Sian Proctor: A Fast Farewell!, July 22, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard Oscar Dyson

7/2/2017-7/22/2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 22, 2017

Me Back in Kodiak

Me Back in Kodiak, Alaska

Life at sea can often be unpredictable. When I started my 4am shift I learned that we were having issues with the main engine on the NOAA Ship Oscar Dyson and had to return to Kodiak. This cut my adventure at sea down to just two weeks instead of three. An unexpected bonus from returning to Kodiak was getting to visit the Kodiak Fisheries Research Center.

Science and Technology Log: Kodiak Fisheries Research Center

The Kodiak Fisheries Research Center was built in 1998 using funds from the Exxon-Valdez Oil Spill (1989). The purpose of the center is to provide educational information about the wildlife, marine life, commercial fishing resources and fisheries research programs on the island. Click this link for more information: KFRC

Interview with Kresimir Williams

Fisheries Biologist

Kresimir in the Acoustics Lab

Kresimir in the Acoustics Lab Image from TAS Mary Murrian

  • Official Title
    • Fisheries Biologist
  • Normal Job Duties
    • On this cruise, I am responsible for collecting physical measurements of fish caught in our science trawls, as well as providing support for various acoustic and camera instruments we’re putting in the water.
  •  How long have you been working on Oscar Dyson?
    • Since it’s first science cruise in 2005, but only for a few weeks each year.
  • Why the ocean? What made you choose a career at sea?
    • I got hooked on sea exploration at an early age spending summers on the Croatian coast, snorkeling, fishing, and riding boats. The ocean represents an exploration opportunity that is more “accessible” to us, unlike the deep jungles or space. The edge of our knowledge is never very far in the marine environment. The more time I spend in ocean research, there always seem to many more questions than answers.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • I enjoy the scientific challenges and the things that are new each cruise, whether it is some unique types of fish we encounter, or new ways of exploring the sea, such as new instrumentation. There always seem to be new things to see, even after being on these cruises for 15 years. And there are also new people on board that are interesting to meet, people with new perspectives and ideas.
  • Why is your work (or research) important?
    • There is a basic component to the work of essentially performing a marine “census” that is the backbone of resource management for the important fisheries that take place here. We have to have good information on the state of the fish populations in order to properly manage sustainable fish harvests. But the results of our surveys also provide essential data for many studies of the ocean, such as climate related fish distributions, questions of fish biology, and marine ecosystem functioning – critical research efforts that are carried on by academic and government researchers. On top of all that, we also do a lot of research into our survey methods, to develop new ways of collecting data and to determine the precision and accuracy of the tools we use. This latter part is more interesting to me.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • I was interested in all things oceanic from an early age. I always wanted to work specifically with fish. My toddler doodles were of fish. I’ve followed this path throughout my education and job history, and have no regrets.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • On the job I somewhat unexpectedly learned how to write computer programs, and to develop and design camera systems. But this is also a very rewarding activity for me.
  • What are some of the challenges with your job?
    • As we incorporate more and more advanced technology into our work, trying to keep all of the systems operational requires a broad base of knowledge, spanning from computer networks, underwater optics, electronics, and engineering that can be a little beyond my background. So this is a challenge for me to keep myself up to speed on these aspects of the work and keep our instruments and cameras running smoothly. Also, as scientists we are obligated to share our work with others, which means writing papers and making presentations, which can be a challenge.
  • What are some of the rewards with your job?
    • I love discovering new ways of collecting data in the environment, and understanding how fish behavior influences our ability to observe them. Finding answers to research questions relating to these areas is a very rewarding experience for me. There are distinct moments, not very often encountered even in entire careers, when you know that you have found something, possibly something completely new, that produces an excitement that is almost difficult to describe.
  • Describe a memorable moment at sea.
    • A positive memorable moment would be when we first started operating cameras inside the trawl and were able to distinguish how fish behaved within the trawl for the first time. The first few tows with the new camera equipment were very exciting. A negative memorable moment: We did run out of coffee on a cruise in the Bering sea a few years ago. Bad scene.

