Cara Nelson: Methot Madness, September 14, 2019

NOAA Teacher at Sea

Cara Nelson

Aboard USFWS R/V Tiglax

September 11-25, 2019


Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently sampling in Prince William Sound

Date: September 14, 2019

Weather Data from the Bridge:

Time: 16:10
Latitude: 59º19.670’
Longitude: 146º07.196’
Wind: East 5 knots
Air Temperature: 14.5ºC (58ºF)
Air Pressure: 1010 millibars
Clear skies

Science and Technology Log

A Methot net is not your typical plankton net.  This large net hooks to a stainless-steel frame and has a mesh size of 3mm.  Its purpose: large jellyfish collection!  The Methot is unique not only for its size but also in its method of deployment.  The net must be craned off the starboard (right side) of the ship and submerged just under the water.  It is then towed for 20 minutes at the surface. Similar to the smaller plankton nets, there is a “cod-end” bucket that helps collect the jellies as the water filters out of the net. 

Methot net setup
Heidi working to tighten the shackles on one setup for the Methot net.
Methot net setup
Emily helps place the flow meter on the net prior to deployment to measure water flow for quantifying the abundance of organisms caught.

The setup of the Methot is tricky.  The frame that we are using was fabricated locally for these nets so there isn’t a manual for setup and a lot if trial and error is involved in the setup process.  This entails a lot of wrenching on shackles to connect the net to the frame, trying out a setup and then trying again once it is in place and we can watch the positioning and motion of the net in the water.  Fortunately, we have an amazingly positive team so we were able to meet each challenge and come up with a solution.  Our fourth time in resetting the net seems to be the charm.

lowering Methot net
The Methot being craned into the water.
Methot fully extended
The Methot looks like a giant wind sock when it is fully extended in tow next to the ship.

Heidi Islas is our onboard jellyfish guru.  I have never met anyone who loves jellyfish more than Heidi, and this passion and enthusiasm translates directly toward her commitment to her research.  She is currently working on her master’s degree at UAF with Russ Hopcroft as her advisor.  Her specific research thesis is, “the abundance and distribution of gelatinous zooplankton in the Northern Gulf of Alaska (NGA).”  Currently there is no baseline data on the type and biomass of the large jellies in the NGA so Heidi’s work is so important in helping identify not only what is present but how these jellies may be playing a role in this ecosystem particularly as predators on small fish. 

Heidi and codend
Heidi is about to open the cod-end where the jellies are trapped at the end of the net. A few of our samples were so full the jellies were up into the net and we needed the assistance of the crane to lift it back onboard.
jelly collection
One of our first collections had only a few but a nice variety of jellies: 2 Lion’s Mane, 1 albino Lion’s Mane, 1 Sea Nettle and 1 Crystal jelly.

Our typical sampling includes running either a Bongo net or Multinet off the stern (back) of the boat to collect zooplankton, and then immediately following we lower the Methot net for its 20-minute tow.  One of the deckhands, either Dave or Jen, run the crane for us, while the four of us help move and position the net into and out of the water.  At the end of the tow, we hose down the net and then open the cod-end to see what we have collected.  Our first few tows had only a few jellies but a little more variety.  Last night however, as we moved into deeper water south of Middleton island, we had a large number of jellies to process.  We assist Heidi in measuring the diameter of bells of the jellies, as well as collecting volume and mass measurements.  We then preserve any zooplankton and fish we collect for analysis by fisheries scientists back in the lab. 

measuring jellies
Emily assists Heidi in measuring and massing the jellies.
Heidi and Cara and jelly
Even though it is 3am, Heidi and I are pretty excited about our sample of Crystal jellies.

Many people might ask, why should we care about the jellyfish?  It all comes back to the food web connectivity.  For example, it is known that jellies will feed on smaller zooplankton, such as copepods and euphausiids (krill), but also on fish larvae, such as pollock.  The commercial pollock fishery is very interested in identifying any factor that may impact the adult pollock numbers.  Additionally, very little is known about what else the jellies are eating, or in what quantity.  So many questions arise about how these jellies might be impacted food availability for other species as well as serving as a food source themselves. 

Russ and worm
Russ examines a polychaete worm that was part of our sample.

