Stacey Jambura: The Adventure Begins, July 8, 2012

Stacey Jambura
July 6 – 17, 2012
.
Geographical Area of Cruise: Gulf of Mexico
(You can also view the NOAA ShipTracker here: http://shiptracker.noaa.gov/shiptracker.html)
Date: July 8, 2012

.

Weather Details from Bridge: (at 18:45 GMT)
Air Temperature: 29.50 ◦C
Water Temperature: 30.70 ◦C
Relative Humidity: 66%
Wind Speed: 1.52 kts
Barometric Pressure: 1,017.82 mb
.

Science and Technology Log

Virtual Tour of the Oregon II

I know many of you may have never been on a ship before and are probably curious to know what it is like to be aboard the Oregon II. I’m going to take you on a little virtual tour, but first you will need to know some common terms that are used to refer to certain areas on the ship.

Ship Term

What It Means

Bow The front of the ship.
Stern The back of the ship.
Starboard The right side of the ship when facing the bow.
Port The left side of the ship when facing the bow.
Forward The direction towards the bow of the ship.
Aft The direction towards the stern of the ship.
Bridge The location of the command center for the ship.
Galley The kitchen.
Mess Hall The dining area.
Head The bathroom.
Stateroom Where crew members sleep.

On Deck

The Bow

At the bow of the ship is where most of the scientific collection equipment is deployed/released. The CTD (conductivity, temperature, depth), the neuston net, and the bongo nets. (I will talk about each one of these in upcoming blogs.) There are several large cranes that help lift these up off the deck and swing them over the edge of the ship to be released into the water. When you are at the bow and the cranes are running, it is very important to keep yourself safe. Everyone who is at the bow when the cranes are operating is required to wear a hard hat and a PFD (personal floatation device). You never know if a cable will snap or the wind will swing the equipment towards you. There is a sensor on the PFD that is activated when large amounts of saltwater touches it, like if you were to fall overboard. Once salt water touches the sensor, the PFD will inflate and keep you afloat until you can be rescued.

Oregon II Bow
Oregon II Bow

The Stern

At the stern is where the samples from the neuston cod end and the bongo cod ends are collected and preserved in jars for scientists to examine at a lab. This is also where the large trawling net is deployed. The scientists spend most of their time at this part of the ship.

Stern of the Oregon II
Stern of the Oregon II

What Makes the Ship Sail?

Bridge

The bridge is where the officers of the Oregon II work. It is located toward the bow of the ship. The bridge has all of the navigation tools necessary to steer the ship to the next sampling station. There is also a lot of weather equipment that is monitored and recorded throughout the day. The bridge is where you’ll find the best views of the ocean because it is almost completely surrounded by windows and it’s higher than any other room on the ship.

At the Helm
At the Helm
Bridge
Bridge

.

Chart Room

This room is where all of the maps are stored. While there are more technologically advanced methods used for navigation on the ship located in the bridge, it is important to have physical maps on hand to refer to, especially if the instruments stop working for any reason.

Chart Room
Chart Room

Engine Room

Before we untied our ship from the dock I received a full tour of the engine room. This is where the heart of the ship is. Everything in the engine room powers the ship. Our water is even purified down here using reverse osmosis (passing water through a membrane to filter the water). Because of this machine, we can filter salt water into fresh water to use on the ship.

Reverse Osmosis
Reverse Osmosis Machine

It was great to venture down to the engine room  before we set sail because I was told that it can get up to 110 degrees when the engines are running! It is a large space, but it feels small because of the large equipment. There are two of everything, which is especially important if something needs repair. Below is a picture of the two engines. The other is a picture of one of the generators.

Engine
Engine
Generator
Generator

Living on a Ship
Stateroom

My stateroom is compact, but its main purpose is for sleeping so size isn’t really an issue. There is a bunk bed, a sink with a mirror, latching drawers for clothes, and a hide-away desk. There is also a compact tv that is attached to the bottom of the top bunk and folds up when it is not in use. I only use the room to sleep and get ready for my shift because my bunkmate works the opposite watch shift as mine (midnight to noon), and I want to be the least disruptive as possible. After 12 hours shifts, sleep is really needed and helps reenergize you in time for the next watch.

