Shelley Gordon: ACCESS Partnership, July 24, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 24, 2019


Applied California Current Ecosystem Studies (ACCESS) is a joint research project conducted by NOAA (Cordell Bank National Marine Sanctuary and Greater Farallones National Marine Sanctuary) and Point Blue Conservation Science. 

NOAA’s Office of National Marine Sanctuaries manages 13 sanctuaries and two marine national monuments, protecting a total of 600,000 square miles of marine and Great Lakes waters within the United States.  Four of the sanctuaries are in California.  Greater Farallones National Marine Sanctuary (GFNMS) is a large sanctuary that protects over 3,000 square miles of California coast and offshore marine habitat from San Francisco to Point Arena.  There are numerous beaches and costal habitats included in this sanctuary, as well as the Farallon Islands.  Cordell Bank National Marine Sanctuary (CBNMS) is a smaller sanctuary around Cordell Bank, a large offshore seamount approximately 22 miles from the coast.  Sitting at the edge of the continental shelf, Cordell Bank is approximately 26 square miles in size, and while you cannot tell it is there from the surface, it supports a huge diversity of brightly colored sponges, corals, anemones, and other invertebrates.  Both sanctuaries protect a wide variety of living organisms across the food chain, from phytoplankton to blue whales.

Cordell Bank and Greater Farallones NMS
Map of Cordell Bank and Greater Farallones National Marine Sanctuaries. Map taken from cordellbank.noaa.gov

Point Blue Conservation Science is a non-profit organization that is working to combat climate change, habitat loss, and other environmental threats by helping to develop solutions that benefit wildlife and people.  They work with local natural resource managers (like National Marine Sanctuaries) to help monitor and improve the health of the planet. 

Scientists from each of these organizations have come together to work on ACCESS.  This project, started back in 2004, collects data on the physical conditions and living things within GFNMS and CBNMS.  Scientists use this data to document wildlife abundance, monitor changes over time, and help inform decisions about conservation efforts.  For example, data collected on the location of whales can help create policies to reduce threats to whales, like ship strikes and entanglements.   There are many huge ships that come in and out of San Francisco Bay on a daily basis.  Scientists are currently working with the industry to support a reduction in ship speed, which can reduce the likelihood of whales coming into dangerous contact with ship hulls.  Another threat to whales are entanglement in fishing gear.  Legal commercial crab fishing using crab pots occurs within the sanctuaries.  In recent years there have been greater incidents of whales being entangled in the buoy lines that fisherman use to help them collect the crab pots from the bottom of the ocean.  As the result of a recent lawsuit filed by ­­­­­the Center for Biological Diversity, the commercial crab season ended early this year to try to help protect the whales.

Adult Common Murre
Adult Common Murre. Photo: Dru Devlin

An interesting, and possibly concerning, phenomenon is being observed on our cruise.  Kirsten Lindquist, the seabird expert on this cruise, has seen a great number of Common Murres on the water during our data collection observations.  However, she has noticed a lack of chicks.  Common Murres nest on rocky outcroppings and the chicks leave the nest 15-25 days after they hatch, before they are able to fly.  The chicks then float on the water are fed by their parents for several weeks until they can feed themselves.  Generally, at this time of year she would expect to see a large number of adult and chick pairings floating on the surface of the water together.  Today we saw quite a few chicks floating with an adult, but this has not been the case during the other days on this cruise.  It is unclear why there are fewer Common Murre chicks than are typically seen.

Did You Know?

Dani and Shelley deploy CTD
Dani Lipski and me deploying the CTD, a device used to measure water conductivity, temperature, and depth. Photo: Jaime Jahncke

Scientists use “conductivity” as a measure of how salty the ocean water is.  If the water is relatively cold and salty that is a sign of “good” upwelling conditions, meaning that the cold water from the deep ocean is moving up over the continental shelf, bringing a high concentration of nutrients with it.  The upwelling along the California coast is a main reason why there is such a diversity of ocean life here.

Staci DeSchryver: Super Bonus Spiritual History Blog! July 29, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

 

Mission:  HICEAS Cetacean Study

Geographic Area:  Papahānaumokuākea National Marine Sanctuary  

Date:  July 29, 2017


Location:  
20 deg, 20.0 min N, 156 deg, 08.6 min W

Weather Data from the Bridge:

Scattered Clouds

Visibility: 10 nmi

Wind @ 23 kts from 65 degrees

Pressure: 1015.1 mb

Waves: 4 – 5 feet

Swell:  7-8 feet at 70 deg

Temp: 26.5 deg

Wet bulb:  23.5 deg

Dewpoint: 25 deg

Bonus Spiritual History Blog

On July 23, we briefly suspended our operations to help out fellow scientists camped out on the French Frigate Shoals (Lalo), located along the Northwest Hawaiian Island chain – about halfway between the northernmost main islands and Midway (Kuaihelani).  The trip was brief, and we never set foot on terra firma, but with the help of the Big Eyes we could see something that we had not seen up close in 3 days – land.

Two nights prior, we finally crossed over to the Northwest Hawaiian Islands – a sacred and certainly mysterious (at least to me)  area for the Hawaiian People.  I was waiting with some anticipation for the moment we would cross into these waters.  The entire Northwest Hawaiian Island chain and its surrounding seas are limited-access for the vast majority of seafarers; the waters are protected by a proclamation signed by President George W. Bush in 2006, and expanded by President Barack Obama in 2016. This Marine Sanctuary’s designated area begins near the start of the Northwest Hawaiian Island chain, and stretches all the way to the Kure Atoll (Hōlanikū), just past Midway Island (Kuaihelani).  We were not permitted to cross into these waters until we had a permit, part of which included a component requirement of a briefing on the history of the area before we entered.  ers Native Hawaiian Program Specialist Kalani Quiocho introduced us to this sacred ground during our pre-cruise training with this briefing on this Marine National Monument, Papahānaumokuākea.  His presentation was so moving that I felt it necessary that the story of these waters (through my limited experience) must be told.

Mr. Quiocho’s presentation began with the name song for Papahānaumokuākea.  His voice bellowed out in an ethereal chant – one in a smooth and haunting language with sound combinations like nothing I had ever heard before.  His song was punctuated with ‘okinas and kahakōs, and accented with stunning photographs of ocean life, ritual, and artifact.  The music moved me to a tear, though I couldn’t quite pinpoint the emotion that was supposed to accompany it.

name song for papahanamoukuakea
The Name song for Papahānaumokuākea, reprinted with permission from Kalani Quiocho.

I realize now that I have traveled to this sacred place that it was one of simple reverence for the culture and its people who belong so fully to it.  It was at that moment that I realized that this trip would be a whole other ball game – one that is sacred, cosmic, and mysterious.

Papahānaumokuākea (pronounced Papa-hah-now-mow-coo-ah-kay-a) is the first officially designated Mixed Cultural and Heritage site, and is the largest fully protected conservation area in the United States.   Its name commemorates the union of two Hawaiian ancestors – Papahānaumoku and Wākea, who according to Hawaiian ancestry gave rise to the Hawaiian archipelago, the taro plant and the Hawaiian people.  These two ancestors provide a part of the Genesis story for Hawaiʻi – land to live on, food to eat, and people to cultivate, commune, and thrive as one with the gifts of their ancestors. The namesake alone of this marine sanctuary highlights the importance of its existence and its need for protection.  Many of the islands are ancient ceremonial sites, two of which we passed on the way to the Shoals (Lalo).

Crossing over to the Northwest Hawaiian Islands also marks a celestially significant line in the Hawaiian archipelago – the Tropic of Cancer.  The Tropic of Cancer is the furthest north that the sun will reach a direct overhead path during the solar year – you might know this as the summer solstice.  Right on the Tropic of Cancer lies the island Mokumanamana, a sacred place of cultural distinction for the Hawaiian people.  The Tropic of Cancer divides the entire Hawaiian archipelago into two distinct sections, Pō and Ao – the Ao represents the more southern islands and spiritual daylight, and the Pō representing the Northwest Hawaiian Islands and spiritual twilight.

ao and po
This diagram shows the separation between the NWHI and the main Hawaiian Islands. The horizontal line through the center divides day (Ao) from night (Pō) and lines up with the Tropic of Cancer. The Island Mokumanamana lies directly on the boundary between the living and spiritual realms. Our destination was Lalo, or French Frigate Shoals, though our travels took us much further northwest than that. (Diagram Credit: Kalani Quiocho)

The crossing over as we passed Mokumanamana is significant in that we entered a different spiritual zone of the Hawaiian Islands.   The Papahānaumokuākea Marine National Monument’s website (click here to read much more about it) describes the Northwest Hawaiian Islands as “a region of primordial darkness from which life springs and spirits return after death.”  In this sense, transiting past Mokumanamana represented a “crossing over” into a different realm of ancient history.  Mokumanamana is known for its high density of ancient ceremonial sites and is considered a center of Hawaiian religion and ideology.  Mr. Quiocho expands on the geographical importance of the area to the Hawaiian people in his commentary stating that,

“Papahānaumokuākea encompasses the Northwestern Hawaiian Islands which is ¾ of the Hawaiian archipelago and includes high basalt islands and low-lying atolls, and surrounding marine environments. It stretches nearly 2,000 kilometers and straddles the Tropic of Cancer also known to Hawaiʻi as Ke Ala Polohiwa a Kāne – The sacred black glistening path of Kāne, the patron god of the sun. It is believed that the Hawaiian Archipelago is divided into two regions called Pō and Ao, which essentially means night and day. Most of the NWHI is within Pō, a place of creation and origin where ancestors return to after death. The region known as Ao includes the main Hawaiian Islands where man resides. The entire Hawaiian Archipelago represents the dualisms and cycles of the Hawaiian universe. From the east where the sun rises and the islands are volcanically birthed from the oceanic womb to the west where the sun sets and the islands return to the sea. And all of the extraordinary biology that is found in the Northwestern and main Hawaiian Islands are accounted for in our oral traditions. The Kumulipo, a creation chant with more than 2,000 lines expresses the cosmology of the Hawaiian Islands, beginning with the birthing of the coral polyp and eventually the Hawaiian people. Naturally this is an inspiring place that is the framework of our worldview and the knowledge systems that tell us we are people of place. Which is why many refer to this area as the kūpuna islands, kūpuna meaning elder or grandparent.”

Today, Native Hawaiians will travel by double-hulled canoes from the main islands all the way up to Nihoa and Mokumanamana during times of ritual importance and follow in the footsteps of their ancestors to honor the tradition and the spiritual practice.  I’m sure the journey is both treacherous and fulfilling, one that would rival other more commonly known great expeditions, especially considering its spiritual significance.

rainbow
Papahānaumokuākea is rich with history – both ancient and recent, and full of its own surprises!

Mr. Quiocho continues by expanding on the importance of the navigation of these waters to the Hawaiian people and how it honors their homeland connections:

“Native Hawaiians believe that the vast region that makes up the NWHI is an incredibly sacred place and is regarded as the construct of their cosmological genealogy. This region is rooted in creation and origin as a place where all life began and to which ancestors return after death. Native Hawaiians have historical connections to all parts of their homeland, which encompass all the islands, atolls, shoals, coral reefs, submerged seamounts and ocean waters that connect them. While the islands themselves are focal destinations for traditional voyages, the vast ocean is equally important. It is a cultural seascape that is imbued with immense value. The ocean is more than an unknown empty space that isolates islands, but rather a pathway for movement and potential.

orca
A rare sighting of Tropical Pacific Orca – one of the first Cetaceans to welcome us to the Monument. What a gift!

Long-distance voyaging and wayfinding is one of the most unique and valuable traditional practices that Native Hawaiians have developed and continue to advance. It is an ancient way of interacting with the ocean that continues to inspire and create social change. The ocean region surrounding the NWHI is the only cultural voyaging seascape within the Hawaiian Archipelago. The main Hawaiian Islands are large enough for any novice navigator to find, but the ocean region throughout and surrounding Papahānaumokuākea provides challenging opportunities for apprentice navigators to excel. This expansive ocean environment was the setting for ancient Hawaiian chiefs to voyage back and forth between the main Hawaiian Islands and the NWHI over the course of 400 years.”

On our journey, we slipped passed Mokumanamana in the cover of night – through the invisible gates and into this ancient ancestral realm.  Although we had been in the monument since the previous day, for some reason this crossing marked a distinction for me personally in an indescribable way.  Since arriving on Oahu and in my travels since, I’ve known there was something special and different about this place, and I’ve known that part of the “different” was me.  Walking through Ala Moana Park on the 4th of July revealed threads of a culture that formed a beautiful tapestry of family, community, and heritage as I strolled past hundreds of families camped out in anticipation of the upcoming fireworks over the ocean.

volcanic neck
A volcanic neck stands high above the waters surrounding the shoals.

There was something communal and sacred about it, even though the time and event was modern.  There was an “old” feeling of togetherness that buzzed through the park amongst strangers and friends.  I knew I was an outsider to this energy, but I didn’t feel entirely left out of it.  It’s one thing to feel like a foreigner on the “day” side of the Tropic of Cancer, but the “night” side held a spiritual distinction, as though I was trespassing in a dimension to which I did not belong. Knowing that the only passage of ships through this area would come with permits and regulations left a feeling of emptiness in an already vast ocean.  Knowing the ocean is full beneath with life both current and past – fish and whale and ancient Hawaiian spirit alike gave back some reassurance that we were not entirely alone.  For the first time I didn’t want to just know about Papahānaumokuākea, I wanted the ocean to tell me the story herself.

Nestled in the middle of Papahānaumokuākea was our target destination – French Frigate Shoals (Lalo).  On this tiny island a small team of scientists have been camped out for a little over six weeks studying the endangered Hawaiian Monk Seal.  We were tasked with delivering critical supplies to the scientific team – fuel, replacements of scientific gear, and a small care package with a few creature comforts they had not had access to in quite some time.  (I mean, seriously.  Who drops off fuel without dropping off chocolate? Not us!)   We also picked up some specimens from them to take back to the lab in Honolulu. The Shoals are a special place – a World War II military outpost slowly decays on the far side of the island, providing some cover for the scientists as they work. The island hosts thousands upon thousands of terns, flying en masse around the island in huge swarms.