Another very interesting piece of research for Heidi apart from her thesis focus is how are jellies responding to climate change.  A current hypothesis was that jellies increase in number during warming events, suggesting that they may become more abundant as our climate changes with even greater impact other species.  In her research on this topic, Heidi came across a paper published in 2013 that challenges this hypothesis.  It demonstrated that jellyfish actually follow a natural cycle of growth and decline with a peak in abundance every 19 years.  Heidi decided to analyze data that NOAA Fisheries had collected over a 38-year period from bottom trawls in the NGA.  She too saw the same cycle emerge.  Although this is exciting data, it leads to many more questions for her to explore. Such as what is driving this cyclic pattern?

giant sea nettle jelly
Emily holds a giant Sea Nettle that actually got trapped in our Bongo net. We measured it before sending it back to sea.

In both the scientific and non-scientific world it is easy to see a correlation of cause and effect and jump to a conclusion.  What I am realizing from the research going on aboard R/V Tiglax is that numerous variables must be considered before true causes can be determined from the data.  This is why collaboration in research is so important.   Physical, chemical and biological oceanographers along with fisheries biologists must work together to gain more holistic view of this NGA ecosystem to help unravel its secrets. 


Personal Log

Fortitude is my word for the past few days.  I have learned so much on this trip so far, including two important pieces of information about myself.  One is that my body does not like to work nights.  The days are blurring together for me as I adjust to my shift work.  I can say that it is definitely not an easy transition because the transition requires more than just adjusting sleep times, but also eating patterns as well.  On Friday night, due to the nature of our stations, we were not able to start our shift work until 1am.  By 5:30 in the morning as we began our last sample, I literally fell asleep on the rales of the ship waiting for our Bongo net to surface.  I think in another day or two, I will have it figured out.

A second piece of information I learned about myself, I am allergic to the scopolamine patch!  Early on Friday, I realized I was developing a rash, which soon spread.  The itching was becoming a problem and so I immediately discontinued an antibiotic I was taking thinking it was the culprit.  After the rash worsened, I then realized it was likely the patch.  After speaking with Captain John, he confirmed that this is a nasty side effect for some people.  I removed the patch Saturday and transitioned back to my usual medicine for motion sickness prevention: Bonine. Unfortunately, 24 hours later, the rash and itching persists.  Russ and John joke that they will be taping my fingers soon, so I better behave. 

After the first storm passed we were lucky enough to have several days of beautiful and surprisingly warm weather as we started along the Middleton line.  I was able to spend time on the fly bridge with Dan birding and mammal monitoring.  I will definitely highlight more on this in a later blog.  From Friday to Saturday I was fortunate enough to watch both amazing sunsets and sunrises as well as enjoy the beauty of the full moon. 

sunset
Sunset over the Northern Gulf of Alaska!

Another storm is forecast to be upon us by late Sunday evening, so our plan is to finish the Middleton line tonight and be in transit to GAK1 (just outside of Resurrection Bay) overnight.  Currently it is calling for East 40 knot winds and 11-13 foot seas.  It should be a fun ride.


Did You Know?

The jellies we are sampling all started out in the benthic (bottom) habitat in what is known as a polyp stage of their life cycle.  These polyps are attached to the bottom and will asexually bud off into the water column.  At this point, the jellies are only approximately a half of a centimeter in size.  It is estimated that it takes approximately a year for the jellies to grow to the full adult medusa stage.  The medusa is the bell-shaped, free floating stage that everyone recognizes as a jellyfish.  This amount of growth requires a lot of energy input, and thus these jellies must feed continuously to reach the adult sizes.  It is not known for sure, but it is estimated that the jellies will spend approximately a year in this phase in which they sexually reproduce.  The larva will then settle back to the benthic environment and start the cycle all over again.

Jessica Cobley: Resurrection Bay, July 28, 2019

NOAA Teacher at Sea

Jessica Cobley

Aboard NOAA Ship Oscar Dyson

July 19 – August 8, 2019


Mission: Midwater Trawl Acoustic Survey

Geographic Area of Cruise: Gulf of Alaska (Kodiak to Yakutat Bay)

Date: 7/30/2019

Weather Data from the Gulf of Alaska:  Lat: 58º  50.39’ N  Long: 150º 14.72’ W 

Air Temp:  14.2º C


Personal Log

Today we had the chance to sail up into Resurrection Bay on the Kenai Peninsula and it was beautiful! In general, transects, or lines the boat collects acoustic information along, run perpendicular to the Gulf of Alaska shelf because that is where pollock are most likely found. Luckily for us, a few of them travel up into bays along the coast and give us a welcomed change of scenery from the open ocean. 

transect map
A map of the transects we followed up into Resurrection Bay.

Why do we survey in bays when pollock are usually open water fish? Well, during the winter, pollock sometimes aggregate to spawn (reproduce) in bays and those areas are documented by the scientists. In the summer, scientists want to see if there are still any pollock present in those areas. Unfortunately, we do not have time to survey all of the bays and so just a few are selected. For this leg, after the next couple of days back on the shelf, we will head up into Prince William Sound, which I am really looking forward to seeing. 