Interview with Caroline Wilkinson

NOAA Corps Junior Officer

NOAA Corps Officer Caroline Wilkinson

NOAA Corps Officer Caroline Wilkinson

  • Official Title
    • Junior Officer
  • Normal Job Duties
    • Standing bridge watch 8 hours a day, often with a Officer of the Deck in training. As Environmental compliance officer- ensuring the ship meets all required environmental standards for garbage disposal, discharge, etc. As medical officer- ensuring all personnel are physically and mentally fit for sea duty, keeping the hospital clean, tidy, and stocked, responding to medical emergencies at sea. As Imprest officer- maintaining our cash fund and reimbursing crew for missed meals. As Navigation officer- planning our route and ensuring the charts and electronic navigation reflects our intended tracklines.
  •  How long have you been working on Oscar Dyson?
    • Since December 2015
  • Why the ocean? What made you choose a career at sea?
    • I grew up spending summers on Long Island Sound and fell in love with the beach and the smell of the ocean.
  • What is your favorite thing about going to sea on Oscar Dyson?
    • The amazing animals, land masses, and weather phenomenon that we get to experience.
  • Why is your work (or research) important?
    • The work I do facilitates the scientists ability to collect the necessary data to ensure the pollock population remains sustainable.
  • When did you know you wanted to pursue a career in science or an ocean career?
    • As a child, I spent a lot of time out doors looking for bugs and critters; a career in science seemed like a natural next step.
  • What part of your job with NOAA (or contracted to NOAA) did you least expect to be doing?
    • I didn’t expect there to be so much paperwork involved with driving the ship!
  • What are some of the challenges with your job?
    • The long stints away from friends, family, and civilization.
  • What are some of the rewards with your job?
    • Meeting a variety of incredibly smart and talented people and exploring parts of Alaska most people don’t get to experience.
  • Describe a memorable moment at sea.
    • Being in the northern Gulf of Alaska at night and spending hours watching the northern lights dance across the sky.

Personal Log

Here is a quick video tribute to the NOAA Teacher at Sea program, the NOAA scientists and Oscar Dyson officers and crew. Thank you!

Education Tidbit: 

I have one more NOAA website to share with you. It is a great resource for students who are doing a paper on a particular fish. I use the NOAA Alaska Fisheries Science Center page and information on pollock as my example.

Did You Know?

That the NOAA Teacher at Sea Program has been around for over 25 years! You can learn more about the program by   clicking this link: NOAA Teacher At Sea

Sian Proctor: A Ship & Seashells! July 3, 2017

NOAA Teacher at Sea

Sian Proctor

Aboard NOAA Ship Oscar Dyson

July 2 – 22, 2017

Mission: Gulf of Alaska Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 3, 2017

Weather Data from the Bridge

Latitude:   57° 47′ 24″ N
Longitude: 152° 24′ 26″ W
Time: 1000
Sky: Broken Clouds
Visibility:  10 nautical miles
Wind Direction: 068
Wind Speed:  5 knots
Sea Wave Height:   <1 foot swell
Barometric Pressure:  1013.3 millibars
Sea Water Temperature:   9.0° C
Air Temperature:   9.8° C

IMG_2307

NOAA Ship Oscar Dyson in Kodiak, Alaska

Science and Technology Log

Oscar Dyson is one of NOAA’s fisheries survey vessels. It was commissioned in 2005 and its home port is Kodiak, Alaska. The ship was named after the Alaskan fisherman Oscar Dyson who was an activist for improving the fishing industry. He passed away in 1995. The purpose of Oscar Dyson is to collect data on marine life and ecosystems primarily in the Bering Sea and Gulf of Alaska. Most of the research has been focused on the management of Alaska pollock, which is the largest fishery by volume in the United States. The ship houses a crew of up to 24, which includes NOAA Corps officers, engineers, deck hands, survey technicians, stewards, and electronic technicians along with up to 15 scientists. They all work together to make daily operations on the Oscar Dyson a success.

