Staci DeSchryver: Fair Winds and Following Seas, July 8, 2017

NOAA Teacher at Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

Mission:  HICEAS Cetacean Study

Geographic Area:  South of Oahu, heading toward the Big Island

Current Location:  20.20 N 156.37 W

Date:  July 8, 2017

Weather Data From the Bridge: 

 

Science and Technology Log

We have arrived!  Today members of the incoming crew on Oscar Elton Sette picked me up from Waikiki and we made our way over to Ford Island for training.  The HICEAS study is seven “legs” long, each lasting about a month with a one week break in between legs – ours is the first “leg” of the mission, and the training took place for all scientists and crew who would be traveling and conducting research through any of the four parts of the mission.  In August and September, two of the legs will run simultaneously, so the project is significant in size with respect to time, manpower, and data collection.  We had a very full house of various research teams, some of which will overlap among the various legs of the trip.  The full crew is a tight family, with hugs and greetings all around during breaks and meal times.  How nice to know that leaving for 28 days (some of them longer) doesn’t necessarily mean leaving your family.

PIFSC_20100926-S86_B-01784.JPG

Wanted:  pseudorca (Alias: False Killer Whales) For High Crimes of Adorableness and shyness from ships.  Photo Credit:  NOAA Fisheries/Corey Sheredy

During training, scientists reviewed procedural protocols to follow for different species sightings and learned the protocol changes for a few other species.  The primary target for this particular leg of the HICEAS is pseudorca, or False Killer Whale.  They are a socially interesting bunch – a little reminiscent of the hallways at Cherokee Trail High School.  Whereas most whale species travel as a “class” in one large group all together, pseudorca behave as though all day every day is passing period.  The entire group of pseudorca may travel together (similar to being in school all day), but they don’t all congregate together in the same location.  They are a rather “cliquey” bunch – with smaller groups milling about together on their own in different corners of the main group but all keeping at least somewhat in eyesight or earshot of the other groups.  Because of this, scientists must identify the group, and then each individual subgroup, making note of any groups that join up or split apart.  We haven’t spotted any pseudorca yet, but with some time, talent, and a little luck, we will soon!

In a broad sense, the search for cetaceans on a daily basis is executed a little something like this:  Three mammal observers take their positions at port (left), center, and starboard (right) on the “flying” bridge – or the topmost deck of the ship.  There is also a space reserved just right of center for the Seabird observers.  Each observer will rotate through these three positions for a total of a two-hour shift.  If, for example, an observer begins at the port side “Big Eye” station, they will scan the water in search of cetaceans for 40 minutes from that position, rotate to the center, and then finally to the starboard side.  Where does the starboard side observer go when he or she has completed the rotation?  There’s plenty to do onboard and to help with until the next two-hour rotation begins.  There are two seabird observers working alongside the mammal observing team, and they alternate in two-hour rotations, so only one bird observer is on the flying bridge at a time in an official capacity.  All visual observers work from sunrise to sunset.

Each position at the marine mammal observation area is responsible for visually sweeping the ocean’s surface during observations.  The two side observers are only responsible for scanning from 0 degrees (the bow of the ship) to 90 degrees to their direct left on the port side, or direct right on the starboard side.  They use a very imposing pair of binoculars called the “Big Eyes” to scan their respective areas.  These binoculars are impressive in size and abilities.  They can bring even the smallest birds far on the horizon into sharp focus.  The center observer does not have Big Eyes, but stands ready to take data if there is a sighting.  He or she can scan the area in general, but the big eyes offer much more detailed observation abilities at a much greater distance.  The center observer is also responsible for keeping time on the rotations, monitoring the weather, the sun’s position in the sky, and Beaufort sea state.

While the visual observers are on the flying bridge, two scientists work in the acoustics lab to listen for cetacean vocalizations.  The two groups work in parallel universes, but only the acousticians can cross dimensions.  In other words, if the visuals see cetaceans, they can tell the acoustics about what they are seeing, but if the acoustics scientists hear vocalizations, they will not tell the observers.    More often than not, the acousticians will hear clicks, whistles, and moans from the acoustics lab well before the visuals make a sighting, because the acoustics team has a large advantage over the visuals team.  The visuals team is restricted to what they can see at the surface, and the acoustics team can “see” many miles away and deeply into the water column, which significantly increases their volume of searchable space.

