Catherine Fuller: Out of the Sea and into the Lab, July 3, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 3, 2019

Weather Data from the Bridge

Latitude: 58° 54.647’ N
Longitude: 146° 00.022’ W
Wave Height: 4-5 ft.
Wind Speed: 1.9 knots
Wind Direction: roughly 90 degrees, but variable
Visibility: 1 nm
Air Temperature: 13.2 °C
Barometric Pressure: 1014.4 mb
Sky: Clear, then foggy

Weather overview

We have been fortunate so far to have very calm conditions.  Winds have been variable or light and are expected to continue to be so through the weekend at least.  Wave heights have generally been about 3 feet, although they’re up to 4-5 feet today, and are expected to drop tomorrow.  The calm weather is critical for some of the testing being done, and thus is allowing more to happen.

Science and Technology Log

The focus of all of testing on board is plankton.  As the base of the food web, all species depend on their health and abundance for survival. There are multiple teams who are focused on various aspects of plankton and their reaction to environmental conditions.  Kira Monell is a graduate student at the University of Hawaii at Manoa who is working under the direction of Dr. Russ Hopcroft while on board.  She is studying zooplankton, or the animal version of plankton.   She is specifically focusing on Neocalanus flemingeri, a type of sub-arctic copepod.  It is important to study zooplankton because they provide a link between phytoplankton (the plant version of plankton) and larger fish on the food web.  Copepods are extremely abundant and varietal, found just about everywhere in the world.  They are an important food source for most aquatic species (they exist in both salt and fresh water).  They are a trophic link – a connection in the food web.  Her target species is special because they mostly eat phytoplankton during the seasonal plankton blooms.  They convert their food into a lot of lipids (fats) and thus are great sources of food and energy for larger fish.  After fattening up, they go deep into the ocean to hibernate around mid-summer. 

Kira is specifically focused on the termination of their hibernation (technically called diapause).  She is doing genetic testing to see which genes are activated or deactivated during this phase of their lives.  Messenger ribonucleic acid (or mRNA) coded by these genes is required to construct the enzymes that cause changes in body functions, so she is looking at levels of different mRNA in the copepods. She is expecting to see an increase in genes relating to oogenesis (egg formation).  Her female copepods go into diapause ready to start making eggs, so she expects to see changes in genes relating to egg growth as they come wake up from diapause.

Kira is examining copepods through three different experiments.  With some samples, she adds a stain called EDU (a dye that labels cells that are just about to divide) into her samples and then checks them at 24 hours to see which cells have divided.  Because the copepods are still alive, she can check back to see what further cell division have happened over longer periods of time.  A fluorescent microscope is required to see the EDU.  Scientists still struggle to understand what actually triggers emergence from diapause since deep water copepods don’t experience seasonal light changes, or other potential triggers that might exist on the surface. 

Another thing she is looking at is in-situ hybridization.  She makes a tag that is very specific for the gene she wants to examine.  When the probe gene is introduced, it attaches to the gene she wants to look at only if it is being actively copied.  Kira then attaches a colored or fluorescent dye to the probe and in that way she can track which genes are being expressed in specific areas of the body.

The third project that she is working on is trancriptum analysis, which requires building a complete “catalog” that shows all the RNA used by a species. She can then look at which gene transcripts are present, and in how abundant they are, so as to compare them to the “average” version of a transcriptum to see which genes are being turned off and on under certain conditions.

To obtain samples of copepods, the zooplankton team, including Kira, uses Calvet nets.  These are four long nets that terminate in collection tubes. Weight is added to the bottom of the nets and they are submerged off the stern to 100 meters of depth and then pulled back up (a process that takes roughly five minutes).  The nets are then rinsed to collect the samples in the tubes, which are transferred into jars and brought to the lab for more detailed sorting and examination. 

Calvet rising
The Calvet is returning to the surface after being submerged
Kira and Kate rinse net
Kira and Kate rinse the length of the nets to collect their samples in the tubes in the end.

As the Calvet rises you can see the full net. (This video has no dialogue.)



Personal Log

back deck
This is the main working deck at the stern of the ship.

Getting prepared to go out on deck safely!

