processing the  trawl is not the  only data  collection activity taking place on the  Bigelow.  Before most trawls begin the command comes down to “deploy the bongos”. They are actually a pair  of  closed end nets similar to nets used to catch butterflies only much longer. The name bongo comes from the deployment apparatus that holds the pair of nets. The top resembles a set of bongo drums with one net attached to each one. Their purpose, once deployed, is to collect plankton samples for further study. Many fish live off plankton until they are themselves eaten by a predator farther up the food chain so the health of plankton is critical to the success of  the ecological food chain in the oceans.

Processing
Processing

Before some other trawls, comes the command to deploy the CTD device. When submerged to a target  depth  and  running in  the water as the ship  steams forward, this long fire extinguisher sized  device measures conductivity and temperature at specified depths of the ocean. It is another tool for measuring the health of the ocean and how current water conditions can impact the health  of the marine life and also the food chain in the area.

Personal Log 

On a personal note, I filleted a fish for the first time today – a  flounder. Tanya, one  of the science crew taught me how to do it. I was so excited about the outcome that I did another one!

Processing fish
Processing fish

Clark Log 3gg

A mix of fish
A mix of fish
Paired trawl
Paired trawl
Learning to fillet
Learning to fillet

John Clark, September 25, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

The galley
The galley

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 25, 2013

Science and Technology  Log 

I was  told  that  the  first  12  hour night watch shift was the hardest for staving off sleep and those who spoke were right. Tonight’s  overnight shift seems to be flying by and I’m certainly awake. Lots of trawling and sorting this  evening with four sorts complete by 6am. One was just full of dogfish, the shark looking fish,  and  they  process  quickly  because  other  than  weight  and  length there is little request for other data. The dogfish were sorted at the bucket end of the job so determining sex had already been completed by the time the fish get to my workstation. Again I’m under the mentorship of Jakub who can process fish faster than I can print and place labels on the storage envelopes. The placement of the labels is my weakness as I have no fingernails and removing the paper backing from the sticky label is awkward and time consuming. Still tonight I’m showing speed improvement over last night. Well at least I’m getting the labels on straight most of the time.

Sorting fish
Sorting fish

In  addition  to  the  dogfish,  we  have  processed  large  quantities  of  skate  (the  one  that  looks  like a  sting  ray to me), left  eyed flounders, croakers (no relation to the frog), and sea robins of which there are two types, northern and stripe. The sea robins are  very colorful with the  array of spines just behind the  mouth. And yes it hurts when one of the spines goes through your glove. Sadly for me sorting has been less exciting tonight.  With  the big fish being grabbed off at the front of the line there has been little left for me to sort. I feel like the goal keeper in soccer  – just  don’t let them get past me. To my great surprise, so far I’ve experienced no real fear of touching the fish. The gloves are very nice to work with.

Species in specific buckets
Species in specific buckets

And let us not overlook the squid. There have been pulled in by the hundreds in the runs today. There are two types of squids, long fin (the lolligo) and short fin (the illex). What they both have in common is the ability to make an incredible mess. They are slimy on the outside and  inky on the inside. They remind me of a fishy candy bar with really big eyes. And  for all the fish  that enjoy their squid  treat the species  is,  of  course,  (wait  for  it) just  eye  candy.  The  stories  about  the  inking  are  really  true. When  upset, they give  off ink; lots of ink. And  they are very upset by the time they reach the data collection stations. If you could bottle their ink you would  never need  to  refill your pen  again. They are also  very, very  plentiful which  might explain  why there are no requests to collect additional data beyond  how long they are. I guess they are not eye candy to marine scientists. However, there vastness is also their virtue. As a food source for many larger species of marine life, an absence of large quantities of squid in our trawling nets would be a bad sign for the marine ecosystem below us.

Safety equipment
Safety equipment

When the squid are missing, our friend the Skate (which of  the four  types does not  matter)  is glad to pick up  the slack on  the “messy to work with” front. As this species makes it down the sorting and data collecting line the internal panic button goes  off and they exude this thick, slimy substance  that covers their bodies and makes them very slippery customers at  the weigh stations.  It turns out the small spines on the tails were placed there so that fisheries researchers could have a fighting chance to handle them without dropping. Still, a skate sliding onto the floor is a frequent event and provides comic relief for all working at the data collection stations.

Clark Log 2There was new species in the  nets tonight, the  Coronet fish which looks like  along  drink straw with stripes  and a string attached to the back end. It is  pencil thick and about a foot long without the string. We only caught it twice during the trip. The rest of the hauls replicate past  sorting as dogfish, robins, skates, squid, croakers, and flounder are the bulk of the catch. I’ve been told that the diversity and size of the trawl should  be more abundant as we steam along the coastline heading north  from the lower coast of  New Jersey. Our last trawl of the shift, the nets deployed collect two species new for our voyage, but ones I actually recognized despite my limited knowledge of fish – the Horseshoe Crab and a lobster! I grew up seeing those on the Jersey shore.  We only got one lobster and after measuring  it we let  go  back  to  grow  some  more.  It  only  weighed in at less than two pounds.

Personal Log 

The foul weather suit we wear to work the line does not leave the staging room where they are stored as wearing them around the ship is not  allowed. After  watching others, I have mastered the art  of  pushing the wader pants over the rubber boots and  thus leaving them set-‐up  for quick donning and  removal of  gear  throughout  the shift.

While the work is very interesting on board, the highlight of each  day is meal time. Even though I work the night  shift (which ends at  noon) I take a nap right after my shift so I can  be  up  and  alert in  time  for dinner. My favorite has been  the T-‐bone steaks with Monterey seasoning and  any of the fish cooked up from our trawling like scallops or flounder. The chef, Dennis, and his assistant, Jeremy serve up some really fine cuisine. Not fancy but very tasty. There is a new soup every day at  lunch and so far my favorite has been the cream of tomato. I went back for seconds! Of course, breakfast is the meal all of us on the night watch  look forward  to  as there is no  meal service between midnight and  7am. After 7 hours of just snacking and  coffee, we are ready for  some solid food by the time breakfast  is served.

Seas continue to be  very calm and the  weather sunny and pleasant. That’s quite a surprise for the North Atlantic in the fall. And  the sunrise today was amazing. The Executive Officer, Chad Cary, shared that the weather we are experiencing should continue for at least four more days. I am  grateful  for  the  calm weather – less  chance  to  experience  sea  sickness.  That is something I’m determined to avoid if possible.

John Clark, Hi Ho, Hi Ho It’s Off to Work We Go, September 24, 2013

NOAA Teacher at Sea
John Clark
Aboard NOAA Ship Henry B. Bigelow
September 23 – October 4, 2013

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 24, 2013

Survival suits!
Survival suits!

Science and Technology  Log 

Today is my first full 12 hour shift day. I’m on the night crew working midnight to noon. Since we left port yesterday I’ve been  trying to  adjust my internal clock for pulling daily “all night”ers.  On Monday, after we  left port, safety briefs for all hands occurred once we made it out to sea and I got to complete my initiation into the Teacher at Sea alumni program  – the donning of  the Gumby suit as I call it. It is actually a bright red wet suit that covers your entire body and makes you look like a TV Claymation figure from the old TV show. In actuality it is designed to help you survive if  you need to abandon ship. Pictures are  of course taken to preserve this rite of passage.

The Henry B. Bigelow is a specially-built NOAA vessel designed to conduct fisheries research at sea.  Its purpose is to collect data that will help scientists assess the health of the Northern Coastal Atlantic Ocean and the fish populations that inhabit it. The work is invaluable to the commercial fishing industry.

The Bigelow in port
The Bigelow in port

Yesterday, I learned how we will go about collecting fisheries data. Our Chief Scientist, Dr. Peter Chase, has selected  locations for sampling the local fish population and the ship officers have developed a sailing plan that will enable the ship to visit all those locations, weather permitting, during the course of the voyage. To me its sounds like a well-‐planned  game of connecting the dots. At each target location, a trawling net  will be deployed and dragged near the bottom of the sea for a 20 minute period at a speed of 3 knots. Hence the reason  this voyage is identified as a bottom trawl survey mission. To drag the bottom without damaging the nets is not easy and there are five spare nets on board in case something goes wrong. To minimize the chance of damaging the net during a tow, the survey technicians use the wide beam sonar equipment to survey the bottom prior to deployment. Their goal is to identify a smooth path for the net to follow. The fish collected in the net are sorted and studied, based on selected criteria, once on board. A  specially designed transport system moves the fish from the net to the sorting and data collection stations inside the wet lab. I’m very excited to see how it actually works during my upcoming shift.

The big net.
The big net.

Work is already underway when our night crew checks in. The ship runs 24/7  and the nets have been down  and trawling since 7pm. Fish sorting and data collection  are  already underway.  I don my foul  weather gear which  looks  like a set of waders used for British fly fishing.  There is also a top jacket  but the weather is pleasant  tonight and the layer is not needed. I just need to sport some gloves and get to work. I’m involved with processing  two trawls of fish right away. I’m assigned to work with an experienced member of the science team, Jakub. We will be collecting information on the species of fish caught on each trawl.  Jakub carries out the role as cutter, collecting the physical  information or fish parts needed by the scientists. My role is recorder and  I enter data about the particular fish  being evaluated  as well package up  and  store the parts of the fish  being retained  for future study.

Ship equipment
Ship equipment

Data collection on each fish harvest is a very detailed. Fish are sorted by species as they come down the moving sorting line where they arrive after coming up the conveyer belt system from the “dump”  tank, so  named  because that is where the full nets deposit their  bounty. Everybody on the line sorts fish. Big fish get  pulled off  first  by the experienced scientists at  the start  of  belt  and then volunteers such as I pull off the smaller fish. Each  fish  is placed  into  a bucket by type of fish. There are three types of buckets and each bucket has a  bar code  tag. The  big laundry  looking  baskets  hold  the  big  fish,  five  gallon  paint buckets hold  the smaller fish, and  one gallon  buckets (placed  above the sorting line) hold  the unexpected  or small species. On  each  run  there is generally one fish  that is not sorted  and  goes all the way to the end untouched and unceremoniously ends up in the catch-‐all container at the  end of the  line. The watch leader weighs the buckets and then links the bar code on the bucket to the type of fish in it. From there  the  buckets are  ready for data  collection.

Clark Log 1d
The sorting line

After sorting the fish, individual data collection begins “by the bucket” where simultaneously at three different stations the sizing, weighing, and computer requested activities  occur. By  random sample certain work  is  performed on that fish. It  gets weighed and usually opened up to retrieve something from inside the fish. Today, I’ve observed several types of  data collection. Frequently requested are removal of  the otolith, two small bones in the head that  are used to help determine the age of  the fish. For bigger fish with vertebra,  such  as  the  goose  fish,  there  are periodic  requests  to  remove a  part  of  the backbone and  ship  it off for testing. Determining sex is recorded  for many computer tagged  fish  and  several are checked stomach contents.

Of the tools used to record data from the fish, the magic magnetized measuring system is the neatest. It’s  rapid  fire  data  collecting  at  its  finest.  The  fish  goes  flat  on  the measuring  board;  head  at  the  zero point, and  then a quick touch  with  a magnetized block at the end  of the fish  records the length  and  weight. Sadly, it marks the end of tall tales about the big  one that got  away and keeps getting bigger as the story is retold. The length of  the specimen is accurately recorded for  posterity in an instant.

 

clark 1e

Personal Log

Flying into Providence  over the  end of Long Island and the  New England coast line  is breath taking. A jagged,  sandy  coast  line  dotted  with  summer  homes  just  beyond  the  sand dunes. To line  up  for  final  approach we  fly right over Newport where  the  Henry B. Bigelow is berthed at the  Navy base  there. However, I  am  not  able  to  spot  the  NOAA  fisheries  vessel that  will be my home for the next two weeks from the air.Clark Log 4b

I arrive a day prior  to sailing so I have half a day to see the sites of Newport, Rhode Island  and  I know exactly where  I’m headed – the Tennis Hall of  Fame. My father was a first class tennis player who invested  many  hours  attempting  to  teach  his  son  the  game.  Despite  the  passion in  our  home  for  the great sport we  never made  it to the  Tennis Hall of Fame in Newport. Today I fulfilled that bucket  list  goal. I still remember being  court side  as a  young boy at The  Philadelphia  Indoor Championship watching the likes of  Charlie Pasarell, Arthur  Ashe, and Pancho Gonzales playing  on the canvas tennis court that was stretched out over the basketball arena. Also  in  the museum, to  my surprise, was a picture of the grass court lawn of the  Germantown Cricket Club from its days as a USTA championship venue. I  grew up playing on  those  grass tennis courts as my father  belonged to that  club. After seeing that picture, I left the museum knowing my father  got  as much out  of  the visit  as I did.

Sue Cullumber: Hooray, We Are Finally on Our Way! June 10, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/10/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Time:  21:30 (9:30 pm)
Longitude/latitude: 40.50289N, 68.76736W
Temperature  14.1ºC
Barrometer 1017.35 mb
Knots  10.2

sueleavingport
Leaving Newport – photo by Chris Melrose.

Science and Technology Log:

After several ship issues, we were able to finally head out from Newport, RI on June 9th after 4 extra days in dock.  We have started the survey and are using two main types of equipment that we will deploy at the various stations: CTD/Bongo Nets and CTD Rosette Stations.  We were originally scheduled to visit about 160 stations, but due to the unforeseen ship issues, these may have to be scaled back.  Some of the stations will just be the Bongo and others only the Rosette, but some will include both sets of equipment.

Bongos
Bongo and baby bongos being deployed during the survey.

A bongo net is a two net system that basically, looks like a bongo drum.  It is used to bring up various types of plankton while a CTD is mounted above it on the tow wire to test for temperature, conductivity and depth during the tow. The two nets may have different sizes of mesh so that it will only  filter the various types of plankton based on the size of the holes.  The small mesh is able to capture the smaller phytoplankton, but the larger zooplankton (animals) can dart out of the way and avoid being captured. The larger mesh is able to catch the zooplankton but allows the phytoplankton to go through the openings. There are regular bongo nets and also baby bongo nets that may be launched at the same time to catch different types of plankton.

rosetteinwater
Rosette CTD returning to the surface.

The Rosette CTD equipment is a series of 10 cylinders that can capture water from different depths to test for nutrient levels and dissolved inorganic carbon, which provides a measure of acidity in the ocean. These are fired remotely via an electronic trigger that is programed by a computer program where each cylinder can be fired seperately to get 10 samples from different depths.  It also has several sensors on it to measure oxygen, light and chlorophyll levels, as well as temperature and salinity (salt) from the surface to the bottom of the water column.

plankton
Copepods and Krill from one of the bongo net catches.

Our first station was about 3 1/2 hours east of Newport, RI and it was a Bongo Station.  I am on the noon to midnight shift each day.  So on our first day, during my watch, we made four Bongo stops and two CTD Rosettes. Today we completed more of the Bongos on my watch.  We are bringing up a variety of zooplankton like copepods, ctenophores, krill, and some fish larvae.  We have also seen quite a bit of phytoplankton on the surface of the water.

sueinsurvivalw
Wearing the survival suit – photo by Cathleen Turner.

Personal Log:

Being on a ship, I have to get used to the swaying and moving about.  It is constantly rocking, so it can be a little challenging to walk around.  I have been told that I will get used to this and it is actually great when you want to go to sleep!  Luckily I have not had any sea sickness yet and I hope that continues!  We completed several safety drills that included a fire drill and abandon ship drill where we had to put on our survival suits – now I look like a New England Lobster!

dolphinsfav
Common dolphins swimming off the ship’s bow.
blueshark
Blue shark swimming beside the Gordon Gunter.

Today was an amazing day – was able to see Right Whales, Blue Sharks and Common Dolphins – with the dolphins surfing off the ship’s bow!  The Northern Right Whale is one of the most endangered species on the planet with only 300 left in the wild.  One of the reasons there are so few left is that swim on the surface and were excessively hunted and there feeding areas were within the Boston shipping lanes, so they were frequently hit by ships. Recently these shipping lanes have been moved to help protect these animals.  So I feel very privileged to have been able to see one!

Did you know? Plankton are the basis for the ocean food web.  They are plentiful, small, and free floating (they do not swim). The word plankton comes from the Greek word “planktos” which means drifting. “Plankton” from the TV show SpongeBob is actually a Copepod – a type of zooplankton.

Copepod
Copepod

Question of the day:  Why do you think it is important that the scientists study plankton?

Anne Byford, June 11, 2010

NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010

Mission: Sea Scallop Survey
Geographic Location:  off the coast of New England
June 11, 2010

Weather Data at 1:35pm
EDT: Clear, 14.4˚C
Location at 1:35pm
EDT: Lat: 40 30.07 N
Long: 69 08.66 W
Water Depth: 77.5 m
4th Day at Sea

Why Count Sea Scallops?

That had to be the most common question I got asked before coming on this trip. Much of the information below is from the NOAA FishWatch website (www.nmfs.noaa.gov/fishwatch/species/atl_sea_scallop.htm).

Economically, sea scallops are an important species; in 2008 the scallop harvest was about 53.5 million pounds and was worth about $370 million. The population is not currently considered to be overfished and has been above minimum sustainable levels since 2001. Formal management began in 1982 with the Atlantic Sea Scallop Fisheries Management Plan. The management plan includes limiting new permits, restrictions on gear and on the number of crew on a boat. Since about 2000, the biomass of scallops has been increasing. Biomass is estimated by using the weight of scallops per tow on cruises like this one. Combinations of biomass estimates and estimates of the commercial catch are used to update and adjust the management plan.

Sea Scallops (Placopecten magellanicus) are filter feeders. They can live up to 20 years and begin reproducing at about 2 years, with maximum fertility reached at 4 years. A single female scallop can produce up to 270 million eggs in her life. This high reproductive capacity has helped the scallop population recover relatively quickly. Gender can be determined by the color of the gonad; females are orange while the male gonad is white. Adult scallops average between 6 and 7 inches from hinge to tip (called height) but can be as big as 9 inches. Age can be estimated by counting the rings on the shell. Scallops can “swim” by opening and closing the two shells. This is a useful adaptation for escaping from predators, including flounder, cod, lobsters, crabs, and sea stars. Scallops are harvested for the adductor muscle (the one that opens and closes the shell). There is no commercial aquaculture of scallops in the US as of August 2009.

scallop dorsal and ventral

Personal Log

A storm moved through beginning on Wed. evening (day 2) and stayed with us most of Thursday. By the end of shift on Wednesday, we were working on deck in full foul weather gear and life jackets. Thursday we had an 8 hour steam between dredge sites and by the end of shift on Thursday, the seas had begun to smooth out. Friday was quite nice, weather-wise.

I am learning to shuck scallops, though I am about half the speed of many on the boat. I am also learning to tell the various types of flounder and other fish apart as well. It’s not always obvious which type of founder or hake is which.

New Species

Goose fish (aka monk fish), several more varieties of flounder, sea urchins, sea cucumbers, eel pout, some very large skates, 3 types of sea stars and 1 type of brittle star.

Barbara Koch, October 3, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, October 3, 2010

Weather from the Bridge
Latitude 39.72
Longitude -72.16
Speed 11.30 kts
Course 289.00
Wind Speed 25.11 kts
Wind Dir. 69.68 º
Surf. Water Temp. 19.78 ºC
Surf. Water Sal. 33.94 PSU
Air Temperature 16.40 ºC
Relative Humidity 71.00 %
Barometric Pres. 1016.80 mb
Water Depth 121.67 m
Cruise Start Date 10/02/2010

Science and Technology Log

Safety is very important on NOAA Ship Henry B. Bigelow. We participated in a Fire Drill and an Abandon Ship drill today. Each person on board is assigned a location to “muster” (gather) in case of emergencies. For a fire drill, all scientists are to carry their life vest and survival suit and muster in the lounge directly across from my stateroom. Life vests and survival suits are kept in the staterooms, so we are to grab those and get to the lounge as quickly as possible.

Fire drill
Fire drill

The fire drill began while the day watch was in the wet lab, one level below my stateroom. The scenario was that there was a “fire” on the 01 deck beside the lounge. That was right where my stateroom and the lounge were! Since we couldn’t get to our staterooms to gather our survival suits and life vests or muster in the lounge, due to the “fire,” we grabbed extra life vests and suits from the wet lab and mustered in the mess hall, which is near the wet lab.

