Margaret Stephens, May 28, 2011

NOAA Teacher at Sea: Margaret Stephens
NOAA Ship: Pisces
Mission: Fisheries, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Cape Hatteras, NC to St. Lucie Inlet, FL
Date:  May 28, 2011 (Last day!)

NOAA Ship Pisces. Photo credit: Richard Hall
NOAA Ship Pisces. Photo credit: Richard Hall

Weather Data from the Bridge
As of 06:43, 28 May
Latitude 30.15
Longitude 80.87
Speed 7.60 knots
Course 285.00
Wind Speed 10.77 knots
Wind Direction 143.91 º
Surface Water Temperature 25.53 ºC
Surface Water Salinity 36.38 PSU
Air Temperature 24.70 ºC
Relative Humidity 92.00 %
Barometric Pressure 1011.10 millibars
Water Depth 30.17 m
Skies: clear

r at Sea Margaret Stephens and Scientist David Hoke in Pisces attire.
NOAA Teacher at Sea Margaret Stephens and Scientist David Hoke in Pisces attire.

Science and Technology Log

These scientists are not only smart, but they are neat and clean, too! After completing final mapping and fish sampling on the second-to-last day, we spent the remainder of the time cleaning the wet (fish) lab, packing all the instruments and equipment, and carefully labeling each item for transport. We hosed down all surfaces and used non-toxic cleaners to leave the stainless steel lab tables and instruments gleaming, ready for the next research project. The Pisces, like other NOAA fisheries ships, is designed as a mobile lab platform that each research team adapts to conform to its particular needs. The lab facilities, major instruments and heavy equipment are permanent, but since research teams have different objectives and protocols, they bring aboard their own science personnel, specialized equipment, and consumable supplies. The primary mission of NOAA’s fisheries survey vessels, like Pisces, is to conduct scientific studies, so the ship’s officers and crew adjust and coordinate their operations to meet the requirements of each research project. The ship’s Operations Officer and the Chief Scientist communicate regularly, well before the project begins and throughout the time at sea, to facilitate planning and smooth conduct of the mission.

Gag grouper (top, Mycteroperca microlepis) and red snapper (Lutjanus campechanus) specimens, labeled for further study Photo credit: David Berrane
Gag grouper (top, Mycteroperca microlepis) and red snapper (Lutjanus campechanus) specimens, labeled for further study Photo credit: David Berrane

“Wet” (fish) lab aboard Pisces, cleaned and ready for next research team
“Wet” (fish) lab aboard Pisces, cleaned and ready for next research team

We made up for the two days’ delay in our initial departure (caused by mechanical troubles and re-routing to stay clear of the Endeavor space shuttle launch, described in the May 18 log), thanks to nearly ideal sea conditions and the sheer hard work of the ship’s and science crews. The painstaking work enabled the science team to fine tune their seafloor mapping equipment and protocols, set traps, and accumulate data on fish populations in this important commercial fishing area off the southeastern coast of the United States. The acoustics team toiled every night to conduct survey mapping and produce three dimensional images of the sea floor. They met before sunrise each morning with Chief Scientist Nate Bacheler to plan the daytime fish survey routes, and the fish lab team collected two to three sets of six traps every day. The videographers worked long hours, backing up data and adjusting the camera arrays so that excellent footage was obtained.  In all, we obtained ten days’ worth of samples, brought in a substantial number of target species, red snapper and grouper, recorded hours of underwater video, and collected tissue and otolith samples for follow-up analysis back at the labs on land.

Models

Scientists and engineers often use models to help visualize, represent, or test phenomena they are studying. Models are especially helpful when it is too risky, logistically difficult, or expensive to conduct extensive work under “live” or real-time conditions.

Divers exploring hardbottom habitat Photo Credit: Douglas E. Kesling, UNCWilmington, CIOERT
Divers exploring hardbottom habitat Photo Credit: Douglas E. Kesling, UNCWilmington, CIOERT

As described in previous logs, this fisheries work aboard Pisces involves surveying and trapping fish to analyze population changes among commercially valuable species, principally red snapper and grouper, which tend to aggregate in particular types of hardbottom habitats.  Hardbottom, in contrast to sandy, flat areas, consists of rocky ledges, coral, or artificial reef structures, all hard substrates. By locating hardbottom areas on the sea floor, scientists can focus their trapping efforts in places most likely to yield samples of the target fish species, thus conserving valuable time and resources. So, part of the challenge is finding efficient ways to locate hardbottom. That’s where models can be helpful.

The scientific models rely on information known about the relationships between marine biodiversity and habitat types, because the varieties and distribution of marine life found in an area are related to the type of physical features present. Not surprisingly, this kind of connection often holds true in terrestrial (land) environments, too. For example, since water-conserving succulents and cacti are generally found in dry, desert areas, aerial or satellite images of land masses showing dry environments can serve as proxies to identify areas where those types of plants would be prevalent. In contrast, one would expect to find very different types of plant and animal life in wetter areas with richer soils.

Recovering ROV aboard Pisces Photo source: http://www.moc.noaa.gov/pc/visitor/photos‐a.html
Recovering ROV aboard Pisces Photo source: http://www.moc.noaa.gov/pc/visitor/photos‐a.html

Traditional methods used to map hardbottom and identify fish habitat include direct sampling by towing underwater video cameras, sonar, aerial photography, satellite imaging, using remotely operating vehicles (ROV’s), or even setting many traps in extensive areas. While they have some advantages, all those methods are labor and time-intensive and expensive, and are therefore impractical for mapping extensive areas.

This Pisces team has made use of a computer and statistical model developed by other scientists that incorporates information from previous mapping (bathymetry) work to predict where hardbottom habitat is likely to be found. The Pisces scientists have employed the “Dunn” model to predict potential hardbottom areas likely to attract fish populations, and then they have conducted more detailed mapping of the areas highlighted by the model. (That has been the principal job of the overnight acoustics team.) Using those more refined maps, the day work has involved trapping and recording video to determine if fish are, indeed, found in the locations predicted. By testing the model repeatedly, scientists can refine it further. To the extent that the model proves accurate, it can guide future work, making use of known physical characteristics of the sea floor to identify more areas where fish aggregate, and helping scientists study large areas and develop improved methods for conservation and management of marine resources.

Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke

Conductivity, Temperature and Depth (CTD) Measurements

Another aspect of the data collection aboard Pisces involves measuring key physical properties of seawater, including temperature and salinity (saltiness, or concentration of salts) at various depths using a Conductivity, Temperature and Depth (CTD)  device.

Salinity and temperature affect how sound travels in water; therefore, CTD data can be used to help calibrate the sonar equipment used to map the sea floor. In other instances, the data are used to help scientists study changes in sea conditions that may affect climate. Increases in sea surface temperatures, for example, can speed evaporation, moisture and heat transfer to the atmosphere, feeding or intensifying storm systems such as hurricanes and cyclones.

Pisces shipboard CTD, containing a set of probes attached to a cylindrical housing, is lowered from the side deck to a specified depth. A remote controller closes the water collection bottles at the desired place in the water column to extract samples, and the CTD takes the physical measurements in real time.

Fresh Catch

Of all the many species collected, only the red snapper and grouper specimens were kept for further study; most of the other fish were released after they were weighed and measured. A small quantity was set aside for Chief Steward Jesse Stiggens to prepare for the all the ship’s occupants to enjoy, but the bulk of the catch was saved for charitable purposes. The fish (“wet” lab) team worked well into overtime hours each night to fillet the catch and package it for donation. They cut, wrapped, labeled and fresh froze each fillet as carefully as any gourmet fish vendor would. Once we disembarked on the last day, Scientist Warren Mitchell, who had made all the arrangements, delivered over one hundred pounds of fresh frozen fish to a local food bank, Second Harvest of Northern Florida. It was heartening to know that local people would benefit from this high-quality, tasty protein.

Careers at Sea

Crewmen Joe Flora and Vic Pinones
Crewmen Joe Flora and Vic Pinones

Many crew members gave generously of their time to share with me their experiences as mariners and how they embarked upon and developed their careers. I found out about many, many career paths for women and men who are drawn to the special life at sea. Ship’s officers, deck crew, mechanics, electricians, computer systems specialists, chefs and scientists are among the many possibilities.

Chief Steward Jesse Stiggens worked as a cook in the U.S. Navy and as a chef in private restaurants before starting work with NOAA. He truly loves cooking, managing all the inventory, storage and food preparation in order to meet the needs and preferences of nearly forty people, three meals a day, every day. He even cooks for family and friends during his “off” time!

First Engineer Brett Jones
First Engineer Brett Jones

Electronics specialist Bob Carter, also a Navy veteran, is responsible for the operations and security of all the computer-based equipment on board. He designed and set up the ship’s network and continually expands his skills and certifications by taking online courses. He relishes the challenges, responsibilities and autonomy that come along with protecting the integrity of the computer systems aboard ship.

First Engineer Brent Jones has worked for many years in the commercial and government sectors, maintaining engines, refrigeration, water and waste management, and environmental control systems. He gave me a guided tour of the innards of Pisces, including four huge engines, heating and air conditioning units, thrusters and rudders, hoists and lifts, fresh water condenser and ionizers, trash incinerator, and fire and safety equipment. The engineering department is responsible for making sure everything operates safely, all day and night, every day. Brent and the other engineers are constantly learning, updating and sharpening their skills by taking specialized courses throughout their careers.

Chief Boatswain James Walker
Chief Boatswain James Walker

Chief Boatswain James Walker is responsible for safe, efficient operations on deck, including training and supervising all members of the deck crew. He entered NOAA after a career in the U.S. Navy.  The Chief Boatswain must be diplomatic, gentle but firm, and a good communicator and people manager. He coordinates safe deck operations with the ship’s officers, crew, and scientific party and guests.

NOAA officers are a special breed. To enter the NOAA Commissioned Officer Corps, applicants must have completed a bachelor’s degree with extensive coursework in mathematics or sciences. They need not have experience at sea, although many do. They undergo an intensive officers’ training program at a marine academy before beginning shipboard work as junior officers, where they train under more experienced officers to learn ship’s systems and operations, protocols, navigation, safety, personnel management, budgeting and administrative details. After years of hard work and satisfactory performance, NOAA officers may advance through the ranks and eventually take command of a ship.

Operations Officer, Lt. Tracy Hamburger
Operations Officer, Lt. Tracy Hamburger
Junior Officer Michael Doig
Junior Officer Michael Doig

All the officers and crew aboard Pisces seem to truly enjoy the challenges, variety of experiences and camaraderie of life at sea. They are dedicated to NOAA’s mission and take pride in the scientific and ship operations work. To be successful and satisfied with this life, one needs an understanding family and friends, as crew can be away at sea up to 260 days a year, for two to four weeks at a time. There are few personal expenses while at sea, since room and board are provided, so prudent mariners can accumulate savings. There are sacrifices, as long periods away can mean missing important events at home. But there are some benefits: As one crewman told me, every visit home is like another honeymoon!

Personal Log

One size fits all?
One size fits all?

Navy Showers

I had expected that life aboard Pisces would include marine toilets and salt water showers with limited fresh water just for rinsing off.  I was surprised to find regular water-conserving flush toilets and fresh water showers. Still, the supply of fresh water is limited, as all of it is produced from a condensation system using heat from the engines. During our ship orientation and safety session on the first day, Operations Officer Tracy Hamburger and Officer Mike Doig cautioned us to conserve water.  They explained (but did not demonstrate!) a “Navy” shower, which involves turning the water on just long enough to get wet, off while soaping up, and on again for a quick rinse. It is quite efficient – more of us should adopt the practice on land. Who really needs twenty minute showers with fully potable water, especially when more than one billion people on our “water planet” lack safe drinking water and basic sanitation?

One size fits all?
One size fits all?

“Abandon Ship!”

One size fits all?
One size fits all?

The drill I had anticipated since the first pre-departure NOAA Teacher at Sea instructions arrived in my inbox finally happened. I had just emerged from a refreshing “Navy” shower at the end of a fishy day when the ship’s horn blasted, signaling “Abandon ship!” We’d have to don survival suits immediately to be ready to float on our own in the sea for an indefinite time. Fortunately, I had finished dressing seconds before the alarm sounded. I grabbed the survival suit, strategically positioned for ready access near my bunk, and walked briskly (never run aboard ship!) to the muster station on the side deck. There, all the ship’s occupants jostled for space enough on deck to flatten out the stiff, rubbery garment and attempt to put it on.  That’s much easier said than done; it was not a graceful picture. “One size fits all”, I learned, is a figment of some manufacturer’s imagination. My petite five foot four frame was engulfed, lost in the suit, while the burly six- foot-five crewman alongside me struggled to squeeze himself into the same sized suit. The outfit, affectionately known as a Gumby, is truly designed for survival, though, as neoprene gaskets seal wrists, leaving body parts covered, with only a small part of one’s face exposed. The suit serves as a flotation device, and features a flashing light, sound alarm, and other warning instruments to facilitate locating those unfortunate enough to be floating at sea.