Seward
The town of Seward – can you spot the cruise ship?

While following the transects up into Resurrection Bay, it was fun to see sailboats, fishing boats, helicopters and float planes rushing around us. To my surprise, I also saw masses of RV campers through the binoculars when looking at town. I learned that Seward is a popular place for people to visit from Anchorage and other areas for summer vacations and fishing opportunities. As for those of us on the boat, we also enjoyed the summer weather while sailing through. The sun was shining and it seemed that everyone took a moment to step outside, make a few phone calls home (we had service for a bit!) and soak up the warm weather. All in all, I think everyone feels re-energized going into our final 10 days at sea.

top deck
Enjoying the sunshine from the top deck of the boat


Science and Technology Log 

We stopped to fish near the mouth of Resurrection Bay and found mostly age 1 and 2 pollock, along with a few adults. This shows us that pollock do utilize both the bay and the shelf areas during their lifecycle. Afterwards, we headed back out into the gulf and fished with a net called a Methot net.

A-frame
The Methot net gets lifted up by the A-frame (yellow metal beams). I did not know the A-frame moved before this!

A Methot net is a different kind of net that is specialized to catch Euphausiids (krill). In addition to collecting data on pollock, scientists also collect data on Euphausiids (krill). The net used to collect krill is a bit different than the one used for pollock. There are no pocket nets along the side and instead of the end of the net being mesh, there is a small canister that the net filters krill into. Once we haul in the net, it is time to sort and collect data on the catch, just like the pollock trawls. 

Processing fish in the wet lab.
Processing fish in the wet lab. This one had a lot of jellies! Photo by Darin Jones

It has been back to regular fishing trawls since then, along with comparison trawls. A comparison trawl is when we fish twice over the same area using two different nets. This year, the scientists decided to replace the old survey net with a newly designed one that is a little bit smaller and easier for the deck crew to deploy. Now they need to compare the two nets to make sure the newer net is catching the same species and size of fish. Darin was explaining to me that they have to do approximately 25 comparison trawls on this survey and will continue comparisons during the winter survey as well. If all goes according to plan, they will permanently replace the old net next summer. 

On one of our trawls the other day, we caught a lot of rockfish. Lucky for us, rockfish is a species we can keep and eat on the boat. We are not allowed to keep salmon, crab, halibut or herring since they are prohibited species. You are only allowed to keep those species if you have a special permit. While I wish we could eat the others, rockfish is also really tasty!

Darin filleting
Lead scientist, Darin Jones, filleting dusky rockfish for dinner.


Did You Know?

There is an incinerator on NOAA Ship Oscar Dyson that burns all of our trash from the boat so that we don’t have to keep it aboard for the whole trip. Also, nothing is thrown overboard, not even food scraps. When I was taking a look yesterday, the temperature was over 800 degrees Celsius. Diesel fuel is used as fuel initially, followed by burning sludge from the boat once it gets hot enough. All leftover ash gets put into bins and discarded when back in port.

Thanks for following along!

Cheers, Jess

P.S. We go up and watch the sunrise everyday…it is beautiful out here!

Abigail watches sunrise
Abigail McCarthy watches the sunrise every morning and ranks them. This one earned a “glorious!”

Catherine Fuller: This Was Not A Drill, July 17, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 17, 2019


Science Log

For the love of jellies 

Heidi and jelly
Heidi and the objects of her affection
Team Jelly
Team Jelly on the job!

Jellyfish (or jellies, since they’re not technically fish) are one of the “delights” of recovering instruments from the sea.  Often, the CTD returned to the surface covered in brown slimy tentacles, as did the sediment traps on occasion, which needed careful removal.  For most of us, the jellies were more of a nuisance, but for Heidi Mendoza Islas, the jellies are love. 

Heidi was on the night shift, which I didn’t get to spend as much time with as I would have liked, and her research was based on nightly Methot net drops and subsequent jelly inventories.  The Methot net is a 10-meter long net on a square metal frame (roughly 5 meters per side).  The net is dragged off the side of the ship for 20 minutes and then recovered.  Led by Dr. Ken Coyle, Heidi and the night shift team of Caitlin, Delaney and Adriana then counted the jellies, recorded their type and their volume by type.  One night, Heidi’s jelly count reached nearly 900! In the brief time I did spend with the team, I saw Heidi’s passion for jellies in her eyes and heard it in her voice as she lovingly explained the different types they had caught, often exclaiming, “Isn’t it beautiful?” Indeed, watching them swim next to the ship on our calmest days, they were.