Once everyone was accounted for during the fire drill, we moved out to the back deck of the ship for our Abandon Ship drill. Each person on board was assigned a life boat, and that is where we mustered for the Abandon Ship drill. First, we put on our life vests and made sure they were secured tightly. Next, we took off the life vests and put on our survival suits, which are often called “Gumby Suits” because they are large and look a lot like the animated Gumby character from the 1960’s. The survival suit is bright orange and is made out of neoprene. This makes the suit waterproof and very warm. The zipper and face flap are designed to keep water out, as well. Other features of the suits include reflective tape for greater visibility in the ocean, a whi8stle, a water-activated strobe light, a buddy line to attach to others, and an inflatable bladder behind the head to lift one’s head out of the water.

In my 'Gumby' suit
In my ‘Gumby’ suit

Boots and mittens are attached so that all one has to do is jump into the suit and zip it up. It’s not that easy, however. The arm cuffs are very tight, so it takes some strength to push your hands through. It also takes strength to pull the zipper all the way up to the center of your face. All personnel aboard the ship must be able to put this suit on and abandon ship in one minute. I was able to put my suit on in the allotted time, but we didn’t have to abandon the ship during the drill.

My stateroom
My stateroom

Personal Log

Living on a ship is an interesting experience. Space is at a premium, but the Henry B. Bigelow is actually quite comfortable. The scientists told me that this ship has a lot more amenities than some of the other research ships. My stateroom is small and narrow, but roommates are normally working on separate watches, so no one feels cramped or without personal space. You can see in this photo that the room has two bunk beds. Mine is on top, and it has been a fun challenge trying to get in and out of bed when the ship is rocking! I haven’t fallen yet! Each bunk has a curtain that can be pulled closed to darken your sleeping area, if you are sleeping during daylight hours. There is also a desk with latched drawers, so they don’t fly open when the ship is in rough waters. Bungee cords are attached to the walls and desks to hold chairs and large items in place, too. It’s important to keep everything tied down and in the locker so it doesn’t role around and get damaged, or make noise. I learned the importance of that my first night on rough seas when hangers were banging in my locker.

The Head
The Head

My stateroom also has its own “head” (bathroom). The term “head” comes from long ago when boats were powered by the wind. Sailors had a grated area at the front or “bow” of the boat where they could use the bathroom. It was at the front of the boat so bad odors would blow away from the rest of the ship. The figurehead was also attached at the front, so it became common practice to refer to that area as the “head.” The head in my room has a toilet that flushes, and is much nicer than the heads of days gone by, thank goodness!

These are all great amenities, but the best part of my stateroom is the view! First thing every morning, I pull back the curtain to see what’s going on outside. One morning I saw several dolphins jumping out of the water as they moved swiftly toward our ship. Most days, I’ve seen fog, rain, and roiling waves, but I still enjoy looking out and seeing nothing but water as far as the eye can see, and sometimes, a beautiful sunset.

Sunset
Sunset

Barbara Koch, September 30, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, September 30, 2010

Weather Data from the Bridge

Latitude 41.53
Longitude -71.32
Speed 0.00 kts
Course 58.00
Wind Speed 16.00 kts
Wind Dir. 143.26 º Surf.
Water Temp. 18.79 ºC
Surf. Water Sal. 31.45
PSU Air Temperature 21.50 ºC
Relative Humidity 91.00 %
Barometric Pres. 1014.67 mb
Water Depth 12.53 m
Cruise Start Date 9/27/2010

Science and Technology Log

NOAA Ship Henry B. Bigelow is now docked in Newport, Rhode Island due to a deep trough of moisture from the East Pacific and Tropical Storm Nicole in the Atlantic moving up the Atlantic coast towards New England. The National Weather Service has issued a gale warning, because winds associated with this weather system are causing rougher seas, and it is too dangerous for the ship to continue trawling the ocean floor. When ships are at sea conducting research, it is vitally important that NOAA monitors current weather and wave conditions to insure the safety of the crew and scientists aboard their vessels. Actually, NOAA provides current weather information for everyone in America, including commercial fishermen and all of us on land. Visit NOAA’s National Weather Service website at http://www.nws.noaa.gov/ to see what’s happening today.

Our ship is equipped with instruments that collect weather and water data.Data is collected for wind speed, wind direction, water temperature, surface water salinity, air temperature, relative humidity, and barometric pressure. The information listed above under “Weather Data from the Bridge” is information gathered from the weather station located on top of the ship. Weather information is posted hourly. NOAA also has buoys placed in the waters around the United States, the Pacific and the Atlantic Oceans that collect data. Visit the National Data Buoy Center’s website at http://www.ndbc.noaa.gov/ to see where they are located and to read current data.

Henry B. Bigelow
Henry B. Bigelow

Wind movement in the atmosphere and water movement in the ocean are interrelated. When wind blows across the surface of the ocean, friction causes water molecules to move in a circular motion. Energy built up from friction transfers from one molecule of water to the next as each molecule rotates into the next. This action causes a wave to form. The size of the wave depends on three factors; the strength of the wind gust, the distance it blows (fetch), and the length of time it gusts (duration). NOAA’s buoys and ships collect wave measurements over a twenty minute sampling period for wave height (WHGT), wave period (APD), and the period with the strongest wave energy (DPD). A “gale warning” is issued when wind speeds are expected to measure 39-54 mph causing waves to reach between 18-25 feet in height. So, we are here until the seas calm down, which may be Saturday. While at dock, we’ll have time to explore Newport.

Personal Log

Foul weather gear
Foul weather gear

I’m really sad that we had to go in to port because I was just getting my sea legs and starting to feel comfortable with my work in the wet lab.But, I am glad to have a little time to wash my clothes.Everything I wear in the lab smells like fish! We wear our regular clothes, but put “foul weather gear” on over them before going into the wet lab. Foul weather gear consists of rubber boots, suspendered waterproof pants, and a waterproof rain jacket. Here is a picture of the gear hanging in the room where we get into our gear, and a picture of me in my pants holding a large skate. We store the pants over the boots so we can just step right in and pull the pants up, just like fire fighters. We always spray all the fish remnants off before we come back into this room to take off our gear.

Converyor belt in the wet lab
Converyor belt in the wet lab

We also wear rubber gloves during all of our work. The scientists have been using the blue gloves like the ones John is wearing at right, but scientists from past cruises commented they had a hard time holding onto the fish, so we are testing two other types of gloves on this cruise. The two gloves are rubber, but one is thick like the blue gloves and one is thinner.Both gloves have ridges on all of the fingers to allow for better gripping. I’ve been wearing the thicker orange gloves. So far, these gloves have worked well for me. I am able to easily pick up flat fish like flounder, but the sharp point of a scup’s dorsal fin poked through my glove once. That hurt! I’m just glad I didn’t have the thinner gloves on. A lot of fish slime also collects on the ridges throughout the watch. That’s easily remedied with a quick rinse from the nearby hose. Now, I think I’ll try out the blue gloves, so I can make a valid comparison.I’ll let you know my results at the end of the cruise.

Gloves
Gloves

Barbara Koch, September 28, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, September 28, 2010

Me in Front of the Henry Bigelow
Me in Front of the Henry Bigelow

Weather Data from the Bridge
Latitude 41.36
Longitude -70.95
Speed 10.00 kts
Course 72.00
Wind Speed 19.19 kts
Wind Dir. 152.91 º
Surf. Water Temp. 18.06 ºC
Surf. Water Sal. 31.91
PSU Air Temperature 19.80 ºC
Relative Humidity 91.00 %
Barometric Pres. 1012.45 mb
Water Depth 31.48 m
Cruise Start Date: 9/27/2010

Science and Technology Log

I have the privilege of working with the science team on Leg II of the Autumn Bottom Trawl Survey aboard the NOAA Ship Henry B. Bigelow from September 27 – October 7, 2010. We left port on Monday, September 27 and have been conducting the survey in the waters of Southern New England.

Processing Fish
Processing Fish

Fisheries surveys are conducted every spring and autumn in order to determine the numbers, ages, genders and locations of species that are commonly caught by the commercial fishing industry. The surveys are also carried out to monitor changes in the ecosystem and to collect data for other research. The scientists working on this leg of the survey are from Alaska, Korea, and New England. This ship works around the clock, therefore, we are divided into a day watch and a night watch, and we are all under the direction of the Chief Scientist, Stacy Rowe. I’m on the day watch, so my team processes fish from 12:00 noon until 12:00 midnight.

In order to collect a sample of fish, our ship drags a net for twenty minutes in areas that have been randomly selected before the cruise began. After the “tow,” the net is lifted onto the boat, and the fish are put in a large area to await sorting. The fish move down a conveyor belt, and we sort the fish by putting the different types into buckets and baskets. Once, the catch has been sorted, we move the buckets onto a conveyor belt, which moves them to stations for data collection.

Measuring fish
Measuring fish

Two people work at a station. One is a “Cutter” and the other is a “Recorder.” The cutter measures the length and weight of the selected species of fish on a “fishboard.” This data is automatically entered into the computer system. Depending on the species, the cutter might also be required to take an age sample or a stomach sample. Age is determined by collecting scales or an otolith (sometimes called an ear bone), depending on the species. The cutter removes these and the recorder puts them in a bar-coded envelope to send back to the lab for later study. The cutter also removes the stomach, cuts it open, and identifies what the fish has eaten, how much, and how digested it is. All of this information is entered into the computer for later analysis.

The information gathered during this cruise will give NOAA and other organizations valuable information about the health of the fish species and their ecosystem.

Personal Log

I arrived the night before we left port, and I was able to spend the night on the boat. My stateroom sleeps two people in bunk beds, and each person has a locker in which to stow our belongings. The stateroom also has a bathroom with a shower. Right across the hall is the scientist’s lounge. It has two computers, a television, many books, and games. This is where we sometimes spend our time while we are waiting for a tow to come in.

We spent much of the first day waiting to leave port. Once underway, some tests were conducted on the nets, and my Watch Chief showed me pictures of some of the common species we would see, explaining how to identify them. We began processing fish today. The first time the fish came down the conveyor belt, I was nervous that I wouldn’t know what to do with them. It worked out fine because I was at the end of the conveyor belt, so I only had to separate the two smallest fish, Scup and Butterfish, and Loligo Squid. After my first try at processing, I felt much more confident, and I even was able to tell the difference between Summer and Winter Flounders. One faces to the right and the other faces to the left!

Anne Byford, June 8, 2010

NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010

Mission: Sea Scallop Survey
Geographic Location:  off the coast of New England
June 8, 2010

Weather Data at 6pm EDT: Calm, Clear, 23˚C
Location at 6pm EDT:
Lat: 39 42.68 N
Long: 73 24.98 W
Water Depth: 86.4m

First day at sea

The first day was mostly spent steaming to the first dredge site, about 14 hours away from Lewes, Delaware. In the morning, all of the safety information was covered and those of us who had not tried an exposure suit before put one on. After the ship reached the ocean, we did a test dredge to ensure that all of the equipment was working and that we all knew what to expect.

The process is basically the same for all dredges on the Sea Scallop survey. Each tow is at a specific, pre-selected random site, using the same type of dredge, at the same angle to the bottom for the same amount of time and at the same speed as all other tows. This ensures that the data gathered is comparable from tow to tow and particularly from year to year. Once the dredge is pulled back up, it is dumped onto a sorting table on the rear deck of the ship. Everything is sorted into 4 categories: scallops, fish and squid, sea habitat (which is anything that is not scallops or finfish), human trash. Once the initial sorting is done, the sea habitat is counted by the bucket-load and dumped back into the ocean; the fish are sorted by species and weighed and counted. Some species (skates, flounder/flukes, and goosefish, also called monkfish) are also measured for length. Scallops are weighed, counted and measured. Some specific samples may be kept for researchers on shore and the rest is thrown back. Human trash is kept aboard for proper disposal later. After all of the sorting and measuring is finished, the buckets are rinsed and stacked for the next dredge, which isn’t usually that long in coming.

Sorting

Fortunately, we are not measuring things with a tape measure or having to manually input lengths into the computer. The ship has 3 “fish boards” that are electronic magnetic measuring devices that automatically send the data to the shipboard computers. Operators choose the species of fish being measured and then each fish is put on the board and a magnetic wand is used to mark the end of the tail of the fish. Each length is sent to the computer and stored. Historically, the data was collected on paper and the lists sent to a prison to be hand entered into a database. The database then had to be proofread and corrected if necessary. While the data still must be audited, it is much faster and easier, and less prone to error, to take the hand written stage of data collection out of the process.

Fish Board

Species Seen:

At the dock in Lewes: Osprey pair and at least one chick in the nest, Sea gulls

At sea: Pod of dolphins playing in the ship’s wake, jellyfish, pelicans

In the dredge: Squid, gulfstream flounder, windowpane flounder, summer flounder, spotted hake, sea robins, small skates, clearnose skates, several kinds of crabs (spider and rock), moon snails, sea stars, sand dollars, whelks, sea urchins, scallops, sea mice (polycheate worms)

Personal log:

We couldn’t have asked for better weather, clear and calm. After the safety meeting and test dredge, there was a great deal of down time until we reached the first site at about 10pm. I am on the day watch from noon to midnight and so got to sort the first real dredge. We did find scallops, ranging from about 1 inch across to about 5 inches across, but we found more sand dollars. After spending countless hours walking beaches to find even a few sand dollars, it was amazing to see hundreds or thousands on the sorting table to be tossed back as sea trash. I also discovered that you can easily loose track of time simply sitting in the sun on the deck watching the world go by.

Duane Sanders, June 16, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 16, 2009

Weather Data from the Bridge 
Wind: Speed 10 KTS, Direction  50 degrees
Barometer: 1024 millibars
Air temperature: 13 0C
Seas: 3-5 ft.

Science and Technology Log 

A sorting table full of sand dollars!
A sorting table full of sand dollars!

Why is it that we find huge numbers of sand dollars at so many stations?  There have been some stations where our dredge was completely filled with sand dollars.  The sorting table was so full that there was no clear space in which to work. This has piqued my curiosity as a biologist. Some questions come to mind.  Are there any natural predators of sand dollars? What is it about sand dollars that allow them to out-compete other organisms that might otherwise be found at these locations?  What do sand dollars eat? How can there be enough food at a given location to support these huge populations? I talked with Stacy Rowe, the chief scientist for this cruise, and she was not aware of any research being done to answer these questions.  Stacy did know that a species of fish known as the Ocean Pout eats on sand dollars.  I am looking forward to seeing results of some research on these organisms.  Maybe one of my students will follow up.  Who knows?

Duane Sanders with Keiichi Uchida: A fellow scalloper!
Duane Sanders with Keiichi Uchida: A fellow scalloper!

Many different scientists use data taken during this survey.  NOAA staffers come to the ship with a list of types of organisms or samples that have been requested by researchers.  For example we have been setting aside a few scallops from certain stations for special handling.  The gender of each scallop is determined and then they are measured and weighed.  Next, the meat from each scallop is carefully removed and weighed.  The shells are carefully cleaned and set aside to give the scientist who made the request along with all of the measurement data.

I have made a new friend, Keiichi Uchida, of a visiting researcher from Japan. He is doing research that involves tracking the movements of the conger eel, Conger oceanicus, using GIS systems.  Keiichi is here to learn more about how NOAA does surveys like the one we are on now. He is also looking at data similar to his and trying to correlate the different data sets.

Personal Log 

In many ways I am going to miss living and working with people who are interested in the same branch of science as me.  I have had fun talking about all of the things I have observed and the kinds of work being done by this branch of NOAA. There is one thing about this trip that causes me some real sadness.  I have not seen a whale. Two whales have been spotted, but I have always been at the wrong place to see them.  I hope my luck changes before we dock at Woods Hole.

Duane Sanders, June 15, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 15, 2009

Weather Data from the Bridge 
Wind: Speed 6.8 KTS, Direction 65.7 degrees
Barometer: 018 millibars
Air temperature: 11.33 0C
Seas: 2-3 ft.

Dumping a dredge on the sorting table.
Dumping a dredge on the sorting table.

Science and Technology Log 

We had to change out the dredge during my last watch.  Actually, I watched while the crew did the dangerous work. We have been working in an area with a rocky bottom and the rocks caused substantial damage to the netting in the dredge. Fortunately, we are carrying four dredges plus spare netting. The crew put a new dredge into operation right away so that we didn’t lose too much time.  Geoff, our watch chief, directed the installation of the new mesh into the first dredge.

The scallop dredges we use are eight feet wide. Commercial dredges are sixteen feet wide. The basic design is the same for each.  The mouth of the dredge is a welded steel rectangular frame, with the height about one foot.  The bottom of this rectangle is a heavy steel bar, called the cutting bar. This breaks loose organisms from the bottom.  A steel plate, called the pressure plate, is welded at an angle across the top of the rectangle.  This plate creates a downward swirl of water that directs the organisms into the mouth of the netting. The bag attached to the dredge is made of a net of steel rings. A mesh liner is mounted inside the bag for scientific use. This helps to trap other organisms that make up bottom-dwelling communities.  This gives scientists a more complete picture for the survey.  Commercial dredges do not use a liner and the rings of the bag are larger.  This allows smaller size scallops and other organisms to pass through the bag and remain to help sustain a healthy scallop population.

The business end of a scallop dredge
The business end of a scallop dredge

We have been ‘shadowed’ by another ship, the Kathy Marie for part of the time we have been working.  She is carrying a device known as the “HabCam”, short for Habitat Camera.  This is an underwater camera system that is towed just over the bottom. It makes a photographic record of still images of the bottom taken at a rate of three per second. The HabCam accumulates data at about three terabytes per day. The Kathy Marie runs over the same area dredged by the Sharp after we move on to the next station. Images from these runs provide scientists with an index of dredge efficiency at capturing the bottom dwellers.  Once enough image data has been collected to make useful correlations to dredge data, it might be possible to reduce the number of physical dredge samples taken and use the HabCam to record the community ‘in situ’, that is, in position without disturbance.

Personal Log 

I said in an earlier log entry that fish are not my favorite type of organism.  Because of this bias, I had been avoiding helping with the fish sorting and identification.  After thinking about this for a bit, I decided that I needed to embrace my bias against fish and try to learn something as well as help my colleagues.  Besides, how could I face my students without at least making an effort?  So, I am trying to learn how to identify these critters.  So far, I am pretty good with goosefish, red hake, longhorn sculpin and some of the flounder species.

I wonder how long it will take me to adjust to walking on dry land after being at sea for eleven days. I guess I’ll find out soon enough.  I have been trying to read some before going to sleep, but I find that I can do a few pages at best.  Hard work, sea air and the rocking motion of our ship make powerful sleep inducers.

Duane Sanders, June 12, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 12, 2009

Weather Data from the Bridge 
Wind: Speed 15.4 KTS, Direction 171.8 degrees
Barometer: 1008 millibars
Air temperature: 16.56 0C
Seas: 3-5 ft.

Science and Technology Log 

It is the end of my watch and I am ready for a break.
It is the end of my watch and I am ready for a break.

The routine of dredging for scallops 24 hours a day continues.  Since the goal of this survey is to get a good understanding of the entire ecosystem where scallops might live, we take samples from areas closed to commercial scalloping as well as from open areas. Every catch is a little different in the numbers and types of organisms we find.  There is a huge difference in scallop counts between areas that have been open for a time and those areas that have been closed. I can understand clearly the importance of checking this ecosystem on a regular basis. Open areas can become overfished and need time to recoup their losses and should be closed for a period of time.

In terms of dollar value the scallop industry is the most valuable fishery in New England. It would be decimated from overfishing without proper management based on sound, scientifically obtained data.

Personal Log 

I have adapted to standing watch at night and sleeping during the day. This experience has helped me to more fully appreciate the finer things in life: sunrise, good food and sleep. Also, I am proud to report that, thanks to some of my fellow ‘watchmates’ I am now ‘BlueTooth competent.’ They showed me how to use Bluetooth on my computer while we were winding down after our watch.

Duane Sanders, June 10, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 10, 2009

Weather Data from the Bridge 
Wind: Speed 19.4 KTS, Direction 86.8 degrees
Barometer: 1013 millibars
Air temperature:  14.2 0C
Seas: 2-3 feet

I’m having fun at the sorting table.
I’m having fun at the sorting table.