Thankfully, this was only a test run on deck. We were spared the indignity of going overboard to test our true survival skills. I took advantage of the opportunity to try a few jumping jacks and pushups while encased in my Gumby.

Fish bet ‐‐ Rigged results? Photo credit: Jen Weaver
Fish bet ‐‐ Rigged results? Photo credit: Jen Weaver

Bets Are On!

These scientists are fun-loving and slightly superstitious, if not downright mischievous. On the last day, Chief Scientist Nate Bacheler announced a contest: whoever came closest to predicting the number of fish caught in the last set of traps would win a Pisces t-shirt that Nate promised to purchase with his personal funds. In true scientific fashion, the predictions were carefully noted and posted for all to see.  As each trap was hauled in, Nate recorded the tallies on the white board in the dry lab. Ever the optimist, basing my estimate on previous days’ tallies, I predicted a whopping number: 239.

I should have been more astute and paid more attention to the fact that the day’s survey was planned for a region that featured less desirable habitats for fish than previous days. Nate, of course, having set the route, knew much more about the conditions than the rest of us did. His prediction: a measly 47 fish. Sure enough, the total tally was 38, and the winner was………Nate!   Our loud protests that the contest was fixed were to no avail. He declared himself the winner. Next time, we’ll know enough to demand that the Chief Scientist remove himself from the contest.

 

Chief Scientist Nate Bacheler and red snapper, Lutjanus campechanus Photo credit: David Hoke
Chief Scientist Nate Bacheler and red snapper, Lutjanus campechanus Photo credit: David Hoke

 

Crewman Kirk Perry with Mahi‐mahi
Crewman Kirk Perry with Mahi‐mahi

Catching Mahi-mahi

Once the day’s deck work was over, a fish call came over the ship’s public address system. Kirk Perry, one of the avid fishermen among the crew, attached a line baited with squid from the stern guard rail and let it troll along unattended, since a fishing pole was unnecessary. Before long, someone else noticed that the line had hooked a fish. It turned out to be a beautiful mahi-mahi, with sleek, streamlined, iridescent scales in an array of rainbow colors, and quite a fighter. I learned that the mahi quickly lose their color once they are removed from the water, and turn to a pale gray-white once lifeless. If only I were a painter, I would have stopped everything to try to capture the lovely colors on canvas.

Goodbyes

We entered Mayport under early morning light. An official port pilot is required to come aboard to guide all ships into port, so the port pilot joined Commander Jeremy Adams and the rest of the officer on the bridge as we made our way through busy Mayport, home of a United States Naval base. Unfortunately, the pier space reserved for Pisces was occupied by a British naval vessel that had encountered mechanical problems and was held up for repairs, so she could not be moved. That created a logistical challenge for us, as it meant that Pisces had to tie up alongside a larger United States naval ship whose deck was higher than ours.  Once again, the crew and scientists showed their true colors, as they braved the hot Florida sun, trekking most of the gear and luggage by hand over two gangplanks, across the Navy ship, onto the pier, and loading it into the waiting vehicles.

The delay gave me a chance to say farewell and thank the crew and science team for their patience and kindness during my entire time at sea.

These eleven days sailed by. The Pisces crew had only a short breather of a day and a half before heading out with a new group of scientists for another research project. To sea again….NOAA’s work continues.

All aboard!

A big “Thank you!” to all the scientists and crew who made my time aboard Pisces so educational and memorable!

 

Science team. Photo credit: NOAA Officer Michael Doig
Science team. Photo credit: NOAA Officer Michael Doig

Links & Resources

http://www.marinecareers.net/links_degrees.php

Literature cited:

Dunn, D, Halpin, P (2009) Rugosity-based regional modeling of hard-bottom habitat. Marine Ecology Progress Series 377:1-11

Safety! I hope I never have to use that fire axe!
Safety! I hope I never have to use that fire axe!
Sky view from Pisces. Photo credit: David Hoke
Sky view from Pisces. Photo credit: David Hoke
View from Pisces: United States Navy’s Littoral Combat Ship
View from Pisces: United States Navy’s Littoral Combat Ship
Engineers Abe Goldberg and Bob Carroll
Engineers Abe Goldberg and Bob Carroll
Loading gear with crane & hoist
Loading gear with crane & hoist
Loading gear with crane & hoist
Loading gear with crane & hoist
Commander Jeremy Adams looks out from Pisces’ bridge Photo credit: Richard Hall
Commander Jeremy Adams looks out from Pisces’ bridge Photo credit: Richard Hall

Wesley Struble, 31 July, 2010

NOAA Teacher at Sea
Wes Struble
Onboard NOAA Ship Ka’imimoana
July 8 – August 10, 2010

 Mission: Tropical Atmosphere Ocean (TAO) cruise
Geographical area of cruise: Equatorial Pacific from 110 degrees W Longitude to 95 degrees W Longitude
Date: Thursday, 31 July 2010

Weather Data from the Bridge

Current Position: 2.25 degrees South Latitude & 95 degrees West Longitude;
Cloud Cover: 5/8,
Cloud types: Nimbostratus, Stratus, & Altostratus;
Visibility: 10 nautical miles;
Wind Speed: 13 knots;
Wind Direction: 130 degrees;
Wave Height: 1 – 2 feet;
Swell Height: 4 – 5 feet,
Atmospheric Pressure: 1014.0 mb;
Temperature: 20.0 degrees C (68 degrees F)

Science and Technology Log

It is easy to get wrapped up in the day- to-day cruise activities that are involved in maintaining the buoy array and the ship. Lest we forget, I wanted to spend a little time in this log discussing the overall purpose that has led to the investment of all this technology, science, and financial resources.

A moment of respite during a buoy deployment operation

This cruise (and many others that follow on a regularly scheduled basis) maintains the TAO buoy array. TAO stands for Tropical Atmosphere and Ocean. The buoy array is located at approximately 15 degree intervals from 95 degrees West Longitude (just west of the Galapagos Islands) across the Pacific to 135 degrees East Longitude (north of the Island of New Guinea). In addition, the buoys are placed north and south of the equator at 8 degrees, 5 degrees, 2 degrees with one buoy positioned on the equator itself.