All of the sample collection happens on the working deck at the stern of the R/V Sikuliaq or in the adjacent Baltic Room.  The back deck is equipped with a variety of cranes and winches that are designed to handle heavy weights and lines under tension.  As such, it is critical to wear the proper protective gear when you’re out there: boots (preferably steel-toed), a hard hat and a flotation vest of coat.  If there’s a potential to get wet or dirty, rain gear or waterproof bibs are essential to stay dry and relatively clean. Being properly dressed is a process that took getting used to, but now it’s habit.  Again, we’re lucky to have had good weather, so the deck is usually warm enough to wear a t-shirt and jeans.  I find it calming to be outside, so I am enjoying learning about the sampling methods of other teams by watching and sometimes assisting them.  There are also observation decks at the bow that do not require safety gear.  A few of us have discovered that the forward decks are much quieter and are good spaces to decompress and look for sea life. 


Animals Seen in the Last 24 Hours:

We’ve seen a few species of birds including black turnstones, glaucous-winged gulls, Black-winged kittiwakes, as well as deeper water birds such as storm petrels and shearwaters.  In addition, there have been small pods of dolphins in the distance and one humpback whale (all we saw was the tail).

Catherine Fuller: Maintaining Balance, July 1, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 1 July 2019

Weather Data from the Bridge

Latitude: 60’ 15” N
Longitude: 145’ 30” N
Wave Height:
Wind Speed: 7 knots
Wind Direction: 101 degrees
Barometric Pressure: 1020 mb
Air Temperature:  13.2° C
Relative Humidity: 94%
Sky: Overcast


Science and Technology Log

When I read some the material online about the NGA LTER, what struck me was a graphic that represented variability and resiliency as parts of a dynamic system.  The two must coexist within an ecosystem to keep it healthy and sustainable; they must be in balance.  On board, there is also balance in the studies that are being done.  The Main Lab houses researchers who are looking at the physical aspects of the water column, such as sediment and plankton.  The Wet Lab researchers are looking at the chemical aspects and are testing properties such as fluorescence, DIC (dissolved inorganic carbon), and DOC (dissolved organic carbon). 

Working deck
This is the working deck of the ship, where the majority of equipment is deployed

Today we deployed Steffi’s sediment traps, a process during which balance was key. First of all, each trap was composed of four collection tubes arranged rather like a chandelier. 

collection tubes
These are the collection tubes that will be staged at selected depths to collect sediment

These were hooked into her primary line. Her traps were also attached to two sets of floaters: one at the surface and one as an intermediary feature on her line.  These allowed her traps to sit at the proper depths to collect the samples she needed.  The topmost trap sat 80m below the surface, while the next three were at subsequent 25m intervals. 

hazy sound
Steffi’s traps were released against the background of the smoky sound.

We also collected more samples from another run of the CTD today.  Again, the Niskin bottles (collection tubes) were “fired” or opened at various depths, allowing sampling through a cross section of the water at this particular data point PWS2. Unlike our previous collection, these samples were filtered with .45 micron mesh to eliminate extraneous particles.  This is a very careful process, we needed to be very careful to eliminate air bubbles and replace the filters regularly as the clogged quickly.  For one depth, we did collect unfiltered samples as a comparison to the filtered ones.  Many groups use the CTD to collect samples, so there must also be careful planning of usage so that there is enough water for each team.  Collection is a complicated dance of tubes, syringes, bottles, labels and filters all circling around the CTD. 

Steffi and buoys
Steffi looks over the sound as the buoys marking her traps recede into the distance.

Later this evening, we’ll have the chance to pull up Steffi’s sediment traps and begin to prepare her samples for analysis. 


Personal Log

Balance is key in more ways than one when you’re living aboard a research ship. Although it’s been very calm, we experience some rolling motion when we are transiting from one site to the next.  The stairways in the ship are narrow, as are the steps themselves, and it’s a good thing there are sturdy handrails!  Other than physical balance, it’s important to find personal balance.  During the day, the science work can be very intense and demanding.  Time schedules shift constantly, and it is important to be aware of when your experiments or data collection opportunities are taking place.  Down time is precious, and people will find a quiet space to read, go to the gym (a small one), catch up on sleep or even watch a movie in the lounge. 

A couple of weeks before I left, the Polynesian Voyaging Society hosted a cultural group from Yakutat, who had shipped in one of their canoes down for a conference.  We were able to take them out sailing, and the subject of balance came up in terms of the worldview that the Tlingit have.  People are divided between being Eagles and Ravens, and creatures are also divided along the lines of being herbivorous and carnivorous.  Rather than this being divisive within culture, it reflects the principle of balance.  Both types are needed to make an ecosystem whole and functional.  And so, as we progress, we are continually working on maintaining our balance in the R/V Sikuliaq ecosystem. 