Science and Technology Log 

The primary mission of this cruise is to complete the second leg of a three-leg survey of scallop populations along the New England Coast. Other information about the scallop ecosystem is also collected. Scientists evaluate the status of the scallop fishery use data gathered from the survey.  Decisions about which areas to allow commercial scalloping and which areas to close to commercial use are based on these surveys. These science-based management decisions help to promote long-term stability of the scallop industry.

Members of the day watch working at measuring stations.
Members of the day watch working at measuring stations.

After two complete watches, I think I understand the procedure. Stations to be sampled are determined by a stratified random sampling procedure. Computers, following certain parameters set by NOAA staff, determine which area is to be sampled. It is important to be consistent so that each station from each of the three legs of the cruise can be reliably compared other data from this survey as well as from other years.  Once the captain puts the ship on station, an eight-foot wide dredge is lowered to the bottom and dragged for 15 minutes.  The captain keeps the ships speed to a constant 3.8 knots.  When the dredge is hauled in, its contents are dumped on a large steel sorting table that is bolted onto the to deck. The science team on watch sorts through the contents of the catch and separates all scallops into one basket, all fish into a different bucket and all the rest of the haul into another basket.

We then determine the total weight of the scallops and measure the length of each one. Thankfully we use a computerized system for determining the lengths which automatically record them.  All of the fish are sorted by species, and then weighed by species.  The length of each fish is recorded using the same system as for the scallops. The total volume of the remaining haul is estimated with each basket being equivalent to 46 liters. The general contents of the basket are characterized by types of shells found, types of substrate material and other organisms present.

Personal Log 

A sea mouse (Aphrodite aculeate)
A sea mouse (Aphrodite aculeate)

I have been assigned to the night watch. This means we work from midnight to noon. Although I am doing better today, it has been difficult to adjust to sleeping during the day. I am sure that I will continue to adapt. As long as Paul, our cook, keeps preparing his delicious meals I will survive quite nicely!

I have really enjoyed seeing the variety of organisms that come up in the dredge.  My favorites are the invertebrates. Some examples include different species of starfish, other mollusks beside scallops, and sea mice.  A sea mouse is actually a marine worm in the group known as polychaetes. These strange looking creatures grow long, thin scales that looks like fur. Their bodies have the general shape of a mouse with no tail.  There are also many fish species, which I am learning about, but they do not interest me as much as the other organisms.

Duane Sanders, June 8, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 8, 2009

Weather Data from the Bridge 
Wind: Speed 16.1 KTS, Direction 50.5 degrees
Barometer:  1014 millibars
Air temperature: 16.8 0C Seas: 1-3 ft.

Science and Technology Log 

The Hugh R. Sharp at dock in Delaware
The Hugh R. Sharp at dock in Delaware

I have been assigned to participate in the annual scallop survey in the New England fisheries area. Our ship, the Hugh R. Sharp, is two years old and designed specifically for ocean research. The Sharp is owned by the University of Delaware and is under contract with NOAA for the scallop survey. It has laboratories, a workshop and specialized equipment for handling large or bulky devices. There is a continuous data stream gathered by the ship’s instruments and posted on monitors on the bridge and in the lab. This includes some parameters related to ocean chemistry as well as the usual weather data. There are several other high-tech sensing systems to assist in a variety of research projects. The ship’s flexible design allows for the science team to install computers, servers and ancillary equipment specific to the research project at hand.  Also, modular labs outfitted for specific purposes can be secured to the fantail (rear deck) of the ship.

My favorite piece of technology is the diesel electric drive system.  Diesel generators produce electricity that supply power to the drive motors all other electrical needs on the ship.  Propulsion is provided by thrusters, which are capable of rotating in any direction as needed.  There are two thrusters in the stern and one in the bow.  These three acting together can keep the Sharp within six feet of a specified location.  The ship’s engineer can monitor all systems from his station on the bridge. This system is very quiet and vibration is kept to a minimum.  That means we can sleep much better than with a conventional diesel engine drive. All in all, this vessel seems to me to be an ocean scientist’s dream come true.  It is designed for high-tech applications and configurations that change as the need arises.

Here I am practicing donning my emergency immersion suit.
Here I am practicing donning my emergency immersion suit.

Personal Log 

Today is our first day at sea. We spent the morning hours getting acquainted with each other and learning about safety, emergency procedures and shipboard etiquette. For example, the science team was divided into two watches, midnight to noon and noon to midnight.  The rule is that people coming on watch need to take everything they want to use during watch hours with them. This allows those coming off watch to get some undisturbed rest.  Living in close quarters requires everyone to be considerate and cooperative. We all rely on each other to do their part to help make the cruise a safe and successful one.  While there is always room for some fun, everybody takes their responsibilities quite seriously.  Life and limb often depend on this careful approach to our work. 

Jacob Tanenbaum, October 16, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 16, 2008

Falcon
Falcon

Science Log

This bird came by for a visit. I think is a type of hawk or a falcon. Can anyone identify it for me? We have been trying but can’t seem to figure out what kid of hawk this is. In any case, it stopped by and perched on the bow just out of the blue when we were about 80 miles from shore. I wonder how it got here? Was it blown out to sea by a storm? Did it follow a ship looking for food? Is it lost? I hope it finds its way back.

It was foggy during the early morning and the ship had to blow its fog horn. I found out that ships use a code when they sail. One long blast means we are steaming ahead. One long and two short blasts means we have equipment such as nets in the water and cannot manuver as quickly. Listen by clicking here.

We found more spoon armed octopi. Can you see that one of the arms has a little spoon like object at the end? The male has an arm shaped like a spoon. Can you see it in this picture?

Octopii
Octopii
This baby skate has a yolk sack still attached to it. The baby uses the yolk as food while it grows. Usually this happens in the skate case. I wonder what happened with this little guy.
This baby skate has a yolk sack still attached to it. The baby uses the yolk as food while it grows. Usually this happens in the skate case. I wonder what happened with this little guy.
This is a red gold-bordered sea star. Isn't it amazing how many different kinds of sea stars there are in the ocean!
This is a red gold-bordered sea star. Isn’t it amazing how many different kinds of sea stars there are in the ocean!
This is a red gold-bordered sea star. Isn't it amazing how many different kinds of sea stars there are in the ocean!
This is a red gold-bordered sea star. Isn’t it amazing how many different kinds of sea stars there are in the ocean!
This is a shrimp close up. Can you guess what the blue mass is under her back end? Post your answers to the blog.
This is a shrimp close up. Can you guess what the blue mass is under her back end? Post your answers to the blog.

A sea anemone. This opens up and tenticles appear. They wave their tenticles in the water to collect food. When fish like Nemo, the clown fish, go into a sea anomone, it will sting the fish, so the clown fish backs in which helps it tolerate the sting.

Sea anemone
Sea anemone

Here is an interesting story: We were approaching a station where we were expecting to take a sample from the water with our nets. Do you see the note in the chart that says “Unexploded Ordinance?” (you can click on the chart to make it bigger). that means there are bombs from an old ship that may still be active! We decided to move our trawl to a nearby area. When we did, look what came up in the nets! Part of an old ship! The coordinates are Latitude: 42°27’23.65″N and Longitude: 68°51’59.12″E. Here is that location on Google Earth. What could have happened way out here? CLE students, tell me the story of that wreck. Be creative. Please print them out and leave them for me on Monday. Make them fun to read. I am bringing back what came up in the net for you to see. When I get back, we will see if we can do some research and find out what really happened!

Now lets meet Phil Politis, our Chief Scientist on board the Bigelow. I asked him to tell us about his job. Here is what he said:

chart2-740911The main job of a chief scientists is to meet the goals and objectives of the the scientific mission. In our case, that is, to pair up with the ship Albatross in as many stations as possible, following their route. My day to day job is to coordinate with the officers, and crew, setting the nets properly, make sure that the samples are processed properly and solving problems as they arise. Say we have an issue with the nets. It is the chief scientists job to decide what to do next. I can accept the tow, code it as a problem, or re-do the tow. I have to look at each issue individually. If we tear on the bottom, will it happen again? Is there time to re-tow? I also coordinate with the other vessel.

My title is fisheries biologist, but I am a specialist in the nets. My background is in trawl standardization. We have to ensure that our nets are constructed, maintained and that we fish same way each time. Small changes in nets can effect how the nets fish and that effects the study. That way we can compare this years catch to next years catch. Remember, this study is called a time series. Over time, you can see changes to fish population. The only way you can trust those numbers is if the nets are the same each time we put them in the water year after year, tow after tow. We have to document what we are doing now so that in the future, people know how and what we were doing. This way the time series remains standard. We have to standardize materials the nets are made of, way they are repaired. We inspect the nets each time we come on here. We train the deck crews in the maintenance and repair of our nets.

——————————-

IMG_6818-772778In answer to many of your questions, I will be back to SOCSD on Monday. I’ll be in WOS on Monday and CLE on Tuesday. See you then.

Mrs. Christie-Blick’s Class:

You asked some AMAZING questions. I’m so proud of you guys. Drl Kunkel was impressed as well. Here is what He told me:

You asked: What is your proof that these lobster shells are softer than other lobster shells? How do you measure hardness:

We have an engineering department at U Mass and one of the projects they have to do to become materials engineers is to test for hardness and they do an indentation test. Another way is to shoot x rays at shell and we can tell how hard it is by how the x rays scatter.

You asked: What is causing the harmful bacteria in the water?

We don’t know if they are harmful bacteria. My theory is that it could be the same normal bacteria that are on the backs of healthy lobsters. We think it is the weakness in the new lobster shells because of environmental influences south of Cape Cod that causes the trouble.

You asked: Can you get rid of the harmful bacteria?

It is possible to reverse the environmental conditions that have been created by us or by mother nature.

You are right about these sources of pollution. Good thinking. And yes, Dr. Kunkel believes that one or more of these factors may be hurting the lobsters. The problem area is south of Cape Cod. Look on a map today and count the number of cities between New York and Boston. Is this an area with a lot of people and pollution or is this an area that is sparsely populated?How would you expect this area to compare to areas where the lobster population is healthier off of Maine and Nova Scotia? Do the problem areas for the lobster and the pollution occur in the same area? If they match, scientists say there is a correlation between the two and they wonder if one is causing the other. What do you think?

Hag fish did gross me out a little. Interestingly, there is no way to determine the age of this fish as there are with others, so I’m not sure we can even tell you how long they live.

Several of you asked about the red dots on the lobster. They are a disease. It is called shell disease.

The lobster on the right is healthy. I just love this picture so I thought I would share it.

SR, the water temperature is about 16 degrees C last time I checked.

MF, nice to meet you. It is really cool to be a Teacher At Sea.

DTR, my favorite thing about this trip is working with you guys from the middle of the ocean.

MR, Snuggy and Zee are having loads of fun touring the ship.

CF: I will try to count the teeth of a fish and tell you what I find. Sometimes they are hard to see. I do not know if I am going back next year, but I hope so. I like being at sea. The truth is, I like being on land too. Both are nice. Thanks for writing.

BS: No, we find mostly adults, but some babies. Many creatures are small as adults.

BV: We have seen lots of jellyfish. We had so many we had to hose down the lab at the end of our session the other day. They were everywhere.

GS: We will continue to take samples here.

TL and Many Others asked how long we put the cups down for: We put the cups down for about 15 minutes. That includes the time it takes to lower the CTD to the bottom. When it gets to the bottom, it comes right back up. Thanks all for writing.

AS: Right you are!

Good job calculating all those who got 984 feet!

MM, I love the adventures I’m having here and the people I am meeting. It has been fun. I like being on land too.

JS, Dr. Kunkel took samples from some lobsters so he could help cure the disease.

KF: Could the hag fish bit us? Yes, Mel Underwood, our Watch Chief was very careful as she held the bag and backed her hands up when the fish got close to her hands. Mel is very experienced working with sea life and I have never seen her back off the way she did with this thing.

HRF: Go for it! It is a cool job!

CF: Good question. No, your bones are a lot stronger than styrofoam, so you would have to go down many miles to hurt yourself, and you could not swim that far without gear. When divers get hurt from pressure changes, it is usually something different called the bends. This happens when you are swim up to fast and certain gases in your blood stream expand as the pressure increases and form bubbles that can hurt you. Divers have to swim up slowly (the usual rule is don’t go up faster than the air bubbles next to you) in order to avoid getting the bends.

DC: Good questions: The dots are not bacteria on the lobster, they are the result of the bacteria eating away parts of the shell. The actual bacteria are too small to see. Good question about he temperature relating to growth. It is a bit more complex than that. There are many factors at work. The factor that may be causing more bacteria are chemicals like fertilizers from land getting into the water.

Dr. Kunkel came on board to study lobsters. He is a biologist, not a medical doctor. There are many scientists on board working with us, and me with them.

The quadrent is an old invention. People have been able to find their way with the stars for thousands of years. It is an ancient art. It was fun to practice it here.

SF, VF and others: The fish stayed in the bag. We made sure of that. From the bag, we put it back in the sea.

SD, sorry, I can’t help you there. I don’t think a pet skate would survive the trip back to NY.

Several of you have asked if I have gotten sick. No, I have not.

How many lobsters have we caught so far? Lots!

SS, sleeping on a boat if fun. If the waves are small, they rock you to sleep. If they are huge, however, they throw you out of bed!’

CP: bacteria infect the shells of the lobsters. This destroys the protection that the lobster should have. They grow weak and die of other causes. Good question!

Why do we work at night? Because ships work 24 hours a day so that no time is wasted. I ended up on the night shift. Why do we wear suits? To stay warm and dry on deck.

The hagfish eat shrimp and small fish, though they are scavengers and can eat large creatures as well.

Mrs. Christie Blick’s Class, you guys are doing some great work. I check on the skates for you. Some skates have protection, like thorns or spikes. They also have some interesting fins that look almost like feet. They use these to “walk” along the bottom searching for food. I know you asked about skates, but I have to mention the ray I worked with yesterday. It is related to the skate and could shock with an electrical charge for both protection and for hunting prey. Cool!

Jacob Tanenbaum, October 15, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 15, 2008

Using the sextant
Using the sextant

Science Log

Our study of creatures on the bottom of the sea has been done every year for 45 years. In fact, it is the longest series of data for fish, in the world. Why is this important? I asked Dr. Michael Fogarty, head of the Ecosystems Assessment Program, at the Northeast Fisheries Sciences Center in Woods Hole, MA.

Mr. T: This is the longest uninterrupted time series of a trawl survey anywhere in the world. Is that important?

Dr. Fogarty: Really important because the changes that we are observing occur over long periods of time due to fishing and climate and other factors, so we need to track these changes to see how individual fish species are doing and to see how the ecosystem itself is responding to these changes.

Mr. T: What have you found?

Processing samples
Processing samples

We have found overall in the 45 years that we have been doing this survey, the number of fish has remained the same, but the types of fish have changed. In Georges bank, we would have mostly cod, flounder in the past, now we have small sharks, skates, which are relative of the rays.

Mr. T: What does that mean in terms of the ecosystem?

Dr. Fogarty: It has changed the entire food web because, for example, these small sharks we are seeing are ferocious predators. Because these dog-fish prey on other species, they keep the fish we usually like to eat down in number

Mr. T: Why is that happening?

Dr. Fogarty: Our hypotheseis is that because the some fish have been hurt by too much fishing, the other fish have come in to take their place.

IMG_7042-735252I thought about that for a while. It means this ecosystem has been effected by something called Overfishing and something called climate change. I started wondering about all the different factors that might have effected the environment we are studying. There are so many! Let’s look at some of the may things that human beings have done that have changed this ecosystem in the 45 years we have been doing this study. Dr. Fogarty and I talked about this and then we created talked about this mini website for you. Click each problem area to learn more.

Remember the other day when I tried to use a sextant to fix our position? I could not even get close, so today, I took a lesson with one of the NOAA Corps officers on board, Lieutenant Junior Grade Andrew Seaman. Click here to come along.

IMG_6866-762848Elsewhere on the ship, Snuggy and Zee paid a visit to the dive locker on the ship. This is the area on the ship where SCUBA gear is stored. We are not using SCUBA on this trip, but it was fun to visit the locker and see all the gear. Snuggy and Zee learned that the crew can actually fill up the air bottles they need right on the ship. They have all the equipment they need to do work underwater right here on the ship.

We had a fire drill yesterday. I know you are all familiar with fire drills, because we have them at school. When we do them at school, we often practice evacuating the building and calling the fire department. Well, at sea, things work a little differently. We have to get away from danger, but then, we have to practice putting out the fire as well. After all, there is no fire department to call way out here! Click here for a video.

Finally, so many of you asked about dangerous creatures that we have caught. This torpedo ray does have an electrical charge to it. The ray can zap you if you are not careful. I used rubber gloves to keep from getting hurt. The hardest part was holding the thing while we took the picture. I kept dropping it becuase it was so slimy!

————————–

AT: I have not been frightened by anything on the ship or in the sea that we have seen. The hag-fish did seem gross. Very gross. Other than that, no.

Hi SP, I enjoy Korean food very much and have eaten lots of crab roe. It does not gross me out at all. Thanks for writing.

NV, Zee and Snuggy are just fine. Thanks for asking.

Mrs. B’s Class: I’m glad you liked the blog. We found the dead whale 100 miles or so off of Cape Cod. There are no sea snakes here. The water is too cold. I’m kind of glad about that!

Hello Mrs. Graham’s Class. I am staying nice and warm. Even working on deck, it is not too cold. We could stay out for several more weeks without a problem. Do you know what we use to make electricity? See if you can figure that out. We have to go back to port before we run out of that.

Mrs. Christie Blick’s Class: Very interesting. Our chief Scientists says that they can tell the whales don’t like barnicles because whales without them don’t behave in quite the same way.
This particular fish, which we call a monk fish or a goose fish has all the adaptations you mentioned. You did very well thinking those up. The Chief Scientist, Phil Politis and I are both impressed. He says that the fish hides in the mud (that is why it is brown), which keeps it hidden from predators. It has another adaptation, the illicium which we are calling a fishing rod. This adaptation lures smaller fish to the monkfish. Since it does not move around as much as many other fish, it can stay safer from predators.

Hello to Mrs. Coughlin’s Class, Mrs. Berubi’s Class. I’m glad you like the blog.

NN, I’ll be back next week. Because the crew and I, as well as a few birds are the only land-creatures we have seen out this far! Thanks for writing.

Hi Jennnifer. Thanks for your kind words and thanks for checking in on the blog.

Jacob Tanenbaum, October 14, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 14 2008

Here is Doctor Kunkel collecting samples with Watch Chief Mel Underwood.
Here is Doctor Kunkel collecting samples with Watch Chief Mel Underwood.

Science Log

Dr. Joseph Kunkel from the University of Massachusetts at Amherst is investigating a mystery on board our ship. In the last few years, fisherman and biologists have all noticed that lobsters are disappearing from waters south of cape cod near shore. This includes Narragansett Bay and our own Long Island Sound. Why? Thats’ what Dr. Kunkel is trying to find out.

He and other scientists have found that the lobsters are infected with a bacteria. Dr. Kunkel has a hypothesis. He believes that some lobsters get the bacteria because their shells are not as strong as other lobsters and don’t protect them as well. He is here collecting samples to test his hypothesis.

Shellfish are affected by acid rain
Shellfish are affected by acid rain

He has even made a discovery. He and another scientist, named Dr. Jercinovic, discovered that this shell fish actually has boney material in certain places in the shell. The boney material helps make the lobster strong enough to resist the bacteria. Effected lobsters may not have as much bone, so their shells are weaker. Why are the shells weaker? There may be a few reasons. The water South of Cape Cod is warmer than it normally is. Climate change may be to blame. The water has a lot of pollution from cities like New York and Boston. There are many streams and rivers pouring into the area that are Affected by acid rain. All of these things may effect the lobsters in the sea. They may effect other creatures in the sea as well. Can you think of things that are happening in our neighborhood that may contribute to this problem? Post your ideas on the blog and I will share them with Dr. Kunkel. What does shell disease look like? Can you see the red spots on the photo on the right? That is shell disease. It can get much worse. Thanks Dr. Kunkel for sharing your work and your photograph.

Cups are ready!
Cups are ready!