These buoys measure a variety of ocean and atmosphere conditions: Air temperature, wind speed, wind direction, rainfall, and relative humidity. They also measure water temperature and conductivity. The buoys generally transmit their data hourly. Besides the huge amount of information that is collected over time that can be used to study atmospheric and oceanographic weather conditions, the TAO array also has a very specific goal – to collect data to increase our understanding the El Niño/La Niña cycle, otherwise known as the Southern Oscillation.

NOAA Corps Ensign Alise Parrish at the controls of Aftcon (Aft control room) during a buoy deployment

Most people have at least heard of the El Niño phenomenon but, other than knowing that it somehow affects weather patterns, many are ata loss when asked to actually explit. The El Niño is a cyclic weathphenomenon that affects a very large portion of the globe. In its simplest form it is a shifting of warm Pacific Ocean water from the western part of the basin (near New Guinea, Indonesia, and northern Australia) across the equatorial Pacific toward the South American Continent near Peru/Ecuador.

In normal climate years the Trade winds (the Trade winds are easterly winds) and ocean currents (specifically the Equatorial current – a west flowing current) work together to keep the warm equatorial waters in the western Pacific piled up near New Guinea & Indonesia). These warm waters produce huge amounts of evaporation pumping massive amounts of moisture into the atmosphere in this part of the globe. This moisture returns to the earth in the form of the monsoons and rainy seasons so typical for that part of the world.

NOAA Corps Ensign Linh Nguyen catching some sun and reading time during a cool afernoon on near the equator

During an El Niño cycle the Trade Winds and currents weaken allowing the warm western Pacific water to move east across the basin relocating the warm water nearer the South American continent. This rearrangement of ocean water – warm water to the east and colder water to the west – tends to suppress the rainy seasons and monsoons in the western Pacific and brings huge amounts of moisture and storms to the eastern Pacific. Hence, countries, such as New Guinea, India, Indonesia, and others in the region, which depend on the rain and moisture, are left dry and often experience significant drought conditions. These droughts place many people’s livelihoods and even their lives in danger due to starvation and economic loss.

On the other side of the ocean those countries in the eastern Pacific (from Peru north through California) will often have their coasts battered by large storms causing huge amounts of destruction and loss of life. In addition, in the interior they often experience heavy rains in areas that are normally mildly arid. This produces disastrous and lethal flash floods and mud slides. In those areas with little or no sanitation removal, poor or non-existent sewage treatment systems, in combination with compromised drinking water delivery systems can be followed by deadly outbreaks of typhoid and cholera and other life threatening diseases.

With these awful potential consequences, knowing when conditions for an El Niño cycle are in their early stages would be very helpful. The TAO array acts like an early warning system. During the Cold War the United States depended heavily on the DEW (Distant Early Warning) line in northern Canada, Alaska, and Greenland. This was a series of radar stations that looked north over the pole to identify a launch of nuclear missiles soon after they left the ground from the former Soviet Union. The idea being that it would give the U.S. as much time as possible to prepare for the strike and to prepare a response. In a similar way the TAO array is a distant early warning system that registers the changes in ocean temperature and current direction as the warm water of the El Niño moves east across the Pacific. This information gives the countries affected by an El Niño time to prepare for all the possible problems they might experience. The system is expensive to maintain but, much like hurricanes, if you know it is coming well ahead of time preparations can save millions or billions of dollars and thousands of lives.

Personal Log

Mahi Mahi
Mahi Mahi

Yesterday I spent some time with Tonya Watson (the SST) in the wet lab. She explained the operation of the Autosal and ran a few samples. This machine indirectly measures the salinity of sea water by actually measuring the conductivity of the sample. I hope to explain this in some detail in a future log. Later in the day one of the crew members, Frank Monge, caught a very large and brilliantly colored, Mahi mahi. We are hoping to see more marine life as we get closer to the Galapagos Islands. The water will be shallower and warmer and I hope to be able to spot some whales. The weather conditions have continued to remain cool, mostly in the 70’s, with mixed clouds, wind, and sunshine. I am grateful that the cooler than normal temperatures have been the rule for this cruise.

Nicolle von der Heyde, June 15, 2010

NOAA Teacher at Sea
Nicolle von der Heyde
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Nicolle von der Heyde
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Dates: Tuesday, June 15

Weather Data from the Bridge

Time: 1000 hours (10:00am)
Position: latitude = 27.38.1 N, longitude = 088.18.9 W
Present Weather: 4/8 cloudy
Visibility: 10 nautical miles
Wind Direction: SSW Wind Speed: 5 knots
Wave Height: < 1 foot
Sea Water Temp: 30.4 degrees Celsius
Air Temperature: dry bulb = 29.5 degrees Celsius
wet bulb = 27.2 degrees Celsius

Science and Technology Log

Today at around 1000 hours (10:00 am) our CO sighted a dead Sperm Whale from the bridge. Our scientists say it is extremely rare to see a floating sperm whale. In fact, a whale expert who communicated with one of our scientists said he has only seen one in 25 years of studying them! The Gulf of Mexico is a habitat of Sperm Whales. Females stay here year round and birth their young in these waters while male Sperm Whales travel to many different locations, some as far as the Antarctic Ocean. Sperm Whales are the deepest diving whales. Although they live at the surface, they dive to hunt Giant Squid that are bottom dwellers. They have been known to dive as deeply as 10,500 feet (3,200 meters) but average dives are about 4000 feet (1,200 meters) deep. The Sperm Whale can hold its breath for about an hour!

Sperm Whale
Sperm Whale
Sperm Whale
Sperm Whale
Here you see a close up of the teeth of the whale and some of the small fish swimming around it.

As you can see, the whale was covered in some black substance. Our scientists are not experts on marine mammals; however they spoke with Dr. Keith Mullin, the Southeastern Fisheries Science Center Marine Mammals Program manager, who stated that this is typical for the skins of dead whales to blister, char, and fall off. Upon seeing photos of the whale, the experts stated that it appeared to have died of natural causes; however we were asked to take samples from the whale to eliminate the possibility of oil as the cause of death. The ship positioned itself next to the dead whale and scientists swabbed the carcass in order to test for oil toxins and took tissue samples for DNA. NOAA catalogues mammal DNA to record species information and migration of different animals.