FFS
A closer view of the island. The dots in the air above the island are all birds.

The terns were in preparation of fledging, and in anticipation of that day, tiger sharks stalked the surrounding waters, waiting for their next meal. On the opposite side of the island a few hundred meters away from shore, a lone sandbar (formerly dredged up for use as a military runway) rose to the surface providing a quiet place for a monk seal and her two pups to lounge in the sand.  One seal pup practiced swimming in the shallows as the mother casually glanced in its direction.  The other pup would hobble a few feet away down the beach, only to run back to its mother and lie next to her for a time.  It was a little reminiscent of a Norman Rockwell beach vacation painting, had Rockwell chosen an animal personification route as his medium.  A turtle dotted the far edge of the landscape on the main island, basking in the rising sun as the waves gently rolled on to the beach behind him.

runway
This flat strip of land is a dredged up runway, slowly returning back to the ocean after years of abandonment from use. A mother seal and two pups lounge on the sand, enjoying the sun.

The structures on the land from afar looked like a distant movie set for an apocalyptic storyline. The wind howled as we approached the atoll, and birds fought against the invisible currents in frantic circles around the island.  Two boats lay destitute along the far side of the island while waves crashed merciless against the sea wall built to hold the atoll in place during the time the island was volunteered to serve in a wartime capacity. The island itself is a surreal duplicity – serving both as a protector of life and a vessel of war.  I found myself taking stock of this history;  watching from far away to learn the eternal evolution of this strange place – first a volcano, sunk beneath the surface, then to a primordial breeding ground for coral, fish, and shark – onto a pristine landscape, possibly used by ancestral Hawaiians for ceremony and stopover en route to Kure (Hōlanikū) – a military base as a refueling station and an outpost – and finally a protected home for hundreds of species, some hanging desperately onto the last strings of life but finally thriving under the care of a dedicated research team.

As much as I desperately wanted to go on to the island to have a look at this former military operations base-turned-endangered-animal-sanctuary, none of us could go on shore – even those who shuttled supplies to the scientists.  French Frigate Shoals marked the first time I had ever seen a coral atoll in anything other than a picture, and it seemed a natural part of my inner explorer to want to pop on to shore to have a look about, even for just a few minutes.  Everything in French Frigate Shoals is protected under the Papahānaumokuākea permitting restrictions.

pulley system
Supplies were hauled ashore by the small pulley system jutting up from the shoreline – visible on the left-middle portion of the island.

Had we wanted to explore the land, we would have needed to quarantine our clothing and ourselves for a minimum of 72 hours to protect the landscape from anything foreign taking foot on shore. Our ship couldn’t make it much closer than a mile or two from the island so as not to put it in danger of running aground. So, a team of four people shuttled supplies in the small boat, navigating the shallows and hauling the supplies on shore through a pulley system.  Two quick trips out to the island, and we were soon on our way again in our search for cetaceans.

When Mr. Quiocho parted ways with us after our training, he made a casual but powerful statement in closing.  He told us the whale dives deeply to commune with ancient wisdom commissioned to the deep ocean, bringing this deep knowledge from the ancestral depths to the surface so that it can become part our collective consciousness. Our trip, then, is a not merely a collection of data or a series of samples.  Each time we interact with the whales, they are bringing us the knowledge of the ancients in hope that we will continue to pass that information on to anyone at the surface willing to listen. The responsibility of our work when described in this light brought a new reverence to the study – one that is not just a story for the present in hopes of preserving for the future, but that weaves ancient knowledge from the past into our work, as well.

Did you know?

  •         Each day at noon, the ship’s alarms are tested to ensure they will work in an emergency situation.  Guess who got to test the alarms?

    fire alarm
    Yup! I got to test the alarm. Thanks Lieutenant Commander Rose!
  •         Ship safety is the height of the focus of everyone on board.  Each Friday, we complete drills to make sure we are ready in the event of an emergency.  Of the many dangers at sea, a fire can prove to be most catastrophic.  It’s not like the fire department can come out to the middle of the Pacific at the first sign of burning bacon (which may or may not have happened to me two days before I left for Oahu).  The entire Sette crew acts as the fire department, so it is important for them to practice in the event of an emergency.  This week we simulated a live-fire scenario, complete with a fog machine.  I got to call the drill up to the bridge!  It was a little extra fun built into a very serious situation.
  •         Classes are still continuing each afternoon on the bridge, Monday through Friday. 

    amanda and hexacopters
    Dr. Amanda Bradford gives the Wardroom a lesson on Hexacopter Operations (see blog #5 for more!)

    tim and msds
    ENS Tim Holland gives a lesson on MSDS chemical safety sheets.
  •         Officers are in a friendly competition to see who is on watch when the most sightings occur, among other friendly battles.  It is the topic of lively discussion at most meal times.  

    The tallys
    Officers can make a competition out of ANYTHING!  Here are the tallys for the past 25 days.

Sarah Raskin: Teacher at Sea Day 1, March 13, 2015

NOAA Teacher at Sea

Sarah Raskin

Aboard NOAA Ship Bell M. Shimada

March 13-18, 2015


Mission: Channel Islands Deep-Sea Coral Study

Geographic Area: Channel Islands, California

Date: Friday, March 13, 2015

Shimada
One of NOAA’s research ships: the Bell M. Shimada

NOAA Ship Bell M. Shimada, my home away from home for the next six days!  

Science Log

Today marks my first official day aboard the Shimada as part of NOAA’s Teacher at Sea Program.  NOAA stands for National Oceanic and Atmospheric Administration.  My name is Sarah Raskin and I am an educator at Haydock Academy of Arts and Sciences, a public middle school in Oxnard, California.  For the next week, I have the opportunity to join NOAA scientists from across the United States on a deep-sea science expedition in the Channel Islands National Marine Sanctuary. I am hoping to bring back what I learn to the students at Haydock and to paint a picture of what it is like to work on real-life science out in the field.

Scientists group photo
The scientists starting from the left: Peter Etnoyer, Rick Botman, Branwen Williams, Andrew Shuler, Erin Weller, Will Sautter, Steve Holz, Leslie Wickes, Andy Lauermann, Chris Caldow, Dirk Rosen, Mike Annis, Laura Kracker.

The location for our expedition is in the waters off of the coast of Ventura and Santa Barbara counties in Southern California.  The Channel Islands National Marine Sanctuary (CINMS) covers 1,470 square miles of water surrounding Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands and is home to a large amount of diverse species.  On this expedition, scientists will use an ROV (a remotely operated underwater vehicle) to examine deep-sea coral and the water chemistry around those coral beds.  One of the most surprising facts for me before beginning this journey was to learn that coral grows in cold water deep-sea habitats, having only previously associated coral with warm water environments.  

During this expedition, scientists will also look at how the corals are affected by ocean acidification.  It will be interesting to see what their findings are:  how do our actions on land affect organisms, such as coral, that live in the deep sea?

Ventura County watershed
A Ventura County watershed: from the mountains to the sea.
Anacapa Island
Anacapa Island (Channel Islands National Park and Marine Sanctuary)

The scientists will collect live samples of the coral to take back to their labs for further ocean acidification testing.  Throughout this trip, scientists will also use sonar to map the ocean floor. The information gathered from the sonar will help provide direction for where to send our ROV.  The new images generated from the sonar could also be used to bring up-to-date sea floor maps of the Sanctuary, many of which have not been updated since they were created in the 1930s!  Another feature of the sonar is to map out locations and quantities of fish populations in the area.  This information is vital to sanctuaries and marine protected areas, as it contributes important information about why these areas are important to protect.

Science in the field is much different than science in a laboratory setting.  There are so many factors to take into account: weather, ocean conditions, the working conditions of the equipment and many more unforeseen circumstances.  The scientists and ship crew must each do their parts and work closely together as a team to make the research possible.  During the first day aboard the researchers have faced quite a few challenges…  Maybe because we set sail on Friday the 13th

The morning began with impromptu safety drills.  Similar to the fire drills that we have at our school, the ship also conducts regular drills.  Today we had both a fire drill and an abandon ship drill.  The abandon ship drill prepares the crew for an emergency event that would require us to leave the ship immediately.  It also involved donning a safety suit, a giant red neoprene wetsuit that is designed to keep you warm if you needed to jump into the ocean.

Fire drill on the ship
Fire drill on the ship
Sarah in survival suit
A picture of me in the survival suit

Later in the afternoon, the team took the ROV out for its first outing of the trip.  Chris Caldow (the expedition lead) and the scientists from Marine Applied Research and Exploration (MARE) chose a spot on the ocean floor that was sandy and flat with few physical features to snag on for its initial run.  The ROV, which is named the Beagle, is an amazing piece of machinery.  It is designed to be able to function in depths of down to 500 meters.  It is also equipped with a high definition video camera that will take footage of what is going on under the sea.  If the scientists see something of interest, the Beagle ROV has a manipulator arm to collect samples.  The arm feature is also used to deploy different types of sensors that will keep track of information, such as temperature, over a longer period of time.

MARE's Beagle ROV
MARE (Marine Applied Research and Exploration) Beagle ROV

The launch of the ROV was exciting.  Most of the crew gathered around to watch its release, and as it made it’s way down to the sea floor, it began streaming video footage to monitors inside of the laboratories on the ship.  It was pretty incredible to be able to see the bottom of the sea floor with such clarity.  So far, we have spotted multiple species of rockfish and an egg case of a skate.  I can’t wait to see what tomorrow will bring!

ROV footage
Watching streaming video footage from the ROV

Back to one of our challenges: the key sonar machine is currently out of order.  When things break on a ship, it can be a bit tricky to fix.  It’s definitely not as simple as running to the nearest hardware store to pick up a new piece of equipment.  When something is not working out here, it can involve scuba diving under the ship to fix something or sailing back to the mainland if there is a real issue.  So tomorrow there will be a boat coming out to meet our ship and bringing with it equipment and a trained sonar technician to hopefully solve our problems.  Let’s keep our fingers crossed!

Update: Science in the Field

The Beagle ROV journeyed into the depth once more last night.  This time the mission was to find deep-sea coral beds, in particular one species called Lophelia pertusa, and bubble gum coral. 

Lophelia pertusa
Lophelia pertusa

The MARE team (Dirk Rosen, Andy Lauermann, Steve Holz and Rick Botman) worked with scientists Peter Etnoyer, Leslie Wickes, Andrew Shuler and Branwen Williams to locate a coral bed that they had visited previously in 2010 and 2014.  Using GPS coordinates, the MARE team was able to locate the exact site of the coral bed that Peter and his team had worked with in earlier years.  There were quite a few high-fives and cheers of excitement in the lab when the ROV made its way to the familiar patch of bright red bubble gum coral. 

Branwen and Dirk
Branwen and Dirk scout the sea floor for coral beds

The team dropped a temperature gauge at that location that will take and record a temperature reading every five minutes for the next six months.  After that, Peter and his team will return on a second expedition to retrieve the device.  The temperature gauge is tied to a rope attached to a lead weight and a flotation device covered with bright reflective tape.  Andrew explained that the reflective tape would stand out in the headlights of the ROV, making it much easier to spot when they return for it half a year later.

Andrew temperature sensor
Andrew holds up one of the temperature sensors that will be deployed with the ROV

The Beagle also retrieved its first coral sample of Lophelia pertusa, which it brought to the surface.  Picking up samples from the deep in no easy feat.  Andy and Dirk control the ROV from the deck with controls that look similar to something you would find on a video game consul.  Sitting along side them, scientists Peter, Leslie and Branwen direct them to which coral specimens look the best for their sample.  Then using either the manipulator arm or a shovel like feature on the boat, the ROV controller works quickly to scoop the organism into a basket attached to the front of the machine.

Scientists watch footage
The scientists watch live video feed from the ROV

Once the ROV safely made it back on board, the scientists worked quickly to get the coral and its little inhabitants, such as deep-sea brittle stars and crabs, into cold water tanks as fast as possible.  While the coral doesn’t seem to mind the pressure difference between the deep-sea and surface, it does not handle the temperature differential as well.

Leslie removes coral for storage in the fresh water tanks
crab on coral
A deep-sea crab that hitched a ride up to the surface on the Lophelia

The team also took water samples from the water near the coral sites, which they will test later for pH.  They are hoping to find out whether coral changes the composition of the water surrounding it.  In order to collect the water samples, Branwen Williams (a scientist and professor from Keck Science Department at Claremont College), Leslie, and Andrew retrieved water samples using a CTD-Niskin rosette.  They took water samples at the depth of the coral beds (approx. 290 meters) and then every 25 meters up from there.   Once they filled bottles with the water, it was important to immediately “fix” the water samples.  This means putting a poison, such as mercuric chloride into the water sample to kill off any living organisms, such as zooplankton or phytoplankton, that might be photosynthesizing or respiring and changing the pH levels of the water samples.  This gives the scientists a snapshot of what the water chemistry is like at a particular place and time.

Daniel Rivera: First Day Meeting the Crew, July 16, 2014

NOAA Teacher at Sea

Daniel Rivera

Aboard Research Vessel Fulmar

July 16 – 24, 2014

Mission: Applied California Current Ecosystem Studies (ACCESS)

Geographical Area: Spud Point Marina; Bodega Bay CA.

Date: July 16, 2014

Weather Data from the bridge: N/A (day at port)

 

Science and Technology Log:

This trip is part of an ongoing mission called Applied California Current Ecosystem Studies (ACCESS ) that monitors the ecosystem health of the northern California National Marine Sanctuaries. To determine the health of the ecosystem, scientists collect water samples, perform net tows, and monitor the number and behavior of organisms (birds, mammals, turtles, ships, and marine debris) along predetermined routes, called transects.  A map of the transects we will cover this trip can be found in the picture below.

Transect Lines for the ACCESS Cruise
Transect Lines for the ACCESS Cruise
Caption: The red lines are the transects, the path the ACCESS cruise takes in order to collect samples and monitor organisms.