Stateroom Bunks
Stateroom Bunks
Stateroom
Stateroom

The Head

The head is the same as a bathroom. On the Oregon II there are private and communal heads. The private heads are for the officers and are typically connected to their staterooms. The communal heads are open for any crew member to use. There are also communal showers for the crew to use. All of the toilets use salt water that is pumped onboard. The reason fresh water is not used is because it is a precious source on the ship and is not readily available from the ship’s surroundings. The sinks, showers, drinking fountains, and ice machines all use fresh water. Fresh water on the ship should never be wasted. Water for the sinks is timed so that there will never be a faucet that is accidentally left on. Showers are to be kept to a maximum of 10 minutes, though it is encouraged that they be even shorter.

Heads
Heads
Shower
Shower

Galley and Mess Hall

This is one of my favorite places. The galley is where our ship’s cooks prepare all of the wonderful food for the crew. The mess hall is where we all eat during meal times. During meal times it can be quite crowded in the mess hall as there are only 12 available seats and over 30 crew members onboard who are ready to eat. There is an “eat it and beat it” policy to help ensure that everyone who comes down to eat will be able to find a spot. Despite this, it is still a great way to converse with the crew and talk about events from the day before giving up your set to another hungry crew member.

Galley
Galley
Mess Hall
Mess Hall

Crew Lounge

This is the place where crew members who have some down time can gather and socialize, though down time can be rare. There is satellite tv, a couple of computers, and hundreds of movies to choose from. Some available movies haven’t even been released onto DVD for the common household yet, but they are available to the military. They do this because not everyone has access to current movies when they are away from home for extended periods of time. All of the DVDs are encrypted and can ONLY work on the machines aboard the ship. I was excited to find a copy of The Hunger Games and I plan on trying to watch it before my trip is over.

Lounge 1
Lounge 1
Lounge 2
Lounge 2

Labs on the Oregon II

The Wet Lab

The Wet Lab is where all of the samples from the groundfish trawls are sorted, counted, measured, weighed, and sexed (gender identified). Buckets filled with animals from the nets are dumped onto a large conveyor belt and spread out to make sorting the different species out into individual baskets easier. Everything in the wet lab can get wet except the sensors connected to the machines. We need to be cautious around the sensors when we are cleaning up after a sampling so as not to get water in them.

Wet Lab
Wet Lab

The Dry Lab

The Dry Lab is where all of the computers are located that record all of the data from the samplings. As the name of this lab states, everything in it is dry. Water should never come into contact with the equipment in here because it can seriously damage it. In between samplings, this is typically where the scientists gather to wait for arrival at the next sampling station.

Dry Lab
Dry Lab

The Chem Lab

This is where all of the plankton samples are stored. It is also where water samples taken from the CTD are tested for dissolved oxygen (DO). The CTD does have its own DO sensor, but it is always best to test something more than once to ensure you are collecting accurate data.

Chem Lab
Chem Lab
Personal Log
Day 1 – July 5th
I arrived in Gulfport/Biloxi, Mississippi late in the afternoon of July 5th. The chief scientist, Brittany Palm, met me at the airport and drove me over to the Port of Pascagoula where the Oregon II was docked. We met up with two college volunteers, Kayla and Andrew, and got a quick tour of the ship  (the air conditioning was out!) before we headed over to a wonderful local barbecue restaurant. We returned after dark and were welcomed with a fixed AC! I unpacked my belongs into my latched drawers and made up my bunk bed up so that everything would be in place when I was ready to hit the sack. It took a couple of nights for me to get use to the sounds of the ship, but now I hardly notice them.
.
Day 2 – July 6th

Oregon II and IWhen I woke up the next morning, I decided to venture out into downtown Pascagoula which was only a 5 minute walk away from the ship. It is a quaint area with little shops and restaurants. I met up with the two volunteers and we picked a business that had the best of both worlds, a restaurant and a shop, to have a wonderful breakfast. We had to be back on the ship by 12:30 for a welcome meeting, but we took some time to snap a few pictures of our floating home for the next 12 days. We were underway shortly after 2 pm (1400 hours in military time). It was fun to watch our ship depart from the dock and enjoy the light breeze. It wasn’t long until we had another meeting, this time with the deck crew. We learned about the safety rules of working on deck and discussed its importance. The rest of the afternoon was spent relaxing and getting my sea legs. The gentle rocking does require you to step carefully, especially when you have to step through the water tight doors!

Day 3 – July 7th
Our first day out at sea was slow to start. We didn’t reach our first sampling station until early in the morning on the 7th, even though we left the Oregon II’s port in Pascagoula mid-afternoon on the 6th. I was sound asleep when we arrived because my shift runs noon to midnight every day, so my first sampling experience didn’t happen until almost 24 hours after we set sail. This was nice because it gave me time to explore the ship and meet some of the crew.
.