The 208 ft. long Oscar Dyson runs on 4 super charged diesel engines. The engines are designed to produce up to 3 megawatts of electricity a day. The alternating current is converted into direct current in order to power the two propulsion motors. Oscar Dyson’s engine room is fully automated and will add or remove diesel generators based on load demand. Oscar Dyson has a cruising speed of 12 knots and a range of 12,000 nautical miles.

I was pleasantly surprised by how spacious my accommodations are on Oscar Dyson. I am in a 4-person room but have only 1 roommate. Her name is Alex Padilla. She is an ocean engineering graduate student from University of New Hampshire interested in  studying the acoustics of bubbles. Our room has bunk beds on both sides of the room, a desk, multiple storage lockers, a toilet & shower, and a large wall mounted TV with movies and Direct TV.

This slideshow requires JavaScript.

Just down the passageway from my stateroom is a crew lounge where we can gather and watch movies. There is a mess deck (cafeteria) that serves three meals a day and is open 24/7 for soup, salad, and snacks. Oscar Dyson has a variety of labs that I will cover in future blogs. I was fortunate to have 3 days on the ship before our departure and have become somewhat familiar with the layout of the ship.

Click here for more specification on the Oscar Dyson: NOAA Ship Oscar Dyson Specification

Personal Log

I got to go on a field trip to Fossil Beach before leaving Kodiak and here is a short video about my experience.

To dive deeper into the fossils and geologic history of that region you can click this link for Allison and Marincovich Jr’s geologic survey paper: A Late Oligocene or Earliest Miocene Molluscan Fauna From Sitkinak Island, Alaska

Click this link for more information on concretions.

Did You Know?

The Weather Bureau was founded in 1870 and Fish and Fisheries in 1971, making up the first conservation agency for the United States. The National Oceanographic and Atmospheric Administration was started in 1970 as an agency within the department of Commerce. Today NOAA has many branches that focus on weather, climate, ocean & coasts, fisheries, satellites, marine & aviation, etc. You can learn more about the history of NOAA and the various branches by clicking this link: NOAA.gov

Marsha Lenz: And We’re Off, June 9, 2017

NOAA Teacher at Sea

Marsha Lenz

Aboard Oscar Dyson

June 8-28, 2017

Mission: MACE Pollock Survey

Geographic Area of Cruise: Gulf of Alaska

Date: June 9, 2017

Weather Data from the Bridge

Latitude: 57° 38’ 38” N

Longitude: 52° 23 48” W

Time: 07:31

Sky: Overcast with fog

Visibility: 3 Nautical Miles

Wind Direction: 130.96

Wind Speed: 2.41 Knots

Sea Wave Height: <1 foot swell

Barometric Pressure: 1003.4 Millibars

Sea Water Temperature: 9.3°C

Air Temperature: 9.6°C

Science and Technology Log

There such is so much science and technology aboard this vessel. I had a tour of the various labs that the research will take place in as well as the various types of equipment and technology that we will be using. We are holding stationary position right now, calibrating the acoustic equipment and have not actually collected any biological data yet. During my tour of the boat, I observed some of the various roles that different people play on this research cruise. It became very clear to me that it is a composition of talents, specialized skills, communication, and respect that is the underlying thread to the success of this research.

19046554_10211513685215855_349902721_n

It’s a bit overcast in the Gulf of Alaska.

There are so many specialized skills that are needed for this cruise. Everyone on board has a specific function and it is essential that that function be carried out flawlessly. The central element in all of this is the National Oceanic and Atmospheric Administration (NOAA), because everyone on board, from the engineers, to the deck crew, scientists and officers, work for NOAA. NOAA is an agency within the Department of Commerce that was founded in 1970. It merged three different agencies (the U.S. Coast and Geodetic Survey, The Weather Bureau, and the U.S. Commission of Fish and Fisheries) into one. Its mission is to “understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources”. This is easily condensed into three words: Science, Service and Stewardship.

The boat is run by the NOAA Commissioned Officer Corps (NOAA Corps). NOAA Corps is one of the nation’s seven uniformed services. The officers are (obviously) a part of NOAA, where they support nearly all of NOAA’s programs and missions. They are trained in many areas, including engineering, earth sciences, oceanography, meteorology, and fisheries science.