Black substance on sperm whale
Black substance on sperm whale
Getting DNA of the sperm whale
Getting DNA of the sperm whale

As we watched the whale float next to the ship, a 12 foot Tiger shark approached. It was obvious that sharks had been feasting on the whale because we could see definite bite marks along the side.

Tiger shark approaching sperm whale carcass
Tiger shark approaching sperm whale carcass
Bites out of the tiger shark
Bites out of the tiger shark

The Tiger Shark (Galeocerdo cuvier) is a fierce predator that has tiger-like markings and can grow to be over 14 feet (4.2 meters) long. It eats just about anything: fish, turtles, crabs, clams, mammals, seabirds, reptiles, other sharks, and just about anything else they can catch. It apparently likes to eat dead whales too! The Tiger Shark is one lean, mean eating machine. Each of its teeth is shaped like those found on a circular saw with a flat and curved hook at the end. A power saw might not even equal this shark’s power since it can cut through turtle shells with a single bite.

The shark circled the whale carcass and suddenly attacked, twisting back and forth in typical shark style. A bit later, the shark came along side the whale, bobbed up and down and took several chomping bites. Everyone was amazed at what we were witnessing!

Tiger shark eating whale carcass
Tiger shark eating whale carcass
Tiger shark eating whale carcass
Tiger shark eating whale carcass
Tiger shark eating whale carcass
Tiger shark eating whale carcass
Tiger shark eating whale carcass
Tiger shark eating whale carcass

Personal Log

Tuesday, June 15: The day started again with breakfast at 0700 hours. Since most of the day would be spent cruising through Gulf waters to our first research site off the coast of southern Texas, the plan had been to take a tour with the First Engineer of what I was told is a very impressive engine room in the lower deck of the Pisces. Little did I know that in a few hours I would witness one of the most amazing sights I have ever seen. But first, as expected, an announcement came over the ship’s intercom announcing a “man overboard” drill, followed by three blasts of the general alarm. All the scientists “mustered” in the conference room to await the end of the drill. This was shortly followed by a fire drill where our muster station was again in the conference room. After the drills I began talking to Christopher Gledhill, one of the scientists, about the reef fish survey and some of the data he has collected on past surveys. All of a sudden, the Chief Scientist Paul Felts came into the conference room and announced, “They’ve spotted a dead whale!” I couldn’t believe my ears as I quickly gathered my things and headed to the deck of the ship. Sure enough, there was a big floating white mass just ahead of the bow of the ship. I frantically began taking pictures, not realizing that we would be spending the next few hours alongside the dead carcass plus all the fish that had gathered around to feed off of the remains. Someone said that sharks had left the scene as we approached and I was hoping they would return so I could catch a glimpse of one. I would not be disappointed.

Of course, my first observation was the black, charred-looking surface of the whale. It looked like someone had taken a torch and lit it on fire. My first thought was that this must be oil, but as stated in the science log above, the skin of a dead whale will blister, burn, and turn black when exposed to the heat of the sun. My second observation hit me like a ton of bricks as the wind shifted toward the deck of the boat and I caught my first whiff of dead, decomposing, sunburned sperm whale. I’m not really sure what to compare it to but imagine the worst smell you’ve ever smelled and multiply it by 10. I think the stench is permanently etched into my sensory memory. Fortunately, we were all just about to be fitted with respirators (like a gas mask) in case we came across fumes from the oil spill. I went inside to be fitted with the respirator and when I stepped outside, I didn’t smell an ounce of dead whale – what a relief! My third observation was of all the life that was swarming around this dead, decaying carcass. Schools of Mahi Mahi (aka Dolphin Fish), some up to 4 feet long, and other smaller fish dotted the depths of the crystal clear blue water. I noticed activity at the stern (back) of the boat as some of the officers and deckhands began assembling fishing poles to reel in the Mahi Mahi. Before long, the crew had hauled about 15 Mahi Mahi onto the ship!

Lines to reel in the Mahi Mahi
Lines to reel in the Mahi Mahi
Mahi Mahi
Mahi Mahi

During this time, the Chief Scientist was on the phone with other NOAA scientists discussing how they should handle taking samples from the whale. Our ship was not equipped to study marine mammals so we did not have the traditional tools necessary for this type of task.

All of a sudden someone spotted the Tiger Shark circling the waters around the whale. I was able to capture the image below of the shark as it swam under our boat. It circled the carcass a few times and then attacked! What a scene as it first thrashed at the belly, then swam to the backside and took a few chomps. What a thrill to see this powerful predator up close (and from the safety of the ship!). Barely a day into this trip and I’ve had an experience I will remember forever!

Animals Seen Today

Dead Sperm Whale (Physeter macrocephalus)

Tiger Shark (Galeocerdo cuvier)

Mahi Mahi (Coryphaena hippurus)

Brown Pelican (Pelecanus occidentalis)

Flying Fish (Family Exocoetidae – There are 64 species in this family!)
Various smaller fish

Brown Booby (Sula leucogaster): Shown below.

This seabird landed on the mast of our ship one evening and hitched a ride through the night until the next evening. It was hunting the flying fish in the water as we cruised toward Southern Texas waters and I even observed it dive into the water after a fish!

Sea bird
Sea bird

Linda Tatreau, FEBRUARY 17, 2010

NOAA Teacher at Sea: Linda Tatreau
Onboard NOAA Ship Oscar Elton Sette

Mission: Fisheries Surveys
Geographical Area of Cruise: Equatorial Pacific
Date: February 22, 2010

Daily Routine

Sparky cutting bait

The days are settling into a routine. As the sun rises, the multibean sonar is lifted and secured or Eric turns off the echo sounder he uses for locating schools of fish. By 7:30 A.M., the camera teams are ready with the 2 BotCams and 8 BRUVs. The deployment depths have been determined so each rig is set with the appropriate length of line. The camera batteries have been charged over night (10 rigs make for a total of 20 cameras). The bait has been cut and stuffed into the bait bags. Deployment of all 10 sets takes about 1.5 hours. Each set of cameras runs for just over an hour so as soon as the last cameras are deployed, the first are ready to be retrieved. Retrieval is more time consuming. Each camera set is marked by 2 orange buoys. The ship must approach with the buoys on the lee side (sheltered from the wind ). A crew member then throws a line with a big 4-pronged hook to snag the line between the buoys. If the ship is too close, it runs over the buoys―too far away and they have to come around for another try which can take up to 30 minutes. Generally, the morning cameras are back on board in time for lunch. Afternoons are a repeat of the morning and the cameras are back on board just in time for dinner.

