Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish

Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper

Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass

Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper

Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda

TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark

Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead

Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Kathleen Gibson, Conservation: Progress and Sacrifice, August 6, 2015

 NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date: Evening, Aug 6,2015

Coordinates:
LAT   3035.997   N
LONG   8105.5449 W 

Weather Data from the Bridge:
Wind speed (knots): 6.8
Sea Temp (deg C): 28.3
Air Temp (deg C):  28.9

I’ve now had the chance to see at least 9 different shark species, ranging from 1 kg to over 250 kg and I’ve placed tags on 4 of the larger sharks that we have caught.  These numbered tags are inserted below the shark’s skin, in the region of the dorsal fin.  A small piece from one of the smaller fins is also clipped off for DNA studies and we make sure to  record the tag number. If a shark happens to be recaptured in the future, the information gathered will be valuable for population and migration studies. The video below shows the process.

Tagging a Nurse Shark Photo: Ken Wilkinson

Tagging a nurse shark.
Photo: Ken Wilkinson

 

After checking that the tag is secure, I gave the shark a pat.  I agree with Tim Martin’s description that it’s skin feels like a roughed-up basketball.

 

We’ve had a busy couple of days.   The ship is further south now, just off the coast of Florida, and today we worked three stations. The high daytime temperatures and humidity make it pretty sticky on deck but there are others on board working in tougher conditions.

Many thanks to Jack Standfast for the engine room tour.

Many thanks to Jack Standfast for the engine room tour.

Yesterday, during a brief period of downtime, I took the opportunity to go down to the engine room. Temperatures routinely exceed 103 o F, and noise levels require hearing protection.  My inner Industrial Hygienist (my former occupation) kicked in and I found it fascinating; there is a lot going on is a small space.  My environmental science students won’t be surprised at my excitement learning

Here it is... The RO unit!

Here it is… The RO unit!

about the desalination unit (reverse osmosis) for fresh water generation and energy conversions propelling the vessel.

I know, I know… but it was really interesting.

 

Science and Technology – Conservation

Sustainability,  no matter what your  discipline is, refers to the wise use of resources with an eye toward the future. In environmental science we specifically talk about actively protecting the natural world through conservation of both species and habitat.   Each year when I prepare my syllabus for my AP Environmental Science course, I include the secondary title “Working Toward Sustainability”.  I see this as a positive phrase that establishes the potential for renewal while noting the effort required to effect change.

Sustainability is the major focus of NOAA Fisheries (National Marine Fisheries Service) as it is “responsible for the stewardship of the nation’s ocean resources and their habitat.”  I’m sure that most readers have some familiarity with the term endangered species or even the Endangered Species Act, but the idea that  protection extends to habitats and essential resources may be new.

Getting the hook out of the big ones is equally challenging.

Getting the hook out of the big ones is equally challenging.

Regulation of  U.S. Fisheries

Marine fisheries in the United States are primarily governed by the Magnuson-Stevens Fishery Conservation and Management Act, initially passed in 1976. Significant reductions in key fish populations were observed at that time and the necessity for improved regulatory oversight was recognized.  This act relied heavily on scientific research and was intended to prevent overfishing, rebuild stocks, and increase the long-term biological and economic viability of marine fisheries. It was this regulation that extended U.S. waters out to 200 nautical miles from shore.  Previously, foreign fleets could fish as close as 12 nautical miles from U.S

Two sandbar sharks on the line.

Two spinner sharks on the line.

shores.

Under this fisheries act, Regional Fishery Management Councils develop Fishery Management Plans (FMP) for most species (those found in nearby regional waters) which outline sustainable and responsible practices such as harvest limits, seasonal parameters, size, and maturity parameters for different species. Regional councils rely heavily on research when drafting the FMP, so the work done by NOAA Fisheries scientists and other researchers around the country is critical to the process.  Drafting a Fishery Management Plan for highly migratory fish that do not remain in U.S. waters is challenging and enforcement even more so.  Recall from a previous blog that great hammerheads are an example of a highly migratory shark.

Threats to Shark Populations and Conservation Efforts

Shark populations around the globe suffered significantly between 1975 and 2000, and for many species (not all sharks and less in the USA) the decline continues. This decline is linked to a number of factors.  Improved technology and the development of factory fishing allows for increased harvest of target species and a subsequent increase in by-catch (capture of non-target fish). Efficient vessels and refined fishing techniques reduced fish stocks at all levels of the food web, predator and prey alike.

More significantly, the fin fishing industry specifically targets sharks and typical finning operations remove shark fins and throw the rest of the shark overboard.  These sharks are often still living and death results from predation or suffocation as they sink.  Shark fins are a desirable food product in Asian dishes such as shark fin soup, and are an ingredient in traditional medicines.  They bring a high price on the international market and sharks with big fins are particularly valuable.

A scalloped hammerhead in the cradle. This was the fist shark I tagged.

A scalloped hammerhead in the cradle. This was the fist shark I tagged.

Sandbar (Carcharhinus plumbeus) and great hammerheads (Sphyrna mokarran) and scalloped hammerheads (Sphyrna lewini) that we have seen have very large dorsal and pectoral fins, which are particularly desirable to fin fisherman.  There are many groups, international and domestic, working to reduce fin fishing, but the high price paid for fins makes enforcement difficult. The Shark Finning Prohibition Act implemented in 2000, in combination with the Shark Protection Act of 2010 sought to reduce this practice.  These acts amended Magnusen-Stevens (1976) to require that all sharks caught in U.S. waters have their fins intact when they reach the shore.  U.S. flagged vessels in international waters must also adhere to this ban, therefore no fins should be present on board that are not still naturally attached. The meat of many sharks is not desirable due to high ammonia levels, so the ban on fin removal has dramatically reduced the commercial shark fishing industry in the United States. (Read about some good news below in my interview with Trey Driggers )

The video below featuring the Northwest Atlantic Shark cooperative summarizes these threats to shark populations.