When the acousticians “see” or hear a vocalization, they plot the distance from the ship. They continue to listen for vocalizations and continue with the plots.  Eventually, they have enough data to narrow down the potential location of the cetacean to two spots. This process is not unlike earthquake triangulation, except the observers can narrow down the location to two spots, rather than just one.  There will be much more to come as to how this process works in future blogs, so stay tuned!  

Personal Log

At the end of training today, Dawn, one of the ornithologists (that’s a seabird “pro”) informed us of the third and far lesser-known Pearl Harbor Memorial, USS Utah.  Utah was the very first ship capsized by Japanese bombs on the early morning of December 7th, 1941.  Found on the opposite side of the island from USS Arizona, the Utah is only accessible by folks who have military clearance to get on the base, making the memorial incredibly secluded from exposure to the general public.  Utah took 64 lives with her when she sank, and a small monument now stands on the shore as a memento to the crew lost that fateful morning.  What makes Utah interesting is that she still stands partially above water, her mangled and rusted metal piercing through the water’s surface like the grasping hand of a drowning sailor.  There was a brief attempt by the military to right and raise her, but it proved futile, and they made the call to leave her remains be.  Her finest and final duty is to serve her watch over the men caught in her belly on the day she fell prey to the Axis forces.

Utah found herself in the wrong place at the wrong time on the morning of December 7. She was moored on a pier normally reserved for aircraft carriers, and her flat and shiny deck betrayed her identity to the incoming Japanese pilots.  Due to this mistaken identity, the Japanese attacked her on appearance, and she capsized almost instantly.  More interesting is that much like the beginning of a bad cop movie, she was nearing her retirement.  She was in port awaiting her execution date,  friendly-fire style, her technological abilities waning and falling out of favor compared to the newer commissioned ships.  Her final resting place was originally supposed to be somewhere in the Pacific as a victim of a practice bombing drill by the Air Force.  The Japanese pilots got to her first.  She wasn’t even at work that day.

Utah was built in 1909 and commissioned in 1911, the second of two Florida-class battleships built for service during World War I.  After a long stint in the service as a battleship, the Utah was re-appropriated as an auxillary ship for gunnery training and target practice for the allied forces.  On the day of the attack, the aircraft carriers that should have been in-port at the time were out to sea, and so Utah moored in one of the empty spaces intended to be held by the aircraft carriers.  In the confusion of the attack, it was determined that Utah was a carrier, and the Japanese navy opened fire.  The Chief Water Tender, Peter Tomich, served bravely as he assisted crew in their evacuations when the abandon ship call came over the ship’s systems.   While everyone was running off the ship, Tomich was running back onboard. He lost his life in that selfless move and is remembered as a hero of the day.

Today Utah sits idly close to shore alongside what used to be a dock.  Her neighbor is NOAA Ship Okeanos Explorer, and just a little further up the harbor, our ship, Oscar Elton Sette.  It was sobering honor to be so close to the memorial before we left port, and though USS Utah is one of the smaller memorials on Ford Island, I certainly will not forget her.

Species Report:

Number of cetaceans seen visually:  0 so far

Number/types of cetaceans “seen” acoustically:

*Blainsville’s Beaked Whale

*Sperm Whale

*Dolphins

Birds Seen:

Frigate Bird

Shearwaters

Red Footed Booby

Brown Footed Booby

Land Bird who shouldn’t have been out so far in the ocean (so possibly my spirit animal).  Let’s hope he eventually finds his way home.

Kainoa Higgins: Preparing to Set Sail! June 15, 2014

NOAA Teacher at Sea

Kainoa Higgins

(Almost) Aboard the R/V Ocean Starr

June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey

Geographical Area of Cruise: Pacific Coast

Date: June 15, 2014

Personal Log

Aloha from the great Pacific Northwest!  My name is Kainoa Higgins and although I was born and raised on the island of O’ahu, Hawai’i, I have spent the last 10 years calling Tacoma, Washington home.  I am incredibly excited to have been selected as a 2014 NOAA Teacher at Sea and can’t wait to climb aboard the R/V Ocean Starr in a matter of hours!  I will be participating in two legs of research during my two and half weeks on ship.

