The survey technician team collects data on the bathymetric seafloor using a precise timing and ranging system. Multibeam echosounders emit different frequencies to capture different particles in the water (fish, plankton, gases like oxygen), as well as the bathymetry of the seafloor (basically, what the bottom of the floor is made up of.) This will then provide a 3-D picture of the seafloor. A larger version of this, called Kongsberg ME70, was used during the Deepwater Horizon Spill tracking the oil and methane gas. Often, sea floor mapping occurs at night in designated locations.
Seafloor mapped during this leg
Vocabulary Check
What is Bathymetry?
Bathymetry is the study of underwater depths of lakes, rivers, or oceans.
What is Sonar?
Sonar (SOund NAvigation and Ranging) is used to not only measure the water’s depth but to also detect objects underwater. This is done by emitting sound pulses under water and measuring their return after being reflected.
Sophie Caradine-Taber, Survey Technician
Sophie got her degree in biology and environmental studies. She got her start at the National Marine Fisheries Service working for NOAA on a hydrographic survey vessel on the Bering Sea in Alaska for four and half years. Her job on Pisces is part of the survey technician team that does seafloor mapping.
Makailyn Hernandez
Makailyn is on Pisces collecting Environmental DNA (eDNA) for the University of West Florida’s lab under Dr. Alexis Janosik. Makailyn graduated from UWF with a degree in marine biology, and worked as a research technician under Dr. Janosik. She has volunteered for numerous career opportunities, including this trip and sea turtle monitoring. Her goal is to attend graduate school and get a job as a researcher in either lab or field work.
ENS Grace Owen, Junior Officer
Grace is a Junior Officer for NOAA Corps. She is from North Carolina, and didn’t originally start her path on the ocean, but towards the mountains. She went to college in Colorado and worked as a climbing guide. She felt like she needed to do something more, and began looking at the Coast Guard. This is when she discovered the NOAA Corps and she felt like it aligned more with her values. Grace learned that she didn’t have enough STEM credits to join NOAA, so she moved to Florida to attend the University of Miami and got her graduate degree in exploration science. Training for the NOAA Corps takes around 5 months at the Coast Guard Academy. Once training is completed officers can then go to driving and navigating vessels for NOAA. Grace also has her pilots license and her next goal is to attend NOAA flight school with the future hopes to fly for the NOAA Hurricane Hunters. She even says there is a hurricane name in rotation named “Grace” that has yet to be used, and that would be super neat if she was the one who helped find it.
ENS Heather Gaughan, Junior Officer
Marina Rowen, Survey Technician
Student Questions of the Day
Jonathan asks: Have you ever found a sunken ship in the ocean?
Sophie works with sea floor mapping, and last year NOAA’s hydrographic ship on Lake Erie found 5 shipwrecks.
Anabelle asks: What is daily life like on the ship?
Sophie calls each ship she is on home, because she spends most of the year on them. She works the 12am-12pm shift 7 days a week. She tries to stay in touch with family, and reads a lot of books on her down time while on the ship. If they port between legs for the weekend she tries to make sure she takes time for herself.
Levi asks: How many years did it take to be able to drive a ship?
Grace states that the NOAA Corps training is 5 months, but once you’re on a ship that is when the real training takes place. Officers will do 2 years on a ship and then usually 3 years off on land assignments.
Ethan asks: What challenges are there when driving the ship?
Grace states that part of the challenges of driving the large ships are learning the physics and maneuvering of the vessel. NOAA is also mostly male dominated, but she feels confident in what she does and it has been an easy fit for her.
Personal Blog
I am enjoying learning all the different backgrounds of everyone on this ship. Even though it is predominately men, I am impressed with the determination that the four women of the crew have. Myself and Makailyn are guests aboard Pisces, but it was nice to see how the women fit in on the ship and are respected. Everyone on board continues asking how I am doing, and making sure I am learning as much as I can. Chief Survey Technician Todd Walsh even spent days building up an extravagant event by having me deploy an Expendable Bathythermograph Sensor (XBT). Todd had convinced me that it was going to be like an “explosion” when it went off, and I was in charge of it. He even gave me a training pamphlet that I studied, and he had me convinced that I must be crazy to agree to do this but I am here for the experience… right? Little did I know that the entire ship was in on the joke. After all the hype of how things could go dangerously wrong, training on how it could backfire, and the special safety attire the day of; the device literally just dropped into the ocean falling out of the holder. Todd… I will get you back!