It must also be mentioned that in the 25 years after the release of the book and film “Jaws”, fear and misunderstanding fueled an increase in shark hunting for sport. The idea that sharks were focused human predators with vendettas led many to fear the ocean and ALL sharks. In his essay “Misunderstood Monsters,” author Peter Benchley laments the  limited research available about sharks 40 years ago,  even stating that he would not have been able to write the same book with what we now know.  He spoke publicly about the need for additional research and educational initiatives to spread knowledge about ocean ecology.

Close up of our first cradled sandbar shark.

Close up of our first cradled sandbar shark. This is one of my favorite pictures.

The United States is at the forefront of shark research, conservation and education and in the intervening years, with the help of NOAA Fisheries and many other scientists, we have learned much about shark ecology and marine ecosystems. It’s certain that marine food webs are complex, but that complexity is not always fully represented in general science textbooks. For example, texts often state that sharks are apex predators (top of the food chain).  This applies to many

This one is pretty big for an Atlantic sharpnose. Photo Credit: Kristin Hannan

This one is pretty big for an Atlantic sharpnose.
Photo Credit: Kristin Hannan

species including great white and tiger sharks, but it doesn’t represent all species.  In truth, many shark species are actually mesopredators (mid level), and are a food source for larger organisms.  Therefore conservation efforts need to extend through all levels of the food web.

The Atlantic sharpnose  (Rhizoprionodon terraenovae) and Silky Shark (Carcharhinus falciformis) are examples of mesopredators.  It was not uncommon for us to find the remains of and small Atlantic sharpnose on the hook with a large shark that it had attracted.

Sandbar shark with Atlantic sharpnose also on the line.

Sandbar shark with Atlantic sharpnose also on the line.

 

William  (Trey) Driggers – Field Research Scientist – Shark Unit Leader ( is there a III?)

Its a beautiful day on the aft deck. William" Trey" Driggers is the Lead Scientist of the Shark Unit. Photo: Ian Davenport

Its a beautiful day on the aft deck. William” Trey” Driggers is the Lead Scientist of the Shark Unit.
Photo: Ian Davenport

Trey is a graduate of Clemson University and earned his Ph.D at the University of South Carolina.  He’s been with NOAA for over 10 years and is the Lead Scientist of the Shark Unit, headquartered in Pascagoula, MS. His responsibilities include establishing and modifying experimental protocols and general oversight of the annual Shark/Red Snapper Longline Survey. Trey has authored numerous scientific articles related to his work with sharks and is considered an expert in his field.  He is a field biologist by training and makes it a point to participate in at least one leg of the this survey each year.

Sandbar shark ( Carcharhinus plumbeus)

Sandbar shark (Carcharhinus plumbeus)

I asked Trey if analysis of the data from the annual surveys has revealed any significant trends among individual shark populations. He immediately cited the increased number of sandbar sharks and tied that to the closure of the fin fisheries. Approximately 20 years ago, the Sandbar shark population off of the Carolina and Florida coasts was declining. Trey spoke with an experienced fisherman who recalled times past when Sandbar sharks were abundant. At the time Trey was somewhat skeptical of the accuracy of the recollection — there was no data to support the claim.  Today the population of Sandbar sharks is robust by comparison to 1995 levels, and the fin removal legislation is likely a major factor.  Having the numbers to support this statement illustrates the value of a longitudinal study.

Trey notes that it’s important for the public to know of the positive trends like increases in Sandbar shark populations and to acknowledge that this increase has come at a cost.  The reduction and/or closure of fisheries have had radiating effects on individuals, families and communities.  Fishing is often a family legacy, passed down through the generations, and in most fishing communities there is not an easy replacement. In reporting rebounding populations we acknowledge the sacrifices made by these individuals and communities.

Personal Log- Last posting from sea. 

Thirty minutes before leaving Pascagoula we were informed that the V-Sat was not working and that we would likely have no internet for the duration of the cruise.

Pascagoula at night.

Pascagoula at night.

We had a few minutes to send word to our families and in my case, TAS followers. I think most of us were confident a fix would happen at some point, but we’re still here in the cone of silence. It’s been challenging for all on board and makes us all aware of how dependent we are on technology  for communication and support.  I’ve gotten a few texts, which has been a pleasant surprise. One tantalizing text on the first day said “off  to the hospital  (to give birth)”, and then no follow-up text for weeks.  That was quite a wait!  I can imagine how it was aboard ship in times past when such news was delayed by months—or longer.  I was looking forward to sharing photos along the way, so be prepared for lot of images all at once when we get to shore!  As for my students, while it would have been nice to share with you in real time, there is plenty to learn and plenty of time when we finally meet.

Captain Dave Nelson

Captain Dave Nelson

I’d like to thank Dave Nelson, the Captain of the Oregon II, who greeted me each day saying  “How’s it going Teach?” and for always making me feel welcome. Thank you also to all of those working in the Teacher at Sea Program office for making this experience possible.  Being a part of the Shark Longline Survey makes me feel like I won the TAS lottery.  I’m sure every TAS feels the same way about their experience.

Special thanks to Kristin Hannan, Field Party Chief Extraordinaire, for answering my endless questions (I really am a lifelong learner…), encouraging me to take on new challenges, and for her boundless energy which was infectious. Sharks are SOOO cool.

Here’s a final shout out to the day shift–12 pm-12 am–including the scientists, the Corps, deck crew and engineers for making a great experience for me.  Ian and Jim – It was great sitting out back talking. I learned so much from the two of you and I admire your work.

Ian Davenport, Jim Nienow and me relaxing on the aft deck between stations. Photo: Trey Driggers

Ian Davenport, Jim Nienow, and me relaxing on the aft deck between stations. Photo: Trey Driggers

And, to all on board the Oregon II, I admire your commitment to this important work and am humbled by the personal sacrifices you make to get it done.