Animals seen today:

A few dolphins were spotted off the bow this evening, but other than that, Prince William Sound has been relatively quiet.  Dan, our U.S. Fish and Wildlife person, remarked that there are more boats than birds today, which isn’t saying much as I’ve only seen three other boats.

Catherine Fuller: A Tropical Fish in an Alaskan Aquarium, June 30, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 28 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: 30 June 2019

Weather Data from the Bridge

Latitude: 60.32 N
Longitude: 147.48 W
Wind Speed: 3.2 knots
Wind Direction: 24 degrees
Air Temperature: 72 °F
Sky: Hazy (smoke)


Science and Technology Log

We arrived in Seward mid-day on Thursday, June 27th to find it hazy from fires burning north of us; the normally picturesque mountain ranges framing the bay were nearly obscured, and the weather forecast predicts that the haze will be with us at sea for a while as well.  Most of the two days prior to departure were busy with loading, sorting, unpacking and setting up of equipment. 

Ready to load
All equipment and supplies are placed on pallets to load on board

There are multiple experiments and different types of studies that will be taking place during the course of this cruise, and each set of researchers has a specific area for their equipment.  I am on the particle flux team with Stephanie O’Daly (she specifically requested to have “the teacher” so that she’d have extra hands to help her), and have been helping her as much as I can to set up.  Steffi has been very patient and is good about explaining the equipment and their function as we go through everything.  Particle flux is about the types of particles found in the water and where they’re formed and where they’re going.  In addition, she’ll be looking at carbon matter: what form it takes and what its origin is, because that will tell her about the movement of specific types of plankton through the water column.  We spent a part of Friday setting up a very expensive camera (the UVP or Underwater Visual Profiler) that will take pictures of particles in the water down to 500 microns (1/2 a millimeter), will isolate the particles in the picture, sort the images and download them to her computer as well. 

Steffi’s friend Jess was very helpful and instructive about setting up certain pieces of equipment.  I found that my seamanship skills luckily were useful in splicing lines for Steffi’s tows as well as tying her equipment down to her work bench so that we won’t lose it as the ship moves. 

As everyone worked to prepare their stations, the ship moved to the refueling dock to make final preparations for departure, which was about 8:30 on Saturday morning. 

Day one at sea was a warm up for many teams.  Per the usual, the first station’s testing went slowly as participants learned the procedures.  We deployed the CTD (conductivity, temperature and depth) at the second station.  A CTD is a metal framework that carries various instruments and sampling bottles called Niskin bottles.  In the video, you can see them arranged around the structure. The one we sent on June 28 had 24 plastic bottles that were “fired” at specific depths to capture water samples.  These samples are shared by a number of teams to test for things like dissolved oxygen gas, and nutrients such as nitrate, nitrites, phosphate and silicate, and dissolved inorganic carbon.  

Video coming soon!
The CTD is lowered over the side of the ship long enough to fill sample bottles and then is brought back on board. (This still photo is a placeholder for the video.)

One of my tasks today was to help her collect samples from specific bottles by attaching a tube to the bottle, using water from the sample to cleanse it and them fill it.  Another team deployed a special CTD that was built completely of iron-free materials in order to run unbiased tests for iron in the water. 

By late Saturday night, we will be in Prince William Sound, and will most likely spend a day there, before continuing on to Copper River.  Usually LTER cruises are more focused on monitoring the state of the ecosystem, but in this case, the cruise will also focus on the processes of the Copper River plume, rates and interactions.  This particular plume brings iron and fresh water into the Northern Gulf of Alaska ecosystem, where it is dispersed by weather and current.  After spending some time studying the plume, the cruise will continue on to the Middleton Line to examine how both fresh water and iron are spread along the shelf and throughout the food web.  


Personal Log

As the science team gathered yesterday, it became evident that the team is predominantly female.  According to lead scientist Seth Danielson, this is a big change from roughly 20 years ago, and has become more of the norm in recent times.  We also have five undergraduates with us who have never been out on a cruise, which is unusual.  They are all very excited for the trip and to begin their own research by assisting team leaders.  I’ve met most of the team and am slowly getting all the names down. 