Several on the ship are looking forward to the end of leg 3 to have a few days off before they are back at it to finish the last leg of this mission. Today I heard the countdown, “2 days and a wake up”. The crew spends so much time out here they look forward to a few days off the ship and a chance to see family. The current scientists will go back to their land jobs after this leg and new scientists will finish the last leg of this mission. Today was by far the prettiest day we have had yet. The ocean has finally calmed down and the Sun is shining bright. This evening it was as if the ocean came alive. We saw whales, dolphins, mahi-mahi, a shark and a trigger fish. I was able to do some laundry on the boat which was great because I tried to pack as light as possible so that I didn’t have to check in luggage at the airport. I am trying to do a little grading when I get a chance. There will only be 10 days left of school when I return. I have missed the students and have really enjoyed reading the letters they wrote me to bring along. Below, you will see a drawing that a student did for me to give to the ship. It is amazing and she is so talented!
Training for deploying the XBT
Chief Survey Technician, Todd Walsh and myself after finding out the “joke’s on me.” The XBT just fell in the water with no explosions.
Student Drawing
Macon R-1 Middle School student Pandora’s drawing of NOAA Ship Pisces
“Head” (bathroom) in our stateroomLaundry room
Shark on starboard side of ship
Finally, I got a picture of Scientist, Joseph “Joey” Salisbury. Joey tried to avoid the camera most of the mission. He agreed to at least let me tag him in a picture.
Future Weather Forecast: Showers likely and 70% possibility of afternoon thunderstorms
Science and Technology Log – and a Little History
Shipwrecks & Sonar
Lake Erie has an astonishing 2,000-plus shipwrecks which is among the highest concentration of shipwrecks in the world. Nobody knows the exact number of shipwrecks that have occurred in Lake Erie, but estimates range from 500 to 2000. Only about 400 of Lake Erie’s wrecks have ever been found. There are schooners, freighters, steamships, tugs and fishing boats among them.
So why does Lake Erie have more known shipwrecks per square foot than most any other body of water – with the possible exception of the English Channel? At its deepest point, Lake Erie is only 210 feet. Its shallowness is one of the reasons so many ships have sunk.
The red dots on the map above show known shipwrecks off the coast of Presque Isle.
Hydrographers have found their share of ships over the years! I am unable to identify where, however, the TJ found a shipwreck recently. The following shows various multibeam echo sonar images of items found on the seafloor. Not all have been found in Lake Erie. 😊
This four-masted schooner was found by NOAA using multibeam echo sounder technology.
Multibeam data collected on a submerged wreck near Kodiak, Alaska.
Multibeam data collected on an underwater wreck found in the Gulf of Mexico
Reason 7123 wreck off Northpoint, NY
Crane
Small wreck found using multibeam sonar.
Bird’s eye view of a barge
Same barge as previous picture from a different angle
Side scan sonar is a specialized sonar system for searching and detecting objects on the seafloor. Like other sonars, a side scan sends out sound energy and analyzes the return signal (echo) that bounced off the seafloor or other objects. Side scan sonar typically consists of three basic components: a towfish, a transmission cable and the topside processing unit. In a side scan the energy that is sent out is in the shape of a fan. This fan of energy sweeps the seafloor from directly under the towfish to either side. The width of the fan is about the length of a football field.
Side Scan Scan (SSS) and Multibeam Echo Sonars (MBES) are often used simultaneously. Thomas Jefferson did not use a SSS while I was aboard due to the depth of water we were surveying.
The strength of the return echo is recorded creating a “picture” of the ocean bottom. For example, objects or features that stick out from the seafloor create a strong return (creating a light area) and shadows from these objects create little or no return signal (creating a dark area).
This diagram illustrates how SSS technology produces images and acoustic shadows of objects.
Side Scan Sonar pictures help find and identify features on the seafloor, like this underwater wreck.
U-boat
A whale! The red line is where the seafloor meets the water column, the white image of the whale is the acoustic shadow of the whale on the seafloor, and the dark blob above the shadow is the whale as it swam underneath the sonar. (This was most definitely NOT taken in Lake Erie!)
NOAA hydrographic survey units use side scan sonar systems to help find and identify objects. The shape of the seafloor and objects can be seen well with a side scan sonar. This technology, however, does not give scientists information with respect to how deep the object is. That is why the side scan sonar is often used along with the multibeam echo sonar.
Comparison of side scan (black and white) and multibeam sonar (colorful) images of the same shipwreck surveyed by NOAA Ship Rude using different methods and different kinds of equipment.
NOAA Ship Thomas Jefferson field work is focused in the Great Lakes for the 2022 field season. Thomas Jefferson’s hydrographers are surveying the floor of Lake Erie in the vicinity of Cleveland, South Bass Island and Presque Isle, PA. They are identifying hazards and changes to the lake floor and will provide this data to update NOAA’s nautical charts to make it safe for maritime travel.