What do you want kids to learn from your research?

Heidi: I would like to let people know that there are a ton of jellies out there in the ocean. They are very resilient to changes in the environment such as warmer temperatures, higher salinities, and low levels of oxygen, so this can allow them to easily scale up on the food chain and they might take advantage over other species like larval fish. As part of my research, I would like to determine if any correlations exist among jellyfish biomass, the environmental variables, and the early life stages of pollock.


Personal Log

This Was Not A Drill:

As on any ship, safety at sea is a top priority.  Early on in the voyage, Artie Levine, the Third Mate, gave us a safety briefing that included learning how to handle a fire extinguisher as well as how to put on our immersion suits and find our muster stations (gathering places) in case of emergency.  We were warned at that point that a drill would occur later in the trip.  Kira (my roommate) and I studied the information card on the back of our stateroom door that listed the signals for various emergencies just so we’d be prepared.  It’s a testament to how seriously everyone took the safety briefing that when the ship first started sounding fog signals a couple of nights later, many of us popped our heads out of our rooms, ready to muster! 

Near the end of the second week, we were indeed drilled, although we were kindly given advance warning on the message board in the mess hall.  In any type of emergency, each member of the science team is required to retrieve their immersion suits and PFDs from their rooms and report to their muster stations.  In addition, you must have a hat (watch cap or trucker hat) and clothing with long sleeves.  In order to reduce the stress of the event, the announcement of the drill is preceded by the statement, “This is a drill” repeated several times.

My exit from the ship was a little earlier than planned, but provided both the land and ship crew with essentially a live drill practice.  I woke up the morning of July 12th and found that I was experiencing severe vertigo from rolling over too quickly in bed overnight.  Needless to say, it’s pretty miserable when it happens on a moving ship!  Artie Levine, the Third Mate, and Christoph Gabaldo, the Chief Mate, came to take care of me and moved me to the infirmary.  After my symptoms had calmed down some, it was decided that, since we were about an hour out of Seward by small boat, and that the ship was scheduled to move on to the Kodiak Line, that it would be best to bring me ashore.  Artie took me in the next morning on the ship’s rescue boat.  Pete, having some work he needed to do ashore, plus being a genuinely nice guy, came with me as well.  Ed DeCastro, the Port Captain, met us at the dock, took me to get checked out and then found a place for me to stay.  In talking to Ed, the ship and land crews do go over procedures for evacuation in theory, and they were actually grateful to be able to practice the procedures in reality without having a serious situation on their hands.  I am grateful that they are prepared for any emergency, because I was taken care of very well.  Thank you, Artie, Christoph and Ed, for you compassion and your professionalism!

Operation Evacuation (VC: Bern Mckiernan)


Last thoughts…

I got on the ship not really knowing what to expect.  Everything was pretty new to me, from being in Alaska, to the research, to being on a big ship.  Despite my early exit, I thoroughly enjoyed the experience and the chance to meet a great group of people who really are unsung heroes for the research they are doing.  Whether they were adding data to years of previous research or developing new ways to track changes in the ecosystem, they are on the front lines of climate change research.  It was a privilege to be aboard the R/V Sikuliaq with them.  Speaking of…the R/V Sikuliaq is an amazing ship with capabilities I only began to learn about.  Thank you to Eric, our captain, for answering my questions about dynamic positioning and Z-drives.  My respect also goes out to the crew as well for being professional in all regards and unfailingly helpful, from launching and recovering all of our nets and traps, to fixing stuck closets and to cooking 5-star meals.

The ship is is back out now, with some of the same science team on board.  To them, and to the TAS who are out or yet to go, I wish you fair winds and calm seas!

Some memorable moments:

  • Clay conducting the music in his headphones while doing fluorescence testing
  • Heidi exclaiming, “Another beautiful girl!” whenever she found a female copepod
  • The food…it was 5-star at every meal! Doug’s midnight chocolate chip cookies were stellar
  • The night shift’s tales of how they stayed awake
  • Cribbage with Pete, Seth and Ana
  • Lunchtime talks with crew members Jim and Arnel
  • The “Grunden Girls” (Kate and Kira) on Calvet duty
  • Pete’s buoys disappearing…and then reappearing (not that we had any doubt)
  • Steffi and the “Loch Ness monster” (the sediment trap)
  • Questions of the day
  • Dan’s mealtime reports on the sea life he saw that day
  • The nightly run-down with Kira
  • The rowing machine!