I have to admit that I’m feeling out of my element, much like a fish in a very different aquarium.  I’m used to going to sea, yes, but on a vessel from another time and place.  There is much that is familiar about gear, lines, weather, etc., but there are also great differences.  The ship’s crew is a separate group from the science crew, although most are friendly and helpful.  Obviously, this is a much larger and more high tech vessel with many more moving parts.  Being on the working deck requires a hard hat, protective boots, and flotation gear.  There are viewing decks that are less restricted. 

I am excited to be at sea again, but a little bit nervous about meeting expectations and being as helpful as I can without getting in the way.  It’s a little strange to be primarily indoors, however, as I’m used to being out in the open! I’m enjoying the moments where I can be on deck, although with the haze in the air, I’m missing all the scenery! 

Did you know?

Because space is limited onboard, many of the researchers are collecting samples for others who couldn’t be here as well as collecting for themselves and doing their own experiments.

Something to think about:

How do we get more boys interested in marine sciences?

Questions of the day (from the Main Lab):

Do whales smell the smoke outside?

Answer: Toothed whales do not have a sense of smell, and baleen whales have a poor sense of smell at best.

Do scorpions get seasick?

Katie Gavenus: Thinking Like A Hungry Bird, April 28, 2019

NOAA Teacher at Sea

Katie Gavenus

Aboard R/V Tiglax

April 26-May 9, 2019

 

Mission: Northern Gulf of Alaska Long-Term Ecological Research project

Geographic Area of Cruise: Northern Gulf of Alaska – currently on the ‘Middleton [Island] Line’

Date: April 28, 2019

 

Weather Data from the Bridge

Time: 1715
Latitude: 59o 39.0964’ N
Longitude: 146o05.9254’ W
Wind: Southeast, 15 knots
Air Temperature: 10oC (49oF)
Air pressure: 1034 millibars
Cloudy, no precipitation

 

Science and Technology Log

Yesterday was my first full day at sea, and it was a special one! Because each station needs to be sampled both at night and during the day, coordinating the schedule in the most efficient way requires a lot of adjustments. We arrived on the Middleton Line early yesterday afternoon, but in order to best synchronize the sampling, the decision was made that we would wait until that night to begin sampling on the line. We anchored near Middleton Island and the crew of R/V Tiglax ferried some of us to shore on the zodiac (rubber skiff).

This R&R trip turned out to be incredibly interesting and relevant to the research taking place in the LTER. An old radio tower on the island has been slowly taken over by seabirds… and seabird scientists. The bird biologists from the Institute for Seabird Research and Conservation have made modifications to the tower so that they can easily observe, study, and band the black-legged kittiwakes and cormorants that choose to nest on the shelfboards they’ve augmented the tower with. We were allowed to climb up into the tower, where removable plexi-glass windows look out onto each individual pair’s nesting area. This early in the season, the black-legged kittiwakes are making claims on nesting areas but have not yet built nests. Notes written above each window identified the birds that nested there last season, and we were keen to discern that many of the pairs had returned to their spot.

Gavenus1Birds

Black-legged kittiwakes are visible through the observation windows in the nesting tower on Middleton Island.

Gavenus2Birds

Nesting tower on Middleton Island.

The lead researcher on the Institute for Seabird Research and Conservation (ISRC) project was curious about what the LTER researchers were finding along the Middleton Line stations. He explained that the birds “aren’t happy” this spring and are traveling unusually long distances and staying away for multiple days, which might indicate that these black-legged kittiwakes are having trouble finding high-quality, accessible food. In particular, he noted that he hasn’t seen any evidence they’ve been consuming the small lantern fish (myctophids) that generally are an important and consistent food source from them in the spring. These myctophids tend to live offshore from Middleton Island and migrate to the surface at night. We’ll be sampling some of that area tonight, and I am eager to see if we might catch any in the 0.5 mm mesh ‘bongo’ nets that we use to sample zooplankton at each station.

The kittiwakes feed on myctophids. The myctophids feed on various species of zooplankton. The zooplankton feed on phytoplankton, or sometimes microzooplankton that in turn feeds on phytoplankton. The phytoplankton productivity is driven by complex interactions of environmental conditions, impacted by factors such as light availability, water temperature and salinity as well as the presence of nutrients and trace metals. And these water conditions are driven by abiotic factors – such as currents, tides, weather, wind, and freshwater input from terrestrial ecosystems – as well as the biotic processes that drive the movement of carbon, nutrients, and metals through the ecosystem.