During the first leg, I will be assisting scientists with conducting a Juvenile Rockfish Survey as they examine groundfish populations off the coast of the Western Seaboard of the North America.  Though I have been attempting to get caught up to speed, I currently only understand the program at a general level.  There are many species of rockfish, all of which are commercially valuable, and keeping track of their populations and distributions is essential for conscious management.  Having spoken with my Chief Scientist for this leg, Ric Brodeur, on several occasions leading up to my departure, I understand that my job will entail any, some or all of the following: mammal/bird observational surveys and plankton analysis by day followed by sorting of trawled collections analysis of the catch in the wet lab by night.  I’ll be able to share more as the adventure unfolds.

In the second leg, I will connect with Laurie Weitkamp who will take over as chief scientist with a fresh research team and research focus.  In a recent e-mail Laurie explained that this leg will be “experimental”.  In short, we will be trying a variety of modifications to a marine mammal excluder device to see how it fishes and influences the catch.  I’m not sure, exactly, how the MMED is used, but I would be willing to take a guess at it’s purpose.  I imagine it has something to do with an attempt to maintain commercial fishing operations without the interruption of marine mammals (dolphins, porpoises, seals, whales, etc.) in close proximity.  Through some sort of “deflection”, its goal would also be reduce unintentional by-catch.  Once again, I’ll know more concretely a bit further down the road.  According to Laurie, in addition to help work up the catch, I will be helping with “marine mammal watch” before and during fishing.  Since we will use a surface trawl during the day, it is possible that we could catch a marine mammal (e.g., seals and dolphins). To minimize this risk, I will help serve as a lookout  before we set and when the trawl is out, and are required to immediately stop fishing if any are spotted nearby.  I look forward to spending some time on the bow scanning the horizon for marine mammals.

Plankton

One of my favorite pics of marine diatoms (phytoplankton) from the Puget Sound. Taken with iphone camera though microscope eyepiece.

A bit more about myself and the school I represent.  I grew up loving the ocean.  Much of my life as a child was spend in or around it.  Whether snorkeling, surfing or fishing my brother and I were raised to respect and appreciate all that the ocean had to offer.  After all, my name, Kainoa, means “free as the sea”.  There is a saying in the islands, Malama ‘aina, Malama i ke kai, meaning ‘to care for the land and care for the ocean’.  After graduating from Punahou School  in Honolulu, Hawaii I headed for the great Northwest to attend the University of Puget Sound.  I participated in Athletics, Lu’au, Senior Theatre Festival and even Greek Life.  I studied Biology and spent a semester abroad in Christchurch, New Zealand.  Even though I took Marine Biology in one of the most amazing diverse systems in the world, my favorite class had to be “The Diversity of Algae”.  It opened my eyes up to the beauty and importance of micro life for the first time.  This led to my passion for – and borderline obsession with – plankton.

After earning a Master’s in the Arts of Teaching from UPS, I began my career at the Tacoma School of the Arts teaching entry level biology.  After my second year, I was asked to join our recently founded sister school, the Tacoma Science and Math Institute (SAMI) located in Point Defiance Park on the North Tacoma peninsula.  SAMI  is built around a particular vision: we believe that students make the most of their learning when they take ownership of their education—when students intentionally choose to take on the challenge real learning entails. We further believe that this ownership most naturally develops within a learning community, encouraged by others who share that commitment.  We theme our curriculum around the math and science and emphasis the integration of disciplines and staff collaboration all the while perpetuating the pillars on which the schools were founded: community, empathy, thinking and balance.  SAMI has allowed me to pursue my passion for marine science.  We are a two minute walk to the waterfront which makes the learning opportunities for myself as students invaluable.  Between this field resource and collaborations with the University of Washington in the High School program and the University’s School of Oceanography I am in a position to offer my students a world-class learning experience.