The art teachers, Mrs. Bensen in CLE and Mrs. Piteo in WOS had groups of students decorate Styrofoam cups for an experiment on the ship involving technology, water pressure in science and perspective in art. You probably have felt water pressure. When you swim to the bottom of the deep end of a pool, you may have felt your ears pop. This is water pressure. It is caused by the weight of the water on top of you pushing down on you. Well, a pool is only 10 or 12 feet deep. Just imagine the pressure at 600 feet down. We wanted to do an experiment with water pressure. Since Styrofoam is has a lot of air in it, we wanted to see what happened when we sent the decorated cups to the bottom of the sea. Click here for a video and see for yourself. If you decorated a cup, you will get it back when I come in next week.

Here are some more interesting creatures that came up in our nets overnight. We have been in deeper water and some some of the creatures have been quite interesting.

This “sea pen” is a type of soft coral.
This “sea pen” is a type of soft coral.
Two sea-hags
Two sea-hags

This is a sea-hag. It is a snake-like fish that has some amazing teeth. We put one inside a plastic bag for a few minutes to watch it try to eat its way out. Take a look at this video to see what happened.

Spoon Arm Octopi
Spoon Arm Octopi

Here are three Spoon Arm Octopi. Each octopi has three hearts, not one. One pumps blood through the body and the other two pump blood through the gills. There are three octopi in this photo. How many hearts to they have in all?

Red fish
Redfish

This redfish are also an interesting criters. When they lay eggs, you can see the babies inside. They live in deep water. We caught this one at a depth of 300 meters. How many feet is that?

Squid and sea star
Squid and sea star

Here is a bobtail squid and a sea-start. The squid looks like an octopus, but it is not.

Skate case with a baby skate inside
Skate case with a baby skate inside

This skate case had a baby skate inside. Here is what it looked like as the tiny creature emerged.

Crab and eggs
Crab and eggs

Finally, the red on the underside of this crab are the eggs. Biologists call them roe.

Zee and Snuggy paid a visit to the ship’s hospital to take a look around. The hospital is amazing. They are able to treat a wide variety of injuries and ailments without having to call for help. They can even put in stiches if they need to. In cases of serious injury, however, the Coast Guard would have to take the patient to land with the helicopter or fast boat. Zee and Snuggy had a great time touring the hospital, and all three of us are just fine.

IMG_6859-737787

Jacob Tanenbaum, October 13, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 13, 2008

Old fashioned navigation
Old fashioned navigation

Science Log

Happy Columbus Day everyone, and, since were in Canada, Happy Thanksgiving. Yes, that’s right, Thanksgiving. Here in Canada, Thanksgiving is celebrated on the second Monday in October. So a special note to my son Nicky: Happy Canadian Thanksgiving!  Back to Columbus Day, though. Since that’s probably what your all talking about at home. In honor of Columbus Day, I thought I would try something interesting.

I made a replica of the instrument Columbus used to navigate his ship. It is called a Quadrant. Columbus would sight the North Star with his quadrant and measure its angle above the horizon. That angle is equal to your latitude. He used a quadrant to measure that angle.

A quadrant
A quadrant

This is what a quadrant looks like. You hold it up so you can see the star you want in your site. The weighted rope simply falls over the scale of numbers and indicates the angle. What instrument in math looks like this? Post your answers on the blog if you think you know. So did I beat the GPS? You will have to watch this video to find out.

Want to try sighting the North Star yourself? Here is how: Find the Big Dipper. Trace an imaginary line from the spoon up. The first bright star you come to is the North Star. Want to find our more about using the stars to find your way, or Celestial Navigation, click here.

We are fairly far out to sea right now. There is a point of land in Nova Scotia, Canada about 100 miles to our north, but most land is around 200 to our west. We are seeing a lot of off-shore birds like the Shearwaters pictured here. These little birds spend most of their lives in the open water feasting on fish. They come on shore only to breed, so landlubbers don’t see them very much. What a treat. They were part of a large flock that was foraging in the nets yesterday afternoon during a tow.

Seabirds
Seabirds

We also have a few land birds on board. They may have been blown out to sea by storms and have stopped on our ship for a rest. Several were eating what they could find out of the nets on deck yesterday. The nets on the Bigelow have 6 sensors, each reporting different variables, such as depth, the width of the net opening and the height of the opening back to the scientists on deck. One of the sensors stopped working and had to be replaced yesterday. Take a look at this video of how the repair was done.

The water temperature outside is changing. It is now much colder than it was. When we were further west, we were towards a warm current called the Gulf Stream that moves north along the east coast of the USA. The water was about 63 degrees. Now we are in a cold water current called the Labrador Current. This current brings water south from the Arctic along the Canadian coast and ends in the Gulf of Main. The water here is about 55 degrees or so. We are not seeing the dolphins anymore and some of the science crew thing the water temperature may be too cold for them. Take a look at this map of the water temperatures. Brighter colors are warmer in this picture. We have moved from the warmer greener colored water into the cooloer blue colored water. The red line represents our course.

Water temperature illustration
Water temperature illustration

WOS students who have not had a chance yet, should compare our ship to the one Columbus Sailed. Go back and look through the blog at the pictures of Snuggy and Zee in the different parts of our ship to help you. Post your answers on the blog. Finally, something very interesting came up in our nets today. We got this off the bottom in 1000 feet of water. It is wood. Clearly cut and shapped by a person and for a purpose. It appears to have been down there for a long time. How do you think it got there? Post your answers on the blog!

CLE students, try using these images of ships in the past as a story starter. Write me a short story about a trip on an old sailing vessel and incorporate some of what you have learned about their technology in your story. Can you tell me the story of how that wood ended up on the bottom of the ocean? Please don’t post these to the blog. They will be too long. Print them and show them to me when I get back on land next week.

———————-

IMG_6782-766424And now some answers to your questions:

RM – Good question: A sea spider is a sea-creature related to the horseshoe crab. It just looks a lot like the spiders we see on land.

Have we seen any sharks? We have seen a lot of dog-fish, which are a type of shark, but are not very ferocious. Our captain saw a great white off the bridge. Unfortunately, I was working below decks at that moment and did not get out to see it in time.

Jacob Tanenbaum, October 12, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 12, 2008

Science Log

Here is a sample of what has come up in the nets overnight.

Sea stars and baby invertebrates
Sea stars and baby invertebrates

Here are several different types of sea-stars. I am always amazed by the wide variety of these creatures that exist in the ocean.

a brachiopod
a brachiopod

This little fellow might not look like much, but it has an interesting history. This creature is called a brachiopod. It belongs to one of the oldest family of creatures on earth. There have been brachiopods in the sea for at least 550 million years. That is long before there were even plants on land, let alone animals and dinosaurs. It is a simple shelled animal that has a single stalk that helps is stay attached to the rocks around it. Click here to learn more about this amazing creature.

a brachiopod
a sea cucumber

Here is a sea cucumber. They live at the bottom of the sea and can be found all over the world. They are used to make medicine in some countries in Asia.

Sargassum up close
Sargassum up close

Remember that large raft of sargassum weed we saw yesterday? Some came up in the nets today. Here is what it looks like close up. She the little pockets that hold air? They help the sargassum stay afloat.

This is a sea spider.
This is a sea spider.

And of course, there is always garbage. We keep getting bits and pieces each time the nets come up. Here is a sampling. We found one entire Butterfinger candy bar with the chocolate still inside (no, we did not eat it), as well as some rope. How do you think it got here?

Let take a closer look at a sensor called a CTD. That stands for conductivity, temperature and depth. Remember the drifter buoy that we released a few days ago? It measures temperature on the top of the water and it can drift all over the ocean taking readings. A CTD takes its measurements as it descends through the water column and can go all the way to the bottom.

Trash pulled up with the rest of it
Trash pulled up with the rest of it

Have you ever seen barnicles move? They do. We found these huge barnicles in our net and we put them in water to encourage them to come out. Check out this video!

A lot of people have asked me about sea-sickness. Sea Sickness happens when your brain and body, which are constantly working to keep you balanced, get confused by the rocking of the ship. It is a terrible feeling, and I’m glad I have not been sea-sick at all on this trip. Some people do better than others on boats. I do not tend to get sea-sick unless the waves are very high, and I am used to the rocking of the ship now. The other night I was working on deck and I caught sight of the moon moving quickly across the sky. I wondered why it was moving so fast until I realized it was my ship that was moving in the sea and me with it. The moon only seemed to move. I guess that means I’m used to the rocking back and forth and hardly notice it now.

——————–

More marine debris
More marine debris

MLL, SPL and MCL, Snuggy and Zee are having a great time and none of us are sea-sick. I put more information about it in the upper part of the blog entry. Thanks for writing.

SQ, CS, KM and VM: It is nice fall weather. Not too hot, not too cold. I love it. I have not felt uncomfortable even when I am working out on the wet deck of the ship.

GG: It is not hard to sleep at all most nights. There was only one night where the waves were high and I bounced around too much to sleep well. The rest of the nights were fine. The ship rocks me to bed at night. I do miss WOS. See you soon.

Jacob Tanenbaum, October 11, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2009

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 11, 2008

Science Log

Greetings from Canada, my son Nicky’s favorite place! We are now in Canadian waters. We have crossed the international boarder. More amazing things keep coming up in our nets. Today we had some interesting sea-stars. Take a look. The larger ones are called Sun-Stars. Do they look like the sun to you? Sea stars are scavengers. They will move around the bottom looking for whatever food is laying around. The legs of the sea star have small tentacles that push food towards the mouth in the center.

Can you find the mouth?
Can you find the mouth?

Did you know that squid can change color? Often male squid change color to attract a mate or to scare off other males who are competing with them. If there are two males near one female, they able to turn one color on the side facing the female, and then turn another color on the other side facing the male.

Squid
Squid

We had more dolphins circling the ship last night. We think our lights may be attracting certain fish or squid, then the dolphins come to eat that. They are not with us during the day at all. One of the benefits, I guess, of being on the night watch. I cannot shoot still photos due to the low light, but have wonderful video. The sounds that you hear on the video were recorded with the ship’s hydrophone. This is a special microphone that can record sounds underwater. The sounds were recorded as the dolphins swam around the ship. You can hear the sound of them swimming by as well as the sound of their sonar as they locate fish to eat. Click here to watch and listen. Thanks to survey technician Pete Gamache for recording this for us. Click here to see the video. Don’t miss it!

Floating Sargassum mat
Floating Sargassum mat
Close up Sargassum
Close up Sargassum

We drove past some seaweed called sargasum weed. It normally grows in an area towards the middle of the Atlantic called the Sargasso Sea. We are well west of the Sargasso, but this seems to have drifted our way. Sargasum Weed grows on the surface of the water. These huge mats of seaweed support an entire ecosystem of sea creatures. Many come to seek shelter in the weeds. Many more come to feed on smaller creatures hiding there.

Snuggy and Zee paid a visit to the fantail of the ship.
Snuggy and Zee paid a visit to the fantail of the ship.

The fantail is an area by the stern of the vessel where the nets are deployed. The photos show the area where the work gets done. Our ship works all night long, of course, and trawls are done at night as well as during the day. Take a look at this video which explains how trawls are done.

NOAA Ship Albatross
NOAA Ship Albatross

Our ship is shadowing another NOAA ship, the Albatross. Why? The Albatross is an old ship and will be replaced by the Bigelow in the years to come. At this point, the ships are trawling in exactly the same place to see if they get similar results in their surveys. Making sure the vessels measure the same thing the same way is called calibration. Right now we are doing calibration with the Albatross.

—————————————————–

IMG_6425-724011Now some answers to your questions:

RM – No we did not see Nantucket yet. We were too far out to sea. We may see it on the way back. Thanks for writing.

T – I love Block Island too. Thanks for the warning about rough seas. I am glad you and your mom are both enjoying the blog as much as I enjoy writing it for you. I’m used to the 12 AM shift now. I that I finally got 8 hours of sleep.

AR – There were TONS of skates in the water.

Hello to Mrs Eubank’s Class. Its great to hear from you. Great questions. Now for answers:

— Amanda, I think fish can get smaller pieces of plastic confused with tiny plankton, but our buoy is too large for that. I don’t think it will hurt fish. I think they will stay away from it.

–Tiffany, this is a tough question and a very good question. I guess over time, our buoy will stop working and will become floating trash. The truth is all science effects the environment you study. The trick is to do more good with your work than harm. Our buoy will help us understand our environment better so that all of us will do less harm in the future. Our ship also burns fuel as we study the ocean. That pollutes a little, but hopefully through our work, we do more good than harm to what we study.

Weston, It felt like the drifter weighs about 35 pounds or so.

Bryce, we use a large net to scoop along the bottom. The opening is about 4 meters wide.

Luke, we have not, nor do I expect to find new species. Our purpose is to learn more about the species that we already know about.

Bryce, we were about 140 miles from the nearest land the last time I looked.

RJ, some scientists made our drifter.

Weston, there are about 1000 drifters right now in the open sea.

I enjoyed your questions. Thanks for writing.

Mr. Moretti’s class, I’m not sure what killed the whale, but remember, all things the live also die. We cannot assume that something human beings did killed that whale. With all the pollution we create, we cannot assume, however, that we did not hurt it. We should stop polluting just to be sure we do not hurt other living things.

Many of you have are working hard to figure out our math question from the other day. Here is how it works. If we are going 8 knots for 24 hours, we multiply 8 times 24 and get 192 knots in a day. If we want to convert that to miles, we multiply again by 1.15 because each knot is 1.15 miles. We get 220.8 Congratulations to all who got this correct. It was a tough question.

Several of you have asked how long I would be on the ship. I will be here until the end of next week. I leave the ship on Friday October 17th.

LP – I enjoy the show Deadliest Catch very much. I think it is cool that scientists sometimes do that same kind of exciting work.

SD, there is no way for me to videotape under that water, but tomorrow I will show you how our sonars (we call them echosounders) work. That is one way to see under the water.

DT from SOMS dont’ worry, there is no light pollution out here. I am on the back deck of a working ship, so right where I am there are lights. I need them to do my job. I just have to go to the upper decks to get away from it or ask the bridge to shut them down for a bit.

Jacob Tanenbaum, October 10, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 10, 2008

IMG_6354-743446Science Log

Did you figure out the answer to yesterday’s question? Those creatures were the real cast of Sponge Bob Square Pants TV Show. We saw a sponge, like Sponge Bob, and sea stars like Patrick, plankton, like Sheldon Plankton, some squid like Squidward, a crab like Mr. Krabs next to a sand dollar (because Mr. Krabs loves money), a lobster like Larry the Lobster and a snail like Gary. All the creatures in the program actually exist in the sea, except for squirrels, and we have seen them all on this adventure. Amazing creatures keep coming up in our nets day after day. Let’s take a look at a creature called a skate. The skate makes those funny black rectangles that you find on beaches. Take a look at where those rectangles come from and what is inside of them. Click here for a video!

Skates also have interesting faces. They live along the bottom of the sea. Their eyes are on top of their head to spot predators and their mouthes are below to eat what is on the bottom. They have two nostril -like openings above their mouth called spiracles. They look just like eyes but actually help the skate breathe. Here are a few interesting skate faces.

IMG_6247-720301

This sea robin uses three separate parts of its pectoral fin, called fin-rays to move, almost like its walking along the bottom of the sea as it looks for food. This helps is move very quietly, making it able to sneak up on prey unobserved.

Sea Robin
Sea Robin

These two baby dog-fish show different stages of development. This one is still connected to an egg sack. The other has broken loose from it, but you can still see where it was attached just below the mouth. Usually in this species, just like most fish in the shark family has eggs that develop inside the mother’s body. She gives birth to the pups when they have hatched from their eggs and are ready for the open sea.

Dogfish egg sack
Dogfish egg sack

IMG_6374-789593Many people have asked me about garbage. Here is some of what we have found so far. We caught part of someone else’s fishing net. Here is a Styrofoam cup and here is a plastic bag, which we caught 140 miles from the nearest land. How do you think it got here?

Finally, we were visited by some dolphins last night. They were eating smaller fish and as they came in for their attack, you can see the smaller fish jumping straight out of the water into the air to try to avoid being caught. Click here for a video.

IMG_6125-731150

IMG_6383-764446Snuggy and Zee decided to visit the kitchen today. Here are Zee and Snuggy with our chief Steward Dennis M. Carey and our 2nd cook, Alexander Williams. The food here is fantastic. See how large the kitchen is? We have a lot of people to feed on this ship, and the cooks here work hard. You have seen a few of the many different jobs that people can do on a ship like this. You have seen the scientists at work in the labs, you have seen the engineers who make the engine go. You have been to the bridge where the NOAA Corp officers run the ship. You have been to the kitchen where the cooks keep us so well fed. Tomorrow, you will see how the deck crew trawl our sample nets through the water. Keep checking the blog this weekend. There will be lots to see.

~~~~~~~~~~~~~~~~~

Now, some answers to your questions and comments:

Hi to KD and to Derek Jeter. We are staying safe. Thanks for writing.

Hello to St. Mark School in Florida. I’m glad you are enjoying the blog. I really enjoyed your thoughts about what these fish have in common. Great work. Here are some answers:

If a ship hit a drifter, the drifter would probably be broken. But the ocean is a big place, and that does not happen very often.

Can your school adopt a drifter? Of course! Take a look here: http://www.adoptadrifter.noaa.gov/. In the mean time, you are welcome to follow the adventures of our buoy. Keep checking this website!

I have Snuggy because some of my kindergarten classes asked me to take a bear with me to sea. So I did!

How heavy are the drifters? It weight 30 pounds or so, I would guess. Enough to make me work to pick it up.

I knew the whale was dead because part of it was decomposing. We could see it and we could smell it. Yuck.

Did any fish try to bite me? Yes. One scallop closed its shell on my finger. I had to be quick to get my hand out of the way in time. Other than that, no.

At 8 knots per hour, the ship could travel 192 knots, or about 220 miles in a day.

Congratulations to all who calculated correctly. The truth is that we have to stop for sample trawls every hour or two, so we seldom make our top cruising speed when we do work like this. So, we usually travel less than we could.

Oh, and to all those who asked, so far I have not gotten sick. Yet.

Thanks all for writing. Keep checking the blog!

Jacob Tanenbaum, October 9, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 9, 2008

DSCN3867-789283Science Log

Hello everyone. I hope you are all enjoying your day off today. Since you have time off from school, I bet many of you are spending time observing these sea creatures…

Can you guess what they all have in common? Post your answers on the blog.

Need a hint? That crab is standing right by a sand dollar. Money. Hmmm.

This angler fish is an interesting character. It sits on the bottom of the water and blends in with its surroundings. It has a small hair that sticks out of its face that is use to lure prey closer to its mouth (just like its cousin from deeper waters, the angler fish). When the prey get close by it strikes. With all of those rows of sharp teeth it makes short work of smaller fish. Can you imagine a fish with a built in fishing rod. Very interesting. We came across a dead whale floating in the open sea. What an amazing sight (and smell). Yuk. Look how big it is next to the ship. The barnacles on its face were the size of baseballs.

A lot of you have asked what my stateroom looks like. Here are Snuggy and Zee in my “rack.” That’s what we call a bed. Do I have a roommate? Yes. Sean is very nice. I’ve only met him once or twice because he sleeps when I work and I sleep when he works, so we don’t run into each other much. That’s often how things work on a ship like this. The second picture is the door to the corridor. The locker to the right is where I keep my gear. The door on the left leads to the “head,” which is what we call the bathroom on a ship.

Many of you asked what the engine room is like. Joe Deltorto, our Chief Engineer, was kind enough to give me a tour. The Bigelow has an interesting engine room. Huge diesel generators make electricity. Lots of it. Enough to power all of our computers, sensors, lights, and even the ship itself. The propeller is turned by large electric motors. This makes the Bigelow one of the most quiet research ships anywhere. Why is that important? Sound is often used to see what is below the surface of the water. Sonars push sound through the water and listen when it echos back. That’s often how boats see what is under them. The Bigelow has a more sophisticated version of this called an echosounder. It can see much more, but still uses sound to see. So the engines have to be super quiet.

Today we will deploy our Drifter Buoy. This is an instrument that we are adopting. It will float in the open sea for the next 14 months or so and tell us where is has gone and what the temperature of the water around it is. Drifters are an important way that scientists measure. Keep watching here. I will update the blog when I deploy the drifter.

~~~~~~~~~~~~~~~~

Here are some answers to your wonderful questions and comments.