Some of my favorite images:

Tropical green waters
Tropical green waters
Sun reflecting in the water
Sun reflecting in the water
Silhouette of a bird in flight
Mist obscuring the horizon
Seabird and ocean ripples
Seabird and ocean ripples
Ropes and Chains
Ropes and Chains
loops
Loops
two gulls
Two gulls
Storm clouds
Storm clouds
Seward
Seward Panorama

Erica Marlaine: No Peanut Butter and Jelly but PLENTY OF JELLYFISH, July 1, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 1, 2018

Weather Data from the Bridge:

Latitude: 56º 50.94N
Longitude: 155º 44.49 W
Wind Speed: 11.3 knots
Wind Direction: 240º
Air Temperature:  12.98º Celsius
Barometric Pressure: 1027.5 mb

Crew Member Spotlight

At present, there are 31 people onboard the NOAA Ship Oscar Dyson, and each plays a vital role in making sure that everything runs as it should.  One person whose job touches each and every one of us is Judy Capper, the Chief Steward.  One might think that being onboard a ship for three weeks would mean limited food choices, or lots of peanut butter and jelly sandwiches, but so far every meal onboard the NOAA Ship Oscar Dyson has been abundant and delicious. From shrimp kabobs to stuffed pork loin to homemade soups to delicious baked goods, Judy keeps everyone onboard fed and happy.

I got a chance to talk to Judy about her job and her journey to becoming a NOAA Chief Steward.  Judy’s first career was in the corporate world (including Hewlitt-Packard) but being the oldest of 5 siblings, she has been cooking since the age of 12.  An interest in cooking led her to study culinary arts at UCLA and other locations.  She then took seamanship training at Orange Coast College.  At the time, she owned a sailboat, and enjoyed cooking and entertaining on the boat.  The captain loved her cooking and asked if she would be interested in cooking on some sailboat charters.  That led to working on yachts and supply ships, and lucky for us, in 2015, Judy was hired by NOAA.  Judy loves her job as a NOAA Steward.  She says it is never boring and allows her to be creative.  Her advice for anyone interested in following in her footsteps is to eat in good restaurants so that you develop your taste buds, get good training, and watch cooking shows.

Judy Capper
Judy Capper, Chief Steward Extraordinaire


Science and Technology Log

Last night we used a different kind of net, known as a Methot net, in order to collect macroscopic zooplankton. Named after its designer, Richard D. Methot, it is a single net with a large square opening or mouth attached to a rigid steel frame. The net is deployed from the stern and towed behind the vessel.

Methot Net
Deploying the Methot Net

The Methot uses fine mesh (e.g. 2×3 mm) but has openings that are slightly larger.  This design allows the net to be towed at high speeds. A flowmeter suspended in the mouth of the Methot net measures the flow of water moving through the net.  Scientists use the flowmeter data to calculate the volume of water sampled.

The flowmeter
The flowmeter

Watching the crew preparing to launch the Methot net was a lesson in teamwork. Everyone knew their job, and they reviewed what each would do when.  They even discussed what hand signals they would use (“If I make this movement, that means XYZ”).

The Methot net did catch a lot more krill than I had seen before, as well as many jellyfish.

Erica and jellyfish
One of the many Chrysaora melanaster we came across.


Fun Jellyfish Facts:

Jellyfish are invertebrates, and have no brain, heart, eyes, or bones.  Instead they have a bag-like body that feels like slippery jello and tentacles covered with small, stinging cells.  They sting and paralyze their prey before eating it.  A jellyfish sting can be painful, but it is not usually harmful for humans.  However, some people may be allergic to the venom, and will have a reaction.

Roy Moffitt: Catching the Tiny Fish in the Big Sea, August 10, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 10, 2018

 

Current location/conditions: mid day August 10

Air temp 45F, sea depth 59 m , surface sea water temp 44F

 

Catching the Tiny Fish in the Big Sea

For the past two days, I helped out Robert Levine, PhD Student of Oceanography at the University of Washington, working with NOAA Alaska Fisheries Science Center.  We sent out a Methot net to catch juvenile fish today. In the below picture, taken yesterday, I am helping Robert assemble the Methot net.

assembling Methot net

Teacher at Sea Roy Moffitt helps assemble the Methot net

For catching fish a centimeter or two long, the net seems huge.  The opening of the net is approximately 2.2 meters by 2.2 meters or 5 square meters.  The net itself is approximately 10 meters long.  The holes in the net are only 2 mm. This means anything bigger than 2 mm will be caught up in the net.