Right after lunch I got to jump right in and help finish bagging, labeling, and cleaning up the wet lab for the team that was just finishing up their shift. After we had finished it was time to conduct my first plankton sampling.  We went out on deck at the bow of the ship to prepare the CTD (conductivity, temperature, depth) device for deployment/release. After the CTD was released and brought back on deck, we deployed the neuston net to collect species samples from that same station. (I’ll explain the importance of this type of net in a later blog.) Once the collection time was complete, the neuston net was brought back on deck where we detached the cod end and placed it into a large bucket. Cod ends are plastic cylindrical attachments with screened holes to let water run through but keep living things inside during collection. The neuston cod end’s screens have 0.947mm sized openings.  We then deployed the bongo nets to collect samples of even smaller species like plankton. (I will describe the purpose of the bongo nets in a later blog.) When the nets were brought back on deck, we detached the cod ends from the two bongo nets and placed those into buckets as well. The screens on the cod ends for the bongo net are even smaller than the neuston’s at only 0.333mm. When all of the nets were rinsed to make sure nothing was still stuck to the inside of the nets, we brought the buckets back to the stern of the ship to further rinse the samples and place them into jars for further examination by scientists.

Day 4 – July 8th
Blowfish
Holding a blowfish collected from a trawling
Today was a lot of fun because I completed my first groundfish trawl. The net for this trawl is located at the stern of the ship. When the net was brought back up on deck, it was emptied into a large box. There was quite the commotion when the fish were emptied out of the net. Not only were the fish flopping around like crazy and splattering water everywhere, their scales flew everywhere and it looked like shiny confetti! Anyone who was in a 6 foot radius was bound to be covered in scales. By the end of the day I thought I was part mermaid with the amount of scales that had stuck to me!
.
There were so many fish in one of our trawls that we had to use large shovels to place the fish into more manageable sized baskets. The baskets were brought inside the wet lab to be sorted, weighed, measured, and labeled.
.
The coolest animals I saw today were sea urchins, a sharpnose shark, and a blowfish. It was also fun to observe the different crab species, so long as I kept my fingers away from their claws!
.
Question of the Day
There is only one right answer to this question. ? You’ll be able to find it at one of the links I placed in my blog. Can you find the answer?
Good Luck!

Paige Teamey: November 6, 2011

NOAA Teacher at Sea
Paige Teamey
Aboard NOAA Ship Thomas Jefferson
October 31, 2011 – November 1, 2011

Mission: Hydrographic Survey
Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island
Date: November 6, 2011


Weather Data from the Bridge

Clouds: Clear
Visibility: 10 Nautical Miles
Wind: SE 9 knots
Temperature 14.3 ° Celsius
Dry Bulb: 11.5 ° Celsius
Wet Bulb: 8.9 ° Celsius
Barometer: 1030.0 millibars
Latitude: 41°10’59″ ° North
Longitude: 072°05’63″ ° West

Current Celestial View of NYC:

Current Moon Phase:

Current Seasonal Position (make sure to click on “show earth profile):

http://www.astroviewer.com/ http://www.die.net/moon/ http://esminfo.prenhall.com

OR

http://www.learner.org/

Science and Technology Log

Sunset on either Thursday, Saturday, or....two months ago :).

Frank said an interesting thing today that resonated with a feeling that I have been unable to define. He said that when you are working at sea, every day is a Monday. This specific survey trip is 12 days long, which translates to 11 Monday’s and one Friday. That means there are no weekends, time is not longitudinal, rotational, or accompanied by changing scenery (going from home to the subway to school…all different backdrops). One day drips into the next, sparked by small things that you note as change and reference with a new day. We even had to vote on whether to observe daylight savings this weekend, or pretend it did not exist until we landed in New London on Friday.

Time at Sea.

I awoke yesterday and had the same breakfast I have had for the past week (still tasty, thanks Ace!!); however, there was nothing to punctuate why this day was indeed Saturday and not Friday. Mike the E.T. sat at the same table he had the day before and piled one condiment after the next onto his breakfast until perfection was reached, just as he has done each prior day. I smiled and laughed and told jokes with each of the crew members just as I have each day since I arrived.

Mike: Perfection in every bite.