I think it is important that teachers are always looking for opportunities to improve their practice and better educate themselves in ways that will better prepare their students for the world ahead of them.  The Teacher at Sea opportunity is an incredible way to engage myself as a life-long learner and will help me to better engage and inspire my students.  I look forward to designing and offering lessons derived from real-time science and experiences.  I am very grateful for this opportunity and can’t wait to share it with you.

See you soon,

Kainoa

 

SAMI Students

SAMI Students reflecting on a trip to Dungeness Spit, WA.

Pups

The men of the house in my absence

Sandys

A relationship founded on respect

 

Jeannine Foucault, November 15, 2009

NOAA Teacher at Sea
Jeannine Foucault
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Ecosystem Survey
Geographic Region: Southeast U.S.
Date: November 15, 2009

Crew in safety gear

Crew in safety gear

Science Log

If you have been using the ship tracker you would be able to follow that last night we cruised around the bottom tip of Florida out of the Gulf of Mexico into the Atlantic Ocean. The waters were a bit rough with wind gusts up to 40 knots. It was a rocky night. Not to mention a very sleepless night with the greenish way I was feeling :)! Needless to say I haven’t had much to eat today except for some dry Captain Crunch cereal. The head chef on the mess deck suggested it would be a good stomach filler. We will see and I will let you know!

Once I got my sea legs back I was anxious to see what everyone else was doing. The crew as well as the scientists were very busy; therefore, I stayed pretty much out of their way for a while. The crew was trying to get us an arrival in Jacksonville, FL and the tech crew was busy trying to get us online since the internet signal went down. Talking to the captain he says that with a new boat there are always kinks that have to be ironed out …that’s why we call these sea trials.

Lab equipment aboard the ship

Lab equipment aboard the ship

The mammal scientists were working on their equipment trying to get their equipment calibrated correctly. They explained to me that PISCES is equiped with many sensors (transducers) and these sensors are connected to different pieces of equipment to help pickup the ocean ecosystem. For instance, the mammal scientists are using the echo sensors on the computers (see below) that operates seven echo sound frequencies. Then the scientists can use this realtime data for analysis of targets, concentrations, the layers of ocean, etc. This provides a broad scope of marine acoustic survey from plankton to large schools of fish.

While I was on deck watching the waves I noticed a bunch of birds that flew into the water but never came up. I watched a while longer and again, but this time these creatures came up from the water and flew across it into a huge dive back into the ocean. These were not birds…..these were ‘flying fish’! They are C.melanurus common to the Atlantic. They are silly little fish always flying from a predator under water.

Christine Hedge, September 7, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: September 7, 2009

The empty dredge being lowered into the ocean.

The empty dredge being lowered into the ocean.

Weather Data from the Bridge  
Latitude: 790 ’24N
Longitude: 1540 27’W
Temperature: 290F

Science and Technology Log 

Today we deployed our first dredge in hopes of collecting some samples of bedrock from the Arctic Ocean. A dredge is a basket made of metal chain link with a sharp edged bottomless tray on top. A wire cable connects this dredge to the Healy. Our echosounding instruments show us what the sea floor looks like. Maps reveal ridges, seamounts, flat abyssal plains, and raised continental shelves.  But, how did all these features form?  How old are they?  What type of rock are they made from?  What kinds of forces created this ocean surrounded by continents?  Where are the plate boundaries? Collecting rock samples will help us to answer some of these questions.

Sifting through the muddy sediment in search of rocks

Sifting through the muddy sediment in search of rocks

FOR MY STUDENTS:  Can you predict what type of rock we might find by sampling oceanic crust?  Continental crust? 

Here is how dredging works:

  • The dredge is deployed over a seafloor feature with a steep slope. Lowering the dredge takes a long time as the huge spool of cable unwinds.  The top speed for the cable is 50 meters/minute.  Today, the cable with the dredge attached rolled out 3850 meters before it stopped. The Healy then moves slowly up the slope dragging the dredge behind.  The metal plates at the top of the dredge catch on rock outcrops as it is dragged up the side of the slope.   Pieces of rock and sediment fall into the basket.  The dredge is pulled up by the cable and lowered back on to the deck of the Healy. The dredge is dumped and scientists pick through all the mud and find the rocks.
Full dredge is safely landed on the deck of the Healy.