The vessel used on the ACCESS cruise is called the R/V Fulmar, a 67-foot boat that has been used by NOAA for the past 8 years. The boat has enough sleeping room for 6 scientists and 2 crew. Read more about it here http://www.sanctuarysimon.org/regional_sections/fulmar/.

Personal Log:

Where to begin? I guess the most logical place to start is on shore, when I first meet up with Jan Roletto–the cruise leader for our trip–at the Gulf of the Farallones NMS, Crissy Field office in San Francisco. The cruise leader is responsible for the logistics of the trip: who’s on board, emergency contacts, what transects we will monitor, the ports we will visit, and a host of other responsibilities once we actually leave land. What’s interesting about this cruise is that it’s a collaborative monitoring effort between three groups: The Gulf of the Farallones National Marine Sanctuary, the Cordell Bank National Marine Sanctuary, and Point Blue Conservation Science, all local to the Bay Area. The three groups take turns being the cruise leader; this trip the cruise leader is from the Gulf of the Farallones; the next cruise leader will be from Cordell Bank.

Once we load up our vehicles with the equipment needed for the cruise, we drive the roughly 1.5 hours north to Spud Point Marina in Bodega Bay, CA. This is where I first catch sight of our vessel, the R/V Fulmar, and this is where mob (or mobilization) happens, which is short for saying loading all the gear onto the boat. (When we come back to shore on the last day, we will demob, or demobilize.)

Once everything is loaded on board I settle in to my cozy bunk below the bridge, the command center of the ship. On either side of the bridge there is a small set of stairs that leads to a bunk room; I’m staying to the left of the bridge, sleeping on the top bunk. Slightly bigger than a bunk bed from childhood, but without the rails, I wonder if I will fall to the floor during the trip. Not only would the fall hurt, but my bunk sits precariously next to an emergency escape hatch, which one must use a metal ladder to access. So, not only would I fall to the floor because of no railing, but I would almost certainly hit the metal ladder on the way down. Note to self: don’t move while sleeping.

Bunk Beds on the R/V Fulmar
Don’t fall off the top bunk unless you want to bang into the emergency escape ladder.

The main deck has a two-room kitchen, a work center for all the computers on board, a dining area that turns into a king-sized bed, three additional bunk beds, and a bathroom that is surprisingly roomy for a boat—I have many friends who would gladly exchange their bathroom for the Fulmar’s. The back of the boat contains a deck and winch for deployment of nets, divers, etc., and the front of the boat there is an observation deck with an anchor hanging in front. On the top deck there is a container with 20 immersion suits (flotation suits that keep you warm in the event of an abandon ship), a host of observation seats, and secondary controls for the movement of the ship. Underneath the main deck is where the twin engines await to propel us out into the deep blue sea.

After many introductions to the rest of the crew, a nice dinner at a local restaurant, and many stories of what to expect, we each head to bed around 10pm to ensure a good night’s rest for the first day at sea. 

Did you know? If you hear 7 short rings of the bell/horn followed by one long ring, you better get a move on to the immersion suit: this is the call for abandon ship!

Question of the Day? The California Current is one of four that makes up the North Pacific Gyre. What other 3 currents complete this gyre?

New Term/Phrase/Word: mob and demob

Something to Think About:  The more you eat while on a cruise, the less seasick you will become, which is counterintuitive.

Challenge Yourself: What kind of clothing do you think you’ll need to comfortably engage in a 9-day monitoring cruise at sea?

Deborah Campbell: May 23, 2012

NOAA Teacher at Sea
Deborah Campbell
Onboard NOAA Ship Nancy Foster
May 14 – May 24, 2012

Mission: Fish Tagging, Acoustic Receiver maintenance/ deployment
Geographical Area: Gray’s Reef National Marine Sanctuary
Date: Wednesday, May 23, 2012

Weather Data from the Bridge: Sunny and warm, waves 3 to 4 feet, currently 74 degrees

Science and Technology Log

On Tuesday, May 22, science operations on board Nancy Foster resumed.  A boat from Gray’s Reef brought more divers.  Shannon McAteer is from “Team Ocean”, a volunteer S.C.U.B.A. organization.  Michelle Johnston is a research ecologist at Flower Garden Banks National Marine Sanctuary in Galveston, Texas.  Kelly Gleason is a maritime archeologist in Hawaii.  Randy Rudd, named “Volunteer of the Year” for the entire National Marine Sanctuary Program,  has been on board from the beginning is also a “Team Ocean” diver.  Diver Greg McFall  the Research Coordinator/Deputy Superintendent of Gray’s Reef will perform surgery to implant transmitters in the fish.  Greg has been doing the underwater filming throughout the trip.  Also, assisting in the dives are Nancy Foster NOAA Corps Officers LT Josh Slater and ENS Jamie Park.  Chief Scientist, Sarah Fangman is coordinating all the dive projects.   Debbie Meeks is the Financial and Informational Technology Coordinator and webmaster for Gray’s Reef.  She has been continually working on the mission website throughout the cruise.

Debbie Meeks and Deborah Campbell in dry lab (photo courtesy of Kacey Johnson)

LT Josh Slater and ENS Jamie Park preparing to dive

 

Rockfish (also known as striped bass)
Rockfish (also known as striped bass)

Batfish (photo by ENS Jamie Park)
Batfish (photo by ENS Jamie Park)

Divers (from left) Kelly Gleason, Sarah Fangman, Michelle Johnston, and Randy Rudd

The plan of the day is to work on implanting transmitters in fish.  The divers have put large cages on the bottom with food to lure the fish inside.  The divers will reach inside the cage to grab  the fish with a net.  One diver will hold the fish “belly up”, while another diver performs surgery.  The surgery involves a small cut, insertion of the transmitter, and then a couple of stitches.  The fish is then released.  Doing the surgery underwater greatly increases the survival chances of the fish.  Divers have spotted several tagged fish swimming happily about Gray’s Reef.

Personal Log

Yesterday, while I was on “steel beach”, there was an “abandon ship” drill.  The signal for this drill is six short blasts followed by one long blast.  I had to hurry to my room to get my life-preserver and Immersion Suit (Gumby Suit).  I had to report to Muster Station Three.  The person in charge of my group was ENS Jamie Park.  If we had to abandon ship, we would have to deploy a life raft which is in a large cylinder.  The cylinder would be thrown overboard.  We would have to get in our Gumby Suits quickly, throw the cylinder overboard, let the cylinder open into a life raft and jump overboard to get in life raft.  It was only a drill…  However, drills are important to help people get prepared in an emergency situation.

The crew has to watch videos to prepare them for emergencies.  I watched an excellent video in the mess hall with the crew.  The video showed how to prepare for an emergency at sea in event that you would have to abandon the ship.

Deborah Campbell participating in an “abandon ship” drill aboard NOAA Ship Nancy Foster

Meanwhile, I will be spending my last day on board.  Today is hamburger Wednesday.  There will be burgers for lunch.  On Thursday, we will dock in downtown Savannah, Georgia.  On Friday, I will be assisting the scientists and crew with an “Open House”.  People will be able to tour the Foster.  On Saturday I will depart Georgia and head to Chicago.  I look forward to sharing my adventures with my family, friends, students, and colleagues.  I am so grateful for the opportunity to be a “NOAA Teacher At Sea”.  I will never forget my time with the wonderful crew of the Foster and scientists which I have shared my experiences.

ACRONYMS-

S.A.R.T.- Search and Rescue Transponder

PFD- Portable Floatation Device

H.E.L.P. Position- Heat Escape Loss Position

SCUBA- Self Contained Underwater Breathing Apparatus

Elaine Bechler: A Survey on the R/V Fulmar! July 21, 2011

NOAA Teacher at Sea
Elaine Bechler
Aboard R/V Fulmar
July 21- 26, 2011 

Mission: Survey of Cordell Bank and Gulf of the Farallones NMS
Geographical Area of Cruise:  Pacific Ocean, Off the California Coast
Date: July 21, 2011 

Science and Technology Log

Welcome to the July 2011 Applied California Current Ecosystem Studies  six-day survey of the Gulf of the Farallones National Marine Sanctuary and the  Cordell Bank National Marine Sanctuary.  The purpose of this survey was  to find out if there were any biotic or abiotic changes happening in the sanctuaries. Prior to the trip, transect lines

transect lines along study area
This map shows transect lines in the areas we are studying in the sanctuaries.

were drawn on a map.  The science team onboard the R/V Fulmar planned to survey as many of the lines as was possible.  While following the transect lines, all animal sightings were recorded.  Once the data is collected, the scientists can compare the 2011 survey results to other years of data. What questions do you think a marine biologist might have while surveying the organisms in the marine sanctuary?  What might motivate an organization to send scientist on a survey such as this?


R/V Fulmar
R/V Fulmar

The vessel we boarded was the R/V Fulmar .  If you check the website you will see it is a survey machine!  For this cruise there were seven of us on the science team and two crew – the captain and the mate.   What features make this vessel a good one for ocean surveys?

Prior to disembarking, the crew and scientists frequently checked the conditions of the ocean in order to determine if the survey could be safely conducted. They used a computer on board to check the conditions from NOAA websites.  Another website was  real time buoy data . The computer indicated that the ocean was going to be very active on our first two days with 10-foot swells. It felt like we were in a washing machine.  Needless to say a few of us were feeling sea sick!  It was quite a humbling experience yet it bonded us too.  What remedies are there for sea sickness?  What would you do to prepare yourself for a trip on the R/V Fulmar?

abiotic: nonliving

The science team was divided into two groups: those working on the flying bridge at the bow or front of the vessel and those working on the back deck with nets.  On the flying bridge there were three observers, two on either

observers on the flying bridge
Observers on the flying bridge

end, the port (left) and the starboard (right),  who would spot all marine mammals (Carol Keiper and Jan Roletto).  An ornithologist on board would identify birds (Sophie Webb).  The other member (Jaime Jahncke) recorded what the animal was, where it was, how many there were and what the organisms were doing.  Sometimes there was a lot going on at one time and they would use a second recorder (Kaitlin Graiff) temporarily to document all the animals. The data is always gathered in this way.  Those who were not observers were allowed to watch but not to assist the observers.  Can you think of a reason why?

They spotted 50 whales: 10 blues and 40 humpbacks; some breaching, some tail lobbing.  We documented 16 different species of birds including the Tufted Puffin, Cassin’s Auklet, Northern Fulmar, Pink-footed Shearwater, Sooty Shearwater,  Western Gull, Heermann’s Gull, Fork-tailed Storm-Petrel, Ashy Storm-Petrel, Brown Pelican, Brandt’s Cormorant, Common MurreElegant Tern, Pigeon Guillemot, Red-necked Phalarope and Black-footed Albatross. (Sophie Webb, the ornithologist on board took these shots). Each of these animals are predators and some of them were found in the thousands out in the sanctuaries.  What would be possible prey for all of these animals? 

male Common Murre and chick
Male Common Murre and chick

Black-footed Albatross
Black-footed Albatross

Having many different species living in an area is called biological diversity.  Diversity is a measure of health in an ecosystem, the more different species that are supported, the better the ecosystem can deal with environmental change.  What would be some possible environmental changes that the organisms in this ecosystem might be experiencing?  

Many of these animals are pelagic, which means they live their entire life without visiting a mainland.  Many of them are predatory on the fish and zooplankton living in the ocean.   Where does the energy to support such large numbers of predatory animals come from?   What organisms are at the bottom of the food chains that support these animals?  

Check out the other posts from this cruise to learn more!

Tufted Puffin
Tufted Puffin

Deborah Moraga, June 21, 2010

NOAA Teacher at Sea Log: Deborah Moraga
NOAA Ship: Fulmar
Cruise Dates: July 20‐28, 2010

Mission: ACCESS
(Applied California Current Ecosystem Studies)
Geographical area of cruise: Cordell Bank, Gulf of the Farallones and Monterey Bay National Marine Sanctuaries
Date: June 21, 2010

The R/V Fulmar

Overview
The R/V Fulmar sets out from the dock early each morning. This ACCESS cruise has 5 members of the scientific team and myself (the NOAA Teacher at Sea.) There are two crew members for a total 8 people onboard.

The three central California National Marine Sanctuaries and the ports where the R/V Fulmar docks
The three central California National Marine Sanctuaries and the ports where the R/V Fulmar docks

Applied California Current Ecosystem Studies
Applied California Current Ecosystem Studies

National Marine Sanctuaries
National Marine Sanctuaries

ACCESS is an acronym for Applied California Current Ecosystem Studies. This is a partnership between PRBO Conservation Science, Cordell Bank National Marine Sanctuary and the Gulf of the Farallones National Marine Sanctuary. These groups of conservation scientists are working together to better understand the impacts that different organisms have on the marine ecosystem off the coast of central California.

Immersion suit for safety

They do this so that policy makers (government groups) have the most accurate data to help them make informed decisions on how the productive waters off the coast can be a resource for us and still protect the wildlife. You can read a more in depth explanation at http://www.accessoceans.org

Flying Bridge

The R/V Fulmar is a 67 foot Marine Grade Aluminum catamaran (a multi hulled vessel.) This vessel can travel 400 miles before refueling and can reach 27 knots (30 miles per hour) with a cruising speed of 22 knots (25.3 miles per hour.) Although that may sound slow compared to the cars we drive… you have to take into account that there can be 10 foot waves to go over out on the ocean.

The Fulmar’s homeport (where the boat ties up to dock most of the time) is in Monterey Bay, CA. For this cruise we will come into port (dock) in Bodega Bay, Sausalito, and Half Moon Bay. Each morning the crew wakes up an hour before the time we start out for the day. They check the oil and look over the engines, start the engines, disconnect the shore power and get the boat ready to sail out for a ten hour day.

Today (July 23, 2010) we left at 0700 (7:00 a.m.) out of Bodega Bay. Bodega Bay is on the coast of Sonoma county, California. It is from Bodega Bay that we will travel offshore to the “lines” that we will be surveying. Today we will survey lines one and two.

Then after the day’s work is done, we will sail into port, tie up to the dock and have dinner. The scientists and crew members sleep on the boat in the berths (bunks) that are located in the hulls of the boat.