Have I gotten sea-sick? No. So far, the water has been very calm. I feel very luck. The ship has hardly moved at all.

Does it smell on board because of all the fish? Surprisingly, no. even the fish labs have lots of fresh ocean air coming through. There is no bad smell. When we came across a rotten whale floating in the ocean, then there was a smell! Oy!

The whales we have seen so far were all humpback. Even the dead one.

Have I seen fish that were new to me. Oh yes. Most of what we have seen has been new to me! That’s what makes these trips so much fun! I love learning new things.

What do I want to see that I have not seen yet? Dolphins.

In answer to so many of your questions, no, I have not fallen in yet. Either has anyone else. The Bigelow is a very safe ship. Everyone is well trained and very concerned for the saftey of themselves and all the others on board. I feel very safe here.

Hello to Ms. Farry and classes in TZE. I’m glad you are looking at the blog.

Hi Turtle. Nice to hear from you. Yes, I think we can work that out. We are on the shelf, so our deepest CTD deployment will be only be about 300 meters. Will that do?

FD and JEGB, thanks for your questions. No, so far we have not seen any 6 pack rings on any creatures. I did see some garbage float by many dozens of miles from shore. It was right where the whales were swimming. Sad.

IJ, cool idea, though I wonder, though if the water would carry toxins from the smoke into the streams rivers and oceans? Keep thinking maybe you will discover a way to solve this problem someday.

Mi Mrs. Bolte’s class. I’ll get you engine room photos very soon, and there is a photo of my stateroom for you today. I’m glad you like the blog.

MS, the people here are friendly, very professional and so helpful with everything I have needed for all my projects.

MH, yes I do miss my family.

MJ, we see lots of ships out here. Yes. It has been fun to see.

Several of you asked about cell phones. They do not work out here. We are way too far from land. All the crew were on deck as we left port making their last calls to their families. So was I.

Hello to Mrs. Ochman’s class, Mrs. De Vissers’s class, Mrs. Sheehy’s and TN’s class. I hope the pictures in the last few days answered lots of your questions.

Mrs. Christie Blick’s class, here are some answers to your questions: No, the clothes just keep you dry (and comfortable) when you are working. You get used to them. I am adjusting well to the time change. It is a little like going to New Zealand like Mrs. Christie-Blick did recently. I wake up at about 8:00 PM, go to work at midnight and then go to sleep in the early afternoon. Our time, that is. If I were in New Zealand, I would be on a normal schedule. I’ll post pictures for your soon for my stateroom. It is very relaxing here. There is not a whole lot to worry about. There is a lot of work, but it is not hard.

The zig in our course, by the way is probably where we stopped for a trawl. We sometimes circle around when we do that.

Hello Mrs. Benson. Thanks for checking out the blog. No artists here at the moment. I enjoy amature photography and what subjects there are out here!

Hello Guy D. Thanks for following the blog. I appreciate your support.

Jacob Tanenbaum, October 8, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2009

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 8, 2008

Science Log

Today we started working. My shift is 12 midnight to 12 noon, so I slept for a few hours in the afternoon and then worked overnight and into the morning. It is hard to get used to staying up all night. It feels a little like I took an unexpected trip to Europe. Our first haul took the longest to sort out because many of us were learning how things were supposed to work, but after a full day, it started to feel routine. Here is a sampling of some of the amazing creatures that came up in our nets:

Big fish!
It’s a shark!
This is a dogfish. It is a relative of the shark, but without all those ferocious teeth. So many people have asked me if I have seen a shark, I had to put these photos up for you!
This is a dogfish. It is a relative of the shark, but without all those ferocious teeth. So many people have asked me if I have seen a shark, I had to put these photos up for you!
This lumpfish is a related to the anglefish, which has a light and lives in deeper water.
This lumpfish is a related to the anglefish, which has a light and lives in deeper water.
Here is a squid, a sea-robin a baby dogfish that had just hatched and a flounder or two.
Here is a squid, a sea-robin a baby dogfish that had just hatched and a flounder or two.
This is a skate.
This is a skate.
These are the skate egg cases. Have ever found one on a beach? Now you know what it grows into.
These are the skate egg cases. Have ever found one on a beach? Now you know what it grows into.
This is a long horned sculpin. These creatures buzz when you hold them and stick their fins up to scare you off. Amazing!
This is a long horned sculpin. These creatures buzz when you hold them and stick their fins up to scare you off. Amazing!
The largest lobster I have ever seen. Can you guess why I'm smiling in the picture? Here is a special shout out to my favorite lobster (and clam) fans, Simon and Nicky Tanenbaum!
The largest lobster I have ever seen. Can you guess why I’m smiling in the picture? Here is a special shout out to my favorite lobster (and clam) fans, Simon and Nicky Tanenbaum!

And finally, we saw whales!

~~~

NOAA Ship Albatross, also working on this survey
NOAA Ship Albatross, also working on this survey

On a personal note, this is a very comfortable ship. Zee and Snuggy will continue to show us around each day. Several of us watched the presidential debate on live satellite TV in the lounge tonight. Here are Snuggy and Zee having a quick meal.

Cottage Lane students, we are traveling about 8 knots per hour right now. Can you calculate how for we can travel in a day? Remember, the ship works all day and all night. How far can it go at that speed? Post your answers on the blog, then watch the video. Would you like to do this kind of work? Let me know.

I have enjoyed reading your comments very much. We are going to have a little delay in my responding to comments today as I get used to working the midnight shift. You are all correct when you say that the Bigelow has a LOT more technology than the Eagle. Consider this: I went on deck at about 4 in the morning to do some work and found that I could not see the stars because the electric lights on the ship were so bright! I guess we have to have a GPS when you reach that point! Celestial navigation just will not work on a ship with lights so bright!

Mascots in the galley
Mascots in the galley

A lot of you were focusing on what sailors then and now need to survive: Food and water, for example. Did you know old sailing ships had to bring their entire supply of fresh water with them in barrels. Today, our ship can take the salt out of seawater to make it safe to drink. Technology has changed the way we live on ships!

To my fellow TAS from the Delaware: Thanks for writing. We are doing bottom trawls and are looking to survey the entire benthic community here. Thanks for the sea-sickness tips. I may need all the help I can get if the weather decides to change.

Lynn: thanks for reading the blog. Zee is fine, and so far so am I. With luck, the weather will hold! If not, Zee may do better than I do. We could see Cape Cod earlier today. Beautiful!

Jacob Tanenbaum, October 7, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

This one shows our ship under the bridge leading into Newport.
This one shows our ship under the bridge leading into Newport.

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 7, 2008

Science Log

Our first day at sea is a day of mainly travel and drills. We are moving east around the island of Martha’s Vinyard towards our first tow of the day.

Did you know that ships like the Bigelow have all kinds of safety procedures? We had two drills today. In one the crew all went to the back of the ship and put on our survivial gear. This suit will help us survive and be spotted by rescurers in the event we have to abandon ship. It is called an abandon ship drill.

On the gangplank!
On the gangplank!

During a fire drill, we go to our assigned safe spot for attendance – we call it muster. And the officers and crew practice putting out a fire. A fire on a ship can be dangerous. There are no fireman to call, so crew have to learn to put out fires on their own. That takes practice.

Snuggy and Zee also had their own tour of the ship. Each day they will visit a few places and show you pictures so you can see what different parts of the ship look like. They came in on the gangplank this morning. Just like all the sailors do.  Tomorrow, WOS students, please tell me what other parts of the ship we should visit. CLE students, you had lots of good ideas about how Columbus’ ship and mine are different. Technology is at the top of the list. Imagine crossing the ocean with just a compass, a steering wheel and a quadrent. What an adventure. We live in luxury even on our working ship. My quarters even have carpet! Keep those ideas coming. Good night to them both. It’s four in the afternoon and time for bed. I get up at 11 and start work at 12 midnight.

Zee and Snuggy on the bridge.
Zee and Snuggy on the bridge.
The nets are ready for our first day of fishing. Zee and Snuggy are ready to help.
The nets are ready for our first day of fishing. Zee and Snuggy are ready to help.

————————

Safety gear
Safety gear

Hello to all who wrote so far. Mrs. Christie Blick’s class, Mr. Connaughton’s class and others want to know when we start our survey work: We will begin our experiments late today after I have gone to bed, so I will tell you what we catch tomorrow. And I will send you LOTS of photographs! What do we want to catch? Well, different scientists need different things for their work. One of our scientists is studying lobsters. I hope we catch more than he needs so I can have a few for myself!

CP and others, it is not likely that we will see anything new in the water that has never been discovered. Sceintists study this area in detail every day to look for changes to the number of fish or patterns in where they live. we have a good idea of what is doen there.

AR, I will try to answer all your questions in the days to come. I have a bed called a rack here on the ship. I have a small quarters and one very nice roommate. I’ll show you around soon.

The weather here is perfect. The water is not cold or hot. It is just right. By the way, I will not be going to the bottom. We will lower nets to the bottom and see what we bring up.

EA, this ship is 210 feet long.

My brother David asks if I bring music along. Yes. I have my whole collection on my computer. Including all your discs!

Jacob Tanenbaum, October 6, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 6, 2008

Now here is a view of the bridge of NOAA Ship HENRY B. BIGELOW.
Now here is a view of the bridge of NOAA Ship HENRY B. BIGELOW.

Science Log

I made it to Newport and am writing from the ship. It was an interesting trip, can you find Newport, RI, on the map?

Remember its’ Columbus Day next Monday and we are going to spend some time on this cruise comparing this ship to the one Columbus was on. I stopped off to see an old Square Rigger Sailing Ship run by the Coast Guard. It is called the Eagle and it is based in New London, Connecticut. Here is what the bridge of the Eagle looks like.

How do the crew of the Eagle know where they are? They use the sun and the stars. In fact, it is the only Coast Guard Base where Celestial Navigation is still taught. Here a friendly Coast Guard Officer, Lieutenant Lally, shows us how to use a sextant. See the tables below? He needs those to convert his sextant sighting to a latitude.

Masts of the ship
Masts of the ship

Thanks to Lieutenant Lally and to the entire crew of the Eagle for their hospitality. Fourth graders tomorrow should work in pairs and post 4 ways the Eagle and the Bigelow are the same and 4 ways they are different to the blog. Then you can work on the navigation part of this website. Don’t miss the simulation of the tool you just saw demonstrated.

Newport is also famous for mansions an beautiful sea coast. Here are a few photos of the mansions. Thank you to Harle Tinney and her wonderful staff at Belcourt Castle for letting me take photos of the inside for you. She told me something else about the Castle. The weather vane at the top of the castle was marked on the maps sea captains used back in the old-days. From that weather vane, they could calculate their position and avoid crashing on the rocks nearby.

See you tomorrow.

~~~~~~~~~~~

Navigation instrument
Navigation instrument

Response to your questions and comments: Thanks to all for your good wishes. MAB – I will tell you all about what we catch. OG, we are not permitted on deck while work is going on unless we have a life jacket. Everyone here cares about safety. CB, the ship holds about 36 people. I’m not sure how many are sailing on this cruise. About half the crew are scientists. Several of you asked how long I would be gone for. I’ll be gone for about two weeks. We come back on the 17th of October. Many of you suggested I bring warm clothes. Yes I did. I brought just one suitcase (there is not a lot of room on a ship for extra stuff), but it is full of clothes. I brought lots of layers as well.

Hello to Miss. William’s Class: I am very excited to be going to sea again. I love it. I’ll be back in two weeks, but while I’m away, I’ll tell you all about what we catch and what we do while I am out.

Oh, and to everyone who asked, If I get sick, I’ll tell you that too! I promise! Thanks for writing.

J from TZE, I’ll show you about the cups in a few days. We are going to do an experiment with them. Keep watching!!

MH you asked a lot of great questions. Thanks for writing. I’ll try to answer all of them over the next few days. As for where I’ve been. Well, I spent the last two voyages in Alaska, so this will be very different. And much warmer.

Oh, and I did bring a few things to read. Most of them are on my computer to save space. There are a few books.

Keep watching the blog and keep writing! I’ll respond to your comments as best I can either personally or in the text of the blog now and in the days ahead. Remember, students should just use their initials when commenting.

Jacob Tanenbaum, October 5, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 5, 2008

The mascots
The mascots

Science Log

I am packed and ready. Here is a photo of Zee, our High School Mascot and Snuggy on their way to Newport to meet the ship. Monday, I will leave early in the morning and will post a blog entry from Newport, Rhode Island before we leave on Tuesday.

Next to Zee are the styrofoam cups our 4th graders and 1st graders made for an experiment. Some of our 4th graders also decorated my hardhat. It looks great! Thanks for helping keep me safe and in style while I work on deck, and thanks for all your comments and suggestions. You really helped me remember what to bring!

Styrofoam cups ready for the depths
Styrofoam cups ready for the depths

Marilyn Frydrych, September 25, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 25, 2008

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy with wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature:  20.9 degrees Celsius
Waves: 2 feet Visibility:  10 miles
Sea Surface Temperature:  21.6 degrees Celsius

Science and Technology Log 

We received a call from the Coast Guard yesterday telling us to seek shelter because of the impending interaction of Hurricane Kyle with a strong cold front approaching us. We cut our cruise a day short and headed for Woods Hole. As we headed back in I had time to reflect on my experiences over the last couple weeks. I particularly appreciated all the positive energy of the scientific crew. They were always very helpful and thoughtful as well as efficient. I learned a lot from them.  Each morning I found myself looking forward to what might unfold as we worked together.  I totally enjoyed my four or five hours of free time each day. Often I would spend this time on the bow or the fantail taking in the rhythm of the sea.  It was a very soothing experience much like watching a camp fire. The sunsets, too, brought a sense of awe and peace.

Each of the crew was a master of multiple tasks.  Jon Rockwell was not only an expert cook, but a medic as were three others aboard.  As part of their initial training with the NOAA Corps the four officers had entered a room fully in flames and totally filled with smoke.  If they had to, they could navigate by the stars. Two of the officers were NOAA trained SCUBA divers.  The engineers could fix anything whether it had to do with distilling water, leaking hydraulic pipes, stuck drawers, broken toilets, cracked welds, or the various diesel engines.  They were experts in the “green” rules governing disposal of waste.  The ET specialist could fix both hardware and software.  The scientists knew their software programs backwards and forwards.  All very impressive.

Each day brought a new, wondrous sunset.
Each day brought a new, wondrous sunset.

Marilyn Frydrych, September 24, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 24, 2008

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy with winds out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature:  20.9 degrees Celsius
Waves: 2 feet
Visibility:  10 miles
Sea Surface Temperature:  21.6 degrees Celsius

Science and Technology Log 

Marie Martin, the bird watcher, came rushing down from her perch on the flying bridge in the early afternoon announcing that she had just spotted a humpback whale close by.  We all rushed here and there to get a view. I went up to the bow and looked for about 10 minutes.  As I came back through the bridge LT(jg) Mark Frydrych, the OOD (Officer of the Deck), and Marie were talking about a right whale entangled in a net.  Mark called the captain seeking his advice.  Whenever a situation like this is observed the captain is expected to report it.  The captain told Mark to report it and let the trained people steam out to try to find it.  I interjected that I never did spot the pilot whale. Everyone said, “What pilot whale?”  Mark said he saw a right whale. Marie piped up that she had said it was a humpback whale.  Then I remembered that indeed she had said humpback whale.  At that point the whole thing was moot because the humpbacks are not endangered. Then we asked Mike, the chief scientist, what would happen if a right whale got caught in his net. He said he didn’t want to think about it.  When a sturgeon got caught he said he had two weeks of doing nothing but filling out forms.  If a right whale got caught he would probably have 2 months of paperwork.

Marilyn Frydrych, September 23, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 23, 2008

Weather Data from the Bridge 
42.42 degrees N, 67.39 degrees W
Cloudy with wind out of the N at 32 knots
Dry Bulb Temperature: 15.5 degrees Celsius
Wet Bulb Temperature:  11.6 degrees Celsius
Waves: 6 feet
Visibility:  10 miles

Science and Technology Log 

Yesterday we were fairly busy doing CTD casts and trawls. Today we woke to find the night crew just starting to record the lengths and weights of their large catch. We grabbed some cereal and took over from them at 5:45 a.m. They had collected and sorted all the fish. Jacquie and I took about two hours measuring, weighing, and examining the innards of the half basket of herring they left us. Our chief scientist, Dr. Mike Jech, summarized his findings so far in a short report to everyone including those back at Woods Hole: “Trawl catches in the deeper water near Georges Bank have been nearly 100% herring with some silver hake.  Trawl catches in shallow water (<75 m) have occasionally caught herring, but mostly small silver hake, redfish, butterfish, and red hake.

A night haul of herring.  Notice the brilliant blue stripe on the top of the herring. The camera’s flash is spotlighted in the reflective tape on the life vests.
A night haul of herring. Notice the brilliant blue stripe on the top of the herring. The camera’s flash is spotlighted in the reflective tape on the life vests.

Small being less than 5-6 cm in length.  We caught one haddock this entire trip.  Trawl catches north of Georges Bank have been a mix of redfish and silver hake, with a few herring mixed in.” This afternoon the Officer of the Deck, LT(jg) Mark Frydrych, gave me a run down of many of the instruments on the bridge.  I spotted a white blob on the northeastern horizon and pointed it out. He showed me where it was on the SIMRAD FS900, a specialized radar.  The SIMRAD FS900is often able to identify a ship and its name.  This time it couldn’t.  Looking through binoculars we could see it was a large container vessel.  Then we looked at a different radar and saw both the ship’s absolute trajectory and its trajectory relative to the Delaware 2.  It was on a path parallel to the Delaware2 so Mark didn’t worry about it intersecting our path.  We also noticed another ship off to the west and north of us on the radar, but we couldn’t yet see it on the horizon. It too was projected on a path parallel to us.

Then Mark pointed out an area on the SIMRAD FS900 outlined in red. It’s an area where ships can voluntarily slow to 10 knots in an effort to avoid collisions with whales. It seems that sleeping right whales don’t respond to approaching noises made by ships.  There are only about 350 to 500 of them left and they are often killed by passing ships. The Delaware 2 was steaming at about 7 knots because in the 6 ft waves it couldn’t go any faster. However the container ship was steaming at 15.5 knots.  Few ships slow down in the red zone.

Mark showed me how to fill out the weather report for that hour.   I typed in all my info into a program on a monitor which assembled all my weather data into the format the weather service uses. I first recorded our position from an instrument displaying the latitude and longitude right there above the plotting table.  I read the pressure, the wet bulb temperature and the dry bulb temperature from an instrument which had a readout in a room off to the starboard of the bridge.  The ship has two anemometers so I averaged these to get the wind speed and direction.  We looked at the waves and tried to imagine standing in the trough of one and looking up.  I figured the wave would be over my head and so estimated about 6 feet.  We also looked at the white foam from a breaking wave and counted the seconds from when it appeared until it rode the next wave. The period of the wave we watched was four seconds.  Next we looked out the window to search out any clouds. It was clear in front of us but quite cloudy all behind us.  I estimated the height of the clouds. I typed all this information into the appropriate boxes on the monitor.  It was all so much easier than my college days when we had to gather the information manually then switch it by hand into the code appropriate for the weather service.  The OOD sent this information to NOAA Weather Service on the hour, every hour operations permitting.

Personal Log 

Though my son was instrumental in persuading me to apply for the Teacher-at-Sea position I haven’t seen much of him thus far.  He’s standing the 1 to 4 shift both afternoon and night.  When I’m free he seems to be sleeping.  We don’t even eat meals together.  That’s why I made a special trip to the bridge today to meet up with him during his watch.