Mills with a mahi mahi

We have a couple of fishing enthusiasts on board. They put out troll lines whenever they get the chance, usually at sunrise or sunset when the captain kicks up the speed to about 10 knots to reach the next study location. There has not been much time for fishing but we have eaten a few mahi mahi. This makes everyone happy―the fishermen of course, and the rest of us for the fillets.

Night time operations with the AUV

After dinner, the AUV team prepares the vehicle for deployment. The AUV is the most time consuming project. They spend hours with the electronics and hours more getting it ready to go underwater. When the communications work, the AUV follows a pre-programmed path about 4 hours in duration. When communications cannot be established, they have to bring it back on board and try again the next night. They have been so busy that we have not yet been able to see their pictures. Soon, I hope. It will be interesting to see the differences between daylight and night time activities on the sea floor.

Richard Jones & Art Bangert, January 11, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Successfully deployed
Successfully deployed

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 11, 2010

Science Log

“Science isn’t pretty…” Dexter from the cartoon Dexter’s Laboratory tells his sister. What he really needs to say is that science is hard work, work that takes a team of scientists, technical specialists, and in this case the dedicated crew from the NOAA ship Ka’Imimoana. Yesterday was our first real taste of what it takes to get the data needed to understand the role of the tropical ocean in modifying the world’s climate. We began out day with a shallow cast of the CTD at 6N:155W that ended around 7AM. A shallow cast still goes to a depth of 1000 meters (how many feet is that?) and takes about two to three hours to complete. The Survey Technician, a couple of the deck crew and several officers worked though heavy winds (35knots) and seas of around 18 feet and intermittent downpours of rain to make the data from the TAO Buoy array more solid.

Mahi mahi
Mahi mahi

Once the CTD was back on the ship and secured we headed toward our first recovery/deploy at 5N:155W. Our next task was to recover a TAO buoy that had been sending climate data for the past 8 months. The recovery began with a pass by the buoy to make sure that everything was still attached and that the buoy would be safe to “hop” and then come aboard. During these “fly-bys” or passes to view the condition of the old buoy the crew had an opportunity to fish. The Doc caught a nice Mahi Mahi as you can see in the image. Two Ahi (Yellow fin tuna…fresh poke and sashimi…yum) were caught, a Wahoo or Ono, and a small Galapagos shark that was released back in to the ocean.

After our successful fishing the RHIB was sent over to the buoy to secure the ‘bird’ (how we refer to the anemometer) and attach a line for hauling in the buoy to the ship. Once the winch line is attached the RHIB was brought back onboard and we started the recovery.Retrieving the buoy produced a steady rhythm of line in, filling spools, and switching to empty spools.Even the Ensign’s got in on the deck action running in a spool and scraping the barnacles off the old buoy.

Recovering the buoy
Recovering the buoy

Once the buoy was completely recovered (about 4 hours) we set the deck for deployment of the new buoy and broke for dinner. After dinner we began the deployment which took about 3 hours and ended in the dark around 8PM. Deployment of buoys is basically the opposite of the recovery process: Nielspin, plastic coated steel cable, with its sensors attached are then attached to the buoy with its electronics.

This line along with thousands of meters of braided line feed out into the water until the buoy’s anchor position is reached.Once the buoy was anchored in the water we waited for about a half an hour then swung by the buoy to check that it was operational. Once the buoy was confirmed as successful, the crew began to prepare for the 5N CTD and our first drifter buoy deployment.

Rick helped with this CTD to continue his training for his solo CTD’s coming in a day or so.The 5N CTD, like the 6N was a shallow cast and took about 2 hours and once the CTD was stowed Rick, the Survey Technician and two Ensign’s bid farewell to the first drifter and the day was pau (“done”) as the Hawaiians say.

Reeling in the line
Reeling in the line

Today was our opportunity to take it a little easier as compared to yesterday’s long day of buoy recovery and deployment that did not end until after dark. We had an opportunity to catch-up on some email and work on an article that is due on the 15th of January. Nothing like being under a time crunch to get you motivated. The day is filled with sun and winds are “fresh” as it is called by some. The first order of business was to help with the 3N: 155W shallow cast CTD. It is still had to grasp that shallow is over 3000 feet down into the ocean. When the pressure of the water increases the equivalent of 1 atmosphere each 10 meters that is a lot of pressure when something goes down 1000 meters like the shallow CTD does. When we make our deep cast (3000 meters) at the equator the pressure on the instruments is staggering. What would it be in pounds per square inch? Once the CTD was back on the ship and we resumed our course south along the 155W longitude line we worked on getting the Atlantic Oceanographic and Meteorological Laboratory (AOML) drifter prepared for its deployment as the Bronc Buoy at the Equator along the 155W line.

Hard at work
Hard at work

If followers look back to a post from October they can see the stickers that the students at Billings Senior High Freshman Academy prepared for the drifter they were adopting through NOAA’s Adopt-A-Drifter Program. If you are interested in adopting a drifter you can find information about the program in the “links to learning a little more” area of this Blog. After lunch we helped the Brian, Jim and Alan to put together a specialized TAO buoy that collects information about the amount of dissolved Carbon Dioxide in the ocean in addition to the typical temperature, salinity, humidity and rain data that is gathered. These buoys appear to be easy to build.

On the lookout
On the lookout

However, standing on top of a TAO buoy anchored to the ship’s deck while trying to hold on with one hand and attach electronic sensors with the other can be daunting as the ship pitches to and fro considering the seas we had today. One gains a whole new perspective and respect for the power of the Ocean and the scientists who routinely build these buoys so that good data can be collected to help mankind. One added benefit of working on the buoys is that occasionally we have the chance to do a little personalizing. Art painted MSU CATS on one side since he works at MSU and since I just graduated from Bozeman last May. On the other side Rick put in a plug for Billings Senior Broncs. So now the Broncs and the Cats will be part of the TAO array at 155W at the equator for the next year.

We also had our first fresh sashimi and poke.Rick for one can’t wait! It is great that we have a crew with diverse skills and hobbies. Deck crew who prepare top notch sashimi and a doc who makes poke with his help.