So why did NOAA decide to focus on this part of Lake Erie? “The Port of Cleveland is one of the largest ports on the Great Lakes and ranks within the top 50 ports in the United States. Roughly 13 million tons of cargo are transported through Cleveland Harbor each year supporting 20,000 jobs and $3.5 billion in annual economic activity.” The Office of Coast Survey continues to explain that “most of this area has not been surveyed since the 1940’s, and experiences significant vessel traffic.”
Hydrographic survey work completed in the vicinity of South Bass Island prior to me coming aboard Thomas Jefferson.
A Little Bit of History – Have you ever been to Put-in-Bay, South Bass Island?
Our National Anthem, a naval officer with the middle name “Hazard”, the War of 1812, and Lake Erie have connections.
So, what does all of this have to do with Lake Erie? In 1812, America found itself at war with Britain. They were at war for three reasons: 1) The British were trying to limit U.S. trade, 2) they were also capturing American seamen and making them fight for the British (this is called impressment), and 3) they did not like the fact that America wanted to expand its territory. Both the British and the Americans were anxious to gain control of Lake Erie. Late in the summer of 1813, American troops were moved into Put-in-Bay on South Bass Island, Lake Erie. They hoped to cut off the supply routes to the British forts.
On the morning of September 10, 1813, British naval forces attacked. Commander Oliver Hazard Perry was on his flagship (a flagship is the ship that carries the commanding officer), the USS Lawrence. (Isn’t “Hazard” a great middle name for someone in the Navy!) He directed his fleet into the battle, but because of light winds, the sailing ships were slow to get into a position where they could fight. His ship suffered heavy casualties. Perry’s second flagship, the USS Niagara, was slow to come into range to help. Four-fifths of Perry’s crew were killed or wounded. He made the decision to surrender his ship, the USS Lawrence, and move his remaining crew and battle flag to the USS Niagara. He was rowed half a mile under heavy fire, bearing his now-famous blue and white battle pennant with the words “Don’t Give Up the Ship.”
Perry’s Battle Pennant
Oliver Hazard Perry is rowed across Lake Erie to take command of the USS Niagara, escaping his damaged ship, the USS Lawrence. (Painting by Edward Percy Moran)
Portrait of Oliver Hazard Perry
(Painting done by Jane Stuart)
The British thought Perry and the rest of the American fleet would retreat after the surrender of the USS Lawrence. Perry, however, decided to rejoin the battle. At 3:00 pm, the British fleet surrendered, marking the first time in history that an entire British naval squadron had surrendered to an American vessel. Huzzah!! Huzzah!!
Perry wrote to General William Henry Harrison (who eventually became the 9th President of the United States):
Dear General:
We have met the enemy and they are ours. Two ships, two brigs, one schooner and one sloop.
Yours with great respect and esteem, O.H. Perry
A great victory against the British
Oliver Hazard Perry was awarded the Congressional Gold Medal in 1814 for his actions in the Battle of Lake Erie and the War of 1812. You can visit Perry’s Victory and International Peace Memorial on South Bass Island, Lake Erie.
Perry’s Victory and International Peace Memorial
Perry’s Victory and International Peace Memorial
“Perry’s Victory and International Peace Memorial commemorates the Battle of Lake Erie that took place near Ohio’s South Bass Island, in which Commodore Oliver Hazard Perry led a fleet to victory in one of the most decisive naval battles to occur in the War of 1812.” (Wikipedia)
This video gives you a nice overview of the War of 1812:
Oh, so you might be wondering what all of this has to do with our National Anthem? The poem that eventually became our National Anthem was written during the War of 1812. It was written in 1814 by a young lawyer named Francis Scott Key during the battle of Fort McHenry.
Watch this video for information about Mr. Key and our National Anthem:
The History of the “Star-Spangled Banner”
The National Anthem of the United States of America
Did you know that our National Anthem actually has four verses, but most of us only know the first one? Look it up!
I’ve been part of the mission leg that is surveying off the coast of Presque Isle – as the survey around South Bass Island had been completed prior to me coming aboard. The area around Presque Isle also has important historic roots.
Presque Isle State Park is a 3,200-acre sandy peninsula that arches into Lake Erie and is 4 miles west of Erie, PA. According to a tourist website, “As Pennsylvania’s only “seashore,” Presque Isle offers its visitors a beautiful coastline and many recreational activities, including swimming, boating, fishing, hiking, bicycling, and in-line skating.” Recorded history of Presque Isle began with the Erielhonan, a Native American tribe who gave their name to Lake Erie. Erielhonan is the Iroquoian word for “long tail”. The French first named the peninsula in the 1720s; presque-isle means peninsula or “almost an island” in French. It served as a base for Commodore Oliver Hazard Perry’s fleet in the War of 1812.
The Perry Monument on Presque Isle commemorates the U.S. naval victory on Lake Erie in the War of 1812.