Surveys
“Okay, take a survey of the types of pets your classmates have at home. Then create a graph.” How many times have math teachers assigned that assignment and expected that students knew how to survey? Today I received firsthand knowledge of how a survey takes place.

Marine scientist scanning for wildlife

Up on the flying bridge (about 5.5 meters from the surface of the ocean) scientists are surveying birds and marine mammals. There is a protocol that each follows. Here, the protocol is basically a list of agreed upon rules on how to count the marine life seen on the ocean. One researcher inputs the data into a waterproof laptop…imagine chilling at the pool and being able to surf the web! There are other researchers sitting alongside and calling out the types of birds and marine mammals they see. The researchers surveying the birds and mammals use not only their eyes but also binoculars.

Krill collected by the Trucker Trawl

After the researcher spots and identifies the birds or mammals, they call out their findings to the recording scientist in a code like fashion, doing this allows for the data to be inputted faster. The team can travel miles without Krill collected by the Trucker Trawl Researcher recording observations on the flying bridge Pacific White Sided dolphins bow riding seeing any organisms or there may be so many that the scientist at the laptop has a tough time keeping up. In this case the surveying scientist may have to write down their findings and report them when there is a break in the action.

Imagine that you are driving down the highway with your family. You have been asked to count the number humans, cows, horses, goats, dogs, cats, cars or trash on your trip. How would you make sure that your family members didn’t double count and still record all that you see? This is where protocols (instruction/rules) come in. So, let us say that you are behind the driver, and your brother or sister is in the backseat next to the window. There is also a family member in the passenger seat up front (yeah they called ‘shot gun’ before you did.) This is much like the seating arrangement on the flying bridge of the R/V Fulmar.

Researcher recording observations on the flying bridge

So how could you split up the road and area around the road so that you do not count something twice? You could split the area that you see into two parts. Take your left arm and stick it straight out the window. Have your sister/brother stick their right arm out their side window. If we drew an arc from your arm to your sibling’s arm it would be 180 degrees. Of the 180 degree arc, you are responsible for counting everything from your arm to the middle of the windshield. So, you are responsible for 90 degrees and your sibling has the other 90 degrees from the middle of the windshield to their arm.

Pacific White Sided dolphins bow riding

Once you start counting you need to record the data you are collecting. Can you write and count at the same time? Not very well, so we need someone to record the data. There are actually a lot of points of data that you need to enter.

You need to tell the recorder…
• Cue: How did you see the item you are counting?
• Method: Were you searching by eye or using a pair of binoculars?
• Bearing: The angle that the item is from the car as related to the front of the car.
• Reticle: How far the item was from your car when you first observed it (you would use your binoculars for this measurement).
• Which side of the car are you on and who is dong the observing?
• Behavior: What was the organism doing when you spotted it? Was it traveling, feeding or milling (just hanging out)?

Deploying the CTD

You also have to determine the age and sex of the organism. You need to record the species of the organism and how many you observed.
Now that is all for the species above the ground… what would you do for the animals below the road surface? On the R/V Fulmar they collect species from below the surface of the ocean and data about the water. They do this several different ways…

Bringing in the Hoop Net

1. CTD: Conductivity, Temperature, and Depth. This is a tool that records the physical properties of the ocean. It records…

a. Salinity (amount of salt in the water)
b. Temperature (how hot or cold the water is)
c. Depth (how far the instrument travels below the surface)
d. How much chlorophyll is in the water
e. Turbidity (how murky or clear the water is)
f. How much oxygen is in the water

Deploying the Tucker Trawl

2. Hoop Net: Looks like a very heavy hula hoop. Except this hoop has a cone shaped cylinder made of fine mesh attached to it. At the apex of the cone, a small PVC container, called a cod end, is attached. Zooplankton (tiny swimming animals) and some phytoplankton (tiny marine plants) are funneled into the cod end of the net as it is towed behind the boat. When the net comes back to the boat, the researchers take off the cod end and use this sample of organisms.

Collecting data from the CTD

3. Tucker Trawl: Is like three hoop nets attached together. The cool thing about this big net is that the scientists can close each net at different depths. As Map of the transect lines Retrieving the Hoop Net Phytoplankton Net the net is towed behind the boat they “close” each net to capture zooplankton at different depths. The tucker trawl is used primarily to collect krill

Map of the transect lines

Transects
Have you ever lost something in your room? Perhaps it was your homework? The bus is coming and you have to find your binder. So you start tearing your room apart. By the time the bus is five minutes away… you room looks like a disaster and you can’t remember where exactly you have looked and yet, still no binder.
Imagine a group of scientists 30 miles offshore, doing that same type of “looking” for organisms, with the captain piloting (driving) the boat any which way. Just like your binder that was missed when you were looking for it, number and location of organisms in parts of the ocean would be missing from the data set.

Retrieving the Hoop Net

So if you wanted a systematic way to look for your homework that is lost in your room, you would imagine a grid. You would have lines running from one wall to another. These lines would be parallel to each other. You would walk along the line looking for you binder. When you came to the end of the line (at your wall) you would then start on another line. By walking back and forth in your room in this systematic way, you will not miss any part of your room.

Phytoplankton Net

You have just traveled along a transect line. A transect is a path you travel and as you do you are counting and recording data. On the R/V Fulmar, scientists are counting birds, marine mammals, and collecting krill. By counting how many and what kinds of organisms are along the transect line, scientists will be able to calculate the density of organisms in a given area. There are several different types on lines that we survey. There are the near shore transects…which extend 12 kilometers from the shore (that is as long as running back a forth a football field 131 times). Offshore lines are 50 to 60 kilometers from the coast. Imagine how many football fields that would be!

Bow of R/V Fulmar

Density… Take your right hand and put it in your right front pocket of your pants and pull out all the coins you have in your pocket. Looking down at your hand you count 10 dimes. Now do the same for your left hand. You found you have two dimes. The “area” those coins were located is equal… meaning your pockets are the same size. The density of coins in your pockets is greater in your right pocket because there are more coins per square inch than in your left pocket.

Humpback Whale

The researchers on the ACCESS cruise use the data they have collected out in the field (in this case the field is the three central California National Marine Sanctuaries) to calculate the density of the organisms they are researching. They are counting and recording the number of organisms and their location so they can create graphs and maps that show the distribution of those organisms in the waters off the coast.

Taking a surface water sample

Why do they need this information? The data starts to paint a picture of the health of the ecosystem in this part of the world. With that information, they can make suggestions as to how resources are used and how to protect the waters off the California coast. By using data that has been collected over many years, suggestions can be made on how the ocean can still be utilized (used) today while insuring that future generations of humans, marine mammals, birds and krill have the same opportunities.

whale breach
whale breach

Clare Wagstaff, September 18, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Key West
Date: Saturday, September 18, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny Visibility (nautical miles): 10
Wind Speed (knots): 0 (in port)
Wave Height (feet): <1
Sea Water Temp (0C): 30.4
Air Temp (0C): 32

Science and Technology Log 

Right: Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley
Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley

With the last dive of the cruise over, the group has completed 175 dives, which equates to 7.5 days underwater! Most of the planned coral reef sites have been surveyed even with our lack of a third small boat. The weather has stayed relatively calm and has been surprisingly supportive of our cruise. The mad rush is now to input all the remaining data before we disembark the ship later today.

An area that I have only briefly referred to in previous logs, are the types of coral diseases present and being studied. Chief Scientist, Scott Donahue, commented to me that there has been a trend over the last decade of decreasing coral coverage. This is believed to be related to anthropogenic stresses such as water quality and climate change. By comparing spatial and temporal patterns against trends in coral reef disease, over different geographic regions and reef types, it is hoped that a greater understanding of how these patterns are related to different environmental conditions. The team was specifically looking at ten disease conditions affecting 16 species of Scleractinian corals and Gorgonian sea fans. Although I tried to identify some of the diseases, it was actually quite difficult to distinguish between individual diseases and also other causes of coral mortality.

White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley
White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley

Black-band Disease is a crescent shaped or circular band of blackish material that separates living material from white exposed skeleton. It is caused by a cyanobacteria in combination with a sulfide oxidizing bacteria and a sulfur reducing bacteria. White-band Disease displays a margin of white tissue decay. It can start at the base of a colony or in the middle. It affects branching corals and its cause is currently unknown. Corals have a pretty tough time living out in the ocean and have many problems to overcome. If its not a boat’s anchor crushing it could be any number of the following; a parrot fish (predator) eating it; deterioration of the water quality; a hurricane; an increase in major competitors like algae or tunicates, and to nicely top it all, it can always get a disease too!

Most of the scientists on the Nancy Foster are volunteers, giving up their own free time to be part of the trip. Kathy Morrow is a Ph.D. student who has extensively studied the ecology of cnidarians for the past 9 years. She is currently researching her dissertation on the community structure and stability of coral-algal-microbial associations based on studies conducted off the coast of Summerland Key, Florida and St. Thomas, U.S. Virgin Islands. On one of the last dives of the trip Kathy takes time to collect mucus samples (she refers to this fondly as coral “snot”), from a site she has previously visited numerous times over the last few years. The objective is to collect mucus samples so that they can be studied later for their bacteria composition.

Morrow collecting coral mucus. Photo courtesy of Mike Henley.
Morrow collecting coral mucus. Photo courtesy of Mike Henley.

Once Kathy has collected these samples she must process them so that they can be stored until she has the opportunity back in the lab, to analyze them. Although I was not present when Kathy was collecting the samples, I did help her in the wet lab with the final stages of storing her collection of samples. Having collected multiple mucus samples from each of the preselected coral species in syringes, the samples were then placed into a centrifuge to extract the bacteria present. This material is denser, so sinks to the bottom ad forms a darker colored pellet. My job is then to remove the excess liquid, but preserve the bacteria pellet so that it can be frozen and stored for later analysis. Back in the lab at Auburn University, Kathy will chemically breakdown the bacteria to release their DNA. This DNA is then replicated and amplified allowing for Kathy to perform analysis on the bacteria to identify the types present in the corals. Kathy will spend the next year studying these bacteria samples and many more she has collected.

Personal Log 

Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter
Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter

So here we are back in port after an amazing time on the Nancy Foster. I was initially concerned about being out at sea with people I did not know, studying an area of science I really knew very little about, in an environment I knew would probably make me sick, but didn’t thank goodness! But everything turned out to be a thousand times better than I could have imagined. I have had seen so much and learnt an amazing amount that my head is spinning with all the ideas I have to use with my classes back at school. Yet, there are things that I just rang out of time to look more closely at and part of me wishes we had been out at sea longer. My second time as a Teacher At Sea, has left me with some wonderful memories of the most professional and dedicated scientists and crew you could wish for, but also of how amazing corals are and how much we still have to learn. Thank you everyone who was involved in making this a truly remarkable and memorable experience.

The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy
The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy Foster

Clare Wagstaff, September 16, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 16, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers with thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 4
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

Elkhorn coral (Acropora palmata) and numerous Sergeant Majors (Abudefduf  saxatilis)
Elkhorn coral (Acropora palmata) and numerous Sergeant Majors (Abudefduf saxatilis)

Today I am with a new survey group. As the days go by and each of the scientists gets more dives under their belts, there is some fatigue starting to set in. So on a rotation basis, the divers are taking rest days to catch-up on sleep, emails and data entry. This morning I am with Lauri, Lonny and Sarah. The first dive site is about 33  feet deep and although I can see the bottom from our small boat, the water is extremely green and doesn’t allow me to see anything in real detail when I snorkeled. A little disappointed at the clarity of the water, I am definitely perked up by the next site, CR03. At just 8 feet deep, I can see much more and the water appears less green.

A lobster hiding in the coral
A lobster hiding in the coral

This site was something special! Even from above the water, we could observe large and impressive Acropora palmata. It looked like a large underwater forest. There was a massive diversity of fish specie present that appeared to be supported by the micro-ecosystem that the Acropora palmata created by its large lobes that fan out across the ocean floor. They provide plenty of nooks for green moray eels and multiple lobsters I saw to hide in. This coral grows approximately 10cm a year, but as with all coral species, this growth can be affected by various factors including the most recent hurricanes.

We were surveying in an area known as a Sanctuary Preservation Area or commonly a “No Take Zone”, yet a small boat located within the marking buoys appeared to be spear fishing. The Coxswain on our boat noted that the group brought numerous fish up into their boat while we were underwater. Within a short distance we also observed two other lobster pot buoys located within this zone. Lauri, called this into the Nancy Foster and asked that the Chief Scientist report this to the Marine Law Enforcement office, so that they could send a patrol boat out to investigate. This activity is not permitted in this zoned area.

Coral identification 

Diploria strigosa
Diploria strigosa

Today, I tried to indentify all the different varieties of coral I had photographed. Dr. Joshua Voss, the ship’s expert of coral identification looked over my attempt at scientifically naming 30 different photos. Much to my delight, I got 28 correct! Now I just need to remember them when I am underwater! My greatest difficulty seems to be differentiating between Montastraea spp.annularis, faveolata and franksi, as they have quite similar morphotypes. I just have to keep practicing and asking for help when I’m not sure. What makes me feel a little better is sometimes even the pro’s have trouble distinguishing between certain corals, particularly if they are trying to identify a hybrid which is a mixture of two different species.

Personal Log 

Diploria clivosa
Diploria clivosa

I am always amazed at how resourceful divers can be. Somehow duct tape comes in useful wherever you are. Today was no exception! Geoff, who forgot his dive booties (a type of neoprene sock that you wear inside you fins) has made himself a pair out of another team member’s white socks and a few lengths of duct tape. He does look very entertaining, but they do seem to be working!

Acropora palmata
Acropora palmata

I am feeling very privileged to be surrounded by so many intelligent, passionate and brilliant people. Not only are most of people on the survey teams volunteers and so not getting paid, they are also embracing each part of the cruise with a great sense of humor and consistent high spirits. Even though they are all tired (to date they have accumulated 133 dives between them this cruise), they still banter back and forth with one another in a lighthearted way. All but myself and Mike Henley are returning for their third, fourth, even 13th time, to help collect this vital data. Even though diving has many hazards and is dangerous work, these folks are real experts and I truly feel lucky to be around such inspiring people. I have been diving for five years, but I don’t think I will ever look at a reef in the same way again. They have opened my eyes, and now my job is to go back to chilly Buffalo and develop a way to get this across to my 6th and 8th grade science classes. If I can inspire even just one child, like Joshua’s science teacher did for him as a teenager, then perhaps they too will go on to become a marine biologist, who study some of the smallest, yet most important creatures on our planet.