The mess hall is like an accordion. It acts as a center piece that brings all of us together. After each meal the crew disappears back to the their stations. In this 208ft ship 36 members find their space and focus moving back to our stations to perform our individual duties. When meals begin anew we are pulled back together to resonate until we move away yet again. This center piece is essential otherwise we would continue with our duties whether it be Tuesday evening or Sunday morning. I enjoyed thinking about Frank’s sentence. This idea spoke of time not in hours or minutes, but as a continuum. Time on the TJ is marked with very simplistic relatively small changes that many of us would not pay attention to in our regular New York lives. A small conversation that sparks ideas, or subtle nuances that you begin to discover in an individual especially while sharing silence together, or a new smell that is adrift in the air that allows you to remember Tuesday from Friday (remember Tuesday when we smelled…). A series of simplistic small moments allows you to mark one day from the next.

Brilliant Tom prepping 3102 for a secure departure from the TJ.

There is a lovely gentleman named Tom who has been on numerous ships for over 30 years. He told me his line of work suits him best because he likes being able to keep to himself and if he was unable to work on ships he would be a hermit high on a hill (just a little joke). He has marked time by haircuts or noticing his shirt is slowly falling apart, or having to shave. He does not speak in days, just marked events. His longest time at sea without seeing land was 167 days…

Rock dove...can you find him?

Yesterday, Saturday…I mean Sunday, was marked by a small rock dove staring at me from the deck while I was standing on the bridge as I normally do with Joe and Tony during the 4-8 shift. The dove landed on the steal guard rail and then nestled in an incredibly small nook located in the bow next to the front mast and remained with the ship for the next two hours. It puffed its feathers to a measurable extension and settled in with the rest of the TJ crew. This dove punctuated my day and allowed me to differentiate time from Saturday.

"It's the people that make you happy--that is why I continue. Without people it is like having one shoe," says Tom.

There is constant conversation involved with seeing family, returning home, having creature comforts in hand’s reach, and kissing a wife, husband, or missed child. However many of the crew have also spoken of how even though time away from the ship is welcomed, after a while, they miss these days. Working with and on the ocean takes a certain kind of someone. These individuals tend to have patience, perseverance, and motivation to live on a ship and continue with focus each Monday. Each crew member on the TJ seems very much at ease and almost in a Zen-like state. From what I have observed there is no bitterness or disgruntled workers roaming the ship. Everyone here has served on multiple ships and is self-contained. Silence marks most of the day and conversations occur naturally when the tides are right.

For the last three days I have spoken with every surveyor on the ship at length to understand each stage of the nautical chart making process. I want to know the history, the importance, and most importantly the science. There are many stages and processes that go into the eventual updated chart (this process can take upwards of 1.5 years depending on the layout, and how well the data was accurately retrieved). I have been learning about this information and shooting videos bit by bit in order to make an introduction to hydrographic surveying for those that are following (thanks mom). November 3-5 have been my devoted days to understanding these new ideas. I will hopefully finish with the editing and have the video published soon.

Until then, smooth sails with no gales.

Personal Log

Meals:

Breakfast: Scrambled eggs with cheese and two pancakes (coffee of course!)

Lunch: Grey noodles…no seriously

Dinner: Spicy noodles with green beans (YUM)

David Altizio May 24-26 2010

NOAA Teacher at Sea
David Altizio
Onboard NOAA Ship Fairweather
May 17 – May 27, 2010

NOAA ship Fairweather
Mission: Hydrographic survey
Geographical Area of Cruise: SE Alaska,
from Petersburg, AK to Seattle, WA
Dates: Monday, May 24 and Tuesday, May 25,
Wednesday, May 26

Weather Data from the Bridge

Position: Hassler Harbor
Time: 0800 on 5/24
Latitude: 550 13.06’ N
Longitude: 1310 27.15’ W
Clouds: Light drizzle
Visibility: 8 miles
Position: Inside Passage
Winds: Light with variable directions
Time: 0800 on 5/25
Waves: Less than one foot Latitude: 52024.5’N
Dry Bulb Temperature: 11.20C
Longitude: 128030.0’W
Wet Bulb Temperature: 10.00C
Clouds: Mostly Cloudy
Barometric Pressure: 1006.4 mb
Visibility: 10 + miles
Tides (in feet):
Winds: 10 knots from the NE
Low @ 0439 of 0.1
Waves: One to three feet
High @ 1055 of 13.1
Dry Bulb Temperature: 11.00C
Low @ 1637 of 2.2
Wet Bulb Temperature: 10.10C
High @ 2254 of 16.4
Barometric Pressure: 1009.1 mb
Sunrise: 0422
Sunset: 2105

Science and Technology Log

On Monday we were testing one of the multi‐beam sonar transmitters that had not been working properly on the Fairweather, in Hassler Harbor near Ketchikan, AK. In order to verify that the device is working properly the ship went back and forth over an area that has previously been mapped from all different directions. This is called patch testing. Ideally you are looking for no difference in the data from one test to another test.