In the 19th century, Presque Isle became home to several lighthouses and what later became a United States Coast Guard station. In 1921, the peninsula became a state park. The Presque Isle peninsula formed because of glaciation and is constantly being reshaped by waves and wind. Since 1967, the park has been named one of the best places in the United States for watching birds.
Aerial view of Gull Point and Presque Isle State Park from the east.
Aerial view of Presque Isle State Park from the west. The U.S. Army Corps of Engineers built 55 offshore segmented breakwaters to prevent the beach erosion at Presque Isle State Park.
The breakwaters may have helped the erosion problem but may have caused the loss of important recreational access and been environmentally detrimental to wildlife habitat. It is interesting to look at what happened to the beach because of the breakwaters.
Migration of Presque Isle from 1790 to 1971 – No wonder it is important to survey these waters!
During the War of 1812, Presque Isle played a part in the victory over the British in the Battle of Lake Erie. Oliver Hazard Perry, commander of the American fleet, made strategic use of the bay as a place to construct six of the nine ships in his fleet. The “Little Bay” near the tip of the peninsula where the ships sheltered was later named “Misery Bay” because of the hardships during the winter of 1813–1814, after the men returned there from battle. Many men suffered from smallpox and were kept in quarantine near the bay. A great many infected men died and were buried in what is now called Graveyard Pond.
Misery Bay
After the Battle of Lake Erie on September 10, 1813, Perry’s two largest ships, the USS Lawrence and USS Niagara, were badly damaged, and intentionally sunk in Misery Bay. Both ships were eventually raised. The Lawrence burned while on display at the 1876 Centennial Exposition and parts of the Niagara were eventually used to build a replica of the current Niagara, based in Presque Isle Bay.
We sailed past the USS Niagara in early July.
The British really did not appreciate Commodore Perry!
Personal Log
For the Little Dawgs . . .
Q: Where is Dewey? Hint: This controller is used to move a heavy object.
What do all those controls do, Dewey?
A: Dewey is sitting on the piece of technology that is used to control the davits. Davits are hydraulic machines that take the small boats on and off the ship.
Able Bodied Seaman (AB) Thompson uses the davit controller to lift the boats
This time-lapse video shows the crew using the davits to pick up and then redeploy one of the small boat launches. (Video taken by Physical Scientist Dan Garatea)
This time-lapse video shows the crew using the davits to pick up and then redeploy one of the small boat launches. (Video taken by Physical Scientist Dan Garatea)
Human-Interest Poll (HIP)
Miss Parker makes a lot of yummy desserts! I recently asked the crew to list their favorite.
It looks like Peach Cobbler is the crew’s favorite dessert made by Miss Parker! It is made using one of her mother’s recipes.
Meet the Crew
Hydrographic Survey Tech (HST) Sarah Thompson and my roommate, Hydrographic Senior Survey Technician (HSST) Chloe Arboleda, are fixing the Moving Vessel Profiler (MVP)
Able Bodied Seaman Evan Kinnett is a helmsman who likes to sing sea shanties and teach the ensigns about electricity by using the windows as dry erase boards.
Dan Garatea and Surafel Abebe are physical scientists (PS) who work in Silver Spring, MD for NOAA’s Office of Coast Survey (OCS) where they plan hydrographic surveys for chart updates. They research and develop the plans and instructions for NOAA ships, contractors, other governmental agencies, and other interested parties to develop hydrographic priorities. When on board during a survey, they manage and provide guidance for the surveys in the field.
PS Dan Garatea and PS Surafel Abebe enjoy another beautiful day aboard Thomas Jefferson
It is nice being home. I do, however, miss the crew aboard Thomas Jefferson. They are now back out surveying on the Lake Erie after a much needed shoreleave. I am having fun thinking about how I will use what I learned during this adventure to enrich the K-8 STEAM curriculum of the Dalton Local School District.
Allow me to provide a summary of the survey and what was accomplished on this leg. June 9, we departed from Galveston and made our way out to sea. The survey started the next day. We traveled 1,866.6 nautical miles (or 2,148.04 miles) along the continental shelf. That’s like driving from Florida to California! On this leg of the survey we (they) deployed 169 cameras, 22 CTDs, 13 bandit reels, and 12 XBTs (still don’t know what that is). We collected 15 eDNA samples (go Caroline!) and mapped 732 nautical miles. This year’s survey started in April, and this was the last leg. We’re making our way back to Pascagoula (yes, I can pronounce it now), a near 28 hour transit. We will be docking and unloading at the Gulf Marine Support Facility. The next survey on the Pisces starts next week, deploying Remote Operated Vehicles (ROVs). The science never stops, folks.