Full dredge is safely landed on the deck of the Healy.

This first dredge brought back 400 pounds of mud and rock. Unfortunately, most was mud and only 10% was rock. Dredging is tricky business. Sometimes the dredge gets stuck and needs to be cut free.  Sometimes it collects only mud and no bedrock. We will be dredging at different sites for the next few days in the hope that good examples of bedrock will be collected.  The rocks we find will be catalogued and the chemistry of the rocks will be analyzed.  Hopefully, the rocks will help to answer some of the questions we have about the geologic history of the Arctic Ocean.

Personal Log 

Examples of rocks that were collected from our first dredge site.

Examples of rocks that were collected from our first dredge site.

When you work at a school, you get used to drills. Fire, severe weather, and intruder drills help to ensure that students and teachers will know what to do in the event of a real emergency.  The Coast Guard has drills each Friday to ensure the Healy will be ready to handle any emergency.  I have observed the crew practicing what to do in the event of fire, flooding, collision with another ship and various other scenarios. Last Friday, I was lucky enough to watch the crew in action.

The crew is suiting up for a Friday drill. Each member of the crew is trained to do many different jobs in case of an emergency.

The crew is suiting up for a Friday drill. Each member of the crew is trained to do many different jobs in case of an emergency.

Emergency medical situations are often a part of the training.  Friday’s drill included this mock-amputation of a crewmembers hand.  (Note the fake rubber hand)

Emergency medical situations are often a part of the training. Friday’s drill included this mock-amputation of a crewmembers hand. (Note the fake rubber hand)

If a compartment is flooded; the crew needs to do their best to contain the water.  This hatch is braced with wood and mechanical shoring.

If a compartment is flooded; the crew needs to do their best to contain the water. This hatch is braced with wood and mechanical shoring.

Christine Hedge, September 6, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: September 6, 2009

Weather Data from the Bridge  
Latitude: 760 51’N
Longitude: 1380 54’W
Temperature: 300F

Rachel is showing me how the data we collect is processed.

Rachel is showing me how the data we collect is processed.

Science Party Profile—Rachel Soraruf: Working For NOAA 

Are you the kind of kid who buys rocks when you visit a museum gift shop?  When you walk down the beach – is your head down searching for shells and stones?  If so, maybe you should consider studying geology in college.  Rachel Soraruf was one of those kids and now she works for NOAA. This year, NOAA sent her to the Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC) at the University of New Hampshire.   (That’s a mouthful!!)  At CCOM, she is a graduate student learning about the latest technologies in ocean mapping.

Rachel decided to major in Geology during her sophomore year at Mt. Holyoke College. According to Rachel, geology is a fun major because you get to “Do What You Learn”. In addition, there are lots of field trips that complement your lab and classroom work. Her next educational move was to earn a Masters Degree in Geosciences from the University of Massachusetts. By studying the geochemistry of a stalagmite for her thesis (final project) – Rachel was able to look back 5,000 years and determine climate changes that occurred over the centuries.

FOR MY STUDENTS: Have you ever gone caving?  Did you know stalagmites could reveal climate history? 

Ten-foot swells caused the ice floes to roll and bump. September 6th was the roughest ride of this trip.

Ten-foot swells caused the ice floes to roll and bump. September 6th was the roughest ride of this trip.

Rachel has always liked the idea of “science with a purpose” – and NOAA offers her just that.  Her job is to plan the field seasons for NOAA vessels as they update the Hydrographic Charts of the waters around the United States.  People’s lives depend on these charts.  In order to safely navigate an oil tanker, cruise ship or fishing vessel  – up to date charts are essential.  The work she does makes a difference.  It truly is science with a purpose.

Personal Log 

Today we are in an area with thin ice and 10-12 foot swells.  It is an amazing sight to see the ice on the surface of the Arctic Ocean rolling with the swells.  The Captain reminded us to tie down our possessions so that cameras and laptops wouldn’t go flying off our desks.  It was good advice! I had not closed my file cabinet drawers completely and they were opening and closing as the ship rolled with the swells. I brought seasickness patches and pressure point wristbands to help me in case of seasickness and used them both today.