Becoming a NOAA Corps officer is a career path that some people may choose to pursue. One must have a baccalaureate degree, (preferably in a major course of study related to NOAA’s scientific or technical activities) and attend a 19-week Basic Officer Training Class. This course is very demanding and fast-paced. Once a candidate has completed the training, they are assigned to a NOAA ship for up to three years.

So, what exactly am I doing out here?

That’s a really good question, one that I have been asked many times. I will try to explain it in a nutshell. As you may already know, the fisheries in Alaska are a key part of the economies of Alaska as well as the U.S. Seafood is Alaska’s largest export. According to a study conducted by the McDowell Group in 2015, in 2014, close to 3 billion pounds of seafood product were processed in Alaska with a wholesale value of $4.2 billion. The total seafood harvest for the year was 5.7 billion pounds! That’s a lot of fish.

Needless to say, fishing has always been a way of life for the people of Alaska. Unfortunately, overfishing and poor fishing practices have resulted in a decline in marine health.   Fishing regulations are now in place to ensure that the fisheries can continue to be a vital part of the economy while being sustainable at the same time.

19075262_10211512800633741_339744207_n

Fishing and crabbing are a vital part of Alaska’s economy.

NOAA’s marine scientists conduct surveys to collect data on various aspects of the ocean to share with not only the fisheries, but the public as well. Ultimately, they are responsible for monitoring the conditions of the climate and environment, and additionally, taking steps to preserve them. The surveys are designed to monitor changes in the marine ecosystems and set sustainable catch limits for the fisheries.

The purpose of this cruise is to conduct a survey of walleye pollock in the Gulf of Alaska. The scientists will determine the abundance and distribution of pollock and provide the data to stock assessment managers that set pollock catch limits for the following year. The science team is from the Midwater Assessment and Conservation Engineering (MACE) group of the Alaska Fisheries Science Center (AFSC) in Seattle, Washington. They primarily conduct surveys on the status of walleye pollock in the Gulf of Alaska and the Bering Sea. This is the first of 3 legs of the summer assessment. They will conduct the surveys on randomized transect lines using both the net catches and acoustic technology. Though the main focus is to gather data on the walleye pollock, everything that is caught will be weighted, measured, and entered into the data system.

19046979_10211512816114128_473807376_n

Alaska Fisheries Science Center and Midwater Assessment and Conservation Engineering work together to conduct the walleye pollock surveys.

You might be wondering what pollock are. Do you eat fish sticks? Have you ever had imitation crab at a sushi restaurant? Then you have most likely eaten pollock. Alaska pollock is a white fish that is wild caught in the Gulf of Alaska, mostly with trawl vessels. They are used in many fish products, including Filet-O-Fish. It has consistently been one of the top five seafood species consumed in the U.S. That’s a pretty popular fish!

Screen Shot 2017-06-09 at 4.12.13 PM

Pollock makes up over half of the fish harvested in Alaska (photo credit: FishWatch.gov)

Trawl vessels use trawling as a way to get their fish. It involves dragging or pulling a large net through the water behind one or more boats. We will be using midwater trawls to catch the fish we will be collecting data from.

19075083_10211513176683142_1384070222_n

An Aleutian Wing Trawl is 140 meters long and can  gather fish from  30 to 1,000 meters underwater. 

Personal Log

I arrived in Kodiak on Tuesday afternoon and was met at the airport by the scientists who will be conducting the pollock survey. My flight into Kodiak was fairly uneventful. I was, however, a bit baffled though when we entered the plane from the rear and only the back half of the plane was designated for passengers. The front half of the plane was for cargo. There are two primary ways to get things to Kodiak: cargo planes and freighters.

We took a quick 10-minute car ride to the dock. The weather reminded me of Humboldt County. It was drizzly, cool, and people had on their layers. They took me aboard and gave me a quick tour of the vessel where we will be spending the next three weeks.  The NOAA ship Oscar Dyson is said to be one of the most technologically advanced fisheries survey vessels in the world and was named after Oscar Dyson, who was a well-known fishing activist in Alaska. Mr. Dyson was dedicated to managing and improving the industry for those that make their living at sea.