The SEAMAP Reef Fish Survey began as a fish trap survey in 1980’s and transitioned to a video survey in 1991, and the technology continues to evolve year after year. This over thirty years of data provides abundance and distribution information on Gulf of Mexico reef fish. Reef fish abundance and size data are generated directly from the videos. So though the work feels slow, it is essential. An index of abundance for each species is determined as the maximum number of a fish in the field of view in a single video frame. Here are some snippets of the footage recording during our trip.
A school of amber jacks recorded on the camera array.Marbled grouperSnappersA stunning tiger shark
*NOTE: The tiger shark shot was not from our leg of the survey, but too cool not to include.
This survey combined with all research approaches (i.e. traps, bandit reels, eDNA) allows for a comprehensive stock assessment of the fish populations in the Gulf of Mexico. Stock assessments collect, analyze, and report demographic information to estimate abundance of fish, monitor responses to fishing, and predict future trends. This significant data is used in managing fish populations and preserving our oceans resources.
Mapping Operations
One of the scientific operations I have not yet mentioned is bathymetric mapping. Senior Survey Technician Todd Walsh works the night shift running the mapping show – multibeam echo-sounder hydrographic survey to be precise. An echo-sounder determines the depth of the seafloor by measuring the time taken for sound echoes to return. The technology is impressive. Todd is straight up 3D mapping the bottom of the ocean. He watches it come to life, line by line. That’s freaking cool. I see you, Todd.
Though mapping occurred overnight, Todd was sure to point out any interesting finds in the morning. The Pisces mapped an area south of the Flower Garden Banks National Marine Sanctuary and found an impressive geological feature hosting two mud volcanoes. A mud volcano is a landform created by the eruption of mud or slurries, water and gases. Man, the ocean floor is like a whole other world. It was so interesting to watch the mapping unfold right before your eyes. Maybe the seafloor will be my next destination.
The long days take their toll. This crew has worked so hard and is ready to decompress. Some have been out here for months and are counting down the days. You really can’t blame them. You ask anyone out here, “how many days?” and you will hear “three days and a wake up.” “Two days and a wake up.” “One day and a wake up.” They have all earned some serious rest and recovery, and long awaited time with their families and friends. I mean, I’d like to call them friends, but I get it, you can have lots of friends.
I cannot believe it is already my last day out here. Though each day felt like 100 hours, somehow it still flew by. The last CTD hauled out of the water last night marked the end of the SEAMAP survey. I cheer and shout in solitude and run round giving high fives. Good work, everyone! They are all exhausted, but certainly excited and proud of the work they have accomplished. Listen guys, if you aren’t proud, let me remind you that you most certainly should be.
The last day is the first sunrise I didn’t catch – sleeping in was just too tempting. Friends at home have to literally drag me out of bed to catch a sunrise, but out here, it just feels right. We ease into our day and clean and prepare the working spaces and equipment for arrival. I mop. That’s about all I am good for. TAS card. I spend the day roaming as usual, this time reflecting on my arrival and experience at sea. Time slows down even more (if you can believe that) when it’s your last day. I do my best to take in every last moment. I balance the day with some relaxation, a nice game of “bugs” with my pals, a good deal of snacking, revisiting the views, and saying my goodbyes.
Though thrilled to be heading back, most everyone finds their way outside for the last sunset. I soak up every colorful ripple. Mother Nature does not disappoint in those last hours. Dolphins put on a show jumping out of the water at a distance. The stars start to appear, not a cloud in the sky. I stargaze for what felt like hours. We’re greeted by multiple shooting stars. These are the moments I live for – when I feel most at rest. I am overcome with humility and gratitude.
Some of the most memorable moments.
I consider myself lucky to have met and worked with the Pisces crew. Every person on this trip has left an impression on me. From day one, the crew has been so welcoming and willing to let me participate, committed to providing me an exceptional experience. For that, I am grateful. I had so much fun learning from each department and goofing off with the best of them. The work that goes in to the research is remarkable, from navigation, the science, to vessel operations. I learned much more than expected. It’s hard to summarize my experience, but here are some valuable takeaways, in no particular order.
NOAA research is vital in protecting our most precious natural resource.
Ocean conservation is the responsibility of every one of us.
Remember why you do the job you do and the impact you have.
Never pass up an opportunity to learn or do something new.
Everyone should have the opportunity to connect to our natural world.
You can never see too many sunsets.
Expose your toes to the great outdoors.
I can’t express enough how grateful I am to have been selected for the NOAA Teacher at Sea Program and be a part of its mission. The experience was so much more than I could have even imagined. Participating in the research was so rewarding, and offered valuable insight into fisheries research and scientific operations. The questions never stopped coming. The novelty of the work kept me hooked. If there is one thing above all that I took away from this trip is – never stop learning. Continuous learning is what enhances our understanding of the world around us, in so many ways, and why I love what I do.