 

Echogram

Example of an Echogram

Before sending the net into the sea Levine takes an echogram survey.  He lowers the recorder overboard and the attached cable sends the results back to the computer on board.  Two different wavelengths are sent out and bounce off anything in the sea column.  The smaller wavelengths will show where any of the smaller fish are hanging out.  The results give an accurate depth measurement of the ocean and shows small organisms at about 28 meters in depth.  The net is then lowered into the sea and trawled at that depth for about 15 minutes.

 

 

 

 

Inclinometer

Inclinometer

My task during the net deployment was to measure the angle of the cable entering the water by using a hand held inclinometer.   It is important to keep the angle around 45 degrees to keep the proper depth.

 

 

 

 

 

 

today's catch

Photos of today’s catch: at top left, a view of the unsorted bucket; top right, a petri dish with fish sorted by species; bottom, juvenile fish displayed on measuring tape

Today was not considered a high population area, but we were still able to catch some fish and more marine life.  All contents end up in a canister at the end of the net in a big slurry of sloppy stew.  In the picture of the bucket the fish are hidden within moon jellyfish and all the little black dots that are crab megalopa.  Crab megalopa is the second life stage of a crab before transformation into juvenile crabs to start their life on the sea floor. For fish today what was caught in the net were juvenile Cod, juvenile flat fish, and Sculpin.  (Shown in picture with the round dish.)

The goal of this fish collection is to verify the presence of juvenile fish and better understand the geographic range of fish during their life cycle. The exact identification of each will take some time and many of the tiny fish are frozen and sent out to labs for further identification. Levine will also be releasing several bottom-moored echo sounders during the trip.  These instruments will be able to monitor the presence of fish and record that data over the year.

 

Now and Looking forward

Future specimen collections on this trip will be happening using the Methot net to verify distribution and seasonal movement of fish population in the Chukchi Sea.

Vincent Colombo, Into the Fog, June 21, 2015

NOAA Teacher at Sea
Vincent Colombo
Aboard NOAA Ship Oscar Dyson
June 11 – 30, 2015

Mission: Annual Walleye Pollock Survey
Geographical area of the cruise: The Gulf of Alaska
Date: June 21, 2015

Weather Data from the Bridge:

  • Wind Speed: 6.02 knots
  • Sea Temperature: 9.99 degrees Celsius
  • Air Temperature: 9.06 degrees Celsius
  • Air Pressure: 1016.59 mb

Unimak Island at sunrise

Unimak Island at sunrise

Unimak Bight

Unimak Bight

Shishaldin Volcano - One of Alaska's many active volcanoes

Shishaldin Volcano – One of Alaska’s many active volcanoes

Science and Technology Log:

You are sleeping soundly in your bed. Awakening you is your phone ringing… it’s 5:30 am… that could only mean one thing, it’s the school calling to say school is delayed 2 hours… FOG. No, it’s not the kind of fog depicted in John Carpenter’s thriller; it’s the kind that the local weatherman says is a localized phenomenon that reduces visibility to less than a quarter mile. If you live on Delmarva, you have experienced this sort of fog and know that it can turn a normal commute into a complicated one.

Here in the Alaskan summer, especially the Aleutian Chain, Gulf of Alaska, and the Bering Sea, fog is a normal, and potentially ALL day event. The only constant on this research cruise so far has been waking up every day and watching our NOAA Corps Officers navigate through a very dense fog.

A view from the bridge of the fog. You can barely see past the bow

A view from the bridge of the fog. You can barely see past the bow

But what causes fog, and why is it so prevalent here?

Fog is most simply described as a cloud on the ground. It is made up of condensed water droplets that have encircled some sort of condensation nuclei (something water can attach to). On the open sea, that condensation nuclei is salt, which has upwelled (brought to the surface) from turbulent seas or breaking waves. That translates to the rougher the seas, the more chance there is for condensation nuclei, and thus fog.

Fog is able to be formed when the air temperature is cooler than the dew point. The dew point refers to the specific temperature which water can condense. Dew point varies with humidity and temperature, you can calculate dew point here.

Because the sun exposure is so long here in the Alaskan summer day, there is ample time for the sun’s radiant energy to heat up the upper layer of the ocean causing evaporation. The now warmer air, filled with water vapor, meets the cool waters of the Northern Pacific or Bering Sea, and bam, here comes a fog bank. The most common name for this type of fog is Sea Fog, scientifically called Advection fog. The combination of salt is especially important because salt is a unique condensation nuclei in that it will allow fog to form when the humidity is as low as 70%. It can also turn from a gentle fog to a dense fog in little to no time. Air movement, or wind can actually cause more fog, rather than the contrary belief it will just blow away.

As the day goes on, the fog lowers

As the day goes on, the fog lowers. Notice the sea is calm, and the dew point is raising.