Day shift operating like clockwork Photo Credit: Ian Davenport

Day shift operating like clockwork.
Photo Credit: Ian Davenport

Awesome day shift ops. Photo Credit: Ian Davenport

Awesome day shift ops. Getting it done!
Photo Credit: Ian Davenport

This has been one of the hardest and most worthwhile experiences I’ve ever had. It was exhilarating and exhausting, usually at the same time.  I often encourage my students to take on challenges and to look for unique opportunities, especially as they prepare for college.  In applying to the TAS program I took my own advice and, with the support of my family and friends, took a risk.  I couldn’t have done it without you all.  This experience has given me a heightened respect for the leaps my students have made over the years and a renewed commitment to encouraging them to do so.  Who knows, they may end up tagging sharks someday. Safe Sailing Everyone.

Sunset over over the Atlantic Ocean. August 5, 2015

Sunset over over the Atlantic Ocean. August 5, 2015

“Teach”

Learn more about what’s going on with Great White sharks by listening to the following NOAA podcast:
Hooked On Sharks

A few more photos…

The ones that got away...

The ones that got away…  It took something mighty big to bend the outer hooks.

 It took teamwork to get a hold of this silky shark (Carcharhinus falciformis).

silkyondecksilky measuresilky hold

 

Kathleen Gibson, Hammerheads on the Line, August 4, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date:  Aug 4, 2015

Coordinates:
LAT   3323.870N
LONG    07736.658 W

Great Hammerhead Photo Credit: Ian Davenport

Great Hammerhead (Photo Credit: Ian Davenport)

Weather Data from the Bridge:
Wind speed (knots): 28
Sea Temp (deg C): 29.2
Air Temp (deg C):  24.2

Early this morning the night shift caught and cradled a great hammerhead shark (Sphyrna mokarran). This is a first for this cruise leg. I’m sure that just saying “Hammerhead” conjures an image of a shark with an unusual head projection (cephalofoil), but did you know that there are at least 8 distinct Hammerhead species?  Thus far in the cruise we have caught 4 scalloped hammerheads (Sphyrna lewini), one of which I was fortunate to tag.

Science and Technology Log

All eight species of hammerhead sharks have cephalofoils with differences noted in shape, size, and eye placement, to name a few. Research indicates that this structure acts as a hydrofoil or rudder, increasing the shark’s agility. In addition, the structure contains a high concentration of specialized electro sensory organs (Ampullae of Lorenzini) that help the shark detect electric signals of other organisms nearby.  The eye placement at each end of the cephalofoil allows hammerhead sharks to have essentially a panoramic view with only a slight movement of their head – quite handy when hunting or avoiding other predators.

 

Comparison of Scalloped and Great Hammerhead Sharks

Comparison of Scalloped and Great Hammerhead Sharks
Image Credit: NOAA Fisheries Shark Species

Great hammerhead sharks are highly migratory. They are found worldwide in tropical latitudes, and at various depths. There are no  geographically Distinct Population Segments (DPS) identified. The great hammerhead, as its name implies, is the largest of the group and average size estimates of mature individuals varies between 10-14 ft in length with a weight approximately 500 lb.; the largest recorded was 20 ft in length. The one we caught was ll ft. in length.

Great Hammerhead Photo Credit: Ian Davenport

Great Hammerhead
Photo Credit: Ian Davenport


Great Hammerhead

Great Hammerhead

As with most shark species, the numbers declined rapidly between 1975 and 1995 due to the fin fishing industry and focused sport fishing often fueled by fear and misinformation. One has to wonder what the average length was before that time.

Scalloped Hammerhead sharks are the most common hammerhead species. Their habitat overlaps that of the great hammerhead, though they are more often found in slightly shallower waters. In contrast to the great hammerhead, scalloped hammerheads are only semi-migratory, and scientists have identified Distinct Population Segments around the world.  This is important information when evaluating population size and determining which groups, if any, need regulatory protection.

Weighing a small Scalloped Hammerhead Photo Credit: Ken Wilkinson

Weighing a small scalloped hammerhead
Photo Credit: Ken Wilkinson

 

Scalloped Hammerhead on deck. Photo: Erica Nuss

Scalloped hammerhead on deck
Photo: Ian Davenport

The average life expectancy for both species is approximately 30 years.  Males tend to become sexually mature before females, at smaller weights; females mature between 7-10 years (sources vary). In my last log I discussed shark reproduction – Oviparous vs. Viviparous. (egg laying vs. live birth).  All hammerheads are viviparous placental sharks but reproductive patterns do differ. Great hammerheads bear young every two years, typically having 20-40 pups. A great hammerhead recently caught by a fisherman in Florida was found to be pregnant with 33 pups. Scalloped have slightly fewer pups in each brood, but can reproduce more frequently.

 

Career Spotlight – NOAA Corps

Setting and retrieving the Longline requires coordination between Deck Operations and the Bridge.  Up until now I’ve highlighted those on deck. Let’s learn a bit about two NOAA officers on the Bridge.

The NOAA Corps is one of the 7 Uniformed Services of the United States and all members are officers. The Corps’ charge is to support the scientific mission of NOAA, operating and navigating NOAA ships and airplanes.  Applicants for the Corps must have earned Bachelor’s degree and many have graduate degrees.  A science degree is not required but a significant number of science units must have been completed.  It’s not unusual for Corps recruits to have done post-baccalaureate studies to complete the required science coursework.  New recruits go through Basic Officer’s Training at the Coast Guard Academy in New London, Connecticut.

Lt. Lecia Salerno – Executive Officer (XO) – NOAA 

Lt. Lecia Salerno at the Helm
Lt. Lecia Salerno at the  helm or the Oregon II during Longline retrieval.

Lt. Salerno is a 10-year veteran of the NOAA Corps and has significant experience with ship operations.  She was recently assigned to the Oregon II as the XO. This is Lecia’s first assignment as an XO and she reports directly to Captain Dave Nelson. In addition to her Bridge responsibilities, she manages personnel issues, ship accounts and expenditures. During these first few weeks on her new ship, Lt. Salerno is on watch for split shifts – day and night – and is quickly becoming familiar with the nuances of the Oregon II.  This ship is the oldest (and much loved) ship in NOAA’s fleet, having been built in 1964, which can make it a challenge to pilot. It’s no small task to maneuver a 170-foot vessel up to a small highflyer and a float, and continue moving the ship along the Longline throughout retrieval.