I look forward to sharing my experience with the many students I have the opportunity to work with, and hopefully inspiring them to continue to learn and grow, building a better understanding and appreciation for our planet. NOAA, your investment in me will not go unnoticed. The biggest THANK YOU to all involved in making this experience a reality.
We ride together, we die together. Pisces for life. – Junior
I have been immersed in many science concepts in my very first day on the ship. Science is everywhere from how the engine works to navigating the ship to mapping the lake/ocean floor. I guess first I’ll start with explaining the science behind the research that the NOAA Ship Thomas Jefferson does in Lake Erie.
NOAA’s Ship Thomas Jefferson uses technology called multibeam sonar to map the seafloor and detect objects in the water column or along the seafloor. It is mounted on the bottom of the ship, also known as the ship’s hull. A multibeam sonar sends out multiple, simultaneous sonar beams (or sound beams) in a fan-shaped pattern which allows it to cover the space both directly under the ship and out to each side and then listen for reflections (echo).
An illustration of how a ship like Thomas Jefferson collects multibeam data (Credit: NOAA)
Why are sound waves used in water but not radar or light waves?
Because sound waves travel farther in the water than radar and light waves, and sound waves are created by vibrations. That means that sound waves travel faster in denser substances because the molecules are densely packed together. When one molecule vibrates the amount of time to vibrate neighboring molecules is shorter, meaning sound travels faster. What a great way to talk about different waves here but I am going to leave it here for curious readers like yourself to explore!
So, sound waves. If you were to compare one bottle of water with one bottle of air, the one bottle of water would have 800 times more particles than the bottle it has air (According to Scientific American).
Here it comes to the question. Do sound waves travel differently in saltwater than freshwater? The answer is yes! Because seawater has more particles due to salt (salinity) than freshwater. Remember, the more particles there are in a substance, the faster the sound can travel through it. The comparison can be extended among sea, ocean and freshwater systems.
Many sea mammals use sonar to communicate with each other. Take the humpback whales, for example. Researchers believe that humpback whales’ low frequency sounds can travel more than 10,000 miles in the ocean. Imagine you are a whale singing, how far can you reach out? Mind blowing!
This also reminds me of the science behind human hearing. Our ear detects the sound vibrations that travel from the air through the ear canal and strike the eardrum and vibrate. These vibrations are then passed to three tiny bones in the middle ear. Those tiny bones then amplify the sound by sending out sound waves to the FLUID-FILLED hearing organ called the cochlea. Meaning, we as humans, eventually use water to amplify what we heard outside in the air.
What a great way to learn the physics of sound within real-world applications. I challenge you to find out more real-world applications of sound.
Personal Log
While I have so many science concepts to talk about, I also have so many other things to talk about.
Let me start off by saying what I did when I got on the ship prior to our departure the next day. First, I received Covid-19 testing prior to boarding and thankfully after getting a negative result, I was allowed on the ship. The OOD (Officer of the Deck) showed me my stateroom (where I sleep). It is like a bunkhouse with two people and I chose to sleep on the top. Between two staterooms, there is one common bathroom with showers. Every room has safety equipment, refrigerators, lockers etc. It was really way better than I expected.
Anyway, soon after one of the ship’s deck officers told us that we were meeting at a restaurant for dinner at 7pm. While I was enjoying my hot fried coconut jumbo shrimp ( it was so hot that it didn’t cool even 15 minutes later!), one of the crew members asked my name. I responded to him in a way that could be pronounced in English. After waiting a couple of seconds, he responded “ Benim adim Justin, sen Türkçe biliyor musun?” With the shock that Justin gave me, I couldn’t say a single word. Justin said – “My name is Justin, and do you speak Turkish?” He knew that I am of Turkish origin and wanted to make sure I could speak. If the time of this conversation is around 8 pm then we had so much deep conversation that we couldn’t keep track of time and realized it was around midnight when we got back to the ship. His wife is Turkish and he knows how to speak Turkish very well. Imagine how odd it is to meet a person on a ship who happens to know how to speak Turkish in a place far from Turkey. Justin is an electronics technician (ET) for the ship. Ohh I forgot to tell you, we also went bowling after the restaurant.
When I got to my stateroom, it was well past midnight. Even though I drove 4 hours on the road and was worn out from the day, spending more than 9 hours with this incredible team recharged me. I couldn’t be more excited about what my days will look like onward.
I put my head down and could hear the loud generator noise. I was so tired that I could not get up to put my ear plugs on. I slept like a torn out elephant until the next morning!