19113311_10211512799993725_1683385038_n

19046801_10211512800153729_416847501_n

The Oscar Dyson is a survey vessel used by the National Oceanic and Atmospheric Administration.

Of course I got lost immediately and spent a good 10 minutes trying to find my way back to my room. After a dinner of tacos back in town, we all went to sleep. The rocking of the boat was a nice way to be lulled to sleep. I do not yet know if I will feel the same way once we are out on the open ocean.

A95954757

The city of Kodiak has a population of about 6,000 people. (photo credit: Matthew Phillips)

On Thursday, we fueled up. The ship has an 110,00 gallon capacity and uses about 2,100 gallons of gas a day. (Here is a task for my class: Can you calculate how much it costs per day to drive the boat if the cost of gas is $3.00/ gallon?) Fueling up a ship this size is quite a task. It requires a lot of people and a lot of communication. Fuel spill booms are put around the boat to protect the water should there be a gas spill. After the fuel up (which takes over 4 hours!), the booms are removed again. We left the pier and started out. The sky was gray and there was some light rain, but I was still mesmerized by the pure beauty surrounding us. We pulled into a nearby quiet bay so the scientists could calibrate their equipment.

This slideshow requires JavaScript.

Leaving the Port of Kodiak

The scientists have been working hard to calibrate the machinery. This requires many hours, many hands, and minds all working together. Once all of the machinery is calibrated, we can set sail to the starting point near the Islands of the Four Mountains in the Aleutian Islands. It should take us 2 and half days (760 miles) to get there. The Oscar Dyson can go 12.5 knots. A “knot” is 1.151 miles/hour.

current location june8 930pm

We are currently holding stationary position while the scientists calibrate their equipment (photo credit: marinetraffic.com)

We have started adjusting to our 12-hour shifts. My shift will be from 4 am to 4 pm. This means that I will be setting my alarm for 3:30 every morning, grabbing a cup of coffee (well, a double latte, actually!) and heading down to the “Wet lab”. There we will be pull up the hauls of fish, sort them by species, separate males and females, measure their lengths, and remove the otoliths (ear bones). The purpose of studying the otolith is to determine the age of the fish. An otolith is a calcium carbonate structure in the inner ear of the fish. They are very similar to the rings of a tree. They add a new layer every year and give the scientists valuable data on the age structure of the population.

Did You Know?

  • All Pollock is wild-caught in the ocean. There is no commercial aquaculture for this species.
  • Since 2001, U.S. commercial landings of Alaskan Pollock (primarily in Alaska) have been well over 2 billion pounds each year.

Lynn Kurth: Goodbye “Toes”, June 26, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude: N 57˚23  Longitude: W 153˚20  (North Coast of Kodiak Island)

Date:  June 26, 2016

Weather Data from the Bridge:
Sky: Fog
Visibility: 1 Nautical Mile
Wind Direction: 085
Wind Speed: 12 Knots
Sea Wave Height: –
Sea Water Temperature: 12.2° C (54° F)
Dry Temperature: 12.6° C (54.7° F)
Barometric (Air) Pressure: 1008.6 mb


Science and Technology Log

As I was looking up at the stars over the ship one evening, I was thinking about the study of space and the 1980’s Teacher in Space program.  It’s difficult to believe that as of this past January it has been thirty years since the Space Shuttle Challenger disaster, which took the life of educator Christa McAuliffe and six other astronauts.  Christa had been selected to become the first teacher in space, which offers such opportunity to learn and grow.  I admire Christa McAuliffe because of this and the fact that she recognized that the study of space offers the opportunity for discovery, innovation and investigation.

kurthblog2

Kurth at Sea (Uganik Bay, Alaska)

I love being a Teacher at Sea because the ocean is similar to space in that it is largely unexplored and offers the chance to discover, innovate and investigate.   In fact, less than 5% of earth’s ocean has been explored even though new technologies have expanded our ability to explore.  Scientists like those I am working with on the Rainier use a variety of this new technology such as satellites, complex computer programs, and multi beam sonar to explore and carry out their hydrographic work.  Over the past week, I have been fortunate to work with these scientists in Uganik Bay and gain a better understanding of how they use these technologies in their work.