 Montastraea annularis
Montastraea annularis

As 7pm draws close, the science group gather on the front deck to watch the sunset. It is a beautiful sky, but just to make the evening more special, along come three dolphins riding the wake of the bow of the Nancy Foster. I leap up like a child and run to the edge of the ship to get a closer look, having never seen dolphins in the wild before! They are so graceful and as we all lean over and cheer as the breach the water and splash their fins, you start to wonder, if they are actually watching us as much as we are watching them. Such grace and natural beauty brings another day aboard the Nancy Foster to an end. I’m just not sure how each day keeps topping itself, and with two left to come, who knows what adventures may become this team!

“Animals Seen Today” 

Three bottlenose dolphins (Tursiops truncates) riding the wake of the Nancy Foster 

Bottlenose dolphins riding in the Foster’s wake
Bottlenose dolphins riding in the Foster’s wake

Clare Wagstaff, September 15, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 15, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Partially sunny, with scattered showers and thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 2
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

I am starting to get used to the scientific names of the corals, but it is taking a while. I keep wanting to refer to them by their common name which is generally descriptive of their physical appearance, but makes little to no reference to which other coral it is more closely related to Dr. Joshua Voss, one of the scientists on board pointed out that the common names could vary depending on who is identifying them, yet the scientific name remains the same. Hence why the whole team refers to the scientific names when referring to the corals.

So what are corals? 

Parts of a coral (http://oceanservice.noaa.gov/education/kits/ corals/media/supp coral01a.html)
Parts of a coral

Corals are members of the Animal Kingdom and are classified in the Phylum Cnidaria. People often mistake    these creatures for plants, because they are attached to the rock, show little movement, and closely resemble plants. Corals consist of a polyp, which are a cup-shaped body with one opening, which is its mouth and anus.

Zooxanthellae (zoo-zan-thel-ee) are single cell plants (photosynthetic algae) that grow within the polyps’ tissue. It forms a mutalistic symbiotic relationship with the polyp. The algae gets a protected environment and the compounds it requires for photosynthesis, whilst the algae provides the polyp with the materials necessary to produce calcium carbonate, which is the hard “shell” that surrounds the polyp.

So why is this cruise surveying corals? 

Clare Wagstaff, Teacher At Sea, snorkeling
Clare Wagstaff, Teacher At Sea, snorkeling

There has been a decreasing trend in coral coverage over the last decade. One theory is that this is due to anthropogenic stress related to water quality and climate change.  Coral’s require certain environmental factors to be within sensitive boundaries, such as water temperature, salinity, clarity of water, and water movement. Although most species only grow a few centimeters each year, they are the backbone to a massive underwater ecosystem, hence their extreme importance to the success of our oceans. By studying the trends in species distribution, size and disease over various geographic regions, their corrolations can be desricbed in better detail.

Personal Log 

Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.
Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.

This morning I once again join Team C that composes of Dr. Joshua Voss, Kathy Morrow and Mike Henley to survey three dive sites called RK01, RK02 & RK03. We have now got into a comfortable routine and everyone seems to work well together. Unfortunately, this cannot be said for the boat, NF4! During our last dive on Monday, the boat started to leak oil and is now out of commission for the rest of the cruise. Instead we are on the much smaller and less luxurious, NF2, which also happens to be much slower! However, after the usual dive brief we set out for a day of adventures upon the open sea. The second dive site today proved to be the best for snorkeling and I was able to observe a large variety of plants and animals from on the surface.

“Did You Know?” 

Here I am pointing to the waterspout
Here I am pointing to the waterspout

Waterspouts are simply tornadoes over water. They are common in tropical areas where thunderstorms regularly occur, such as the Florida Keys! Today we saw a prime example of one within a few miles of the NANCY FOSTER.

“New Term/Phrase/Word” 

Anthropogenic – caused or produced by human activities such as industry, agriculture, mining, and construction.

The final survey site, RK03 was very shallow at around 8 ft. The dive team decided to make their observations snorkeling rather than diving. Unfortunately, Kathy was so engrossed in her work that she did not see a moon jellyfish swim right into her face! She put on a very brave front and we quickly returned to the NF2 and back to the NANCY FOSTER. The medial treatment for such a sting is to drench the area in vinegar, which neutralizes the nematocysts that may still be clinging to the skin. Luckily, Kathy made a quick recovery, even if she did smell a little like vinegar for the rest of the day!

Clare Wagstaff, September 13, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 13, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers and thunderstorms
Visibility (nautical miles): 10
Wind Speed (knots): 14
Wave Height (feet): 1-2
Sea Water Temp (0C): 29.8
Air Temp (0C): 32

Science and Technology Log 

Hermit crabs at Fort Jefferson
Hermit crabs at Fort Jefferson

Today the dive plan was to survey some of the deeper sites in the FKNMS (Florida Keys National Marine Sancturay) Tortugas Ecological Reserve, referred to as Sherwood Forest. The dive depth varied between 65 to 80 feet. That meant that snorkeling would probably result in me observing very little. My slightly sunburned forehead, needing to get some of my logs composed in more detail, as well as the diving situation, gave me a prime opportunity to stay on the boat for the majority of the day.

So this morning after the dive brief I waved off the team and set out to do some exploring of the ship and do a little more research about what happens before the team actually gets into the water.

The survey teams are planning on making two separate dives on each site to complete the whole of the radial arc transect. The amount of gas each diver requires, depends on a number of variables, including depth, level of physical fitness and amount of activity undertaken in the water. Scuba diving is also limited by a number of factors such as available air, blood nitrogen level, etc.

What is scuba diving? 

Scuba is an acronym for Self Contained Underwater Breathing Apparatus. The first commercially successful scuba was developed by Emile Gagnan and Jacques-Yves Cousteau, in 1943 and is now widely used around the world as a recreational sport. Sports divers are normally restricted to 130ft, where as technical deep divers can reach depths much greater. During this trip the maximum dive site depth will not exceed 80ft.

Dive brief – Safety First! 

The Wet Lab on the Nancy Foster
The Wet Lab on the Nancy Foster

Before each dive the cruise’s Dive Master, Sarah Fangman gives the scuba divers a brief run through of the priorities for today’s diving. As usual, this means safety is the top priority and Sarah highlights important factors, such as watching your air consumption and making sure that each diver returns with at least 500psi, that each team goes over their dive plan (how deep, for how long, what they will do during the dive), check that all equipment is functioning correctly, and that all the dive data is being recorded. This means prior to the divers getting into the water, their tanks air pressure, Nitrox percentage, name, and time of entry into the water must be logged. Once the dive has ended and the divers are back on the boat, they must once again record their tank air pressure (must be more than 500psi), their bottom depth and sometimes time in the water. Even after the dive is done, the whole team is responsible for each other and has to monitor everyone’s condition for at least the next 30 minutes.

What do the divers breath? 

The divers are breathing Nitrox. Regular scuba has a very specific ratio of nitrogen to oxygen; it tries to mimic the air found on the surface of the Earth as closely as possible. Nitrox diving, on the other hand, tweaks this mixture to maximize bottom time (i.e., the diver’s time spent underwater) and minimize surface intervals (i.e., the time the diver must stay on the surface before diving back in). Before each dive, the individual diver must check his or her own tank for the gases composition and record the oxygen content on their tank. This is because at depths oxygen can actually become toxic.

Science Data Processing 

wagstaff_log3b
A coral species count and bleaching data sheet showing the tally of Montastraea annularis

There are two main areas on the Nancy Foster designated for the science research, the wet lab and the dry lab. The dry lab is where the computers for data entry and processing are located. It is here that the survey team meetings happen every morning and afternoon to discuss which dives site will be surveyed and how the data entry process is going.

Lauri MacLaughlin is the ship’s resident expert on each dive site and gives a detailed map of each site. This includes compass bearings relating to certain underwater features and the GPS coordinates. The wet lab, is just as the name suggests, wet! This is where any experiments can be carried out and also where the scuba tanks are refilled with Nitrox.

Data entry 

wagstaff_log3cEach of the scientists has to transcribe all the data they observed at each dive site. Underwater, the two scientists that are recording data each have a clipboard with the relevant waterproof data forms attached. These forms have a standardised and detailed table, which they then write on using a regular pencil. The data collected on three sheets refers to coral disease, coral bleaching count (for quantity of each species and percentage of bleaching) and coral measurements.

Tally charts and acronyms are a plenty, making it difficult for me to understand the hand-jotted notes of the various scientist. Each of them describes the species of coral by its scientific name. However, my limited knowledge is based upon the common name for most species. I did help Lauri input some of her data today. The tally charts of the number of observed specie are simple enough that I can read and enter the data, along with the size of the first ten individuals of each species. However, after that, the real experts need to get involved! This data must be entered after each dive into a spreadsheet database so that all the information can be collaborated and processed by the end of the cruise.

Personal Log 

Geoff Cook entering data from his dive onto a central database in the dry lab.
Geoff Cook entering data from his dive onto a central database in the dry lab.

This evening our group had the chance to go for a night snorkel around the sea wall of Fort Jefferson. This use to be a fort during the civil war and in more recent years it has been a prison. The objective of the snorkel trip was to hopefully witness the coral spawn. Scientists’ observations indicate a strong connection between the coral spawn and seasonal lunar cycles. Though the polyp release cannot be guaranteed to happen on an exact date, approximately three to ten days after the full moon in late August, early September, the majority of corals in the Caribbean spawn in the late evening. Spawning is when the male and female polyps release their gametes (sperm and eggs). This synchronizing means that there is a greater chance of fertilization. Clues that spawning may take place are swelling that appears at the polyps mouth/anus, where the gametes are released from, as well as brittle stars and fire worms gathering in readiness for a feeding frenzy!

Clare Wagstaff barely visible behind two Caribbean Reef Squid. Photo courtesy of Mike Henley.
Clare Wagstaff barely visible behind two Caribbean Reef Squid. Photo courtesy of Mike Henley.

Unfortunately, we did not witness the spawning but we did observe a green moray eel, two Caribbean reef squid, a conch, a scorpion fish, and multiple sea urchins, sea stars, and moon jellyfish. Perhaps one of the most unusual sights of the night was witnessed on our way back to the dock after our snorkel. We observed a tree trunk covered in hundreds of hermit crabs, varying in size.  They made a horrible crunching sound as they climbed over each other on their way up the tree and as we accidentally stepped on them in the dark!

One of my lasting memories of the evening will be the night sky. It was the most brilliant picture I have ever seen. With no light pollution for miles and a clear evening sky, it made the most perfect picture. It looked like there wasn’t a clear inch in the sky for any more stars to fit in it. It was just beautiful and a great way to end the day!

 

Clare Wagstaff, September 12, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 12, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers and thunderstorms
Visibility (nautical miles): 10
Wind Speed (knots): 10
Wave Height (feet): 2
Sea Water Temp (0C): 30
Air Temp (0C): 30

Science and Technology Log 

Mike Henley, Kathy Morrow and Dr. Joshua Voss, the survey team aboard NF4.
Mike Henley, Kathy Morrow and Dr. Joshua Voss, the survey team aboard NF4.

With another early start under our belts, the science team and I are up, breakfast eaten, briefed on today’s mission, and ready to embark on another day of coral surveying. The ship deployed three v-hulled small boats for us to reach our dive sites. The divers have been split up into three teams and I get to go along with Joshua, Kathy and Mike on the NF4. Out of the boats, this is the newest and fastest, much to the delight of our science team! Having done the practice run yesterday at the QA site, the divers seem keen and eager to get into the water and identify the coral.

So how do they actually survey the area? 

Each group works in a team of three, surveying a radial arc belt transect. Each of the sites has already been previously marked, normally with a large metal or PVC pipe inserted into the area to be surveyed.

Screen shot 2013-03-10 at 11.57.12 AM

Mike is the line tender, which means that his job is to hold the ten meter line straight out from the post, just a few feet above the coral. He slowly moves the line around the pole in an arc. The line is marked at eight and ten meters. At each of these lengths a short marker hangs down to signal the two-meter survey area. The objective is then for Kathy and Joshua to observe the coral and note the number of species of coral present, their size and how they interact with each other, while also recording the presence of disease (type and percentage cover) within the 113.1m2 area.

Screen shot 2013-03-10 at 11.58.01 AM

Chief Scientist, Scott Donahue showed me some of the months of paperwork that was required for this mission to happen. Scott stated that he started work on preparing for this trip nearly four years ago, first requesting time aboard the Nancy Foster and then proceeding with recruiting scientists and permits. Today we are required to have a ‘Scientific Research and Collecting Permit’ for the surveys in Dry Tortugas National Park.

Personal Log 

Survey team of Kathy Morrow (top, middle), Mike Henley (top, left) and Dr. Joshua Voss (bottom, right) surveying site LR6.
Survey team of Kathy Morrow (top, middle), Mike Henley (top, left) and Dr. Joshua Voss (bottom, right) surveying site LR6.

What a great day! I am starting to find my feet and get more comfortable with how the ship works, getting to know the science team, and learning more about the actual coral. I haven’t been sea sick, which seems pretty remarkable to me considering my past history with boats! The sun has been shining and the water is clear and reasonably warm at around 30 oC.

Even though the water may sound warm, I am still wearing my wetsuit, much to the amusement of some of the other divers who are complaining that they are too warm in the shorty wetsuits (only to the knee and elbow). I classify myself as part of the “wimp divers” association. I was quite content and comfortable in my 3mm, full body wetsuit and had hours of enjoyment snorkeling around. However, wearing a full wetsuit does let you forget that there are some parts of your body that still get exposed to sunlight. The tops of my hands are bright red and are nicely sunburned from being in the water most of the day with no sunscreen on them! Oh well, I’ll remember next time.