Marilyn Frydrych, September 22, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 22, 2008

Weather Data from the Bridge 
42.52 degrees N, 68.06 degrees W
Cloudy, wind out of the E at 11 knots
Dry Bulb Temperature: 15.2 degrees Celsius
Wet Bulb Temperature:  14.0 degrees Celsius
Waves: 1 foot
Visibility:  10 miles
Sea Surface Temperature:  16.9 degrees Celsius

Science and Technology Log 

Today was more of the same–more CTD’s and trawls.  Just after lunch we had our weekly fire drill. This time the fire was in the galley and Jon Rockwell, the chief cook, was supposedly overcome with fake CO2 smoke.  After everyone except Jon was accounted for the search for him began in earnest.  The Hollywood style smoke machine produced smoke so thick the crew had difficulty finding Jon “passed out” on the floor of the galley.  Part of the drill was lifting Jon on a stretcher up the stairs and out onto the fantail.  Our station was redirected to the bridge this time where we were allowed to listen as LT(jg) Mark Frydrych conducted the exercise.  I had noticed emergency firemen gear here and there in the halls.  Always there was a radio charging next to the gear. That’s how they communicated.  All in all I was very impressed with the expertise and calmness of everyone even when plan A didn’t work and plan B had to be tried.  Safety always came first. For a good 45 minutes following the drill the crew and officers talked over possible improvements.  There was no messing around.  Everyone was in earnest and aware of the seriousness of the drill and the debriefing.  Yet this group had been practicing fire drills weekly every time they were at sea.

Personal Log 

I already knew three people aboard when I arrived.  My son, LT(jg) Mark Frydrych, was the Operations Officer. He’s the one who suggested I apply for the Teacher-at-Sea position.  On a previous visit to Woods Hole I had met Erin Earley, the engineer wiper.  We had hit it off then and continued to get to know each other better on this cruise.  Then there was my hiking pal from Colorado, Jacquie. She and I both work at Pikes Peak Community College in the math department.  She’d taken the semester off and was looking for an adventure.  After applying for the Teacher-at-Sea position I learned that the Herring Legs needed volunteers.  Jacquie signed up for the first two legs. This cruise was her second leg.  I experienced a tremendously easy adjustment stage because of these friendships.

 

Marilyn Frydrych, September 21, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 21, 2008

Weather Data from the Bridge 
42.00 degrees, 68.06 degrees W
Partly cloudy, wind out of the SE at 6 knots
Dry Bulb Temperature: 18.0 degrees Celsius
Wet Bulb Temperature:  15.7 degrees Celsius
Waves: 1 foot
Visibility:  10 miles
Sea Surface Temperature:  17.7 degrees Celsius

Red Fish waiting to be sorted and later in a clothes basket.
Red Fish waiting to be sorted and later in a clothes basket.

Science and Technology Log 

We returned to a spot that Mike had marked on our computers as a place where he would have liked to have sampled the fish when the seas were high and we were unable to fish.  We sent down a CTD at dawn and then deployed our net.  I’m learning more about the importance of the man at the helm.  If he speeds the boat then the net will rise.  Conversely, if he slows the net falls.  The desire of the scientist is to get a representative sample of the fish in the area, but not to take more than what is needed since we return very few alive to the ocean. The NOAA Corps officer at the helm knows this as well and has his own sonar so that he knows at what level the fish are located.  He adjusts the speed of the boat as he sees fit to catch an appropriate number of fish while checking with the chief scientist or watch chief to ensure the net is where they want it. I also learned that red fish are often associated with American herring.  Red fish are a sweet delicious fish, which were over fished during World War II.  They’ve been on the US’s banned fishing list since that time.

frydrych_log6aWe brought up in today’s catch about 200 small fry red fish.  We also collected about 20 good-sized ones running to about 12”.  The large ones take up to 60 years to grow to the size where they are worth harvesting to eat.  We only brought up 5 herring.  This time there was one 8” squid. We deployed the Tow Body this afternoon around 3:30 p.m.  It’s an undersea camera.  Unfortunately the wires connecting the Tow Body to the computers had gotten broken as it sat on the fantail. Possibly the wires got jostled during clean up.  (We use a fire hose to clean the fantail after each trawl.) Possibly people stepping on and over the wires as they walked about on the fantail broke the wire.  This wasn’t learned until moments before we were to deploy the instrument.  The ET specialist, Dave Miles, figured out where the wire was broken fairly quickly and reconnected it. That gave us connectivity, but still there was a problem of the Tow Body not responding to commands from the computer.  The chief scientist, Mike, tackled that part of the problem.  Somehow he fixed the software. We got the go ahead signal about three hours later. 

Getting ready to deploy the Tow Body
Getting ready to deploy the Tow Body

This was the only deployment in which the scientific crew was allowed on the fantail as part of the deployment.  Like the fishermen we had to wear a life jacket and hardhat.  Four of us held onto lines that kept the Tow Body from twisting as it entered the water.  Unfortunately one of the lines got loose. Displaying great skill fisherman Jim Pontz used a grappling hook to retrieve it.   By now we had drifted so far off course we had to circle back into position.  When we finally got the instrument in the water our fish had left the area.  We could tell that by the echograms.  The plans were to leave the Tow Body’s lights off until the camera was surrounded by fish.

Otherwise the fish swim away from the lights.  Only later when we again came into a school of fish did we learn that the lights weren’t responding.  The endeavor was aborted.  From a scientific standpoint we did learn something.  The Tow Body needed more work.  We also learned that we should start disconnecting the wires from the Tow Body when it’s stored on the fantail.

Personal Log 

I watched the Broncos play this afternoon.  No one else was interested.  Four or five of the crew watched different football games throughout the day.  They seemed to have time for their favorite team, but no one seemed to spend hours and hours watching game after game.  The most popular form of relaxation was watching movies.  There must be over a hundred DVD’s to choose from. The screen is a large flat panel screen.

Fisherman Jim Pontz using the grappling hook to retrieve a loose line attached to the Tow Body.
Jim Pontz using the grappling hook to retrieve a loose line.

Marilyn Frydrych, September 20, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 20, 2008

Weather Data from the Bridge 
42.53 degrees N, 67.51 degrees W
Cloudy, wind out of the E at 11 knots
Dry Bulb Temperature: 15.2 degrees Celsius
Wet Bulb Temperature:  14.0 degrees Celsius
Waves: 1 foot
Visibility:  10 miles
Sea Surface Temperature:  16.9 degrees Celsius

A goosefish, also called a lumpfish.
A goosefish, also called a lumpfish.

Science and Technology Log 

We did a CTD with an attached water bottle and then deployed a net. We backtracked today and redid the sites we found yesterday which had good herring potential. About 10:30 in the morning we collected about 1/3 of a clothesbasket of fish. Most of that were herring and mackerel, with the usual small butterfish, goosefish or lumpfish, red hake fish, small jellyfish, and Ilex squid. The catch included an unknown two inch fish which Mike, the chief scientist, conjectured had gotten caught in a warm eddy off the Gulf Stream and ended in the wrong part of the ocean much like the jet stream blows birds off course. Part of sorting the fish involved gutting one to three each of the different lengths of herring to determine their sex, age, and what they had been eating. With practice and much patience on Robert and Jacquie’s part I learned to recognize the stomach and sex organs of the fish.  None of the herring today had anything in their stomachs, while those of two days ago had lots, mostly krill.  With two of us working it took about 45 minutes to measure the length and weight of each herring.  They varied When we finally collected the net we had 3 basketsful of redfish, half a basket of silver hake, 4 herring, one large goosefish about a foot long, and a rare Atlantic Shad about 2 feet long.

To measure our fish we used the magnetized pointer in the upper right hand corner of the picture.  It looks like a cigarette.  We lined up the fish’s head against the black backstop. Then we stretched the body straight out.  When we pressed the pointer against the end of the fish’s body an electrical circuit closed and the computer automatically recorded the fish’s length.  The fish are silver hake.
To measure our fish we used the magnetized pointer. We lined up the fish’s head against the black backstop and stretched the body straight out. When we pressed the pointer against the end of the fish’s body an electrical circuit closed and the computer automatically recorded the fish’s length. The fish are silver hake.

We froze samples which we’d opened up for Mike and then one ungutted sample from each of the nine categories for the University of  Maine. We did another CTD about 11:30 and deployed the net again. All did not go well this time. The sonar showed that the net was twisted and the opening blocked. The fishermen were called upon to bring it in and straighten it.  The first thing they did was to take the two 400 pound chain weights off. Then they sent the net back out hoping it would straighten itself.  Alas, they had to bring it in and send it out a couple more times as they manually untangled all the lines. It was very strenuous work and took them about 45 minutes.  As a result we steamed about 3 miles past the point where we intended to fish.

We’ve sorted a smaller catch on the measuring board. We measured and weighed these fish, but never opened them to determine their sex.  We did that only for herring.  The scale is under the gray container on the right.  We only had to press a button for the computer to record the weight.
We’ve sorted a smaller catch on the measuring board. We measured and weighed these fish, but never opened them to determine their sex. We did that only for herring. The scale is under the gray container on the right. We only had to press a button for the computer to record the weight
 

Marilyn Frydrych, September 18, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 18, 2008

Marilyn entering below deck.
Marilyn entering below deck.

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy
Wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature:  20.9 degrees Celsius
Waves: 9 feet
Visibility:  10 miles
Sea Surface Temperature:  21.6 degrees Celsius

Science and Technology Log 

We suspended operations. The seas were from 8 to 9 feet for the next day and a half. Conditions were unsafe for the fishermen to work.  Everyone spent the day reading, playing board games, watching movies, or typing on the three computers provided for everyone’s use. Erin Earley, the engineer wiper, took the opportunity to show Jacquie and me the engine room.  She took us through all the portals marked, “Do Not Enter”.  They all had ladders under them leading to the bowels of the ship. The engine area was compartmentalized and was entered from different spots from above. Erin showed us the ubiquitous colored handles which turned the various valves on and off.

Marilyn ducking under pipes below deck
Marilyn ducking under pipes below deck

There were yellow handles for transmission oil pipes, green for seawater, orange for hydraulic fluid, red for emergency fire hose water, blue for drinking water, and brown for engine oil. We headed down under the galley where we passed next to the 12-cylinder Detroit Diesel engine which powered the screw. It was about ten times the size of a good-sized pickup engine. Erin explained the importance of placing all this heavy machinery so that the weight is evenly distributed within the ship. The engine being so heavy is usually near the center of the ship.  This necessitates a huge long drive shaft connecting it to the screw. The drive shaft, spinning away at high speed, was out in the open just under and alongside the catwalk. One slip would be catastrophic.  Most of what we saw was large 5’ by 5’ or larger rectangular tanks for fuel, distilled water, black water, gray water, and used oil.  The black water from the toilets is stored in a tank with “bugs” or a bacteria in it which eat the refuse and in effect clean up the water. The gray water is from the sinks and showers and contains soap which kills the bugs. The gray water has to be saved in tanks separate from the black water.  All this is dumped into the sea in designated areas.  Only the used oil is saved to be offloaded back at the dock.

Erin Earley pointing out hydraulic fluid pipes.
Erin Earley pointing out hydraulic fluid pipes.

We saw two workshop areas, a storeroom with all the parts that might be needed for any possible repair, an extra emergency generator, and the Engine Control Room (CERC), where Engineer Chris O’Keefe was standing watch. The CERC room contained all the gauges to monitor all the engine systems.  By the end of the tour Jacquie and I were totally impressed with how clean and organized everything was and how much knowledge the engineers needed.  The four of them had to be experts in heating and cooling, in welding, in diesel engine repair, in electrical repairs, and hydraulics.  Each of them had either mastered these fields or was in an apprenticeship with that as their goal. Usually people master one of these fields in a lifetime. We were also impressed with how many safety features were built in everywhere.  It seemed everywhere we went there were three foot CO2 bottles which would automatically spray everywhere if a fire were to occur.

Personal Log 

Two holding tanks
Two holding tanks

Sleeping was difficult for me that evening.  I did succumb to seasickness Friday morning, but was fine after downing a sea sickness pill.  We frittered away the rest of the day.  Robert Gamble, second scientist under Mike Jech, got out his game called Hive and taught three or four of us how to play. Otherwise I read, did Sudoku, rode the exercise bike, and ate.

The food was tremendously good.  All of it was prepared from scratch.  The two cooks were at least four star cooks. They not only cooked, they also cleaned up their own mess, did the dishes, and cleaned up the dining area.  They appeared the hardest workers on board.  For both lunch and dinner they prepared two entrees, three veggies, homemade soup, and two salads.  They baked two luscious desserts as well. So far we have sampled lamb chops, salmon, lobster bisque, crab ravioli, pork chops with a luscious applesauce, and grilled swordfish. 

Marilyn Frydrych, September 17, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters

Deploying the fishing net
Deploying the fishing net

Date: September 17, 2008

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy
Wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature: 20.9 degrees Celsius
Waves: 2 feet
Visibility: 10 miles
Sea Surface Temperature: 21.6 degrees Celsius

Science and Technology Log 

A fisherman dumping the catch
A fisherman dumping the catch

The third day out was much like the second day. Our first job was to fish with the big net.  This time the chief scientist wanted to know what some small vertical echoes on the echogram were. He guessed that they were shrimp or krill. The acoustic echogram used three frequencies:  18 kHz, 38 kHz, and 120 kHz. If dots appeared in all three then he was pretty sure it was fish and most likely herring. These particular vertical dots appeared only in the 18 kHz echogram.  He guessed they were very small fish, but wanted to determine if the signature belonged to opening were huge metal doors.  They looked like doors, but in fact never closed. They were actually more like the front edge of an airplane wing. Their purpose was to stay parallel to each other and keep the net open. The net was rolled up on a large roller, which sat at the center back of the fantail. It was about 250 ft long.  When it was time to deploy, the fishermen used a winch to unwind the net. The person at the helm had to be extremely careful that the boat kept at a steady headway of about 3 to 4 knots. The doors were stored at the very end of the stern. With the help of their own hydraulic winches they were lifted to a spot where they could be attached to the net.  There was a place on each side of the net where the side wire changed to a chain link. The metal doors were clasped on these links and then dragged into the sea.  Another link in the wire was for heavy chains. Their weight of about 400 pounds each held the sides of the net down.

Fishermen setting up the recorder which is sent outwith the net.
Fishermen setting up the recorder sent outwith the net.

The night crew, on from 6:00 pm to 6:00 am were busy Wednesday night and on into the morning.  They did two CTD’s and three net deployments.  They left us about 50 herring and silver hake to observe in the morning.  Richie Logan, one of the fishermen, used these to write a birthday note to his daughter. Here’s his picture. Each time we sent out a net we were hoping for about half a clothes basketful of fish. Last night they filled 30 baskets.  Only about 1/3 of a basket is ever measured and weighed. The rest are tossed back.  Our chief scientist said he can remember processing enough to fill 60 baskets. So far most of the biomass in the basket has been krill. Mixed in with the krill are small anthropoids maybe a half inch square, jelly fish about twice that size, Illex squid from 2 to 6 inches long, baby silver hake, butterfish, or red hake. These last three are all in the neighborhood of 1 inch long.

This morning we pulled up a lamprey eel about 2 feet long and a couple two inch lumpfish in the evening.  Most of the fish were dead when we got to them.  We had to wait until the fishermen were totally finished with winding the net and had dumped the net’s contents onto the deck before we were allowed on the fantail. Then we sorted the large fish into clothes baskets and the smaller ones into small trays. Wednesday Jacquie Ostrom, another volunteer from Colorado Springs, noticed that two 3-inch lumpfish were moving.  She added some water to our rectangular sorting pan and a piece of clear hard plastic we had thought was some molt or litter also started to move. No one seemed to know what the “plastic” was.  After a quick reference to the Internet we learned it was the larva of the spiny lobster.

Richie Logan making a Happy Birthday email for his daughter.
Richie Logan making a Happy Birthday email for his daughter.

Personal Log 

We must have passed by the north-south migration path of the whales.  We didn’t spot any today. The work load is really light compared with teaching.  We work two or three hours cataloguing the catch after each trawl, clean up with the saltwater deck hose, and then wait for the next trawl maybe three or four hours later. A 20 minute CTD deployment every now and then is the only other work we are expected to do. The cruise is turning out to be very relaxing. I spend quite a bit of time just staring out at the sea, immersing myself in its gentle rhythm.

Seven basketsful of herring from a haul in the deep waters near Georges Bank.
Seven basketsful of herring from a haul in the deep waters near Georges Bank.
The piece of “plastic” turned out to be the larva of a spiny lobster.
The piece of “plastic” turned out to be the larva of a spiny lobster.

Marilyn Frydrych, September 16, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 16, 2008

The Newston net hanging from a pulley on the A-frame
The Newston net hanging from a pulley on the A-frame

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy
Wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature: 20.9 degrees Celsius
Waves: 2 feet
Visibility: 10 miles
Sea Surface Temperature: 21.6 degrees Celsius

Science and Technology Log

Today started slowly since we were still in transit to our starting position.  All morning there were 15 to 20 terns and gulls flying nearby.  Occasionally we’d spot land birds.  A small yellow-rumped warbler actually flew into the dry lab area of the boat. It was far from where it belonged and probably wouldn’t make it back.  The terns skimmed the water surface, but never actually seemed to touch the water.  Our bird scientists, Marie-Caroline Martin and Timothy White, decided they would deploy a Newston net to try to determine what the birds were eating. The fishermen, who do all the deploying of instruments, hung the net from the A-frame pulley on the starboard side and swung it out over the water. For 20 minutes it bounced in and out of the water never getting more than a foot or so above or below the surface. The Neuston fine mesh net is about 10 feet long and has a mouth about 4 feet by 2 feet.

Jim Pontz, a fisherman, working the A-frame.
Jim Pontz, a fisherman, working the A-frame.

When the fishermen brought it in, it mostly held salp and  jellyfish, but also some small crustaceans which looked like miniature shrimp about 1/2 in. long.  The jellyfish were small, without stingers.  Marie carefully washed the contents of the net down to its opening with a salt water hose.  Then she used her unprotected hands to slide her catch into a glass jar about the size of a medium peanut butter jar. She graciously separated a few of the crustaceans for us to observe. About 11:30 a.m. we finally reached our starting point. The plan was to do parallel north-south transects.  We would cross the east-west transects without stopping . We fished with a huge net off the stern. The chief scientist, Dr Michael Jech, decided when to fish. Sometimes he put the net in to prove that there were no herring there and the echoes he was receiving were correct.  Other times he saw a new signature on the screen and checked to see what it might have been.  Still other times he recognized the herring signature (he’s about 90% accurate) and  fished to determine sizes, sexes, and stomach content.  At other times he had predetermined stations where fishing had been good in the past.

A herring in a clothes basket. Note the brilliant blue stripe on top.
A herring in a clothes basket. Note the brilliant blue stripe on top.

At each 90 degree turn we deployed a CTD – conductivity, temperature, and depth instrument. The instrument measured how easily electricity can flow through the seawater, its conductivity. From this and the temperature and pressure (or depth) the salinity of the water can be determined.  The equations involve the 5th power of both temperature and pressure. They appear to be Taylor’s series approximations.  The CTD is also used to calculate the speed of sound which is important for the accuracy of the sonar equipment.  Only the crew may actually deploy instruments.  None of the scientists touch the instruments going over the side. The scientific crew’s job was to communicate via a handheld radio with the fishermen working the winch and the one putting the instrument into the water.  We told them when to start after we had initialized the computer programs and when to haul back the CTD as it came within a few feet of the ocean bottom. We could simultaneously look at a cam on a nearby monitor showing what was happening at the A frame.  I watched the first time this was done, but with everyone’s help soon caught on and was doing it myself.

Jacquie Ostrom at her post radioing the fishermen when to start the CTD
Jacquie Ostrom at her post radioing the fishermen when to start the CTD

The second time I helped with the CTD we attached a Niskin water bottle to the bottom of the CTD and signaled to have it stopped about half way back up the ever present bottom layer isotherm.  We paused for about a minute as it filled with the surrounding water.  At that point both ends were wide open. A fisherman dropped a messenger, a heavy round metal doughnut, down the line to the bottle.  It tripped a lever which then allowed the lids connected with tremendously strong elastic bands to snap shut.  The tube is a little larger than a 2-liter soda bottle. When we were given the retrieved bottle, we washed out a small, maybe 1-cup, bottle 3 times with the seawater from the Niskin bottle before we filled and capped it and replaced it in its position in a crate.  The water can be used to calibrate the salinity readings the CTD recorded and to determine various other chemicals at that spot of collection in the ocean.

Sunset silhouetting the CTD bottle balancing against one arm of the A-frame.
Sunset silhouetting the CTD bottle balancing against one arm of the A-frame.