The sky is crystal clear, however the surface is still covered in dense fog

The sky is crystal clear, however the surface is still covered in dense fog

So what have I learned? NOAA Ship Oscar Dyson has a very loud fog horn which the NOAA Corps Officers sound on a regular basis during these conditions.

Here is what you need to know if you are ever on the ocean in a fog bank!

  • One prolonged sounding of the horn – this means “Hey! I am here and moving, don’t hit me!”
  • Two prolonged soundings of the horn – this means “Hey! I am a big boat, but not moving, don’t hit me!”
  • One prolonged sounding of the horn followed by two short blasts – “Hey! I am a big boat and am either towing something (like a fishing net) or lowered in my ability to maneuver. Stay away and make room!”
  • One prolonged sounding of the horn followed by three short blasts – “Hey! I am a big boat that is being towed. Stay away from me because I have no power!”
  • One short blast of the horn, followed by a prolonged sounding, then one short blast; or rapidly ringing of a bell for five seconds every minute –  “Hey I am anchored over here, you can’t see me, stay away.”

Here the land is still covered. Under that blanket is another mountain.

Here the land is still covered. This is what is called radiant fog. The conditions on land are still perfect for fog to exist. Radiation fog typically disappears as the sun warms up the land.  Under that fog blanket is another mountain.

The sun is able to eliminate and produce fog

The sun is able to eliminate and produce fog

 

You have to trust the Radar

You have to trust the Radar

 

Personal Log:

The life at sea is quite interesting. Luckily we have every luxury of home on board the Oscar Dyson, to include internet (sometimes), hot showers, and a nice bed. I have also been introduced to the game of Cribbage, an apparent maritime tradition. I cannot say that I fully understand it, but there are bunches of ways the number 15 can be made.

?

Busy on the ship’s fantail

Fishing is life up here, and every day I can expect at least one or two trawls (pulling of a net behind the ship). I was introduced to what is called a Methot net, which is used for catching smaller organisms. I was able to look at Krill for the first time in my life the other day, a keystone organism for a lot of the Alaskan food web.

Krill!

Krill!

Also very cool was seeing the MACE scientists use a cool underwater camera. Ever wonder what is under 300 meters of water? With this camera that can be deployed in less than 5 minutes, scientists can get a picture of the sea floor on a live feed.

colombo3

Looking at the live feed of the sea floor

Meet the Crew:

Richardo Guevara. Richardo has been with NOAA for 7 years and is the Ship’s Electronics Technician. What does this mean? Richardo works on various systems on the ship that involve communications, such as radios, acoustics, data sensors, radar, telephones, televisions, navigation, and computer systems. Richardo is the IT guru and knows everything about the ship’s day to day mission with technology. Richardo works for NOAA because he enjoys the life at sea, its benefits, and the satisfaction of working side by side with scientists.

Richardo Guevara, Electronics Technician

Richardo Guevara, Electronics Technician

Richardo is a 23 year veteran of the United States Air Force. During his service he gained a plethora of knowledge suited towards his current position on board the Oscar Dyson. Richardo was born and raised in Pensacola, Florida, but now resides on the Oregon coast. Richardo says that this job requires a lot of flexibility, and his time in the military gave him this valuable life skill. According to Richardo: “A lot of times people seem to get the notion that you must have college to succeed, but I do not have a college degree. I cannot understate how important it is to get your high school diploma and to value that. Then it is up to you to go your own way and have success.”

Meet the crew:

Kirk Perry. Kirk is the lead fisherman aboard the Oscar Dyson and is acting Chief Boatswain for our research cruise. Kirk has been with NOAA since 2004, and is in charge of any activity which takes place on deck. His job includes, but is not limited to, using fishing equipment, deploying science equipment, anchoring, net maintenance, standing lookout on the bridge, being a helmsman, managing a deck crew of 6, and operating a crane. Kirk joined NOAA for the adventure of a lifetime, to fish in Alaska. He never intended to stay this long but absolutely loves his job and he says working with scientists is very rewarding.

?

Kirk Perry, Lead Fisherman

Out of curiosity in the neighborhood, Kirk discovered the world of fishing and hunting from a Czechoslovakian neighbor in San Jose, California. Kirk started commercially fishing at age 10 in Monterey Bay, California and has not looked back since. He graduated from Cal Poly SLO with a degree in Natural Resources Management while on scholarship for college baseball. Kirk loves baseball and football and is a diehard San Francisco Giants and 49ers fan. He also isn’t too bad on the guitar either.