Lecia has a strong academic background in science  and in the liberal arts and initially considered joining another branch of the military after college.  Her  assignments with  NOAA incorporate her varied interests and expertise, which she feels makes her job that much more rewarding.

Lt. Laura Dwyer on the Bridge of the Oregon II

Lt. Laura Dwyer on the Bridge of the Oregon II

Lt. Laura Dwyer- Junior Officer – NOAA Corps

Laura has always had a love for the ocean, but did not initially look in that direction for a career.  She first earned a degree in International Business from James Madison University.  Her interest in marine life took her back to the sea and she spent a number of years as a scuba diving instructor in the U.S. and Australia.  Laura returned to the U.S.  to take additional biology coursework.  During that time she more fully investigated the NOAA Corps, applied and was accepted.

Laura has been on the Oregon II for 1.5 years and loves her work.  When she is on shift she independently handles the ship during all operations and also acts as Navigator.  What she loves about the Corps is that the work merges science and technology, and there are many opportunities for her to grow professionally. In December Laura will be assigned to a shore duty unit that is developing Unmanned Underwater Vehicles (UUV).

Personal Log

Measuring a Sharpnose Photo: Kristin Hannan

Notice the white spots on the dorsal side of this atlantic sharpnose, characteristic of this species.
Photo: Kristin Hannan

It’s amazing to think that just over a week ago I held my first live shark.  We caught over  30 sharks at our first station and our inexperience showed.  At first even the small ones looked like all teeth and tail, and those teeth are not only sharp but carry some pretty nasty bacteria. It took all of us (new volunteers) forever to get the hooks out quickly without causing significant trauma to the shark–or ourselves.  A tail smack from this small-but-mighty tiger shark pictured below left me with a wedge-shaped bruise for a week!

Immature Male Tiger Shark. He's cute but he taught me a lesson with his tail.

Immature Male Tiger Shark.
He’s cute but he taught me a lesson with his tail.

Since then we have caught hundreds of sharks.  We’ve caught so many Atlantic Sharpnose that on occasion it seems mundane.  Then I catch myself and realize how amazing it is to be doing what I’m doing– holding a wild animal in my hands, freeing it from the circle hook (finally!), looking at the detailed pattern of its skin, and feeling it’s rough texture, measuring it and releasing it back into the sea.

Sandbar Shark on the Line

A beautiful sandbar shark on the line.

I’m pleased to be able to say that my day shift team has become much more confident and efficient.  Our mid-day haul yesterday numbered over 40 sharks, including a few large sharks that were cradled, and it went really smoothly.

Weighing in. Hook out - No Problem! Photo: Jim Nienow

An Atlantic Sharpnose weighing in at 2.1 kg.
Photo: Kristin Hannan

 

Out it Comes - No Problem Photo: Ian Davenport

Taking a closer look at an Atlantic Sharpnose shark.
Photo: Ian Davenport

At this point I’ve had a chance to work at most of the volunteer stations including baiting hooks, throwing off the high-flyer marker, numbering, gangions, throwing bait, data entry,  tagging shark, removing hooks, and measuring/ weighing.  A highlight of last night was getting to throw out the hook to pull in the high-flyer marker at the start of retrieval.  I’m not known for having the best throwing arm but it all worked out!

Ready to Throw Photo: Kristin Hannan

Ready to Throw
Photo: Kristin Hannan

Got it! Photo: Kristin Hannan

Right on Target!
Photo: Kristin Hannan

 

Question of the Day:  What is this?

Can you identify these?

Can you identify these?

NOAA SHARK FACTS: Bite off More that you can chew

For more on hammerheads: click

For my incoming  Marine Science students — Investigate two other hammerhead species. How are they distinguished from great hammerheads?

 

Kathleen Gibson, Wild Weather, August 2, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Photo taken from the highest point on the ship.

A Nurse Shark in the cradle
Photo taken from the highest point on the ship.

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date: Aug 2, 2015

Coordinates:
LAT   3428.300 N
LONG  07705.870 W 

Weather Data from the Bridge:
Wind speed (knots): 11.2
Sea Temp (deg C): 29.1
Air Temp (deg C):  25.7

Science and Technology Log: Shark Reproductive Strategies

Rough Seas and bad weather have delayed our sampling.  I’m getting use to walking sideways.

Bringing in gangions in the rain.

Bringing in gangions in the rain.

Today we reached the northernmost sampling station of our cruise, just off the North Carolina coast. The latest stations have been further off shore than those previous and we’ve caught fewer sharks. However, the sharks we have caught have been much larger. Our catch included Sandbar Sharks, Scalloped Hammerhead, Spinner, Nurse and Black Nose.

Sharks have a number of reproductive strategies ranging from egg laying to placental formation. Oviparous sharks produce and release egg cases made of a collagen (protein). The case surrounds the developing embryo and a large yolk with the vital nutrients required for shark development. This is called lecithotrophic (all nutrients from yolk). Oviparous sharks can take to 2 years to develop within the egg case.

Cat shark adult (Image courtesy of Ian Davenport)

Adult cat shark
(Image courtesy of Ian Davenport)

Cat Shark egg case. Photo Courtesy of Ian Davenport

Cat shark egg case. Photo Courtesy of Ian Davenport

Sharks that give birth to live young are considered Viviparous. Within this category there are two major types. Those that produce eggs with large yolks with all required nutrients, but remain in the uterus for gestation, are called yolk-sac vivipores (ovoviviparous, or aplacental viviparity). In some cases, offspring will consume other eggs (oophagy) in the uterus to gain additional nutrients. An advantage to this type of reproduction is that the young sharks are larger when they are born and have a higher survival rate.