Personal Log 

Today being the first full day at sea I was introduced to a wonderful daily ritual. Each morning at about 10:30 the chiefs brought out from the oven their first baked dessert of the day. Today’s was the most perfectly seasoned peach cobbler I’ve ever tasted. Once toward evening we spotted dolphins around the ship. We could occasionally see them jumping through the air. A pair played in the bow wake for a short while. About the same time the crew pointed out to us some three or four pilot whales about 100 yards off the starboard stern. I hadn’t expected to see so much sea life.  This is turning into a very memorable adventure.

 

Marilyn Frydrych, September 15, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 15, 2008

The Delaware II  (Photo courtesy Jacquie Ostram)
The Delaware II (Photo courtesy Jacquie Ostram)

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy
Wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature: 20.9 degrees Celsius
Waves: 2 feet
Visibility: 10 miles
Sea Surface Temperature: 21.6 degrees Celsius

Science and Technology Log 

The purpose of my trip on the Delaware II was to find interesting venues for presenting various math lessons to students at Pikes Peak Community College where I teach and to students of different grades and ages at the K-12 public schools in Colorado Springs. We left on time yesterday, though I was unaware of the departure. I had been busy unpacking my things and making my bed.  Then I decided to learn my way around the boat.  I happened to look through a porthole and noticed we were about 25 yards from the peer.  The NOAA Corps officer, ENS Charlene Felkley, taking us out had used the bow thruster to move us away from the dock. It was so smooth that I hadn’t noticed any movement.  I thought that strange considering the size of the Delaware 2.  We steamed all day toward our station about 250 miles east of Cape Cod. 

NOAA’s dock at Woods Hole, Massachusetts
NOAA’s dock at Woods Hole, Massachusetts

After we were out of the channel we started our drills.  We’d all been given a station billet stating where our stations were for emergencies.  The first was a fire drill followed by an abandon ship drill. I started to my station at the stern for the fire drill, but one of the engineers redirected me to the bow stating that the fire was in the stern.  About 15 of us gathered in the bow. We had all carried our survival suit, life vest, long sleeve shirt, hat and gloves, and anything we thought we might need.  I brought as extras my sunglasses and a bottle of water. When we were dismissed, about 15 minutes later after the officers and crew had practiced using the fire hoses by spaying over the side of the boat, we proceeded to the stern where those of us who had not been on the last cruise dressed in our survival suits.  I soon learned that the easiest way to put on a survival suit is to stretch the legs and boots out on the deck, sit down in its middle, draw its legs onto your legs, stand up and finish with the upper body. Pulling the zipper up proved quite difficult.  The hood enveloped my face and I could feel its suction.  The suit is designed to keep the cold water away from your body. It was well insulated but still in icy cold waters would only protect you for about an hour.

Jacquie Ostrom and Marilyn on the bow
Jacquie Ostrom and Marilyn on the bow

Personal Log 

That evening we spotted some whales spouting.  It was migration time so we must have been crossing their path as they headed south. We were told they were probably humpback whales because of their size and the shape of their spouts.  I saw a couple fins, but mostly just their massive bodies surfacing.  I learned about “fin prints” the spot where their fin flattens the water.  The little ripples, prevalent everywhere on the ocean’s surface, seem to be smoothed out at the spot where the fin hits the water. These areas were about 6 ft by 4 ft and glistened smooth in the setting sun. We watched spout after spout for about 2 hours.

Marilyn and Debbie Duarte on the bow
Marilyn and Debbie Duarte on the bow
Our four bunk room.  Debbie Durate on the night shift and Jacquie Ostrom and I on the day shift shared this room.  It was understood we were not to return to the room any time during our 12 hour shift. The shower is behind the sink and not much wider.
Our four bunk room. Debbie Durate on the night shift and Jacquie Ostrom and I on the day shift shared this room. It was understood we were not to return to the room any time during our 12 hour shift. The shower is behind the sink and not much wider.
Marilyn in survival suit
Marilyn in survival suit
Robert Gambel, scientist, standing in front of our fishing net ready to put on his survival suit
Robert Gambel, scientist, standing in front of our fishing net ready to put on his survival suit

Lisbeth Uribe, August 5, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: August 5, 2008

Chief Scientist Vic Nordahl, Chief Boatswain Jon Forgione and Chief Engineer Patrick Murphy discussing the best way to reattach the pump power cable to the dredge.
Chief Scientist Vic Nordahl, Chief Boatswain Jon Forgione and Chief Engineer Patrick Murphy discussing the best way to reattach the pump power cable to the dredge.

Ship Log 

In the last 48 hours the engineers, crew and scientists have had to re-attach the power cable to the dredge (see photograph), fix the cracked face plate of the pump, replace the blade and blade assembly, change the pipe nozzles that direct the flow of water into the cage, and work on the dredge survey sensor package (SSP). Dredging is hard on the equipment, so some mechanical problems are to be expected. The main concern is for lost time and running out of critical spare parts.  So far we have had great success with making the repairs quickly and safely.

Science and Technology Log 

Collecting Tow Event and Sensor Information for the Clam Survey 
Over the weekend I was moved up to the bridge during the towing of the dredge. I was responsible for logging the events of each tow and recording information about the ship and weather in a computerized system called SCS (Scientific Computer System). I listened carefully to the radio as the lab, bridge (captain) and crane operator worked together to maneuver the dredge off the deck and into the water, turn on the pumps, tow the dredge on the seafloor bottom, haul the dredge up, turn off the pump and bring the clam-filled dredge back on deck. It is important that each step of the tow is carefully timed and recorded in order to check that the tows are as identical as possible.  The recording of the events is then matched to the sensor data that is collected during dredge deployment. As soon as the dredge is on deck I come downstairs to help clean out the cage and sort and shuck the clams.   

Lisbeth is working on the bridge logging the events of each tow into the computer system.
Lisbeth is working on the bridge logging the events of each tow into the computer system.

My next job assignment was to initialize and attach to both the inside and outside of the dredge the two mini-logger sensors before each tow. Once the dredge was back on deck I removed both mini-loggers and downloaded the sensor data into the computers. Both sensors collect pressure and temperature readings every 10 seconds during each tow. Other sensors are held in the Survey Sensor Package (SSP), a unit that communicates with onboard computers wirelessly.  Housed on the dredge, the SSP collects information about the dredge tilt, roll, both manifold and ambient pressure & temperature and power voltage every second. The manifold holds the six-inch pipe nozzles that direct the jets of water into the dredge.  Ideally the same pump pressure is provided at all depths of dredge operation. In addition to the clam survey, NOAA scientists are collecting other specimens and data during this cruise.

Two small black tubes (~3 inches long), called miniloggers, are attached to the dredge. The miniloggers measure the manifold (inside) and ambient (outside) pressure and temperature during the tow.
Two small black tubes (~3 inches long), called miniloggers, are attached to the dredge. The miniloggers measure the manifold (inside) and ambient (outside) pressure and temperature during the tow.

NOAA Plankton Diversity Study 
FDA and University of Maryland Student Intern Ben Broder-Oldasch is collecting plankton from daily tows.  The plankton tows take place at noon, when single-celled plants called phytoplankton are higher in the water column. Plankton rise and fall according to the light. Plankton is collected in a long funnel-shaped net towed slowly by the ship for 5 minutes at a depth of 20 meters. Information is collected from a flow meter suspended within the center of the top of the net to get a sense of how much water flowed through the net during the tow. Plankton is caught in the net and then falls into the collecting jar at the bottom of the net.  In the most recent tow, the bottle was filled with a large mass of clear jellied organisms called salps. Ben then filters the sample to sort the plankton by size. The samples will be brought back to the lab for study under the microscope to get a sense of plankton species diversity on the Georges Bank.

An easy way to collect plankton at home or school is to make a net out of one leg of a pair of nylons. Attach the larger end of the leg to a circular loop made from a metal clothes hanger.  Cut a small hole at the toe of the nylon and attach a plastic jar to the nylon by wrapping a rubber band tightly around the nylon and neck of the jar.  Drag the net through water and then view your sample under a microscope as soon as possible.

Biological Toxin Studies 

NOAA Scientist Amy Nau hauls the plankton net out of the water using the A-frame. (Upper insert: flow meter; lower insert: plankton in the collection bottle after the tow).
NOAA Scientist Amy Nau hauls the plankton net out of the water using the A-frame. (Upper insert: flow meter; lower insert: plankton in the collection bottle after the tow).

Scientists from NOAA and the Food & Drug Administration (FDA) are working together to monitor clams for biological toxins. Clams and other bi-valves such as oysters and mussels, feed on phytoplankton. Some species of phytoplankton make biological toxins that, when ingested, are stored in the clam’s neck, gills, digestive systems, muscles and gonadal tissues.  If non-aquatic animals consume the contaminated clams, the stored toxin can be very harmful, even fatal.  The toxin affects the gastrointestinal and neurological systems. The rate at which the toxins leave the clams, also known as depuration rate, varies depending on the toxin type, level of contamination, time of year, species, and age of the bivalve. Unfortunately, freezing or cooking shellfish has no effect on the toxicity of the clam. The scientists on the Delaware II are collecting and testing specimens for the two biological toxins that cause Amnesia Shellfish Poisoning (ASP) and Paralytic Shellfish Poisoning (PSP).

NOAA Amnesia Shellfish Poisoning (ASP) Study 
A group of naturally occurring diatoms, called Pseudo-nitzschia, manufacture a biological toxin called Domoic Acid (DA) that causes Amnesia Shellfish Poisoning (ASP) in humans.  Diatoms, among the most common organisms found in the ocean, are single-celled plankton that usually float and drift near the ocean surface. NOAA scientist Amy Nau collects samples of ocean water from the surface each day at noon. By taking water samples and counting the numbers of plankton cells, in particular the Pseudo-nitzschia diatoms, scientists can better determine if a “bloom” (period of rapid growth of algae) is in progress. She filters the sample to separate the cells, places the filter paper in a test tube with water, adds a fixative to the tube and sets it aside for further study in her lab in Beaufort, NC. 

Scientist Amy Nau filters seawater for ASP causing dinoflagellates.
Scientist Amy Nau filters seawater for ASP causing dinoflagellates.

FDA Paralytic Shellfish Poisoning (PSP) Study 
Scientists aboard the Delaware II are also collecting meat samples from clams for an FDA study on the toxin that causes paralytic shellfish poisoning. When clams ingest the naturally occurring dinoflagellate called Alexandrium catenella, they accumulate the toxin in their internal organs. When ingested by humans, the toxin blocks sodium channels and causes paralysis. In the lab, testing for the toxin causing PSP is a lengthy process that involves injecting a mouse with extracts from shellfish tissue.  If the mouse dies, scientists know the toxin is present. The FDA is testing the accuracy of a new quick test for the toxin called the Jellet Test Kit. After measuring and weighing a dozen clams from each station on the Georges Bank, Ben and Amy remove and freeze the meat (internal organs and flesh) from the clams to save for further testing by scientists back on land. At the same time, they also puree a portion of the sample and test it using the Jellet strips for a quicker positive or negative PSP result.

Personal Log 

Pilot whales sighted off the bow!
Pilot whales sighted off the bow!

The problems that we have experienced with regard to the dredge over the past few days are an important reminder of the need for the scientists and crew to not only be well prepared but also flexible when engaged in fieldwork. All manner of events, including poor weather and mechanical difficulties, can and do delay the gathering of data. The Chief Scientist, Vic Nordahl, is constantly checking for inconsistencies or unusual patterns, particularly from the dredge sensor readings, that might need to be addressed in order to ensure that the survey data is consistent and accurate. The time required to repair the dredge meant I was able to do a load of laundry. Dredging is very dirty work! Good thing I am using old shirts and shorts. I also caught up on a few emails using the onboard computers. Though the Internet service can be slow at times it is such a luxury to be able to stay in touch with friends and family on land. I still have two very special experiences that I wish to share before ending my log.

Late in the evening a couple of days ago, as we steamed toward our next tow station, I was invited to peer over the bow. The turbulence in the water was causing a dinoflagellate called Noctiluca to sparkle and glow with a greenish-blue light in the ocean spray.  The ability of Noctiluca and a few other species of plankton and some deep-sea fish to emit light is called bioluminesense. A few days later we had the great fortune to see five pilot whales about 100 meters away, gliding together, their black dorsal fins slicing through the water, occasional plumes of air bursting upward through their blowholes (nostrils located on the tops of their heads).

Answers to the previous log’s questions: 

1. What is the depth and name of the deepest part of the ocean? The Mariana Trench in the Pacific Ocean is 10,852 meters deep, (deeper than Mount Everest is tall – 8,850 meters).  Speaking of tall mountains, the tallest mountain in the world is not Mount Everest, but the volcano Mauna Kea (Hawaii).  It reaches 4,200 meters above sea level, but its base on the sea floor is 5,800 meters below sea level.  Its total height (above base) is therefore 10, 000 meters!

2.What is the longest-lived animal on record? In 2007, an ocean quahog was dredged off the Icelandic coast.  By drilling through and counting the growth rings on its shell, scientists determined it was between 405 and 410 years old. Unfortunately it did not survive the examination, so we do not know how much longer it would have lived if left undisturbed. This ancient clam was slightly less than 6 inches in width.

Lisbeth Uribe, July 31, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: July 31, 2008

“Bob” the Man Overboard Victim
“Bob” the Man Overboard Victim

Ship Log 

Man Overboard Drill 

Just as the day watch started our shift we heard three short blasts of the ship’s horn, signaling a “Man Overboard” drill.  While the crew was on deck (both on the bow (front of the ship) and stern (back), the Chief Boatswains Jon Forgione and Leno Luis put on life vests and safety helmets and were lowered into the water in a rigid haul inflatable boat (RHIB).  When those on board the ship sighted the dummy victim, we raised our arms and pointed in its direction. The rescuers then headed in the direction the crew were pointing.  At the same time, the Operations Officer and Medical Person in Charge (MPIC) Claire Surrey readied her gear to perform life saving measures once the victim was safely brought on the deck.  Rescue protocols are taken very seriously as they are designed to keep all members of the crew safe.  Once the MPIC determined the dummy victim was breathing on their own and required no further medical assistance, the drill was over and the crew returned to their stations or berths (sleeping rooms).

Scuba Divers to the Rescue! 

Not long after the man overboard drill, the dredge rolled when it was being hauled from the sea floor, wrapping the hawser (floating tow line) underneath the cage.  To make matters worse, as the dredge was being lifted up the ramp on deck, the hawser became caught in the ship’s rudder.  Our three NOAA Working Divers, Executive Officer (XO) Monty Spencer, Chief Steward (chef), MPIC Jonathan Rockwell and MPIC Claire Surrey suited up in scuba suits for a dive to untangle the rudder. NOAA Working Divers must complete a 3-week training course. They are skilled at ship husbandry, such as working on the rudder, propellers, zincs (metal zinc objects that are placed on the hull of a ship to attract corrosion), and the bow thruster (a tunnel through the ship with a propeller to help direct the bow when docking).  

Chief Steward Jonathan Rockwell preparing to dive below the ship to untangle the hawser line from the rudder.
Chief Steward Jonathan Rockwell preparing to dive below the ship to untangle the hawser line from the rudder.

The diver breathes air through a mouthpiece, called a regulator, from a scuba tank of compressed air that is strapped to the diver’s back. The regulator, connected by a hose to the tank, adjusts the air in the tank to the correct pressure that a diver can safely breathe at any given depth. Originally called the “aqua-lung”, “scuba” stands for self-contained underwater breathing apparatus. Scuba gear has helped scientists explore the ocean, however, the equipment does have limitations.  The deepest dive that can be made by a NOAA scuba diver is about 40 meters, but the average depth of the ocean is about 3,800 meters.  The increased water pressure of the dive limits the depth of the descent of a scuba diver.

As Monty and Jonathan plunged into the ocean, the rigid haul inflatable boat (RHIB) was deployed with General Vessel Assistant (GVA) Adam Fishbein and Chief Boatswains, Jon Forgione at the tiller arm, to assist in diver rescue operations if needed. On standby in full scuba gear was MPIC Claire Surrey in case the divers ran into any trouble. In no time at all the divers freed the tangled hawser from the rudder and were back on board. At each step of the job, great care was taken to check all gear and ensure the safety of the crew.

Question: What is the depth and name of the deepest part of the ocean?

Mature Atlantic Surf Clam and Ocean Quahog
Mature Atlantic Surf Clam and Ocean Quahog

Science and Technology Log 

As I mentioned in my first log, we are targeting two species of clams during our survey, the Atlantic Surf clams (Spissula solidissima) and Ocean Quahogs (Arctica islandica). They are very easy to tell apart, as the surf clam is much larger (about 18 cm in width) and lighter in color. “Quahog” (pronounced “koh-hawg”) originated from the Narrangansett tribe that lived in Rhode Island and portions of Connecticut and Massachusetts. Atlantic surf clams are a productive species, in that they are faster growing, with a lifespan of about 15 years, with variable recruitment (reproductive cycles). They are much smaller and typically found in more shallow waters (<50 meters) from Cape Hatteras to Newfoundland than the ocean quahog. The Quahog lives in depths of 50-100 meters in US waters (from Cape Hatteras up to the north Atlantic (Iceland), and also in the Mediterranean). Quahogs grow slowly, and typically live for more than 100 years, with infrequent and regional recruitment.

There is a great variety of material, both organic and inorganic that is collected by the dredge providing a snapshot of the habitat below.  At times it is sandy, sometimes the sediment is the consistency of thick clay, in which case we must re-submerge the dredge for a few minutes to clean the cage. At other times large rocks and boulders are captured.

Live clams, shells and other material collected in the dredge.  All the material is sorted, weighed and measured as part of the survey.
Live clams, shells and other material collected in the dredge. All the material is sorted, weighed and measured as part of the survey.

Atlantic Surf Clams and Ocean Quahogs live in a part of the ocean called the subtidal zone. Their habitat is the sandy, muddy area that is affected by underwater turbulence but beyond heavy wave impact. In addition to clams, our dredge is capturing a variety of organisms perfectly adapted to this environment, such as sponges, marine snails and sea stars that are able to cling to hard materials to protect them from being swept away by ocean currents and waves. Marine snails and hermit crabs are also able to cling to surfaces.  Like the clam, many organisms have flattened bodies, thereby reducing their exposure to the pull of waves and currents.  We find flat fish, such as flounder and skate, which avoid turbulence and their enemies by burying themselves in the sand.  Flounder prey on sand dollars, another flat organism living in the subtidal zone.  In many hauls of the dredge, the cage is filled with sand dollars. We have collected lots of other interesting animals, such as hermit crabs, worms, sea jellies, sea mice and, less often, crabs and sea urchins. The Sea Mouse is plump, about 10 cm in length, segmented and covered in a large number of grey brown bristles that give it a furry appearance.

Question: What is the longest-lived animal on record?

Personal Log 

The main difficulty I have with writing this log is choosing what to cover. Each day is filled with new and interesting experiences. I am learning so much, not only about the science behind the clam survey, but also about the ship itself and the skills necessary to operate the ship and conduct a marine survey.  Everyone has been extremely generous with sharing his or her knowledge and experience with me.   While cleaning the inside of the dredge last night one of the wires made a small tear in the seat of my waterproof overalls. Now I know to pack a bike inner tube repair kit if I am lucky enough to be invited to join another survey cruise! One of those small rubber patches would have been the perfect for the job. I was able to find a sewing kit and in short order sewed the tear and sealed it with a layer of duct tape. Now I am ready to get back to work!

Lisbeth Uribe, July 30, 2008

NOAA Teacher at Sea
Lisbeth Uribe
Onboard NOAA Ship Delaware II
July 28 – August 8, 2008

Mission: Surfclam and quahog survey
Geographical Area: Southern New England and Georges Bank
Date: July 30, 2008

NOAA Teacher at Sea, Lisbeth Uribe, in her survival suit next to the dredge
NOAA Teacher at Sea, Lisbeth Uribe, in her survival suit next to the dredge

Science and Technology Log 

Prior to our departure on the survey, all the volunteers attended presentations by NOAA scientists about the work we would be doing. The purpose of the clam survey is to provide consistent, unbiased estimates of the relative abundance for many shellfish in the North East region. The target species for our survey are the Atlantic Surf clams (Spissula solidissima) and Ocean Quahogs (Arctica islandica). We also went to a NOAA storeroom and were outfitted with our foul weather gear (heavy waterproof boots, fluorescent yellow rain pants and rain jacket). While on board we received several briefings about safety and the expectations for behavior during the cruise.  During an emergency drill we each tried on our survival suit. I keep the suit in a bag at the foot of my bed, ready for any emergency!