Me,at the helm,driving the Fairweather.
Me, practicing using the line throwing device.

While on board Monday, we also practiced using a line throwing device. This piece of equipment can be used for ship to ship rescue operations, or to get a line onto a pier if needed, or for other rescue operations. The device is powered by 3000 lbs. of compressed air. Today we only fired a test line, but the real one can travel almost 200 meters. Being prepared and knowing what to do in the case of an emergency is extremely important while out at sea. Not only was I allowed to use the device, but so was anyone else on board who had not learning how to use it properly.

Marine aneroid barometer measures air pressure.
Digital anemometer showing wind speed and wind direction.

I have also been collecting and recording the weather data from the bridge of the ship. These observations are made every hour. There are many different meteorological instruments on the Fairweather. The atmospheric pressure is recorded using an aneroid barometer. The dry and wet bulb temperature readings were taken off of a sling psychrometer, just outside of the bridge. The wind direction and wind speed were taken from a digital anemometer and verified using the vectors of the wind direction and the heading of the ship. The visibility, wave height and the cloud cover are estimated visually by observing them from the bridge of the ship.

One of the ship’s officers, tracking our plot by hand on the chart.
Me taking the temperatures off of a psychrometer outside of the bridge.

I was also given the opportunity to man the helm and drive the Fairweather, for about 10 minutes as we headed south towards British Columbia, Canada. The bridge of the Fairweather has a many different screens, monitors, sensors and gauges. In order to see where we are going there are digital charts, which have our path projected on them. Also, some of the ship’s officers will verify our position along our course by hand. The depth to the bottom is determined by a fathometer, which works by using SONAR, not as complex as the multi‐beam mapping but more similar to a fish finder. In many maritime activities the depth is measured in fathoms. One fathom is approximately 1.8 meters or 6 feet. Knowing where you are and where other vessels are is extremely important.

Some of the Fairweather’s navigation systems.
Digital fathometer, measuring depth to the bottom using SONAR

The Fairweather has enough beds to hold a maximum of 58 crew members. The ships personnel is divided between: NOAA Corps officers, survey, deck, engineers, stewards,  electronics technician and visitors. There are almost 15 NOAA officers on the Fairweather, including the CO (commanding officer), XO (executive officer), FOO (field operations officer), and all the way thru captain lieutenant commander, 3rd mate, lieutenant, and ensigns. The survey group has approximately 10 people including the chief survey technician, senior, regular, and assistants.

More of the Fairweather’s navigation systems.

Digital readout of ship’s GPS (global positioning system) for precise latitude & longitude, speed in knots, and heading in degrees.

The deck group has 12 people and they help to maintain the deck areas, drive the launch boats, and help out in the anchoring and docking processes. There are 10 engineers who  make sure the ship is running properly. There are three stewards (cooks) who are amazing and make sure everyone is fed very well. There are 2 electronics technicians, and anywhere from two to five visitors, such as teachers at sea, technology support, mission/NOAA related personnel.

My stateroom on the Fairweather’s.
Fairweather’s store.

The Fairweather was originally commissioned in October 1968, deactivated in 1989 but a critical backlog of surveys for nautical charts in Alaska was a motivating factor to reactivate it in August 2004. The home port for the Fairweather is Ketchikan, AK and it operates mostly in Alaskan coastal waters. It is designed and outfitted primarily for  conducting hydrographic surveys in support of nautical charting, but is capable of many other missions in support of NOAA programs. The ship is equipped with the latest in hydrographic survey technology – multi‐beam survey systems; high‐speed, high‐resolution side‐scan sonar; position and orientation systems, hydrographic survey launches,  and an on‐board data‐processing server. It is 232 feet long, with a beam of 42 feet. It weighs 1,591 tons and the hull is made of welded steel. The Fairweather has a range of 6,000 autical miles, can stay at sea for 30 days, and has an average cruising speed of 12 knots.

The galley (kitchen) on the Fairweather.
Dish washing station on the Fairweather.
Mess hall (dining area) on the Fairweather.
One of the food storage areas on the Fairweather.

The staterooms on the Fairweather are fine for two people to live in. There is a bunk bed, dresser/desk area, closets, sink, small refrigerator, and a TV. The food on the Fairweather is really good, not just for being at sea, but really good with a lot of different options. There is also a small store where you can buy candy, soda and clothing with logos and images of the ship. There is a small workout room that people do use to keep active. There are three different food storage areas, one for dry goods, a refrigerated area, and a freezer. The Fairweather also has laundry facilities and a sick bay.