Yolk-sac embryos (Image courtesy of Ian Davenport, Ph.D.)

Yolk-sac embryos (Image courtesy of Ian Davenport, Ph.D.) 

The last group, considered to be the most advanced, is the Placental Group. As with the other types, a yolk is produced that can initially provide some nutrients to the developing pup. However, in the uterus the yolk sac after it is depleted is modified into a placenta through which nutrients can pass from parent to offspring. While fewer offspring are produced at one time, they are typically more robust and have a higher survival rate. Most of the sharks we have caught on this cruise are placental vivipores.    

Placental Shark (Image courtesy of Ian Davenport)

Placental Shark
(Image courtesy of Ian Davenport)

Career Spotlight: Dr. Ian Davenport, Ph.D., Research Scientist

Dr. Ian Davenport, Ph.D., is a Developmental Biologist at Xavier University, New Orleans, and has been a volunteer on this cruise for 7 years.

Dr. Ian Davenport dissecting a female Sharpnose shark.

Dr. Ian Davenport dissecting a female Sharpnose shark.

Ian hails from Manchester, England, and his path to becoming a scientist was quite unusual. Similar to others on board, he always had an interest in Marine Science, and sharks in particular, but school was not a priority early on. He spent time travelling and learned a trade as well. He finally decided to return to school, but being accepted was a challenge. Fortunately Ian’s academic ability was recognized and he was accepted to the University of Newcastle upon Tyne where he studied Marine Biology, but a course in Developmental Biology particularly resonated. He went on to earn his Ph.D. in shark developmental biology at Clemson University.

Ian’s research focus is in evolution of “live bearing.”  As noted above, shark species employ a number of reproductive strategies. Placentals are considered to be the most advanced. Ian is studying the eggs of placental sharks and the structure of the cells that surround the egg. His research has revealed some interesting cell features that may aid in nutrient delivery to the developing embryo. If a female shark is caught during the cruise and does not survive, Ian collects the eggs for later study.

Career Spotlight: Chuck Godwin, Deck Crew and Environmental Compliance officer

Chuck has a B.A. in History and has also studied Wildlife Management. Chuck spent 10 years in the Coast Guard and left in 2000, but he was recalled to active service on two occasions – after 9/11 and after Hurricane Katrina. In addition to his work as part of the deck crew, where he is involved in all deck operations, Chuck is also the Environmental Compliance Officer. As such, he manages hazardous waste compliance.

Chuck Godwin hauling in the Longline.

Chuck Godwin hauling in the Longline.

It’s apparent that Chuck enjoys his work. He is all business when he needs to be, but has a knack for adding a note of levity when appropriate. He keeps me laughing, even when the fish aren’t biting. Chuck notes that as a member of the Coast Guard, part of his job was to enforce U.S. fisheries laws. With NOAA he plays an important role in establishing those regulations and this makes the work that much more rewarding.

Personal Log

The weather has been poor since yesterday. Lightning caused a five-hour delay in setting the longline in the night; the ship traversed back and forth over the sampling area waiting for the worst of the storm to pass. Sleeping was a challenge – I think some of us were airborne a few times. Thank goodness for the patch and a few saltine crackers. I took the video below in my bunk as I was nodding off to sleep.

Today’s rough seas and high winds prevented us from using the cradle to bring sharks up to deck height. Ken’s dual laser device, mentioned in my last blog post, was put to good use to estimate the size of the large sharks before they were released.

I need to give shout out to the ship’s cook Walter Coghlan and the second cook O.C. (Otha) Hill. The food has been great and plentiful. ( Homemade Mac n’ Cheese – need I say more?)  Walter takes special care to set aside a plate for us if we are on duty during mealtime. The ice cream sandwiches are much appreciated too.

In the kitchen with Walter.

In the kitchen with Walter.

New species seen since last posting: Sharksucker (a type of Remora, Echeneis naucrates), Blacktip (Carcharhinus limbatus) 

Trying to get a Remora to stick to my arm. What a strange feeling. (Photo: Kristin Hannan)

Trying to get a Remora to stick to my arm. What a strange feeling. (Photo: Kristin Hanna

The view from the Bridge

The view from the bridge.

  

Still working on the hooks. (Photo: Ken Wilkinson)

Still working on the hooks. (Photo: Ken Wilkinson)

Check out these interesting shark facts.

Kathleen Gibson, Time to Fish! July 29, 2015

High flyer away! Photo Credit : Kristin Hannan

High flyer away!
Photo Credit : Kristin Hannan

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25-August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date: July 29, 2015
Coordinates:
LAT 2933.3326N
LONG 8029.065W

Weather Data from the Bridge:
Wind speed (knots): 9.2
Sea Temp (deg C): 29.6
Air Temp (deg C):  28.7

Yesterday was the first full day of sampling.  We were off the coast of Miami, FL and it was relatively shallow.  I’m not sure how many sharks I expected to see on my first day, but certainly not the 80 + that we did catch!

Science and Technology Log –  A, B, C’s of Fishing for Sharks

Kristin Hannan preselected our stations following a random stratified approach. Sampling stations have A, B, or C designations, depending on the depth (A is more shallow than B or C). The night crew went on duty at midnight and completed one station yesterday morning.  We completed three stations during our shift yesterday and three more today.

The bridge lets us know when we’re 30 minutes from our  station, and we begin preparations. We bait the hooks with mackerel 20 minutes ahead of time.

When we get to the station, the longline is fed out from the stern of the ship and extends one mile.  A

Throwing Bait - I'm passing baited gangions to Tim Martin to attach to the Longline. Moments after this photo my TAS hat took flight and joined the sharks of the Atlantic.

Throwing Bait –
I’m passing baited gangions to Tim Martin to attach to the Longline. Moments after this photo my TAS hat took flight and joined the sharks of the Atlantic.

marker, called a high flyer, is attached to the beginning of the line. One hundred baited gangions are attached to the line at intervals after which another high-flyer marks the end of the line. The ship then returns to the starting point, the line is hauled in and the fun begins. If there is a shark on the line, the deck crew fisherman calls out “Shark On!”  That’s the signal for someone from the science group to step up and take the shark, remove the hook and collect data.