DSCN0035 (2)

Out on the skiff with Chief Jim Jacobson and crew

Before the surveying work using the multi beam sonar system can begin, a small crew is sent off the Rainier in a skiff, a shallow flat-bottomed open boat, to complete near shore work.  During this work, the crew on the skiff meticulously examines the features of the coastline while comparing what they see to any available charts and other sources of information about the area.  The depth of Uganik Bay was last surveyed and charted in 1908 but the area does have some additional charting of shoreline features documented throughout the years via aerial photography and information shared by local mariners.  The skiff used for the near shore work is equipped with a GPS (global positioning system) unit and a computer program which continually maps where it travels.  The skiff moves slowly along the shoreline while circling rocks and other features (reefs, islands, kelp beds, fishing gear) in order to accurately determine their size and location.  The scientists record all of their findings on a sheet illustrating the area they are working in and enter the revisions into a computer program when they return to the Rainier.   These revisions frequently include adding features not previously documented, modifying information on existing features or suggesting possible features to be eliminated when they are not found and verified.

DSCN0112

Chief Jim Jacobson enters updated information from near shore work documented while on the skiff.

For example, one of the days while I was working with a crew on a skiff, part of our work involved verifying whether or not a series of rocks existed where they had been previously charted.  Oddly enough, when looking at the chart the formation of rocks looked like a giant left footprint.  This particular feature on the chart, was flagged for us to investigate and verify because each of the rocks that made up “the little toes” seemed to be too equally spaced to be natural features.  When we examined the area we found that there was only one rock, “the big toe”, at the top of the formation vs. a total of five.  The suggested updates to this feature were supported with the documentation of photographs and measurements.  In other words, the scientists suggested that the final revisions completed by NOAA staff in Seattle would include the “amputation” of the four “little toes” from the charts.

footblog1

Sheet used on skiff to document suggested revisions. Notice the “foot” feature?

 


All Aboard!

I have really enjoyed chatting with the people on board the Rainier because they have interesting stories to share and are happy to share them. Erin Earley, member of the engine utility crew, was one of those people who graciously gave me some of her time for an interview.

DSCN0198

Erin Earley (right) discusses ship operations with Ensign Bethany McAcy (left)

Tell us a little about yourself:

I’m Erin Earley from Sacramento, California and was a social worker prior to working for NOAA (National Oceanic Atmospheric Administration).  I enjoy water color painting, creating multi-medium sculptures, and anything to do with designing gardens.  And I love dogs, Shelties in particular.

How did you discover NOAA and what do you love the most about your job with NOAA?:

As a social worker I had a couple of young adults in the child protection system who wanted to find a different career.  When looking at career options for them I came across a maritime program for youth in Sacramento that seemed to meet their needs.  So, I went to a parent night to learn more about the program and when I heard about the rate of pay and opportunity to travel I asked if they were considering an option for adults to join the program. They said that they were and I registered for the program and began with the AB (able bodied seaman) program for deck work but after watching the Deadliest Catch I decided that wasn’t for me.  So, I decided to complete the engineering program to be qualified for engine room work.  The course work included survival work, emergency ship repair work and fire fighting skills.

I love my job with NOAA because for the most part I’m working with a small group of people, we all know our duties, and we all help each other out.  I enjoy seeing jobs get completed and things getting fixed.  And, the most important reason I love my job is that I don’t have to drive to work and dress up.  I come from Sacramento, and here I don’t have to wait for traffic coming across town and wait at Starbucks for an hour.  On a ship you become a minimalist, you learn what is important and what is not.   I love meeting new people, trying new foods and seeing new things!

DSCN0194

Erin Earley takes a sounding of a fuel tank

What are your primary responsibilities when working on the ship?  