Christine Hedge, September 4, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: September 4, 2009

Sometimes kittiwakes follow the ship.  I caught this one as it passed by the Healy.

Sometimes kittiwakes follow the ship. I caught this one as it passed by the Healy.

Weather Data from the Bridge  
Latitude: 780 12’N
Longitude: 1360 33’W
Temperature: 290F

Science and Technology Log 

Part of NOAA’s mission is to conserve and manage marine resources. To this end, the Healy has a Marine Mammal Observer (MMO) on board. Our MMO is Justin Pudenz. He collects data on any interactions we might have with marine mammals during our voyage.  Both the Louis and the Healy have observers on board.

Using a field guide to identify the Yellow Wagtail

Using a field guide to identify the Yellow Wagtail

Justin spends his time on the bridge of the Healy, binoculars in hand, notebook near by, always on the lookout for life on the ice or in the air. He lives in southern Minnesota when he is not on a ship. Justin tries to spend 6 months at sea and 6 months at home. He has been a fisheries or marine mammal observer since 2001. The company he works for is MRAG Americas.  NOAA hires observers from this company when they are needed. While on board the Healy, Justin spends hours each day watching for marine mammals and recording his observations.  The data he collects goes back to NOAA.

Justin has traveled to many bodies of water as an observer including the Pacific near Hawaii and the Bering Sea for fisheries observation.  His next mission will be on a crabbing vessel in mid-October. If you can picture the television show “DEADLIEST CATCH” – that is the type of vessel he will sail on. On a fisheries trip Justin will collect data on the species of fish caught, their sex, weight, length and other information NOAA needs, to understand the health of ocean ecosystems.  Justin grew up enjoying the outdoors and always knew a desk job was not for him.  He has a degree in Wildlife and Fisheries Science and has been lucky enough to find a job that gets him outdoors and is ever changing. 

A yellow wagtail has been seen from the ship in the past few days.  I wonder what this bird is doing so far out to sea - ideas?

A yellow wagtail has been seen from the ship in the past few days. I wonder what this bird is doing so far out to sea – ideas?

FOR MY STUDENTS: How are your observation skills?  Would a job at sea be a good match for you? 

I asked Justin what he has seen from the Healy. Our “trip list” follows. The farther away from land we get, the fewer species of birds we see. Most of these bird species were spotted before we hit the heavy ice.

The Marine Mammal Observer has seen these birds since we departed Barrow, AK: Pacific loon, Northern fulmar, red phalarope, long-tailed jaeger, Ross’ gull, Arctic tern, spectacled eider, pelagic cormorant, parasitic jaeger, glaucous gull, black-legged kittiwake, yellow wagtail.

The Marine Mammal Observer has seen these mammals since we departed Barrow, AK: bearded seal, ringed seal, Arctic fox, polar bear.

Personal Log

Many people have asked about the living spaces inside this ship.  It is an amazing vessel when you think about all that happens here.  The Healy is truly a floating city with 120 people on board.  Any function that your town does – this ship needs to do.  A city needs to clean water, sewage treatment, trash pick up, recycling, electrical power, food, shelter, and recreation.  All of these are provided for on the Healy. I have attached a few pictures of life on the Healy below.

Our bunk beds have curtains to keep out the 24-We each have our own desk and filing cabinet and hour sun. Note the stuffed polar bear. This was most important a porthole window! Notice the color a gift from Mrs. Campbell and Mrs. Taylor. outside – we are getting a few hours of twilight in the early morning hours.

Our bunk beds have curtains to keep out the 24-We each have our own desk and filing cabinet and hour sun. Note the stuffed polar bear. This was most important a porthole window! Notice the color a gift from Mrs. Campbell and Mrs. Taylor. outside – we are getting a few hours of twilight in the early morning hours.

This is the place where the science party relaxes,  plays cards, and watches movies.

This is the place where the science party relaxes, plays cards, and watches movies.