The following data collected is collected for all sharks:

  • Species
  • Precaudal Length: Nose to base of tail
  • Fork Length: Nose to fork of tail
  • Natural Length: Nose to tail
  • Total Length: Nose to end of tail when extended manually
  • Weight (Kg)
  • Sex Determination

Tag numbers and tissue sample collection is also noted if applicable.

Early morning haul back by the night shift. Video taken from the highest point on the ship. 

Most of the sharks caught were small enough to bring up and hand to the science team.  We use a wooden measuring board to determine lengths. Those that were a bit larger were brought up on deck by the fishermen and they required multiple handlers to collect data.

Very large sharks had to be measured with the help of a cradle and hoist.  The cradle is lowered to water level and large sharks are coaxed onto the cradle using the hook and line they are still attached to.  A hoist brings them to deck height for assessment.  Deck Operations Crew manages all shark retrieval and determines when is safe for us to proceed.

Atlantic Sharpnose

Atlantic Sharpnose Photo Credit: Kristin Hannan

Me holding a mature male Atlantic Sharpnose Photo Credit: Kristin Hannan

Most of the sharks that we’ve caught have been Atlantic Sharpnose.  This shark is relatively small (adults average 0.85 M) and are found in shallow Atlantic coastal waters from New Brunswick down into the Gulf of Mexico, and even off the coast of Brazil.  They are known by at least 8 common names in different regions.  My Biology students would recognize this as a good example of why it’s important to use agreed-upon scientific names for scientific research.  The scientific name for this species is Rhizoprionodon terraenova.  It has a long snout (longer than the width of the head) and most adults have a few white spots on a gray body.

Sharpnose mature relatively quickly and can begin producing offspring within two years; also, they can have up to 5-7 pups at once. These are major factors contributing to the abundance of this species.  In comparison, larger sharks may take up to 15 years to reach maturity and typically have fewer offspring in each brood.  

Our catch also included one Blacknose (Carcharhinus acronotus) and multiple Scalloped Hammerhead (Sphyrna lewini), Nurse (Ginglymostoma cirratum) and Spinner sharks (Carcharhinus brevipinna).

Larger specimens were brought to deck height using a cradle, for weight, size, and sex determination, and were lowered back into the water after being measured and tagged.

Nurse Shark in cradle

Nurse Shark in cradle (Photo Credit: Ian Davenport)

A Sandbar shark in the cradle. I'm in the yellow helmet tagging the shark.

A Sandbar shark in the cradle. I’m in the yellow helmet tagging the shark. ( Photo Credit: Erica Nu

 

Hook removal required bolt cutters after I tagged this Sandbar Shark.

Hook removal required bolt cutters after tagging  this Sandbar Shark.

 

Career Spotlight

If your interests tend toward science mixed with heavy machinery, skilled fishing, robotics or electronics, perhaps one of the following careers is for you.

Tim Martin: Chief Boatswain

Tim Martin Chief Boatswain

Tim Martin Chief Boatswain

As the Chief Boatswain, Tim Martin is responsible of all activities that happen on deck and he maintains constant communication with the bridge during all operations.  Tim came to NOAA fisheries with a wealth of experience gained while serving in the U.S. Navy and later as a commercial fisherman in the Pacific Northwest.  He was initially classified as a “Skilled Fisherman” with NOAA and has worked his way up to Chief Boatswain.

He and his group set and retrieve the longline. They also run all of the heavy deck equipment, such as the cranes that are used to position the shark cradle for large sharks and the CTD (water Sampling device).  The Chief Boatswain is also responsible for training new crewmembers and maintaining ship supplies.  In addition, Tim has earned Dive Master Certification through the NOAA Diving School, considered to be the best civilian diving school in the US.

 

 

Tim Martin and deck Crew cradling a Tiger shark. Note the wooden dowel at center used to attach tags. ( Photo Credit: Erica Nuss)

Tim Martin and deck crew cradling a Tiger shark. Note the wooden dowel at center used to attach tags. (Photo Credit: Erica Nuss)

When asked what keeps him going, Tim is very clear that he believes the work that NOAA Fisheries does is very important, and he is proud to be able to use his expertise to support NOAA’s efforts.  This satisfaction somewhat tempers the challenges of the job which include being at sea for at least 6 months of the year, and constantly being in a training flux. Tim feels a strong bond with his crew and there is a clear sense of mutual trust and respect among them. 

Ken Wilkinson: Electronic Technician (Supreme), NOAA Fisheries Engineering Unit

Ken has been with the Engineering Unit of NOAA Fisheries for 26 years.  The mission of his Unit is to

Ken using his skills to filet a Red Snapper

Ken using his skills to filet a Red Snapper

support NOAA Fishery research by developing innovative technology. Ken always wanted to work on the water and he initially studied Marine Biology in college, but he migrated toward electronics.  His work allows him to combine two great interests.  His work takes him to sea 50-80 days each year.

A major focus of the electronics unit is to support the Reef Fish program.  Trawling nets and longline apparatus will damage reef systems.  In order to assess reef fish populations in a non-invasive way, Ken and his group work a number of Remotely Operated Vehicles that capture still and moving images that can be used later to determine abundance and species diversity.   Ken’s unit has also developed a device called an Autonomous Underwater Vehicle (AUV). This programmable instrument scans the sea floor using lasers and  data collected is used to develop more accurate sea floor maps.

Bathymetric map of the Longline sampling area- NOAA

Bathymetric map of the Longline sampling area- NOAA

 

New device: Kennenator 5000 Dual Laser

Ken Wilkinson and his Kennenator 5000.

Ken Wilkinson and his Kennenator 5000.