I ate my veggie burger with scrambled eggs in the mess deck (crew eating area) for breakfast, spinach ravioli for lunch, and baked salmon with alfredo sauce macaroni and potatoes for dinner. Believe it or not, their mess deck is sooo awesome that I picked one convenient spot as my “office” desk. You can find every type of snack (that includes ice cream), tea, coffee… in this small place. There are coffee makers, water fill stations, soda machines just to name a few. NOAA is clearly taking care of their crew very well. Keep up the good work NOAA!
We departed around 2:30 pm from Cleveland and headed out to the Lake where we started to survey. About an hour and a half later, the ship started sending out multibeam sound waves and our official work started. Again, there is more talk about the crew, the work they do, and how I feel. I think I will intentionally make you curious more about my adventures and stop here.
Greeting NOAA Ship Thomas Jefferson at the Cleveland portSafety first!Sailing board to set to departure timeGangway was about to be lifted. Cleveland downtown was in the backgroundWelcome onboardResidual waste water cleaning time before the departureThomas Jefferson-Cleveland-myselfThe ship was going its location into Lake Erie. The ship was moving faster than I thoughtOur awesome ship crew (see if you can find me!)You got me! I am at the very far rightThis is one of the numerous awards NOAA Ship Thomas Jefferson receivedMenu: Day 1Menu: Day 2My “office” in the mess deck. I don’t even need to stand up pick up a snackEverything you need is thereMy stateroom. Sleeping on the topBeautiful morning view from my bed. Welcoming the longest day of the year (June 21)
It was heartbreaking to see so many dead fish flooding on Cleveland shores.
Did you know?
First Fact: The last time a NOAA ship visited the Great Lakes was in the early 1990s which means updated nautical charts of the Great Lakes are long overdue. Ohio’s primary economic force comes from manufacturing, and many factories rely on water systems in Ohio such as the Ohio River and Great Lakes. Updating nautical charts for the Great Lakes is significant, not only for Ohioans, but also the entire nation.
Second Fact: Water in the Great Lakes (consists of five lakes: Superior, Huron, Michigan, Erie and Ontario) comes from thousands of streams and rivers and the flow of water continues to move eastward. Lake Superior drains into Lake Michigan/Huron via the St. Mary’s River. Lake Huron drains into Lake Erie via the St. Clair and Detroit Rivers. Lake Erie drains into Lake Ontario via the Niagara River. The entire system eventually flows to the Atlantic Ocean via the St. Lawrence River. Four of the five lakes are shared by two nations, the U.S. and Canada; only Lake Michigan is entirely within the U.S.
Latitude & Longitude: 43◦ 53.055’ N 124◦ 47.003’W Windspeed: 13 knots Geographic Area: @10-15 miles off of the Oregon/California coast Cruise Speed: 12 knots Sea Temperature 20◦Celsius Air Temperature 68◦Fahrenheit
Is this you?
Navigation is how Fairweather knows its position and how the crew plans and follows a safe route. (Remember navigation from the last post?) But what “drives” where the ship goes is Hydrographic survey mission. There is a stunning amount of sea floor that remains unmapped, as well as seafloor that has not been mapped following a major geological event like an earthquake of underwater volcano.
Why is Hydrography important? As we talked about in the previous post, the data is used for nautical safety, creating detailed maps of the ocean floor, setting aside areas are likely abundant undersea wildlife as conservation areas, looking at the sea floor to determine if areas are good for wind turbine placement, and most importantly to the residents off the Pacific coast, locating fault lines — especially subduction zones which can generate the largest earthquakes and cause dangerous tsunamis.
In addition to
generating the data needed to update nautical charts, hydrographic surveys
support a variety of activities such as port and harbor maintenance (dredging),
coastal engineering (beach erosion and replenishment studies), coastal zone
management, and offshore resource development. Detailed depth information and
seafloor characterization is also useful in determining fisheries habitat and
understanding marine geologic processes.
The history of hydrographic surveys dates back to the days
of Thomas Jefferson, who ordered a
survey of our young nation’s coast. This began the practice and accompanying sciences
of the coastal surveys. The practice of
surveys birthed the science of Hydrography (which we are actively conducting
now) and the accompanying science of Bathymetry (which we will go into on the
next post.) This practice continues of
providing nautical charts to the maritime community to ensure safe passage into
American ports and safe marine travels along the 95,000 miles of U.S. Coastline.
Want to learn more about Hydrographic Survey history? Click on THIS LINK for the full history by the NOAA.
Scientists have tools or equipment that they use to successfully carry out their research. Let’s take a look at a few of the tools hydrographic survey techs use:
Want to learn more about the science of SONAR? Watch the video below.
ps://www.youtube.com/watch?v=8ijaPa-9MDs
On board Fairweather (actually underneath it) is the survey tool call a TRANSDUCER which sends out the sonar pulses.