We each have our own desk and filing cabinet and most important a porthole window! Notice the color outside – we are getting a few hours of twilight in the early morning hours.

We each have our own desk and filing cabinet and most important a porthole window! Notice the color outside – we are getting a few hours of twilight in the early morning hours.

 The main library has computers for the crew to email friends and family and plenty of reading material.

The main library has computers for the crew to email friends and family and plenty of reading material.

Christine Hedge, September 3, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Beaufort Sea, north of the arctic circle
Date: September 3, 2009

Weather Data from the Bridge   
Latitude: 780 34’N
Longitude: 1360 59’W
Temperature: 290F

Science and Technology Log 

Ethan Roth shows me the inner workings of a sonobuoy.

Ethan Roth shows me the inner workings of a sonobuoy.

Low-Impact Exploring 

Some of my previous logs have talked about sound in the Arctic Ocean.  Sounds made by seals, whales, ice cracking and ridges forming, bubbles popping, wind, waves – these are the normal or ambient noises that have always occurred. As governments, scientists, and corporations explore the Arctic their presence will have an impact. Ships breaking ice and the seismic instruments they use to explore, add noise to the environment.  We call this man-made noise, anthropogenic noise.  Will these additional sounds impact the organisms that live here? Can we explore in a way that minimizes our impact on the environment?  The marine wildlife of the Arctic has evolved in an ocean covered by ice. But the ice is changing and the human presence is increasing.

Studies of other oceans have shown that more ship traffic means more background noise. In most regions of the Pacific Ocean the background noise has increased 3 decibels every 10 years since the 1960’s. The scientists on the Healy and the Louis are interested in minimizing their impact as they explore the Arctic Ocean.

Do No Harm – Step 1 Collect Data 

I am tossing the sonobuoy off the fantail of the Healy.

I am tossing the sonobuoy off the fantail of the Healy.

One of the ways we are listening to the noise that our own instruments make is with sonobuoys. These are devices that help us listen to how sound propagates through the ocean.  While the Louis is using airguns to collect seismic data – scientists on the Healy are throwing sonobuoys into the ocean to listen to the sound waves created by the airguns. Knowing how the sound waves from airguns travel through the water will help us to understand their impact on the environment. Sonobuoys are self-contained floating units. They consist of a salt-water battery that activates when it hits the water, a bag that inflates with CO2 on impact, a 400-foot cable with an amplifier and hydrophone (underwater microphone).

The data acquired through the sonobuoy are relayed to the ship via radio link. A receiving antenna had to be placed high up on the Louis in order to collect this data. Like many of the devices we are using to collect information, the sonobuoys are single use instruments and we do not pick them up after their batteries run out. After 8 hours of data collection, the float bag burns and the instrument sinks to the bottom. They are known as self-scuttling (self-destructing) instruments. The more we know about the sounds we make and how these sounds are interacting with the animals that call the Arctic home, the better we will be at low impact exploring.

Personal Log 

The float inflates as the sonobuoy floats away.

The float inflates as the sonobuoy floats away.

I’ve had lots of questions from students about the weather. For most of our trip, the air temperature has been around 270F and the visibility has been poor. A log fog has prevented us from seeing the horizon. We have also had quite a few days with snow and freezing rain.  Some of our snow flurries have coated the decks with enough snow to make a few snowballs and prompted the crew to get out the salt to melt the slippery spots. 

This past week we had some seriously cold days.  On September 1st, the air temperature was 160F with a wind chill of -250F. These cold days brought blue skies, sparkling snow, and beautiful crystals forming on the handrails, ropes and many other surfaces on the deck.

Ice crystals on a valve

Ice crystals on a valve

FOR MY STUDENTS: Why do you think it is foggier on warmer days? 

As we travel south we are starting to get some sunsets and sunrises.  There are a few hours of twilight between the times that the sun dips below the horizon – but no true night sky.  One of the things I miss the most is seeing stars.  I look forward to seeing the Indiana night sky in a few weeks. But until then, the gorgeous sun over the Arctic will have to do.

As the seasons change and we travel south, the sun gets lower in the sky

Arctic snowball

Arctic snowball