“Did You Know” 

Being a novice at coral identification, Blade Fire coral (Millepora complanta) looks similar to Fused Staghorn coral (Acropora prolifera). However, they are actually very different. Fire coral is a hydroid and is in fact more closely related to the Portuguese Man ‘O’ War than other classes of coral! Hydrozoans usually consist of small colonies of polyps that are packed with stinging cells called nematocysts on the tentacles of the polyps. Watch out though, it can give you a very nasty sting and rash!

For more information: http://www.reef.edu.au/asp_pages/secb.asp?FormNo=18 

“Animals Seen Today” 

Long-spined Urchin (Diadema antillarum) and Boulder star coral (Montastraea annularis)
Long-spined Urchin (Diadema antillarum) and Boulder star coral (Montastraea annularis)

The variety of marine wildlife observed was much greater today than previous dives. The dive sites were much shallower, which meant that as a snorkeler I could really observe much more and in more detail. At only eight to ten feet in depth and with good visibility, this made for a great and interesting dive. One of the science team commented that it was good to observe these echinoderms in the coral reefs. They eat algae that can negatively compete with the coral. So there presence is excellent news for the coral.

Clare Wagstaff, September 11, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Key West
Date: Saturday, September 11, 2009 (Day 1)

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (12 noon) 
Weather: Overcast early am and sunny pm
Visibility (nautical miles):  10
Wind Speed (knots):  2
Wave Height (feet): <1
Sea Water Temp (0C): 30.4
Air Temp (0C): 27.5

Science and Technology Log 

“The first few days are always a settling in period,” commented one of the scientists this morning. It seems as if there is so much to do and already there may not be enough time!  The majority of the science crew and I arrived yesterday afternoon into the warm and sunny Key West. A pleasant change to the cold, Autumnal weather I had been experiencing in Buffalo, NY. We boarded our new home for eight days, the NOAA ship Nancy Foster. The objective of the eight-day research cruise is to survey multiple preselected coral reef sites and study the coral for its condition and the presence of disease. The assessment of each dive site will be done by a group of NOAA qualified SCUBA divers who are also trained scientists, mainly marine biologists. This study has been performed for the last 13 years and has so far amassed a large quantity of data that has produced technical memorandums, peer review papers, and an EPA (Environmental Protection Agency) publication based on the data from cruises 1997 through to 2002 cruises.

I have been kindly invited along as a Teacher At Sea to witness the science team in action and serve as part of the project’s outreach messaging service. The objective is to give the general public a broader understanding of the cruise’s mission.

The science team on board the Nancy Foster is made up of the following people:

Scott Donahue – Chief Scientist NOAA’s Florida Keys National Marine Sanctuary Interesting Fact: Scott’s main inspiration to study lobsters early on in his academic research, was partially based on the fact that he loves to eat them! Scott commented that there are always a few lobsters leftover after a study, but that they never go to waste!

Geoff Cook – Co-Principal Investigator George Mason University, Virginia. Interesting fact: Geoff is currently writing his dissertation for his Ph.D. on comparing bacterial communities associated with diseased and apparently healthy corals.

Lauri MacLaughlin – Co-Principal Investigator NOAA’s Florida Keys National Marine Sanctuary Interesting Fact: Lauri has close to 2,000 dives logged and has personally mapped the majority of the coral reef sites this cruise is studying. She has a special rapport with the ocean and corals, knowing individual coral heads and jokingly referring to them as her “babies!”

Josh Voss, Ph.D. – Co-Principal Investigator Robertson Coral Reef Program 

Lonny Anderson – Survey Team Member NOAA’s Florida Keys National Marine Sanctuary, Florida. Interesting Fact: Lonny used to help his parents with their commercial spear fishing business, catching grouper and red snapper off Daytona Beach. Now Lonny is working to protect the things he used to kill!

Paul Chetirkin – Videographer Monterey Bay National Marine Sanctuary 

Mike Henley – Survey Team Member Smithsonian’s National Zoological Park, Washington D.C. Interesting Fact: Mike is interested in all invertebrates and will happily skip the panda bear exhibit at the zoo in preference to watching the cutle fish!

George Garrett – Survey Team Member City of Marathon 

Sarah Fangman – Cruise Dive Master and Survey Team Member NOAA’s Gray’s Reef National Marine Sanctuary 

Interesting Fact: Originally from Minnesota, as a young child Sarah went to the Grand Cayman on vacation. She became so captivated with the underwater life there that even when she got extremely sunburned she still wanted to snorkel and was only allowed to fully clothed! Sarah has also ventured 10,000 ft down in the submersible ALVIN in the Gulf of Mexico.

Kathy Morrow – Survey Team Member Auburn University, Alabama. Interesting Fact: Kathy is actually studying coral “snot” as part of her Ph.D. program. Strangely enough, she is extremely passionate about it and has had a great interest in marine biology since she went to Sea Camp in 6th grade!

Cory Walter – Survey Team Member Mote Marine Laboratory’s Tropical Research Lab, Florida. 

Day one begins with a 7am breakfast followed by a gear check and a brief meeting with the science team. The ships Operations Officer and Chief Scientist go over the day’s dive plan. The objective today is to ensure that all the divers are identifying the correct species of coral, correctly estimating their size, and identify any coral disease present.

The dive teams quickly collected all the necessary dive gear and prepared to board two small boats borrowed from the Florida Keys National Marine Sanctuary. These take us from the Nancy Foster to the shallower dive sites. The first location today is set within the Florida Keys Marine Sanctuary and is located near to one of the 5 lighthouses in the area that mark the shallow reefs. Certain areas have been marked off with buoys that signal a “No Take Zone”, where extractive activities are not allowed (e.g. fishing, collecting coral, catching lobsters).

Each of the dive sites that we will be surveying has a unique name. The sites to be surveyed were originally randomly generated by a computer program when the research first began in 1997. The first dive site we visit today is called Sand Key Reef also referred to as SK01. This is the location for QA/QC dive survey, which stands for quality assurance/quality control. The objective is for each diver to assess the same area of coral and identify each species over 10cm in diameter (except Agarica (all species) and Dichocoenia stokesii which are measured if they are over 5cm). This site is always used to establish a baseline in identification. Inter and intra quality assurance takes place, checking not only each diver against each other, but also against themselves by each diver repeating the surveying process of surveying this site twice.

Where are we? 

A map of the Florida Keys National Marine Sanctuary
A map of the Florida Keys National Marine Sanctuary

The Florida Keys is a chain of islands at the southern most tip of Florida. About 100,000 years ago the area was under the waters of the Atlantic Ocean and existed as a string of living coral reefs at the edge of the continental shelf. The sea level was 25 feet higher then than today. As the last glacier period (the Wisconsin) began, the ocean receded and the sea level dropped, exposing the coral reefs. The combination of various environmental factors killed the coral, but left bedrock of limestone exposed as land. As the climate and sea level changed over the preceding years, the lower elevation limestone has partially resubmerged and allowed living corals to attach and grow again, forming a new coral reef “highway”, 4 to 5 mile offshore. The science team will be surveying coral reef sites inside the Florida Keys National Marine Sanctuary and Dry Tortugas National Park.

Staghorn Coral (Acropora cervicornis), in the same family as the Elkhorn (Acropora palmata)
Staghorn Coral (Acropora cervicornis), in the same family as the Elkhorn (Acropora palmata)

On the third dive site for the day, Lauri MacLaughlin pointed out multiple Elkhorn Corals (Acropora palmata) whose appearance is just as its name suggests! Lauri noted that these were relatively young corals, perhaps just a few years old due to their size. She also stated that they had reproduced through sexual reproduction because there was no fragmentation of their flattened branches, which would happen in asexual reproduction. This coral is on the United States Endangered Species list and classified as threatened.

Because we departed early this morning on board the sanctuary boats, the science team missed the safety drills that are performed within 24 hours of each ship departing port. Instead the Operations Officer, Abigail Higgins gave us a run down of the safety procedures. We were also required to try on our survival emersion suits.

Personal Log 

The science team and Teacher at Sea, Clare Wagstaff (right) in their survival suits
The science team and Teacher at Sea, Clare Wagstaff in their survival suits

Well here I am at last! My second attempt at being a NOAA Teacher At Sea! In May of 2008 I was on board the JOHN COBB studying harbor seals when the engine crankshaft broke just a few days into the mission. The JOHN COBB was not only the smallest, but also the oldest ship in NOAA’s fleet. With a crew of just eight, everyone knew each other well and lived in very close proximity. However, the NANCY FOSTER is very different. At 187ft in length it is nearly doubles the size of the JOHN COBB. In fact, the NANCY FOSTER has it beaten on almost all fronts regarding scale. Built originally as a Navy yard torpedo test (YTT) craft, she was outfitted in 2001, to conduct a variety of oceanic studies along the U.S. Atlantic and Gulf coasts and within the Caribbean Sea. It is crewed by 21 people and can accommodate 15 scientists. It seems quite strange to be at sea again on a NOAA ship, but in such very different circumstances. I keep comparing it to the JOHN COBB and I still feel a little sad that I was on the JOHN COBB’s last mission before it was decommissioned.

I am sharing the smallest room with one of the ships crew, Jody Edmond.  Jody is a Mate in Training. It is a simple, yet comfortable room, with two bunks, a small wardrobe, a desk and a sink. However, for two people to both standup in the same space let a lone get dressed or brush your teeth, it is very difficult due to the cramped conditions! Jody is living on the boat full time and so has a lot more “stuff” than I, so I am trying very hard not to take up too much room. Because the ship needs to be constantly manned 24 hours a day, the crew on the bridge is on a shift system working 12-4 (am and pm), 4-8 (am and pm), or 8-12 (am and pm). Some of the crew even work a schedule of 12 hours on and then 12 hours off, a pretty long day! Jody is on the 12-4 shift, which means during the majority of the time I am a wake she is sleeping. This isn’t uncommon so everyone on the ship has to be respectful of the noise level and keep relatively quiet during all hours of the day near the sleeping berth areas.

One of the many barracuda that would circle around snorkelers
One of the many barracuda that would circle around snorkelers

Unfortunately, although I am a qualified NAUI (National Association of Underwater Instructors) scuba diver, I am not certified by NOAA (National Oceanic and Atmospheric Administration) to dive. This means that during the dives I will only be able to snorkel and so I must watch from above what the scientists are doing below. I thought this would lead to some frustration on my part, as I would love to be working side by side with the science team 30 feet below the surface.

However, while the divers survey the area, I snorkel around on the surface watching them. I am not alone though! I am surrounded by moon jellyfish and one rather large barracuda that seemed to take quite a liking to me. I am very careful to avoid swimming into the jellyfish, which can cause a nasty sting and keep my hands close to my body incase the barracuda thinks my fingers might be dinner!

“New Term/Phrase/Word” Hyperplasia – is a general term referring to the proliferation of cells within an organ or tissue beyond that which is ordinarily seen. This can be seen in coral species such as symmetrical brain coral (Diploria strigosa). Geoff Cook described this as a coral looking like Arnold Schwarzenegger or a coral having Botox!

A brain coral
A brain coral

Coral Mucus or “coral snot”– secreted by the coral. When too much dirt (sediment) collects on the sticky mucus layer, the coral sloughs it off and makes a new one, acting as a replaceable defense mechanism. Some corals also use it to catch food and it is loaded with microbes, not unlike our skin.

“Who are they?”

Florida Keys National Marine Sanctuary 
Established in 1990 it was done so to protect a spectacular marine ecosystem. It encompasses 2,800 square miles. It is the only sanctuary that completely surrounds a community, that of all the Florida Keys.

NOAA 
National Oceanic and Atmospheric Administration Formed in 1970, it is a Federal agency focused on the conditions of the oceans and the atmosphere. It encompasses, daily weather forecasts, severe storm warnings and climate monitoring to fisheries management, coastal restoration and supporting marine commerce.

 “Did You Know?” Key West got its name after the Spanish conquistadores reportedly found a beach in the southern most islands stern with the bleached bones of the Native Americans. They called the key, Cayo Hueso (pronounced KY-o WAY-so) or “Island of bones”. Bahamian settlers pronounced the Spanish name as Key West!

Flamingo Tongue on a common sea fan (Gorgonia ventalina)
Flamingo Tongue on a common sea fan (Gorgonia ventalina)

“Animals Seen Today” 

Among many different species of coral and other animals, was a personal favorite of mine Flamingo Tongues. These are a variety of snail that are predators that feed on gorgonians (sea fans). 

Turtle Haste, June 5, 2007

NOAA Teacher at Sea
Turtle Haste
Onboard NOAA Ship McArthur II
June 4 -7, 2007

Mission: CalCOFI Survey: Ecosystem Survey and Seafloor Recovery Evaluation
Geographical Area: Central CA National Marine Sanctuary
Date: June 5, 2007

The Oblique Bongo nets.
The Oblique Bongo nets.

Weather Data from Bridge 
Visibility:  6 miles
Wind Direction: Northwest
Wind Speed: 10-20 knots
Sea Wave Height: 2-4 feet
Swell Height: 3-5 feet at 10 second intervals
Surface Water Temperature: 13.96 – degrees Celsius
Air Temperature: 16.1 – degrees Celsius
Sea Level Pressure: 1017.6 millibars

Science and Technology Log 

Bongo Nets-Upon arriving at station 60-50, Kit Clark and I began the zooplankton tows with the oblique Bongo nets, also referred to as the “bongos.” The process involved is to tow the nets an oblique angle acquired by calculating the wire put out with the angle it is towed at. There is an angle measuring tool that looks like a level attached to the payout line that is monitored. Adjustments are made depending on the angle to achieve  an angle of 45 degrees +/-3 degrees for the nets to reach  an approximate depth of 200 meters. The bongo device itself has a 22 kg weight attached to the bottom of the yoke frame to cause it to sink. As the ship is traveling at 1-2 knots, a fixed amount of cable is paid out; the net is held at depth for 30 seconds and then is retrieved at a constant rate of 20 meters per minute.  Upon retrieval of the bongo, samples are hosed into the cup at the end of the net to collect as much material as possible. A volume displacement measure is acquired by subtracting the amount of water the zooplankton displaces in a 1000 milliliter cylinder.  The time to reach depth, time at depth, and retrieval time are recorded to monitor angle and depth.  