We set sail at 2:00 pm on Monday, the 28th of July, and headed south towards our first tow location in the Southern New England region. The first 10 survey points or stations of our cruise are repeats of points surveyed in the last trip. This means we will be heading south toward the Long Island region before sailing for the Georges Bank region. We are conducting repeat surveys because after the last survey, the dredge’s electrical cable was replaced with a longer cable (formerly 750 feet, now 1,100 feet long). The added length in the cable results in a voltage drop that is expected to be enough to cause the dredge pump to loose pressure slightly. The pump, attached to the dredge itself, is designed to churn up sediment and shellfish as the dredge is towed along the sea floor. By rechecking the survey data collected in the last trip, the scientists will be able to calibrate the data obtained using the new cable. The scientists and crew are very concerned about accuracy of data collection during all parts of the Clam Survey.  

Problems with the Dredge 

For the first repeat survey station, our CO (Commanding Officer), Captain Wagner, warned the crew that the bottom might be rocky.  Once the dredge hit the bottom and began to be towed, we heard some loud noises indicating that there were indeed rocks on the bottom.  We pulled the dredge out of the water after the standard 5-minute tow time.  Rocks had twisted, bent and even severed various pipes and rods that make up the cage of the dredge. The row of outlet pipes (called nipples) that direct powerful jets of water towards the opening of the cage had been severed at the points in which they screw into the main pump pipe.

Though the damage was a setback in terms of lost time, it was amazing to see the engineers swing into action and make the necessary repairs over the next six hours. Out of the hold came an assortment of tools, such as metal cutters, jacks, soldering equipment, wrenches, pliers, and mesh wiring.  I was put to work extracting the broken ends of pipes and handing tools to the engineers as they either replaced or repaired broken parts.  By the end of my work shift (midnight) the dredge was fully repaired and ready for work again.

Tuesday, July 29, 2008 

I am wearing my bib and overalls, boots, and a hardhat while working inside the dredge to free the clams caught in the corners and cracks of the dredge.
I am wearing my bib and overalls, boots, and a hardhat while working inside the dredge to free the clams caught in the corners and cracks of the dredge.

I am fortunate to be working with a great team on the day shift crew (noon to midnight).  My Watch Chief, Shad Mahlum, and the Chief Scientist, Vic Nordahl, are excellent teachers, patient with my mistakes and quick to offer words of encouragement. There are several work assignments during each station.  I help by turning on and off the power for the pump on the dredge, clearing out the shellfish that get caught in the cage, and weighing and measuring the clams we catch. My favorite job is cleaning out the inside of the dredge. After the dredge has been hauled up the ramp onto the deck, the back door is released and the clams and broken shells tumble onto the sorting table. My job is to climb up inside the cage of the dredge and toss down the shells and organisms that get caught along the edges. I like the challenge of climbing around up high in a small space. We have been lucky to have very calm seas over the past couple of days.  This job will get quite a bit more challenging when the deck starts to move around more.

The dredged material is sorted into different wire baskets, also known as bushels, each contain either clams, other sea life or trash to be thrown back out to sea once we have moved past the survey site. The clams are weighed and measured.  At some stations we also collect meat specimens for further analysis.  All the information goes into the computer, including data collected by the sensors on the dredge.

Personal Log 

As part of the day shift crew, I work from noon until midnight.  It may sound tough working a 12-hour shift, but in reality the time passes very quickly as we are always busy either preparing for a station, processing the clams, or cleaning up after a dredge.  We are not permitted to return to our room until the end of our shift as our roommates are on the opposite shift and are sleeping.

When sailing out in the open water it easy to lose one’s sense of direction.  On the second day of the survey I knew that we were headed south for the repeat dredges, but it was not until one of the crew members showed me the site “Ship Tracker for NOAA” that I realized we were collecting samples just off the coast of Long Island all afternoon—not far from my home town, New York City! We are so busy moving from station to station that I often lose track of where I am.

I am grateful for the clear weather we have had so far on the cruise.  Learning to work with the dredge and scientific equipment would have been much more difficult if the seas were not so calm. Each day brings something new and interesting to learn and experience.

Well, my shift is almost over.  Time to think about eating a late night snack and then getting some rest, – lulled by the gentle rocking of the waves.

Question for the Day 

What is the origin of the word “Quahog”? What is the difference between Atlantic Surf clams and Ocean Quahogs? What is a sea mouse?

Lisha Lander Hylton, July 5, 2008

NOAA Teacher at Sea
Lisha Lander Hylton
Onboard NOAA Ship Delaware II
June 30 – July 11, 2008

Mission: Surfclam and Quahog Survey
Geographical area of cruise: Northeastern U.S.
Date: July 5, 2008

Weather Data from the Bridge 

Today’s weather e-mail: 

UNCLAS //N03144// MSGID/GENADMIN/NAVMARFCSTCEN NORFOLK VA// SUBJ/WEAX/NOAAS DELAWARE II// July 5th, 2008 REF/A/MSG/NOAAS DELAWARE II/022000ZJUL08// REF/B/WEB/NOAA SHIP TRACKER/041747ZJUL08// NARR/REF A IS MOVREP. REF B IS NOAA SHIP TRACKER PAGE.// POC/SHIP ROUTING OFFICER/-/NAVMARFCSTCEN/LOC:NORFOLK VA /TEL:757-444-4044/EMAIL: MARITIME.SRO(AT)NAVY.MIL// RMKS/1. METEOROLOGICAL SITUATION AT 051200Z: A LOW PRESSURE SYSTEM OVER THE LABRADOR SEA WITH A COLD FRONT EXTENDING ALONG THE NORTHEASTERN SEABOARD HAS AN ASSOCIATED STATIONARY BOUNDARY ALONG THE TRAILING EDGE OF THE COLD FRONT WHICH EXTENDS INTO THE MID ATLANTIC STATES. STRONG HIGH PRESSURE REMAINS ANCHORED IN THE NORTH CENTRAL ATLANTIC.

2. 24 HOUR FORECAST COMMENCING 060000Z FOR YOUR MODLOC AS INDICATED BY REFERENCES A AND B.

A. SKY, WEATHER: PARTLY CLOUDY TO MOSTLY CLOUDY WITH ISOLATED SHOWERS AND THUNDERSTORMS.

B. VSBY (NM): 7, 3 TO 5 IN SHOWERS, 2 TO 4 IN THUNDERSTORMS.

C. SURFACE WIND (KTS): SOUTHWESTERLY 5 TO 10, INCREASING 10 TO 15 GUSTS 20 LATE PERIOD.

D. COMBINED SEAS (FT): SOUTH-SOUTHWEST 2 TO 4, BUILDING 4 TO 6 LATE PERIOD.

  1. OUTLOOK TO 48 HOURS: WIND SOUTHWESTERLY 10 TO 15 GUSTS 20 INCREASING 15 TO 20 GUSTS 25 EARLY PERIOD, DECREASING 10 TO 15 GUSTS 20 BY LATE PERIOD. SEAS SOUTH-SOUTHWEST 4 TO 6, BUILDING 5 TO 7 EARLY PERIOD.
  2. FORECASTER: AG2(AW/SW) SCOTT//

V/r, Command Duty Officer Naval Maritime Forecast Center Norfolk

http://www.weather.navy.mil http://www.nlmoc.navy.smil.mil

PLA: NAVLANTMETOCCEN NORFOLK VA

Ship tracker
Ship tracker
Lisha holding sea specimens retrieved from clam dredge
Lisha holding sea specimens retrieved from clam dredge

Science and Technology Log 

Ship Tracker 

NOAA has a Web site that can show you the path of each of its ships in near real time.  Below is the track of the DELAWARE II from June 30 – July 5, 2008. The red line shows exactly where the DELAWARE has gone. If you’d like to track the DELAWARE or any other NOAA ships yourself, then go to this Website.

Clam Surveys 

On the DELAWARE II our team is in the process of conducting a clam survey. This particular fishery survey is on clams. After dredging, collecting, sorting, counting, measuring and weighing (clam with shell and shucked clam meat only) – the data obtained is recorded and entered into computers filed under the specific station number that was dredged. All data is then sent to a central data base. The compiled data can then be compared to past surveys.  If the actual meat weight, size, quantity or quality of clams collected has reduced in comparison to past surveys, this could be an indication that some factor is influencing the reduction. Possible influencing factor: Clams are being over-fished.

However, clam fisheries are a very important part of the economy, especially in the northeastern part of the United States. Many people depend on clam fishing for a living. As long as clams are not over-fished, the balance between economy and ecology can remain stable.  Not only could this affect the clam population, but other marine life in this particular ecosystem could be affected as well because in an ecosystem ~ all living and nonliving things in the environment must interact and work together for the ecosystem to be productive. This is why it is vital that NOAA scientists continue to survey and keep track of the productivity in our ocean environments for future generations.

Lisha in the clam dredge towing out the dark, clay sediment.
Lisha in the clam dredge towing out the dark, clay sediment.

We document and record the data on all marine life that is pulled out from the dredge. These species are important documentation in clam surveys because in an ecosystem, all living organisms (and non-living things) depend on each other, interacting to produce food chains and food webs. Early this morning, we entered 2 separate stations, just a few miles apart. These 2 stations were loaded with a huge quantity of very healthy, large sized, heavy meat clams.  Vic noticed that not only did these 2 stations contain lots of large, healthy clams but that there was a lot of clean, sand sediment with very little other types of sediment. Sediment is defined as organic matter or mineral deposited by ice, air, or water. Sediment can be mud, clay, rock, gravel, shell fragments, silt, sand, pebbles or dead organic material (called detrius). The various sediments are sometimes mixed and are found in various textures, consistency and colors. Unlike these 2 sandy stations, the 69 stations we had already dredged all contained various other types of sediment.  Above and to the right are some pictures of a prior station that contained sediment of dark, hard clay.  

Lisha, Mark Harris and Richard Raynes in the clam dredge towing out the remains of the mud sediment.
Lisha, Mark Harris and Richard Raynes in the clam dredge towing out the remains of the mud sediment.

Vic instructed the crew at this point that we needed to get a sediment sample from the two nearby stations that we were fixing to dredge. I was asked to retrieve it with the aid of Jimbo Pontz and Lino Luis who operated the bottom grab (a device used to lower down into the ocean operated by an electric cable, for the purpose of retrieving sediment.)  First, Vic instructed me to “GEAR UP”; safety gear is a major priority on all NOAA ships.  I was given a safety harness to put on, along with a life jacket, and a hard helmet.

Then, the bottom grabber was lowered into the water and it collected the samples, towed back up by Lino Luis and emptied by Jimbo Pontz. I collected 2 cups of the sand sediment at both locations, prior to the dredge being hauled back up to the deck.  Note how clean and “new” the sand sediment looks. It is not mixed with a lot of other sediments. Sure enough, we again collected a huge load of healthy, large size, weighty meat clams covered in the same sediment seen in the picture above.  

Big Question of the Day 

Lisha “gearing up” in safety equipment
Lisha “gearing up” in safety equipment

Science Researchers have concluded that over the past century, sea level is rising at increasing rates, (possibly linked to Global Warming). Global warming is defined as the observed increase in the earth’s air and oceans in recent decades due to greenhouse gases and the theory that this temperature rising will continue to increase.

The rising of sea level causes an “environmental change”.  Some environmental changes on Earth occur almost instantly, due to Natural Disasters (like a hurricane or other massive storm events). Scientists that study environmental changes due to past storm events are called Paleotempostologists.  Other environmental changes can take decades, centuries, or thousands of years (like the rising of sea level). These environmental changes often cause new sediment to be deposited on top of older sediment. The adult, large, healthy, meaty-weight surf clams found today in the location where we sampled medium to coarse-grained sand were retrieved at stations offshore in cold and deep water; (the depth recorded by Jakub Kircun – Seagoing Technician as 70 feet). Could it be that environmental changes on the ocean floor are taking place due to the rise of sea level?  Could the medium to coarse-grained sand sediment sampled today possibly be a new layer of sediment due to rising sea levels causing a relocation of some marine species (like surf clams)? 

Lisha collecting the sediment sample that was hauled in by the bottom grab.
Lisha collecting the sediment sample that was hauled in by the bottom grab.

Abundance of surf clams in New York Harbor in June 1995, from this Web site.

Surf clams utilize an unusual behavior in response to stress: they leap from the sediment surface in order to relocate. Surf clams have been observed using this avoidance behavior in response to crowding and the presence of predators. Surf clams are mostly oceanic in distribution, preferring turbulent waters at the edge of the breaker zone. They can be found in some estuarine areas, but their distribution is limited by salinity (Fay et al. 1983). In New York/New Jersey Harbor, surf clams are found predominantly in the area where the harbor opens into the Atlantic Ocean. Juvenile clams prefer medium to fine, low organic sands averaging 9 to 25 meters in depth. Adults prefer medium- to coarse-grained sand and gravel, burying themselves just below the sediment surface. They are often found at evenly distributed positions relative to one another, with spacing interval negatively correlated to density. Additionally, adults often remain in their juvenile burrows unless they are displaced by storm events (Fay et al. 1983).  Predation by crabs, gastropods, and bottom-feeding fish have been observed to limit development of beds in nearshore areas colonized by larval surf clams, relocating to colder, deeper water.”

The Bottom Grab
The Bottom Grab

New Term/Word/Phrase: Ecosystem: an environment where living and non-living things interact and work together. Bottom Grab: A device used to lower onto the ocean floor for the purpose of gathering sediment.

Something to Think About: Are surf clams relocating?

Animals Seen Today 

Asterial boreal, Lady crab, Eel, Moonsnail, Shark eye northern snail, Stargazer fish, Whelk, and Sea cucumber.

hylton_log5h

Lisha Lander Hylton, July 3, 2008

NOAA Teacher at Sea
Lisha Lander Hylton
Onboard NOAA Ship Delaware II
June 30 – July 11, 2008

Mission: Surfclam and Quahog Survey
Geographical area of cruise: Northeastern U.S.
Date: July 3, 2008

Weather Data from the Bridge 
Daytime: Sw Winds 15 To 20 Kt With Occasional Gusts Up To 25 Kt; Seas 3 To 4 Ft.

Evening: Sw Winds 15 To 20 Kt With Occasional Gusts Up To 25 Kt; Seas 3 To 4 Ft with a chance Of showers and thunderstorms

Screen shot 2013-04-19 at 10.11.10 PMScience and Technology Log 

Today, we experienced mechanical problems on the ship. I learned that this is why there are so many crew members on board. It takes the expert knowledge of many people in different careers to repair necessary equipment imperative to operate mechanical devices onboard.  The problem we had is that a power cable connected to the pump blew out.  Then they had to cut out the bad part of the cable and replace it to the power box that connects to the pump on the clam dredge.   However, adding the new cable means that we had to reconnect all of the smaller wires to the power box. Then we had to check the power to the switch inside the pump.  It took all hands on board to correct the problem, with Vic Nordahl, the chief scientist, in charge.

The problem was corrected with Vic Nordahl’s knowledge and the assistance from the chief engineer, Brian Murphy, the 1st engineer, Chris O’Keefe, the 2nd engineer, Grady Abney, along with many other crewmembers. Following is a sequence of photos that show the problem: I was amazed at the way so many people were involved in fixing the problem. The following people are crew members on board the DELAWARE II; many who helped to resolve the problem.

NOAA Crewmembers on the DELAWARE II and Their Titles and Careers 

Vic Nordahl – Chief Scientist In command of all scientific people on the ship. In command of what each person does on the survey. Has complete control of the numerous tasks involved in the survey. He teaches and explains all procedures involved in survey to new crew members and gives advice to old crew members in a very patient and very informed manner. Vic also has expert understanding in engineering, equipment maintenance and electrical mechanics and was the crucial person who solved the problem with the power cable connected to the pump. His understanding and mechanical ability enabled us to complete this survey; otherwise we would have had to return back to port.

Captain Stephen Wagner – Captain of the ship. Responsible for everything and everyone on the ship.

Lt. Monty Spencer – XO Executive Officer Second in command on the ship. Oversees all general operations of the ship and personnel. Does all the accounting on the ship, keeps the budget, take care of making sure there are sufficient personnel on all trips.

Richard Raynes – Gear Specialist Maintains all gear equipment on the ship.  Makes all fishing nets for ship.

ENS Chuck Felkley – Junior Officer of the ship In charge of safety, navigation ad driving on board the ship under Lt. Monty Spencer

Engineer Staff: (Brian Murphy) the chief engineer , the 1st  engineer (Chris O’Keefe) and the 2nd engineer (Grady Abney)

Francine Stroman – Marine Technician Enters technological data of marine species under survey.

Jim Pontz  and Mark Bolino – ABS (Able Bodied Seaman) Handle all equipment on ship’s deck department.  Lower and raise anything that goes in or out of water.

Mark Harris – High School Biology Teacher (ARMADA Teacher at Sea) Layton High School, Layton, Utah

Lisha Hylton – Third Grade Elementary Teacher (NOAA Teacher at Sea) Pelion Elementary School, Pelion, South Carolina

Patrick Bergin – Electronical Technician Takes care of all of the electronic equipment on the ship; phones, radar, computers, electronic equipment to operate ship.

Lino Luis – Lead Fisherman Radios when dredge pump is to be activated and deactivated.

Jakub Kircun – Seagoing Technician In charge of the team that takes care of the biological specimens on the ship. Maintains all computers for storing data for specimens collected.

Richie Logan – Works on back deck (maintains machinery)

Kira Lopez – Sophomore at North Carolina State University majoring in Zoology. Volunteer scientist

Alicia Long – Sea-Going Technician Takes care of the biological specimens and the equipment used to maintain them.

Steph Floyd – Biological Science Technician Summer employee trained by the sea-going technicians to take care of the biological specimens and the equipment used to maintain them.

Erin Earley – Oiler/Wiper Assistant to engineers on ship

Jonathan Rockwell – Chief Steward Prepares and cooks breakfast, lunch and dinner for entire crew.

Walter Coghlan – 2nd chef Works with Chief Steward in preparing and cooking all meals.

Christi and Russell – College Seniors majoring in biology.

Sharon Benjamin– College Graduate majoring in biology.

Question of the Day 

How many crew members are on board THE DELAWARE II for The Clam Survey? Answer: 32

New Term/Word/Phrase: Conductive Electric Cable

Something to Think About: Vic Nordahl (at 2:00 A.M.) started thinking about and telling us possible solutions to the problem if it could not be fixed while out at sea.

Challenge Yourself : I will learn all I can about equipment maintenance and repair from the experts on board.

Did You Know? 

It is highly difficult to fix an electrical problem on a ship because supplies are limited at sea.

Animals Seen Today 

Seagulls and a Pelican

 

Lisha Lander Hylton, July 2, 2008

NOAA Teacher at Sea
Lisha Lander Hylton
Onboard NOAA Ship Delaware II
June 30 – July 11, 2008

Mission: Surfclam and Quahog Survey
Geographical area of cruise: Northeastern U.S.
Date: July 2, 2008

Weather Data from the Bridge 
Coastal Waters From Sandy Hook To Manasquan Inlet Nj Out 20 Nm
* 930 Pm Edt Wed Jul 2 2008*
* Overnight*
Sw Winds 10 To 15 Kt With Gusts Up To 20 Kt.
Seas 2 To  4 Ft.

The Clam Dredge
The Clam Dredge

Science and Technology Log 

This information is general on working stations. My objective is to follow up on following daily logs into more specifics on how each station is operated and maintained. The crew is now learning more technicalities on entering data into the computer system as we continue to pull out quahogs and surfclams. The two species look a lot alike; a surfclam is more elongated in width where a quahog is rounder with a definite hooked shape at the top that connects the two shells. A quahog is also heavier in weight than a surfclam. After hauling in loads at frequent stops, heading north at pre-determined stations, the crew sorts through miscellaneous sediments to separate the clams. Surfclams are put in one basket, quahogs in another. If they are broken but the 2 valves are still intact, these go into 2 more baskets. Any living marine life goes into a bucket. We have documented the various sediments at each haul since this may prove to be a factor in the quantity and size of the clams. So far, the various sediments include rocks, pebbles, sand and shells, a dark oozy mud and grey clay.