Adopted buoy
Adopted buoy

BroncCO2Buoy_1MakingPoke

Scott Sperber, July 11-12, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 11-12, 2009

Weather Data from the Bridge 
Temperature: 24.2 C

Bringing in the SEABIRD CTD
Bringing in the SEABIRD CTD

Science and Technology Log 

Compared to yesterday today is a very slow scientific day.  After releasing the WHOTS buoy, things really calmed down.  Let me take this opportunity to tell you a bit about some of the instrumentation on the buoy itself.  The overall goal of the project is to collect data about the ocean and atmosphere over a long period of time.  These data will serve to help answer questions about such things as global warming and its impact in the tropics. On the buoy itself, pictured in a previous log, there are instruments that measure temperature, humidity, solar radiation, wind direction and speed. A GPS unit keeps track of the buoy’s location at all times. On the buoy there is also an antenna which transmits data to satellites. Each of the two buoys [explain why there are two in the ocean for this 4-day comparison period] in the water has enough slack in the lines to allow for an approximate 2-mile radius circle.

Profile of CTD on shallow casts
Profile of CTD on shallow casts

The weather balloon launching continues every four hours with teams of two or three taking each launch in shifts. Some CTD casts have been done with the small package SEABIRD CTD.  This is set over the side, lowered down by crane and yo-yoed up and down for about four hours.  During this time, data are sent directly to an onboard computer and collected by the scientists. These data include temperature and salinity. This is important information to assess changes going on in the crucial air/sea interface.

These particular locations, ones where temperature and salinity difference vary worldwide, the thermocline and halocline are dependent on variables such a currents and air temperature.  On the final assent collection bottles are closed to collect water samples for further analysis. With all of this sophisticated instrumentation onboard surface water temperature samples are still taken with the old fashioned method of lowering thermometers into the water several times to take an average reading. Some things never change. The information collected by both the oceanographic crew as well as the meteorological crew aboard is truly showing the links, the association between the interaction of the air and sky, in the crucial air/sea interface.

I found out today that the temperatures on the two thermometers on the WHOTS-6 buoy are not matching. They are off by about 0.4 degrees C; that is the level of precision necessary for this research.  The scientists are looking into which one is closest to the temperatures read on the ship before we move off to the old buoy’s location tomorrow. Apparently, this is not something that can be reconfigured so the scientists need to know which thermometer they can rely on for information. There are two of just about every instrument on the WHOTS buoys. This serves as a backup and a comparison for the same location and enables the greatest accuracy in the data.

Profile of weather balloon sonde
Profile of weather balloon sonde

Personal Log 

I’d like to share a bit more about my onboard life. I have gotten acclimated finding my way around the ship (sort of). Well, at least I don’t get lost going to the mess hall anymore.  I am in a berth on an upper bunk with Jeffrey Snyder, one of the primary researchers from the University of Hawaii. The berth is quite comfortable as berths can go since it has been years since I was in a bunk bed. Various alarm clocks go off at anytime at night so the crew can go on their watch.  There is even a ghost alarm that goes off at 01:15 that Jeff and I cannot locate.  Food is not at a shortage. It seems that every time you turn around it is time to eat, and what great food it is too.  There is fresh salad lunch and dinner, fresh fruit, at least 3 entries to choose from each mea and desserts. LA Fitness here I come. I received what I consider a gift today from Fernando Santiago, one of the principle scientists, a DVD of the procedures that are used on the Hawaii Ocean Time-series Project.

July 12, 2009 

Had some down time today after setting off another weather balloon and a great fruit and yogurt breakfast. Took a 7 mile bike ride. You may ask where in the middle of the ocean you can take a 7 mile bike ride.  They have a nice little fitness room on board.

Words of the day: Mahimahi, calibration, dissolved oxygen, interface, thermocline, conductivity, temperature, depth.

Karolyn Braun, October 11, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 11, 2006

TAS Braun holds up the catch of the day, a mahi mahi!
TAS Braun holds up the catch of the day, a mahi mahi!

Science and Technology Log 

Today has been a busy and exciting one. Last night’s CTD I did on my own but with Tonya, the Chief Survey Tech looking over my shoulder to see if I made any mistakes.  This morning I was on my own—an excellent cast and recovery (if I do say so myself) with no problems occurring. Once the CTD was secure, we prepared the ARGO buoy, which was deployed by slowly lowering it into the water. After the bottom filled with water, we disconnected it from the line and away it went., By the time the AOML buoy was deployed, the CTD cast was finished and the water samples for the chlorophyll project were complete, it was breakfast time.  After having some oatmeal, I tried to nap but it was such a glorious morning I couldn’t bear to be inside.  I stood staring out into what seems like a never-ending ocean thinking how fortunate I am to have been chosen for this program—not only for the experiences I have had already or for the knowledge I am going to go home with, but also for the amazing people I have been able to get to know who work on this vessel day in and day out to ensure all projects run smoothly.

At 11:00 we were preparing for a visit to the TAO buoy at 5N/155W. This buoy did not need to be recovered as it was still in excellent working order.  The Chief Scientist, Patrick, viewed the buoy and no repairs were needed either.  While the boat was sailing around the buoy at a slow pace, some of us tried our hands at fishing off the back for some dinner.  We caught a nice Mahi Mahi…YUM!  The CTD was just about to begin so all lines had to come in and it was down to business.  The CTD went effortlessly, and after that, I deployed my first AOML buoy.  The Marine Science Program at the American Samoa Community College has adopted three Adopt-a-Drifter buoys with this program.  Very exciting!

After all the excitement I got in a nice workout and a much needed shower.  After dinner tonight we have another CTD and the fun will be over until tomorrow morning.

Geoff Goodenow, May 6, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 6, 2004

Local Time: 1600
Lat: 19 19 N
Long: 155 57 W
Sky: thin overcast
Air temp: 25.5 C
Barometer: 1011.28
Wind: 348 degrees at 9 knots
Relative humidity: 59.9
Sea temp: 26.6 C
Depth: 1997 m

Technical and Scientific Log

Longline retrieval began as usual at 800 hours (Can you tell I’m getting more than just my sea legs?). Everyone was feeling optimistic as various (secret) measures were employed through the night to ward off another disappointing haul. We did begin with a bit of bad luck as the line somehow got under the hull. (Obviously we have a few kinks to work out of the rituals.) Rich indicated that we had lost a couple big ones because of that. But we did land 4 fish – 2 dophinfish, alive, and 2 broadbill swordfish (Xiphias gladius) both dead on arrival. The latter were young fish just over 100 cm and each with a bill of about 52 cm which I collected. Hoping to get them home, but airline security might have something to say about that. We also brought on a couple yellowfin and a skipjack tuna while trolling through the afternoon and evening.