Ken is on board the Oregon II testing his new device that can be used to assess the size of large sharks without bringing them to deck height. Ken’s device has two lasers set at a fixed distance from one another.  The beams are directed toward the shark while it remains at the surface of the water. Various measurements can be extrapolated from the laser measurement. Large sharks caught on the longline survey are typically brought to the surface in the cradle for assessment.  Cradle use is preferred as it allows tagging and tissue sample collection and sex determination. However, there are situations when this is not possible such as when poor weather conditions develop which limit sling operations, and some small vessels are not equipped with sling equipment.

Personal Log

The Challenge

The Challenge

The fast pace of the haul back at early stations was jarring.  I stepped up when “Shark On” was called and a writhing Sharpnose was thrust into my hands.  The first task is to get the hook out of the shark’smouth and this is no small feat.  The circle hook is designed is to reduce the chance that the shark will swallow the hook or get hurt by it, but getting these hooks out of the mouth without hurting the shark requires technique.  There will be plenty of opportunities to get the hang of in the next week.

A highlight of this first day was getting up close to a 2 meter long Scalloped Hammerhead brought to the surface in the cradle.  I was able to feel its head, observe its eyes, and place an identification tag near its dorsal fin before it was lowered back into the water.

Smaller Scalloped Hammerhead on deck. It took two of us to hold this one in place fore measuring and tagging.

Smaller Scalloped Hammerhead on deck. It took two of us to hold this one in place fore measuring and tagging. (Photo Credit: Ian Davenport)

 

Kathleen Gibson, Sailing Away, July 27, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark/Red Snapper Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coasts
Date: July 27, 2015
Coordinates:  25o   30.755 N
                       O79o   55.736W

Weather Data from the Bridge:
Wind speed (knots): 9
Sea Temp (deg C): 31.3
Air Temp (deg C):  31.2

View from the Bow - Gulf of Mexico

View from the bow – Gulf of Mexico

Just before we left Pascagoula last Saturday, we learned that the V-Sat system was not operational and that in all likelihood we wouldn’t have internet access during the trip.  So far this prediction has been accurate.  I’ll continue to write these blogs as we go and post them all after we get to port if it doesn’t get fixed.

In my first post I wrote a bit about the area we would be surveying. I’ve since learned that during this cruise we will only be working in the Atlantic Ocean. Another change is that our final destination will be Cape Canaveral, FL rather than Jacksonville, FL.

Motoring through the Florida Keys

Motoring through the Florida Keys

Since we aren’t doing any fishing in the Gulf, we are currently following a straight track from Pascagoula to the Florida Keys. We’ve been sailing for two days and are currently off the coast of Key Biscayne, FL.  There has been one rain event that went by quickly, and otherwise it has been fair weather. While land isn’t visible, there are a good number of recreational motorboats, so land must not be too far off.

 

Science and Technology

This cruise is the first of four legs of a long-term (longitudinal) study of the distribution and abundance of shark and red snapper populations. The study began in 1995 and the research area includes U.S. waters of the Atlantic Ocean and Gulf of Mexico. The Atlantic Ocean sampling stations on this first leg are positioned at various distances offshore from Miami, FL to Cape Hatteras, NC and at different depths. Later legs will complete the survey in the Gulf of Mexico.  While this type of study can be resource and labor intensive and also time consuming, a well-designed longitudinal study can provide valuable data that tracks trends and patterns over an extended period of time. As with any investigation, numerous potential variables must be controlled, including time of year sampling occurs, sampling equipment (line and hooks) and sampling locations.

We’ve prepared three barrels of gangions (50 hooks in each). When we start fishing we will bait the hooks with mackerel and hook them on the long line.

Kristin Hannan ( left) and science volunteers preparing gangions. These will be baited and attached to the main line.

Kristin Hannan ( left) and science volunteers preparing gangions.
These will be baited and attached to the main line.

The circular hooks are designed to minimize harm.

The circular hooks are designed to minimize harm.

NOAA Careers

A successful cruise requires a significant amount of preparation as well as committed participants. Those aboard include NOAA scientists, NOAA Corps Officers, an experienced deck crew, engineers, stewards, and science team volunteers. From the moment I arrived on board it has been apparent that everyone is fully invested in this project.  They’ve been willing to share their stories of how they made their way on to this cruise of the Oregon II;  I’ll share some of their stories with you in this and future blog entries.

Career Spotlight: Kristin Hannan – Field Party Chief, NOAA Shark Unit

As Field Party Chief, Kristin is responsible for all of the scientific work done during the cruise.  She is also the watch leader for the day shift.  While Kristin was fascinated with marine science at an early age, she followed some sage academic advice for her undergraduate program: “focus on being a scientist first, include rigorous coursework, and then do marine work.”  She graduated from Virginia Tech with a degree in Biology and a minor in Chemistry and she remains a loyal Hokie fan.

Kristin Hannan taking measurements

Kristin Hannan taking measurements

She has been involved in a number of challenging marine-related projects all around the United States and has been open to unusual opportunities when they arose. One such opportunity, over 10 years ago,  was to be a volunteer with NOAA Fisheries in Pascagoula, MS.  She joined the Shark Longline cruise as a volunteer one summer, and returned in subsequent summers to participate. Kristin eventually joined NOAA permanently as a Field Biologist with the Shark Unit, and is now the Chief Scientist/Field Party Chief for this cruise–the very same one she volunteered for some years ago.

In addition to her work with NOAA, Kristin is pursuing a Master’s Degree from the University of South Alabama, where she is studying chimeras and methods used to determine their age.

Kristin’s advice to students looking to work in Marine Sciences –or any field- is to:

  1. Be open to unusual opportunities
  2. Try to make a good impression every day
  3. Work hard

Personal Log

Flying Fish Photo Credit: NOAA

Flying Fish
Photo Credit: NOAA

We’re still sailing to the sampling area, so there is plenty of free time to meet others on board, read and walk around the deck.  This will definitely change when sampling begins. Today I went out to the bow and saw flying fish for the first time and dolphins were swimming off the bow.