Multibeam sonar illustration
The transducer on Fairweather is an EM 710- multibeam echo sounder which you can learn more about HERE.
The Transducer is located on the bottom of the ship and sends out 256 sonar beams at a time to the bottom of the ocean. The frequency of the 256 beams is determined by the depth from roughly 50 pings per second to 1 ping every 10 seconds. The active elements of the EM 710 transducers are based upon composite ceramics, a design which has several advantages, which include increased bandwidth and more precise measurements. The transducers are fully watertight units which should give many years of trouble-free operation. This comes in handy since the device in on the bottom of Fairweather’s hull!
Here is the transducer on one of the launches:
View of transducer on a survey launch
The 256 sonar beams are sent out by the transducer simultaneously to the ocean floor, and the rate of return is how the depth of the ocean floor is determined. The rate of pulses and width of the “swath” or sonar beam array is affected by the depth of the water. The deeper the water, the larger the “swath” or array of sonar beams because they travel a greater distance. The shallower the water, the “swath” or array of sonar beams becomes narrower due to lesser distance traveled by the sonar beams.
The minimum depth that this transducer can map the sea floor is less than 3 meters and the maximum depth is approximately 2000 meters (which is somewhat dependent upon array size). Across track coverage (swath width) is up to 5.5 times water depth, to a maximum of more than 2000 meters. This echo sounder is capable of reaching deeper depths because of the lower frequency array of beams.
The transmission beams from the EM 710 multibeam echo sonar are electronically stabilized for roll, pitch and yaw, while they receive beams are stabilized for movements. (The movement of the ship) What is roll, pitch, and yaw? See below – these are ways the Fairweather is constantly moving!
Roll, Pitch, and Yaw
Since the sonar is sent through water, the variable of the water
that the sonar beams are sent through must be taken into account in the
data.
Some of the variables of salt water include: conductivity
(or salinity) temperature, depth, and density.
Hydrographic scientists must use tools to measure these factors in sea water, other tools are built into the hydrographic survey computer programs.
One of the tools used by the hydrographic techs is the XBT or Expendable Bathy Thermograph that takes a measurement of temperature and depth. The salinity of the area being tested is retrieved from the World Ocean Atlas which is data base of world oceanographic data. All of this data is transmitted back to a laptop for the hydrographers. The XBT is an external device that is launched off of the ship to take immediate readings of the water.
Launching the XBT: There is a launcher which has electrodes on it, then you plug the XBT probe to the launcher and then XBT is launched into the ocean off of the back of the ship. The electrodes transmit data through the probe via the 750-meter copper wire. The information then passes through the copper wire, through the electrodes, along the black wire, straight to the computer where the data is collected. This data is then loaded onto a USB then taken and loaded into the Hydrographic data processing software. Then the data collected by the XBT is used to generate the sound speed profile, which is sent to the sonar to correct for the sound speed changes through the water column that the sonar pulses are sent through. The water column is all of the water between the surface and seafloor. Hydrographers must understand how the sound moves through the water columns which may have different densities that will bend the sound waves. By taking the casts, you are getting a cross section “view” of the water column on how sound waves will behave at different densities, the REFRACTION (or bending of the sound waves) effects the data.
See how the XBT is launched and data is collected below!
Hydrotech Bekah Gossett preparing to cast
The XBT probe
The XBT launcher
I got to do a cast- thanks Bekah!
Instant readings from the XBT
Bekah downloading data from the XBT
Videos coming soon!
The other tool is the MVP or moving vessel profiler which takes measurements of conductivity, temperature, and depth. These are all calculated to determine the density of the water. This is a constant fixture on the aft deck (the back of the ship) and is towed behind the Fairweather and constantly transmits data to determine the speed of sound through water. (Since sonar waves are sound waves.)
MVP (left) and the launching wench (right)
The sonar software uses this data to adjust the calculation of the depth, correcting for the speed of sound through water due to the changes in the density of the ocean. The final product? A detailed 3d model of the seafloor!
Our current survey area! (Thanks Charles for the image!)
All of this data is run through the survey software. See screen shots below of all the screens the hydrographers utilize in the course of their work with explanations. (Thanks Sam!) It’s a lot of information to take in, but hydrographic survey techs get it done 24 hours a day while we are at sea. Amazing! See below:
Hydrographic Survey “Mission Control”
HYPACK Acquisition Software
Real time coverage map
Did You Know? An interesting fact about sonar: When the depth is deeper, a lower frequency of sonar is utilized. In shallower depths, a higher sonar frequency. (Up to 900 meters, then this rule changes.)
Question of the Day: Interested
in becoming a hydrographic survey tech?
See the job description HERE.
Challenge yourself — see if you can learn and apply the new terms and phrases below and add new terms from this blog or from your research to the list!