Kirk was my unofficial, but official Alaskan fishing guide. It was his handy work that set me up with rigs and a tackle for my Halibut at the beginning of my trip. Kirk and I have a lot in common and have had countless discussions about the outdoors. A fun fact about Kirk, he can identify any bird that flies by the ship, whether it’s out of necessity or because he has been hunting so long.

Allison Schaffer, September 21, 2007

NOAA Teacher at Sea
Allison Schaffer
Onboard NOAA Ship Gordon Gunter
September 14 – 27, 2007

Mission: Ichthyoplankton Survey
Geographical Area: Gulf of Mexico
Date: September 21, 2007

Weather Data from Bridge 
Visibility: 12 nautical miles
Wind direction: E
Wind speed: 12 kts.
Sea wave height: 1 – 2 feet
Swell wave height: 2 – 3 feet
Seawater temperature: 29.0 degrees
Present Weather: Partly Cloudy

Science and Technology Log 

Today we had the opportunity to try out two new sample methods.  One method is along the same lines as the bongo and Neuston sample but this one is called a methot.  A methot is 2.32 X 2.24 m frame with 1/8” mesh netting.  The total length of the methot net is 43 feet. It’s huge! It works just like regular plankton net where it has a large opening and then as it moves towards the end it becomes more and more narrow and eventually ends at a collection container. The reason this is my first time doing one is because they are usually done only at night and since the net is so large they must be done in fairly deep water. The deck personnel helped us put the net in the water and then we waited.  As the net was brought back on deck, we rinsed it down and collected samples the same way we would a bongo or Neuston sample. Of course with such a large net we collect bigger animals that we would with the other two.  We did collect some fairly large fish along with smaller larvae.  Our collection wasn’t the most excited some of the scientists have seen but to me, it was very exciting.

The second collection we took wasn’t a plankton collection but a water sample.  It is important to know the physical and biological parameters of different areas when collecting. For this, we used a very large (and expensive) piece of technology: a CTD which stands for conductivity, temperature and depth.  The CTD also measures dissolved oxygen and can do all of these measurements without actually collecting any water.  We do however collect water to look at chlorophyll levels.  The CTD frame has three bottles attached to the frame to collect water throughout the water column.  Once we open the bottles on deck and set them, the lab scientist has the capability to fire the bottles shut at different depths. All measurements and water collection happen at three areas in the water column. One data and water collection is done at maximum depth, the second at mid depth at the third just a few feet from the surface.  After all of the data has been collected, the CTD is brought back on deck where we bring the water samples up to the lab to test. It was definitely an exciting day on deck today.

Personal Log 

It has one week since we left port in Pascagoula and I am having such a great time!  I forgot how much fun field work is and how excited I get over the smallest things when it comes to animals.  I am so fortunate to have such an experience and I can not wait to get some samples home to share with our students.  I already have started making some lesson plans!

Addendum: Glossary of Terms 

  • Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 ft whereas on a clear day you can see all the way to the horizon, or 12 nautical miles.
  • Wind direction tells you which way the wind is blowing from: 0° is north, 90° is east, 180° is south, and 270° is west.
  • Sea wave height is the height of the smaller ripples
  • Swell height is the estimates larger waves
  • Sea level pressure (or Barometric Pressure) indicates what the trend of the weather has been. High barometric pressure usually means sunny weather and rain can not build up in clouds if they are being squeezed together by high pressure.  Low barometric pressure means rainy or stormy weather is on the way.
  • Present Weather is a description of what the day’s weather is.

– Courtesy of Thomas Nassif, NOAA Teacher at Sea, 2005 Field Season

  • Field Party Chief or FPC is in charge of the team of scientists on board the ship. This person oversees all activities having to do with collection of samples and is the go to person in case anything goes wrong that the scientists can’t handle.  They also act as an extra set of hands when needed.
  • Bongo Net is two circular frames 60 cm in diameter sitting side by side with two 333 micron nets and a weight in the center to help it sink.  At the base of each net is a plastic container used to collect all the plankton that can be easily removed so we can retrieve the samples
  • Lab Scientist is the scientist that stays in the lab to work the computers recording the data on sample time, sample depth and is the one that relays information to the deck personnel about when the nets have hit maximum depth.  They keep watch in case anything goes wrong underwater.
  • Deck Scientist is the scientist out on deck getting the nets ready, rinsing the nets, collecting and preserving samples.  They are the eyes on deck in case anything goes wrong at the surface or on deck.
  • Neuston Net is one net 1 X 2 meters with a 947 micron net.  Neuston samples are done only at the surface and placed in the water for ten minutes.
  • CTD 
  • Photic Zone