The science team is made up of 4 NOAA scientists and 7 volunteers with a variety of experience. Our volunteers include 2 university professors, one graduate student, three undergraduate students, and one Teacher at Sea!  The group is split into two 12-hour shifts.  I’m on the day shift which begins at noon each day and ends at midnight.  It’s likely that we will begin fishing tomorrow morning, and the night crew has begun adjusting their sleep pattern to be prepared.  I’m going to have to work at sleeping in.

Survival Suit - Perfect Fit  Photo Credit: Lecia Salerno

Survival Suit – Perfect Fit  Photo Credit: Lecia Salerno

 

The Executive Officer (XO) LT Lecia Salerno, has graciously allowed me to share her quarters, which includes her office. The cabin is on an upper level so I definitely get rocked to sleep.

A fire drill and abandon-ship drill were called on the first full day at sea.  Lecia helped me get into my survival suit and, more importantly, out of it as well.

Questions of the day for my students:

What additional variables do you think should be considered and kept constant in this study?

What is a nautical mile and how many nautical miles is it from Pascagoula, MS, to Miami, FL?

How do chimeras differ from sharks?

Tomorrow we fish!

Tomorrow we fish!

Up next… Time to Fish.

 

Steven Frantz: Language at Sea, August 1, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 1, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.9
Wind Speed (knots): 13.94
Wind Direction (degree): 224º
Relative Humidity (percent): 082
Barometric Pressure (millibars): 1012.18
Water Depth (meters): 67.08
Water Temperature (degrees C): 28.5
Salinity (PSU): 35.649

Location:
Latitude: 3135.76N
Longitude: 07931.19W

Language at Sea

The language while at sea is English, however, there are many nautical terms you may not be familiar with. In today’s blog I will look into just some of the language typically used exclusively while on board not only the Oregon II, but also all ships in general. Along with the lesson on vocabulary, I will also be taking you on a visual tour of the Oregon II.

First let’s start with a little quiz. You’re on your own. This is NOT for a grade!!

  1. Bridge                                                _____Right
  2. Port                                                    _____Restroom
  3. Starboard                                          _____Stairs
  4. Bow                                                    _____Front of Ship
  5. Stern                                                  _____Floor
  6. Head                                                  _____Left
  7. Deck                                                   _____Bedroom
  8. Berthing                                            _____Mop
  9. Rain Closet                                      _____Rear of Ship
  10. Mess                                                  _____Control Room
  11. Ladder                                               _____Shower
  12. 1829                                                   _____Hallway
  13. Passageway                                     _____Restaurant
  14. Swab                                                  _____Time

How do you think you did? Follow along on a guided tour of the Oregon II to find out!

Here I am steering the Oregon II preparing to deploy the high-flier for another longline survey. The Bridge is where the captain conrols the ship. And yes, today is Luau Day!

Here I am steering the Oregon II preparing to deploy the high-flier for another longline survey. The Bridge is where the captain conrols the ship. And yes, today is Luau Day!

View from the Bridge looking over the bow.

View from the Bridge overlooking the bow.

Port, Starboard, Stern, Bow image courtesy of Google Images

As you can see, Port is left (red light), Starboard is right (green light), Bow is the front of the ship, and Stern is the rear of the ship. Image courtesy of Google Images.

The Head is the Bathroom!

The Head is the Bathroom!

The Deck refers to each Floor of the ship.

The Deck refers to each Floor of the ship.

Your Berthing is where you sleep. Bunk beds, three drawers, cabinet, one personal grooming shelf, shared sink and desk. On the Oregon II this is called your Stateroom.

Your Berthing is where you sleep. Bunk beds, three drawers, cabinet, one personal grooming shelf, shared sink and desk. On the Oregon II this is called your Stateroom.

Water Closet is where we shower.

Rain Closet is where we shower.

Galley=Food Eating Area! Walter and Paul are the best. Furthermore, "Steward" is the term for chef.

Mess Deck=Food Eating Area! Walter and Paul are the best. Furthermore, “Steward” is the term for chef.

The Ladder is the Stairs that take you from deck to deck.

The Ladder is the Stairs that take you from deck to deck.

The current time is 1829 (6:29 p.m.). We use a 24-hour clock. One p.m. is 1300, two p.m. is 1400, etc.

The current time is 1829 (6:29 p.m.). We use a 24-hour clock. One p.m. is 1300, two p.m. is 1400, etc.

Passageways are the Hallways.

Passageways are the Hallways.

Maybe you've heard the expression, "Swab the Deck?" It just means "Mop the Floor."

Maybe you’ve heard the expression, “Swab the Deck?” It just means “Mop the Floor.”

How did you do on the quiz? I thought I would share a few more interesting aspects about life on a ship.

All doors and drawers are latched. You just can't have door and drawers swing back and forth as the ship rocks on the waves.

All doors and drawers are latched. You just can’t have door and drawers swing back and forth as the ship rocks on the waves.

We must do our own laundry. There are four types of water. Of course fresh water and salt water you've heard of before. On the ship we also have brown water, which is water from laundry and sinks. We also have black water, which is the water from the head. You do remember what the head is don't you?

We must do our own laundry. There are four types of water on a ship. Of course fresh water and salt water you’ve heard of before. On the ship we also have brown water, which is water from laundry and sinks. We also have black water, which is the water from the head. You do remember what the head is don’t you?

People are trained to be on the ship's Fire Department. We have fire drills on the Oregon II.

People are trained to be on the ship’s Fire Response Team. We have fire drills on the Oregon II.

There is a gym for working out.

There is a gym for working out.

The Wet Lab wasn't used much for the Longline Shark Survey.

The Wet Lab isn’t used much (mainly for staging equipment) for the Longline Shark Survey.

The bulk of our work was done in the Dry Lab.

The bulk of recording our research was done in the Dry Lab.

There you have it. A vocabulary tour of the Oregon II. Rest assured, we have been catching sharks.  Stay tuned. There WILL BE sharks in my next blog!