Scientists deploy CTD

This CTD instrument and water sampling rosette is deployed at each station during the day to collect information about temperature and salinity. It also collects water that is analyzed for dissolved oxygen, nitrates, chlorophyll, dissolved inorganic carbon, dissolved organic carbon, and particulates.

CTD at sunset

When the sun sets, the CTD gets a break, and the night crew focuses on zooplankton.

Part of the work of the LTER is to understand the way that these complex factors and processes influence primary productivity, phytoplankton, and the zooplankton community structure. In turn, inter-annual or long-term changes in phytoplankton and zooplankton community structure likely have consequences for vertebrates in and around the Gulf of Alaska, like seabirds, fish, marine mammals, and people. In other words, zooplankton community structure is one piece of understanding why the kittiwakes are or are not happy this spring. It seems that research on zooplankton communities requires, at least sometimes, to consider the perspective of a hungry bird.

Peering at a jar of copepods and euphausiids (two important types of zooplankton) we pulled up in the bongo nets last night, I was fascinated by the way they look and impressed by the amount of swimming, squirming life in the jar. My most common question about the plankton is usually some variation of “Is this …” or “What is this?” But the questions the LTER seeks to ask are a little more complex.

Considering the copepods and euphausiids, these researchers might ask, “How much zooplankton is present for food?” or “How high of quality is this food compared to what’s normal, and what does that mean for a list of potential predators?” or “How accessible and easy to find is this food compared to what’s normal, and what does that mean for a list of potential predators?” They might also ask “What oceanographic conditions are driving the presence and abundance of these particular zooplankton in this particular place at this particular time?” or “What factors are influencing the life stage and condition of these zooplankton?”

Euphausiids

Euphausiids (also known as krill) are among the types of zooplankton we collected with the bongo nets last night.

Copepods in a jar

Small copepods are among the types of zooplankton we collected with the bongo nets last night.

As we get ready for another night of sampling with the bongo nets, I am excited to look more closely at the fascinating morphology (body-shape) and movements of the unique and amazing zooplankton species. But I will also keep in mind some of the bigger picture questions of how these zooplankton communities simultaneously shape, and are shaped by, the dynamic Gulf of Alaska ecosystem. Over the course of the next 3 blogs, I plan to focus first on zooplankton, then zoom in to primary production and phytoplankton, and finally dive more into nutrients and oceanographic characteristics that drive much of the dynamics in the Gulf of Alaska.

 

Personal Log 

Life on the night shift requires a pretty abrupt change in sleep patterns. Last night, we started sampling around 10 pm and finished close to 4 am. To get our bodies more aligned with the night schedule, the four of us working night shift tried to stay up for another hour or so. It was just starting to get light outside when I headed to my bunk. Happily, I had no problem sleeping until 2:30 this afternoon! I’m hoping that means I’m ready for a longer night tonight, since we’ll be deploying the bongo nets in deeper water as we head offshore along the Middleton Line.

WWII shipwreck

While on Middleton Island, we marveled at a WWII shipwreck that has been completely overtaken by seabirds for nesting.

Shipwreck filled with plants

Inputs of seabird guano, over time, have fertilized the growth of interesting lichens, mosses, grasses, and even shrubs on the sides and top of the rusty vessel.

 

Did You Know?

Imagine you have a copepod that is 0.5 mm long and a copepod that is 1.0 mm long. Because the smaller copepod is half as big in length, height, and width, overall that smaller copepod at best offers only about 1/8th as much food for a hungry animal. And that assumes that it is as calorie-dense as the larger copepod.

 

Question of the Day:

Are PCBs biomagnifying in top marine predators in the Gulf of Alaska? Are there resident orca populations in Alaska that are impacted in similar ways to the Southern Resident Orca Whale population [in Puget Sound] (by things like toxins, noise pollution, and decreasing salmon populations? Is it possible for Southern Resident Orca Whales to migrate and successfully live in the more remote areas of Alaska? Questions from Lake Washington Girl’s Middle School 6th grade science class.

These are great questions! No one on board has specific knowledge of this, but they have offered to put me in contact with researchers that focus on marine mammals, and orcas specifically, in the Gulf of Alaska. I’ll keep you posted when I know more!