Laundry room on the Fairweather.
Fairweather at Customhouse Cove.

Personal Log

It is hard to believe that we are already heading south towards Seattle, WA. I have really enjoyed my time onboard the Fairweather and will never forget these experiences. Being a Teacher at Sea is amazing and I highly recommend it. I have seen so many different and new things that I can now add to my “teacher toolbox”.

On Monday, being able to learn how to use the line throwing device was very cool, but that was not the highlight of my day. I was also given the opportunity to man the helm, and drive the Fairweather for about 10 minutes. It is amazing that a ship this big is so responsive to small changes in the angle of the rudders. It was sort of like driving a really big car, in the sense that when you turn the wheel right the ship goes right and turning left makes the ship go left. There is a lot to do when at the helm. You have to make sure that we are following the correct heading, going the proper speed, not heading towards any other vessels or obstructions such as logs or other debris, and in water that is deep enough for the ship. As much fun as it was it was a little nerve racking, my palms were definitely sweaty.

Along the Inside Passage

I did have the help of four other NOAA officers to assist me and help me know what to do. It is not only up to the person at the helm to make decisions about what to do or which course to follow. The Fairweather is definitely a place where the junior officers are being trained and learning what to do in all types of situations. This aspect of helping and learning was prevalent in many aspects of what I observed while onboard the Fairweather and was great to see.

A while after I manned the helm, the seas got a little rougher as we went through Dixon entrance which marks the boundary between SE Alaska and British Columbia Canada. Here we were exposed to ocean swell from the Pacific Ocean/Gulf of Alaska. I was very glad this did not go on for too long. I made the mistake of trying to write this log while the ship was rocking and rolling a little bit. Not such a good idea. One of the officers told me to put down the computer, go out on the stern (back) of the ship, and look at land along the horizon. Being outside in the fresh air, while looking at land made me feel much better.

The sick bay on the Fairweather.

The rest of the trip towards Seattle has been very nice. The seas have not been too rough, and I am really enjoying the scenery as we go through the inside passage of British Columbia, Canada. Coming home and going back to New Rochelle High School will definitely be a change from the last two weeks. I will never forget the places, people and the science I have been exposed to in my time on the Fairweather in SE Alaska. We are now in the Puget Sound, and Seattle is almost in sight and I am ready to be home, back in New York.
Signing out, David Altizio Teacher at Sea

Ruth Meadows, July 9, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 9, 2009

Venda, Shannon and Amy cleaning the baskets.
Venda, Shannon and Amy cleaning the baskets.

Weather Data from the Bridge 
Temperature: 14.2o C
Humidity: 61%
Wind: 6.5 kts

Scientific and Technology Log 

One of the last things to be completed before arriving in Newport, Rhode Island is a final clean up of the lab. Once all the sampling is finished it is important to leave all the equipment used in good shape for the next cruise. Everyone from both watches worked together to get everything clean. The baskets and trays that were used to hold the samples were scrubbed down and rinsed off. Luckily, the day was beautiful for working outside.

Shannon and I help Tom clean his suit.
Shannon and I help Tom clean his suit.

While some of us cleaned the baskets, others rinsed them off and then placed them in the sun to dry.  Once they were dry, then they were returned to the correct location for storage. Once the baskets were cleaned the next step was to clean our foul weather gear.  These overalls and jackets had been used while collecting samples and they had all types of “dirt” on them, from “fish guts” to grease from the cables.  The easiest way to clean them was to scrub them while you had them on.  Someone would help make sure the back was clean and then someone would spray them with clean water.  It was simple, effective and fun all at the same time.

The serving line.
The serving line.

Personal Log 

Mealtime is a very important time aboard the ship.  Not only do we eat a variety of foods, but it is also a time when both the scientific crew and the working crew get a chance to talk and visit with each other.  The galley is a large open room with tables bolted to the floor to keep them from moving.  Some tables are for four people and others are for eight.  Each day the menu is posted before the food line and you may select what you want and how much.  There are usually two entrées (main dishes) and several side dishes to go along with them.  In addition, there is a fruit and salad bar that you can select. At the end of the cruise, you notice that some of the menu that some of the menu items have changed – we are out of lettuce and ketchup. We have been at sea for four weeks and some things just can’t be kept fresh that long. We still have apples, oranges, nectarines and ice cream!

The mess hall
The mess hall