Yesterday I gave you an idea as to how Michele will use the blood, liver and tissue samples she is collecting. I am gathering muscle tissue samples for Brittany who is a grad student at Univ. of Hawaii, I believe. Those samples are to be used for stable isotope analysis of these pelagic fishes. I cannot recall enough about this and no one on board can help me give you an explanation of that work, but I will get details eventually. Let it be enough for now to say that the data collected should provide info on the trophic history and possible migration patterns of these fishes.

Some pilot whales and dolphins swam with us briefly today. No day time plankton tows today.

The depth of our longline sets the past couple nights has been about 40 meters. Depth of set depends on what you are trying to catch and the lunar cycle. Rich suggests that perhaps we should have been deeper. On full moon, for example, you would set deeper than at new moon. The fish tend to adjust their depth to maintain a rather constant level of light.

We are not setting the longline tonight. Winds have calmed outside of this area so we are going to head away through the night in search of happier hunting grounds (or should I say “fishing waters?”)

Personal Log

Given “gentle” seas, life on this vessel is very comfortable. Of course, gentle is a relative term and one that I hope in short time comes to be useful to me in situations that currently bring on thoughts like “why did I ever decide to do this?” (That only happened Sunday into early Monday; I’m having a great time since then.) Today I want to tell a bit what it’s like on board.

Most interior space in the ship is air conditioned; only stairwells are not. This contrasts quite favorably to the first research ship I went on. I remember very well the mens’ quarters — hot, hot, hot as it was just forward of the engine room, always smelling of diesel, “bunks” 3 high with about a foot of head room, and only a red lamp for lighting.

Here,I share a room about midship just above the main deck with Rickard, a Swedish graduate student working with Kerstin on the vision studies. Our stateroom is about 10X15 feet. It is carpeted, we have bunk beds, a desk, sink, closet and a window. We share a toilet and shower with one other person, a crew member, in the adjoining room. I think all of the science personnel are on this deck.

Meals/food service are excellent. The galley is always open and we may help ourselves to a variety of treats, snacks and real food at any time of day. For breakfast, cold cereals, bread, fruits, hot drinks and juices are available and the galley staff will prepare eggs, pancakes, meats, hot cereals as to your order.

Lunch and supper always include a salad bar and your choice of 2 entrees and a variety of side dishes. Not that we are on a strictly fish diet, but all of the fish that we have taken for specimens are immediately iced down and saved for the cooks who have many ways of making them a treat for the palate. Tonight featured freshly caught ahi cooked on a grill on deck.

Last night’s sunset was a beauty. I saw for the first time, the “green flash”.

Questions

Lets turn to the atmosphere for a few questions. If you are keeping up with answering the questions (or just look above), you have an idea of the latitude of the islands. What is the name, including direction, of the global wind belt the Hawaiian islands lie within?

The ship has been sailing along the west coast of the big island, Hawaii. Is this the windward or the leeward side of the island? The heights of Maui and Hawaii help create the weather observed on different parts of the islands. Look at a map of Hawaii and find the towns, Hilo and Kona. Which of the two would you predict to have the drier climate? Why? Check some other sources for precipitation records to find out if you are correct.

You can try the same for Maui. Hana is on the east side and Lahaina is on the west. Make some predictions as to the relative climates of each town then check other sources of climate data to see if you are correct.

If you have any questions, please send them my way.

Geoff

Dana Tomlinson: Day 15, March 15, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Friday, March 15, 2002
Lat: 6.2°S
Long: 111°W
Seas: 4-6 ft
Visibility: unrestricted
Weather: partly to mostly cloudy
Sea Surface Temp: 82-86°F
Winds: SE 10-15 knots
Air Temp: 85-74°F

Today was the day that we rounded up our wayward buoy. The buoy was deployed in April 2001 at 5°S 110°W. In November 2001, NOAA scientists knew that it was drifting freely. By the time we found it (it has a tracking device on it) it had drifted one degree south and one degree east. That’s 60 nautical miles in two directions!

Once we pulled it on board, one could see fairly clearly what had happened. There were scrapes on the sides of the buoy (the toroid, or “donut” section) where something like a boat/ship had rubbed up to it. There was a steel cable that had been attached to it and the nylon rope had been cut. So, the theory is that a fishing vessel attached itself to the buoy with the steel slingshot device. It yanks the buoy out of place and it’s easy to catch all the fish that use the buoy’s shade as their ecosystem.

Speaking of the buoy’s fish, while we were bringing in the buoy, folks on board that were not working were fishing the bounty of the ocean with a rod and reel. Several mahi mahi graced our table at dinner that evening – served by Clem four different ways (I think the mahi mahi in coconut sauce was the favorite.)! That woman is amazing. You NEED to use the gym on board to work off her good cooking!

Not to be overshadowed by the morning’s events was the day’s live broadcast. This was our third general broadcast and was the very first ever tried by NOAA out of doors. We had our studio on the buoy deck today. On the live broadcast, Cmdr. Tisch, Chief Scientist McPhaden and I dedicated tomorrow’s buoy to be deployed at 8°S 110°W to Education in America. The bulk of the show was scientist Ben Moore giving us a cook’s tour of the buoy deck’s equipment, and Dr. McFaden talked about our wayward buoy. It was a great show. We can still hook you up for the live broadcasts on 3/18, 3/20 and 3/22 if you’re interested.

Question of the Day:

 This is going to be a bit of a toughie, and might need some Internet research on your part, but it’s interesting. When do most oceanographers consider to be the beginning of modern oceanography? Or, another way of putting it is, what started modern oceanography? Hint: it’s before 1900.

Answer of the Day: 

The question was: how many branches of the armed services are there and what are they? Dennis M. of Lakeside CA got it exactly correct. There are 5 branches of the armed services: Army, Navy, Air Force, Marines, Coast Guard. PLUS, there are two other uniformed branches: NOAA and the US Public Health Service. Great job, Dennis. 🙂

Til tomorrow,
🙂 Dana