Kit Clark identifies various zooplankton caught in a Bongo net to Charlotte Hill.
Kit Clark identifies various zooplankton caught in a Bongo net to Charlotte Hill.

A tow was made at each station along the 60 survey line after the first station. The first station had too many crab pots and was too shallow to acquire a depth of 200 meters. At night, the anticipated nocturnal rising of krill occurred to present a sample dominated by krill as compared to the daytime samples of copepods.  Daylight hours also presented samples of ctenaphore tendrils that “gunked” up the net. An obvious difference between daylight and night tows was the presence of krill in greater numbers. This is expected as especially near Monterey Bay over the canyon is known for Humpback and Blue whales who stop to feed on their migration. Kit noticed that the krill out past the continental shelf and along most of our tows with the exception of the ones conducted in Monterey Canyon were not as “fat and well fed” as the ones within the canyon area itself. Krill over the canyon are in overall better condition due to a localized upwelling feature in the canyon that brings nutrient rich deep water up to increase the productivity of phytoplankton.

Kit Clark strains zooplankton from the bongo nets to evaluate the displaced volume of organisms trapped while towing.
Kit Clark strains zooplankton from the bongo nets to evaluate the displaced volume of organisms trapped while towing.

A general list of zoo plankton collected: Euphausiid (krill) and Copepods Pteropods (sea butterfly) Heteropods (Gelatinous Molluscs) Velella velella (By the Wind Sailors) a surface traveling creature Doliolids and Salps Ostracods Argyropelecus aculeatus (Hatchet fish) Atolla (deep water jelly) Cephalopods Tomopferiids Myctophild Ichthyoplankton Flashlight fish Siphonophore Radiolaria have used with students is identifying water masses in the Atlantic by physical characteristics. We use Temperature-Salinity (T-S) diagram at specific depths to identify water masses based on the density. I was hoping to collect water samples from various depths in the Pacific as well to use in the same activity. In discussions with Dr. Collins of the US Naval Post-Graduate school I learned that the Pacific is less uniquely identifiable than the Atlantic. The layered masses of the central Atlantic would not be as easily recognizable. We spent several days discussing the formation and circulation of deep waters in the Pacific in an attempt to understand the interaction between the atmosphere, chemistry, and surface current contribution to deep water mixing.  From these discussions I learned that there are actually three sources of North Atlantic Deep Water (NADW).  Furthermore, I learned that the mixing of NADW and Antarctic Bottom Water (AABW) in the Pacific created what is known as Common DeepWater (CDW) and that it is more difficult to actually identify Pacific water masses that I originally understood.

The bottles on the CTD rosette. In the foreground is the bottle containing 4380meter water at 1.518 degree water, the background contains the water from near the surface at 14.169 degrees.
The bottles on the CTD rosette. In the foreground is the bottle containing 4380 meter water at 1.518 degree water, the background contains the water from near the surface at 14.169 degrees.

The two casts were made at the farthest points from shore with the collection of water in the bottles to be used specifically for evaluation of dissolved oxygen and nutrients. Dr. Collins asked for my input to for the overall bottle collection depths to ensure that I would have a set of samples from similar depths to match the Atlantic set I use. The Pacific deep water cast bottles are from the following meter depths for the first cast: 4462, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 7500, 500, 250. The Pacific deep water cast bottles are from the following meter depths for the second cast: 4380, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 7500, 500, 250, and 14. The Atlantic deep water samples that I already have are from the following meter depths and associated water masses: 4000 (Antarctic Bottom Water), 2000 (Antarctic Intermediate Water), 1000 (North Atlantic Deep Water), 500 (Mediterranean Intermediate Water), and 100 (North Atlantic Central Surface Water).  Once the CTD was brought on deck, I noticed that the bottles containing the deepest water, although insulated showed condensation. Even though I understand that the temperature of the deep water is considerable colder than sea water at the surface, the ability to observe this drove the point home. Erich Rienecker of MBARI suggested that I feel the water around the rosette of bottles to really understand the temperature difference. This was the first time I had the opportunity to work with the CTD as I was working specifically with the Bongo nets. The bottle from 4380 meters had a temperature of 1.518 degrees Celsius and the surface bottle (14 meters) Another activity that the MBARI folks made sure that all of the science team and MCARTHUR II crew members had the opportunity to participate in was to send a decorated Styrofoam cup down in a mesh bag to “squish” it, or remove the air as a result of the pressure differential. Science team members spent quite a bit of time decorating cups. We even sent down a cup decorated with Flat Stanley. 

Charlotte Hill of the US Naval Academy prepares a cup to be sent down to -4500 meters with the CTD.
Charlotte Hill of the US Naval Academy prepares a cup to be sent down to -4500 meters with the CTD.

Zooplankton – Wikipedia has a good general description of most of the organisms listed. I found specific information as I used Google for the unique species, although some of the more specific critters were really hard to find. For further information visit: Scripps Institution of Oceanography. A census of plankton is being conducted through the Census of Marine Life.

AABW = Antarctic Bottom Water;  NADW = North Atlantic Deep Water;  AAIW = Antarctic Intermediate Water;  SACW = South Atlantic Central Water;  NACW= North Atlantic Central Water.

Water Mass – a body of water with a common formation history. “This is based on the observation that water renewal in the deep ocean is the result of water mass formation in contact with the atmosphere, spreading from the formation region without atmospheric contact, and decay through mixing with other water masses.”

Flat Stanley – A character from a story by Jeff Brown who has adventures as a result of being flattened by a bulletin board. Classes read the story, send out their versions of Stanley to friends and associated with a scrapbook to record his adventures here.

NOAA Teacher at Sea Elsa Stuber prepares a cup to be sent down to -4500 meters with the CTD.
NOAA Teacher at Sea Elsa Stuber prepares a cup to be sent down to -4500 meters with the CTD.

The CTD on the fantail of the MCARTHUR II with Styrofoam cups in the green mesh bag for the second deep cast of -4500 meters.
The CTD on the fantail of the MCARTHUR II with Styrofoam cups in the green mesh bag for the second deep cast of -4500 meters.

This is a “regular” Styrofoam 10 oz cup and the two cups that returned from 4500 meters. The far right cup has a Flat Stanley drawn on it.
This is a “regular” Styrofoam 10 oz cup and the two cups that returned from 4500 meters. The far right cup has a Flat Stanley drawn on it.

haste_log2h

Turtle Haste, June 4, 2007

NOAA Teacher at Sea
Turtle Haste
Onboard NOAA Ship McArthur II
June 4 -7, 2007

Mission: CalCOFI Survey: Ecosystem Survey and Seafloor Recovery Evaluation
Geographical Area: Central CA National Marine Sanctuary
Date: June 4, 2007

Charlotte Hill and Erich Rienecker collect water samples from a CTD cast.
Charlotte Hill and Erich Rienecker collect water samples from a CTD cast.

Weather Data from Bridge 
Visibility: 0 – fog
Cloud Cover: 100 %
Wind Direction: 280 – degrees
Wind Speed: 9 knots
Sea Wave Height: 1 foot in AM, 2 foot in PM
Swell Height: AM swells of 2-3 feet, PM mixed swells of 4-6 feet
Surface Water Temperature: 14.15 – degrees Celsius
Air Temperature: 14.16 – degrees Celsius
Sea Level Pressure: 1017.15 millibars

Science and Technology Log 

Established survey lines on this cruise have been monitored by the Monterey Bay Aquarium Research Institute or MBARI, since the early 1990 by collecting the same biological and chemical data. I was referred to http://www-mlrg.ucsd.edu/data/data.html for more details and the overview of the survey. Our particular survey lines begins outside of the Golden Gate Bridge, traveling westward  for a while, then we will perform a cast of 4500 meters then travel south to for another 4500 meter cast and turn East to finish the survey line near Monterey Bay. The survey lines are numbered in a particular pattern that will be used to identify all samples from each station. At some points we will be beyond the Territorial Seas of the United States, but within the Exclusive Economic Zone.

Kit Clark and Troy Benbow demonstrate the bowline to NOAA Teacher at Sea Elsa Stuber.
Kit Clark and Troy Benbow demonstrate the bowline to NOAA Teacher at Sea Elsa Stuber.

What is collected at each station:  A CTD measures specific properties of seawater including salinity, temperature and fluorescence as it is lowered off the stern of the ship. The CTD descends under the supervision of the CTD technician, crane operator and assisting crew member to the prescribed depth while generating real-time data in graph form through the descent. Once at depth, the technician is in radio contact with the crane operator who raises the CTD to prescribed depths where bottles are tripped to collect water samples at stated intervals. Generally the prescribed depth is 1000 meters with exceptions at the near shore stations where the depth is less than 1000 meters. Other data is collected from HyperPro Optical sensor casts, made at midday stations and Secchi disk casts made at all daytime stations following CTD casts. Oblique bongo net tows for zooplankton are made after the CTD casts at a depth of 200 meters.  As the water is collected, several chemical tests are performed, including dissolved oxygen and nutrients. Dissolved oxygen is tested from each cast using a set of chemicals that is very similar to ones I have used in fresh water chemical analysis as well as nutrients to assess the changes in sediment load. Phytoplankton samples are collected for processing and culturing. In addition, a surface observer is stationed on the flying bridge to document all marine mammals and birds that are encountered. There is an interest in cetaceans, specifically beaked whales.

Marguerite Blum models under the Bay Bridge while loading science gear.
Marguerite Blum models under the Bay Bridge while loading science gear.

Personal Log 

I found a ship’s billet on my door to tell me where to muster for fire, man overboard, and abandon ship.  I made sure to visit all the locations to ensure that I knew where to go. The “plan of the day” is posted in convenient locations by ship’s personnel and is required reading in order to know what activities and meetings, are planned. I was able to try on my “gumby” suit and heavy PFD. I identified what is now called the “Leedo Deck” reminiscent of the television show Love Boat where science team members have placed a few lawn chairs for relaxing on aft section of  deck one, near the phytoplankton incubation trays. As we depart San Francisco, we will sail out of the Golden Gate, under the Golden Gate Bridge. Although I had hoped for clear weather for the trip under the bridge, it was foggy.

Dr. Kurt Collins listening to the ball game on the “Leedo deck” off watch.
Dr. Kurt Collins listening to the ball game on the “Lido deck” off watch.

Question of the Day 

How does the collection and evaluation of phytoplankton assist with monitoring oceanic primary production and our understanding of the role the ocean plays as a global carbon sink? 

I need to read more about the total project and perform more interviews of the cooperating scientists to better answer this.

Addendum : Glossary of Terms 

An overall map of all the stations is here.

Exclusive Economic Zone – extends for 200 nautical miles (370 km) beyond the baselines of the territorial sea.

Territorial Waters or sea-an area of coastal waters that extends at most twelve nautical miles from the mean low water mark of a littoral state that is regarded as the sovereign territory of the state.

Nautical Mile – is 1852 meters.

Erich Rienecker sets up the filter system to process phytoplankton from the CTD casts.
Erich Rienecker sets up the filter system to process phytoplankton from the CTD casts.

CTD – A CTD recorder, which stands for Conductivity-Temperature-Depth recorder, measures salinity, the amount of seawater conductivity in practical salinity units. It also measures pressure recorded in decibars. Since depth and pressure are directly related, a measurement in decibars can be converted to depth in meters. Temperature is measured as well and other sensors may be placed on the device as well. The one used had an altimeter to compare to the ships depth sounder and deployed cable for an accurate measure of the depth of the device.

HyperPro Optical sensor – measures light refraction at different wavelengths through the water column as compared to the surface measurement. This device is lowered by hand to a set depth. It is a hyperspectral radiometer, recording optical data in the wavelength region between 350 and 800 nanometers.

Oblique bongo net – a set of rings (thus the name bongo as it looks like a bongo drum) designed for oblique plankton tows. The rings are connected to nets which cone into two catch devices at the ends. Bongos are towed at 200 meters , devised by allowing 300 meters of cable out and towing it at an angle of 45-degrees. Adjustments in cable length are made depending on the angle reached. 

NOAA Teacher at Sea Elsa Stuber prepares the seawater phytoplankton incubation trays.
NOAA Teacher at Sea Elsa Stuber prepares the seawater phytoplankton incubation trays.

Secchi disk – is used to measure how deep a person can see into the water. It is lowered into the ocean by unwinding the waterproof tape to which it is attached and until the observer loses sight of it. The disk is then raised until it reappears. The depth of the water where the disk vanishes and reappears is the Secchi disk reading. The depth level reading on the tape at the surface level of the ocean is recorded to the nearest foot.

Sea Level Pressure (from Wikipedia) Also referred to as Mean sea level pressure (MSLP or QFF) is the pressure at sea level or (when measured at a given elevation on land) the station pressure reduced to sea level assuming an isothermal layer at the station temperature. This is the pressure normally given in weather reports on radio, television, and newspapers or on the Internet. When barometers in the home are set to match the local weather reports, they measure pressure reduced to sea level, not the actual local atmospheric pressure.  Average sea-level pressure is 101.325 kPa (mbar) or 29.921 inches of mercury (inHg). 

Visibility – how far in front, or around the ship one can see. In this case, using the marine mammal observer’s scale, based on nautical miles.

Wind Direction- Which direction the wind is blowing FROM. 0 is north, 180 is south, 270 is west. This may also be recorded using the abbreviation of the direction in capital letters.

Sea Wave Height and Swell Height – estimates (based on an average of waves passing under buoys) the height of a wave (from crest to trough) of individual waves and larger waves.

Dissolved oxygen- the amount of oxygen that is available in the water for organisms to use for ventilation, typically referred to in parts per million, or ppm.