Katie Gavenus: Just Around the Corner (or two!): April 22, 2019

NOAA Teacher at Sea

Katie Gavenus

Aboard R/V Tiglax

April 26 – May 9, 2019

Mission: Northern Gulf of Alaska Long-Term Ecological Research (LTER) Program.

Geographic Area of Cruise: Northern Gulf of Alaska (Port: Seward)

Date: April 22, 2019

Personal Introduction

Later this week, R/V Tiglax will depart the Homer Harbor in Homer, Alaska and begin the trip ‘around the corner.’  From the Homer Harbor, she will enter Kachemak Bay, flow into the larger Cook Inlet, and enter the Northern Gulf of Alaska and the North Pacific Ocean. Veering to the east, and then north, she will arrive in Seward, Alaska. That trip will take about 3 days, with stops along the way for some research near the Barren Islands. Meanwhile, I’ll be working in Homer for a few extra days before I begin my own trip to Seward. I will travel on the road system, first heading north and then jaunting southeast to Seward.  It will take me 3.5 hours to drive there.

However you get there, Seward and the Northern Gulf of Alaska Long-Term Ecological Research project area are just around the corner from Homer.  Homer is the place where I was born and raised, the place where I became inspired by science, the place where I now have the incredible privilege of working as an environmental educator for students participating in field trips and intensive field study programs from Homer, around Alaska, and beyond.  At the Center for Alaskan Coastal Studies (CACS), one of the highlights of my job is guiding youth and adults into the intertidal zone to explore the amazing biodiversity that exists there.

img_1918.jpg

A 4th grade student from West Homer Elementary explores a tidepool in Kachemak Bay

In my lifetime as a Homer resident, and over the past 12 years as an educator in Kachemak Bay, I have witnessed seemingly unfathomable changes in the Bay’s ecosystems.  These changes have been concerning to all of us who live here and are sustained by Kachemak Bay.  Most recently, we watched as many species of sea stars succumbed to sea star wasting syndrome, their bodies deteriorating and falling apart in the intertidal zone. By fall of 2016, only leather stars (Dermasterias imbricata) seemed to remain.  But over the past year, we’ve watched as true stars (Evasterias troschelii), blood stars (Henricia spp.), little six-rayed stars (Leptasterias spp.), and others have begun to reappear in the tidepools.

IMG_1959.JPG

Tidepooling in Kachemak Bay, this 4th grader found a healthy, large adult true star!

This past week, I was lucky enough to be the naturalist educator for students from West Homer Elementary as they spent 3 days in a remote part of Kachemak Bay.  This was particularly poignant for me, as many of my most treasured memories from my own elementary school experience come from a similar field trip with CACS in 4th grade.   That trip helped to inspire me towards a life of curiosity and wonder, passion for science and teaching, and commitment to stewardship of ecosystem and community.

So it was even more special that on this trip we observed a wonderfully diverse array of sea star species, including over a dozen sunflower stars (Pycnopodia helianthoides). I’ve only seen a couple of these magnificent sea stars since they all-but disappeared from Kachemak Bay in August 2016, leaving behind only eery piles of white goo.  Their absence hurt my heart, and the potential impacts of losing this important predator reverberated in my brain.  Though the future of these stars remains unknown, it was such a joy and relief to see a good number of apparently healthy sunflower stars in the intertidal this week!

IMG_1962.JPG

Finally, a healthy, good-sized sunflower star!

The Northern Gulf of Alaska Long-Term Ecological Research (LTER) site was created, in part, to develop an understanding of the response and resiliency of the Northern Gulf of Alaska to climate variability.  In a time when people, young and old, across Alaska and beyond are increasingly concerned about impacts of climate change, it can be challenging for educators to get youth involved in ways that aren’t overwhelming, saddening, or frustrating.  Part of my work at CACS has been thinking and working with teachers, community educators, and researchers about how we can engage youth in ways that are realistic but hopeful and proactive.  The idea that I’ll be learning about not just climate impacts but the potential resiliency of the Northern Gulf of Alaska is so cool!  I’m excited to find out more about the unique species, life cycles, and natural histories that make the Gulf of Alaska such a good place to study ecosystem resiliency, and I’m inspired to learn more about other ecosystems close to Kachemak Bay and their own potential resilience.

I am really looking forward to my time on R/V Tiglax in the Gulf of Alaska!

IMG_1721

A day kayaking with my partner Nathan and his 6-year old daughter, Johanna. I love spending time on the water, and am excited to get out in the Gulf on a much larger vessel!