Phytoplankton – (from Wikipedia) are the autotrophic component of the plankton that drift in the water column. The name comes from the Greek terms, phyton or “plant” and πλαγκτος (“planktos”), meaning “wanderer” or “drifter”. Most phytoplankton are too small to be individually seen with the unaided eye. However, when present in high enough numbers, they may appear as a green discoloration of the water due to the presence of chlorophyll within their cells (although the actual color may vary with the species of phytoplankton present due to varying levels of chlorophyll or the presence of accessory pigments such as phycobiliproteins).

Zooplankton – (from Wikipedia) are the heterotrophic (or detritivorous) component of the plankton that drift in the water column of oceans, seas, and bodies of fresh water. The name is derived from the Greek terms, ζον (“zoon”) meaning “animal”, and πλαγκτος (“planktos”) meaning “wanderer” or “drifter”[1]. Many zooplankton are too small to be individually seen with the unaided eye. Zooplankton is a broad categorisation spanning a range of organism sizes that includes both small protozoans and large metazoans. It includes holoplanktonic organisms whose complete life cycle lies within the plankton, and meroplanktonic organisms that spend part of their life cycle in the plankton before graduating to either the nekton or a sessile, benthic existence. Through their consumption and processing of phytoplankton (and other food sources), zooplankton play an important role in aquatic food webs, both as a resource for consumers on higher trophic levels and as a conduit for packaging the organic material in the biological pump. 

Gumby Suit – big, plastic, orange suits that are designed to protect a person from the cold water. Made of a material similar to what scuba divers wear. The suit is thicker, more buoyant and designed to remain dry inside. Suits are very bulky and are supposed to cover the entire body except the face.

PFD – personal floatation device, lifejacket, or “puff-duh”

Flying Bridge – located on the very top and most forward deck of the ship. On the MCARTHUR II, the flying bridge is above, or on top of the bridge. All ship personnel and crew when engaging in science activities keep in contact through the bridge with radios. Radio protocol requires the location being called to be stated first, followed by the calling location. For example,” bridge, flying bridge” If one is calling the bridge from the flying bridge.

Plan of the Day – is posted throughout the ship in common locations. This bulletin informs both crew and science personnel as to ship activities, wave height and safety issues.

Miriam Sutton, June 22, 2005

NOAA Teacher at Sea
Miriam Sutton
Onboard NOAA Ship Nancy Foster
June 17 – 22, 2005

Mission: Stellwagen Bank National Marine Sanctuary Survey
Geographical Area: New England
Date: June 22, 2005

sutton_log6aWeather Data from the Bridge
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 13kts
Sea wave height: 2-3′
Swell wave height: 1′
Sea water temperature: 15.6°C
Sea level pressure: 1005mb
Cloud cover: Partly cloudy

Personal Log

I am seated on a park bench near a section of seawall adjacent to the NOAA dock in Woods Hole, MA. The NANCY FOSTER is secured to her moorings and the crew is working to prepare her for the next research cruise. As I gaze across the dock at my home for the past week, I am in awe at the opportunity NOAA provided me through the Teacher at Sea program. What a marvelous experience and one that I will not soon forget. I am extremely grateful to NOAA for providing me with a research experience that will help me with science curriculum design and the development of activities and lessons to assist my students in gaining a deeper understanding of the technologies used in the ocean exploration. I am also thankful that the NOAA scientists allowed me to take such an active role in their research. They were most helpful in teaching me the logistics of remote sensing technologies and also provided some terrific teaching ideas to help middle school students grasp such an evasive concept.

In all honesty, I was not ready to disembark the NANCY FOSTER this morning. I truly loved the experience of living at sea and conducting research for NOAA scientists. During my adventure, I never felt like an outsider. The NOAA corps, crew, and scientists allowed me to settle in quickly and become a part of their research team. I am forever grateful for their hospitality. NOAA’s Teacher at Sea program has been a wonderful experience that I would highly recommend!

Miriam Sutton, June 21, 2005

NOAA Teacher at Sea
Miriam Sutton
Onboard NOAA Ship Nancy Foster
June 17 – 22, 2005

Mission: Stellwagen Bank National Marine Sanctuary Survey
Geographical Area: New England
Date: June 21, 2005

Removing fishing gear
Removing fishing gear

Weather Data from the Bridge
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 13kts
Sea wave height: 2-3′
Swell wave height: 1′
Sea water temperature: 15.6°C
Sea level pressure: 1005mb
Cloud cover: Partly cloudy

Science and Technology Log

Today was our last day of remote sensing along Stellwagen Bank and everyone was hoping that our towfish would find something along the seafloor. By our second run of the day, our towfish successfully located “something” along the seafloor but it wasn’t quite what we had in mind. As Chief Scientist, Matt Lawrence watched the cable length read out begin to climb shallower and shallower, he realized our towfish had captured some fishing gear. The towing operations were stopped, the ship reversed course and we retrieved the towfish so we could remove the line of fishing gear that had wrapped around the towing shaft. Once removed, the sensor was re-deployed and maritime archeology research continued.

Side scan display
Side scan display

The fishing gear must have been synonymous to a lucky horseshoe because we began locating several possible wrecks shortly after freeing the sensor from the gear. In actuality, it is the fishing gear used by local fishermen that gives the scientists a starting point for their searches. Local fishermen keep logs of “Hang” areas they try to avoid so as not to get their fishing gear caught up in the debris. Fishermen share their “Hang” logs with the scientists who can then use the fishermen’s data to set up remote sensing search areas and transect lines. Fishermen have years of experience from fishing local waters and have become a valuable resource of information for the scientists to use in their quest to preserve the maritime heritage of the Stellwagen Bank National Marine Sanctuary.

Miriam Sutton, June 20, 2005

NOAA Teacher at Sea
Miriam Sutton
Onboard NOAA Ship Nancy Foster
June 17 – 22, 2005

Mission: Stellwagen Bank National Marine Sanctuary Survey
Geographical Area: New England
Date: June 20, 2005

Chief Steward Jesse
Chief Steward Jesse

Weather Data from the Bridge
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 13kts
Sea wave height: 2-3′
Swell wave height: 1′
Sea water temperature: 15.6°C
Sea level pressure: 1005mb
Cloud cover: Partly cloudy

Science and Technology Log

More Transect lines were the plan for the day and we placed the fish in the water before 0700 for our first run at “mowing the lawn” along Stellwagen Bank. We ran 15 more Transect lines today, continuing our search for ancient maritime artifacts. We were blessed with a gorgeous day on the ocean and no logistical problems with the equipment. I began conducting interviews with the crew and scientists while continuing to assist the scientists with various remote sensing duties throughout the day.

I created an interview database and began interviewing various members of the NOAA Corps, crew, and scientists, starting with one of the most important members of the NOAA crew: Chief Steward – Jesse.

Jesse was born in Florida and told me his main job responsibility is to “keep everybody happy.” Officially, Jesse is in charge of the ship’s sanitation, food menus and food preparation. Prior to joining NOAA four years ago, Jesse worked as a Cook for the US Navy for 20 years. Jesse loves his job and being able to travel to different places but often misses his wife and 5 kids while he is away at sea. His favorite subject in school was Civil War History. He got his start in cooking as a baker during high school. When asked what lessons from life have helped him the most in his career, Jesse said, “Responsibility.”

I also asked each interviewee to describe the most unusual (e.g., funny, scary, weird) occurrence that happened to them while at sea. I am composing a Top Ten list that I will share at a later posting.

Miriam Sutton, June 19, 2005

NOAA Teacher at Sea
Miriam Sutton
Onboard NOAA Ship Nancy Foster
June 17 – 22, 2005

Mission: Stellwagen Bank National Marine Sanctuary Survey
Geographical Area: New England
Date: June 19, 2005

Weather Data from the Bridge
Wind direction: 266°
Wind speed: <10kts
Sea wave height: 2′
Swell wave height: 2′
Sea water temperature: 14.4°C
Sea level pressure: 1022.4mb
Cloud cover: Scattered clouds

Science and Technology Log

After an overnight anchoring along the shores of Scituate, the NANCY FOSTER headed further offshore for another day of scanning the seafloor for ancient maritime artifacts. The sensing equipment was deployed over the Stellwagen Bank region by 0800 and we collected data until dusk.

As a southern girl who was raised in the tobacco fields of eastern North Carolina, I found today’s repetitive scanning quite similar to working on a tobacco harvester as it was being driven along row after row of tobacco. The diagram below will give you some idea of my Day 3 on the Sea! The NOAA crew refers to this type of repetitive scanning as “mowing the lawn.”

We covered 13 transect lines today, each taking about 30 minutes to cover. The side scan sonar ran beautifully all day without interference. The magnetometer was also working well but the data being fed from the 2 towfishes was not synchronizing when it arrived to the computer. The decision was made to disconnect the magnetometer and run the side scan sonar alone for most of the day.

I took sometime to look over the Stellwagen Bank National Marine Sanctuary information the Scientist Deborah Marx shared with me. I recommend that you follow this website to learn more about this remarkable area of the New England coast: http://www.stellwagen.noaa.gov.

Miriam Sutton, June 18, 2005

NOAA Teacher at Sea
Miriam Sutton
Onboard NOAA Ship Nancy Foster
June 17 – 22, 2005

Mission: Stellwagen Bank National Marine Sanctuary Survey
Geographical Area: New England
Date: June 18, 2005

Working on the winch
Working on the winch

Weather Data from the Bridge
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 13kts
Sea wave height: 2-3′
Swell wave height: 1′
Sea water temperature: 15.6°C
Sea level pressure: 1005mb
Cloud cover: Partly cloudy

Science and Technology Log

We awoke this morning in a heavy layer of fog which has taken most of the day to burn off into an overcast sky. While the low visibility posed additional caution to the ship’s crew, the scientists continued to scan the seafloor in search of maritime heritage resources (shipwrecks). Four sites were investigated today….

Today progressed with many more challenges in the logistics surrounding the deployment and data collection of the sensors compared to our first day of remote sensing. The first struggles began while at the first location when the cables became unplugged during deployment… twice. After a quick assessment of the problem, the scientists decided to make adjustments to the cabling device to reduce the tension and maintain the connection between the couplings on the sensor cable. Once the signal was back online, we continued searching two sites before lunch. During our lunch break, NOAA engineers began to work on ways of reducing electrical interference between the remote sensing equipment and the ship’s engines. After talking with the scientists and NOAA crew, I learned that the NANCY FOSTER is propelled by a main engine and two Z drives. Z drives are like thrusters that assist the ship in maneuvering, especially at slow speeds. Here is a brief rundown of the conflict between the engines and the sensing equipment:

  • The sensing equipment needs to be towed at a slow and steady speed of about 4 knots.
  • NOAA’s crew can maintain this speed in calm seas with little current using the main engine only.
  • As seas pick up or current increases, the NANCY FOSTER gets a bit squirrelly and can slide off course from the predetermined transect line. Using the Z drives allows the NANCY FOSTER to run a steadier course.
  • The electromagnetic field generated by the ship’s Z drive creates interference with the remote sensing equipment, especially the side scan sonar.
  • NOAA engineers are onboard and have been experimenting to find a happy medium so that the Z drives can be used for better tracking but will not interfere with the remote sensing signals.

Safety first!
Safety first!

After several trials, the issue was resolved and the NANCY FOSTER is tracking smoothly along the Stellwagen Bank National Marine Sanctuary while the side scan sonar and the magnetometer are searching away for more seafloor anomalies.  I am truly amazed at the teamwork between the scientists and NOAA’s crew. From a teacher’s perspective, I see a group of people who are willing to do anything possible to help a group of scientists complete their investigation. I also see a group of scientists who are most appreciative of the overwhelming effort exhibited by the crew and willing to share various aspects of their research that the crew finds interesting. This cooperative environment generates an atmosphere of respect and camaraderie that is conducive to individuals sharing their individual talents in a collaborative effort toward the success of the entire group on board the NANCY FOSTER. What a pleasant setting to be a part of during my first adventure at sea.

Miriam Sutton, June 17, 2005

NOAA Teacher at Sea
Miriam Sutton
Onboard NOAA Ship Nancy Foster
June 17 – 22, 2005

Mission: Stellwagen Bank National Marine Sanctuary Survey
Geographical Area: New England
Date: June 17, 2005

Weather Data from the Bridge
Visibility: 10 nautical miles (nm)
Wind direction: 200°
Wind speed: 13kts
Sea wave height: 2-3′
Swell wave height: 1′
Sea water temperature: 15.6°C
Sea level pressure: 1005mb
Cloud cover: Partly cloudy

Science and Technology Log

I am onboard NOAA’s R/V NANCY FOSTER and am heading toward the Stellwagen Bank National Marine Sanctuary. This sanctuary is located off the east coast of New England between Cape Ann and Cape Cod, Massachusetts. I will be exploring this area with a group of NOAA and National Marine Sanctuary (NMS) scientists as they search for various anomalies located along the seafloor. “Anomaly” is the term used to describe artifacts or other materials that do not follow the normal pattern of the seafloor topography or geology. My Teacher at Sea assignment with the NANCY FOSTER will allow me to observe and assist the scientists using remote sensing equipment to detect these anomalies.

Today, we traveled from Woods Hole, MA through the Cape Cod Canal on our way to Stellwagen Bank where we began our search for seafloor anomalies. Transect lines are coordinates determined by the Chief Scientists, Matthew Lawrence, and are provided to the ship’s captain for steering our course to the correct location. Two different remote sensing instruments were used in our first set of transect lines: the side scan sonar uses sound waves to record images along the seafloor and the magnetometer detects electromagnetic fields that might be emitted by the anomalies. As the plotted site is reached, the ship’s engines are slowed and the “towfishes” are lowered off the stern of the boat using a cable and winch system. (See photos A, B, and C) The goal of our first search was to try and locate a NOAA data collector buoy and anchoring wheel that failed to surface when NOAA sent a radio signal for the buoy to release from its mooring. The buoy was used to collect data on cod fish that were tagged to determine their general range within the sanctuary. The data would let scientists know if these cod used the sanctuary as a habitat or if the fish were just passing through. After several passes, or transect lines, we were unable to locate any significant anomalies that might have indicated the location of the wheeled mooring and the buoy. The remote sensing equipment was brought to the surface and stored away for the night. Our ship is now heading closer toward shore to anchor overnight.