My primary responsibilities at sea include monitoring the oil levels of the equipment, making sure that everything is running properly, reporting to the engineer anything that might be a problem, making sure the bow thruster has proper fluids, and making sure there’s no excess water in any of the places.  We’re floating on a huge ocean and we want to make sure none of it’s coming in!

What kind of background and/or education do you need to have this job?

It would help to go to a maritime school and a lot of major coastal cities have these schools that offer these programs.  If you want a four year college education you could go to a maritime academy (San Francisco, New York and Baltimore ) to get a degree in mechanical engineering and then you could work on a ship or on the shore side at a port.  If you don’t want to go to a four year college you can still work in engineering but you would have to take certification courses and work your way up.  I think for a young person the adventure of working for NOAA is fun but you should always have a plan as far as where you might want to go.  Keep your options open!


Did You Know?

DSCN0185 (2)

The Rainier, Uganik Bay

The Rainier:

  • has 26 fuel tanks
  • uses 500 gallons of fuel a day while at anchor
  • uses 100 gallons of fuel each hour while underway (2400 gallons/day)
  • goes through approximately 50 lbs of beef and 30 lbs of chicken each week
  • uses 8 different kinds of milk (lactose free, soy, almond, cashew, 1%, 2%, whole, and skim)

 

 

Virginia Warren: Life at Sea is GREAT!! March 15, 2016

NOAA Teacher at Sea Virginia Warren
Mission: Acoustic and Trawl Survey of Walleye Pollock
Geographical Area of Cruise: Shelikof Strait
on NOAA ship Oscar Dyson
Date: 3/15/2016

Data from the Bridge:
Sky:  Light and variable
Visibility: 10+ Nautical Miles
Wind Direction: West
Wind Speed: 2.50 (4 knots)
Sea Wave Height:  1 – 2, light swell
Air Temperature: 4.2 degrees C (40 degrees F)
Barometric Pressure: 1004.8

 

NOAA and NOAA Corps Information:

NOAA is an acronym that stands for National Oceanic and Atmospheric Administration. NOAA is a government agency that helps keep citizens informed on weather conditions and the climate. It also conducts fisheries management, and coastal restoration. As stated on their website, NOAA’s mission is to understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources. NOAA has nine key focus areas, 12,000 NOAA personnel, and 6,773 scientists and engineers.

If you would like to read more about what NOAA does, please check out their website here: http://www.noaa.gov/about-our-agency

The NOAA Commissioned Corps Officers are in charge of running NOAA ship Oscar Dyson. The officers keep the ship functioning properly and the people safe. The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States. As stated on the NOAA Corps website, the NOAA Corps mission is to provide officers technically competent to assume positions of leadership and command in the National Oceanic and Atmospheric Administration (NOAA) and Department of Commerce (DOC) programs and in the Armed Forces during times of war or national emergency.  If you would like read more about what the NOAA Corps does, please check out their website here:  http://www.noaacorps.noaa.gov/about/about.html

You can also watch the NOAA Corps Recruitment video here: http://www.noaacorps.noaa.gov/audiovideo/noaacorps_video.html

 

Science and Technology Log:

This is my second full day on the ship and my science crew has sorted three trawls. On the first day on shift, I learned that there is a lot of waiting to get the fishing pollock job done correctly. The Chief Scientist, Patrick, is responsible for choosing where and when to launch the trawl. He does this by watching data on a screen that comes from the echo sounder, which is placed under the ship. When you see bright red color on the screen, then you know there is something registering on the echo sounder. This part of the process can take several hours.

Echo Sounder Screen

Echo Sounder Screen

Once you find the fish, then you have to launch the trawl net. This is a very intricate process because as the net is being launched, it has to be kept free of tangles. If tangles occur in the net it could cause the net to rip once the trawl has begun. At the mouth of the trawl where the opening is for fish to enter, there are two large trawl doors that glide through the water like airplane wings, except the “lift” is a spreading force that goes sideways to open the mouth of the trawl for fish to enter.

awt-model-commented1

Scale model of the Aleutian Wing Trawl (AWT) net courtesy of NOAA Scientist Kresimir Williams

 

Once the trawl is complete, the catch is dumped onto a table that lifts up to the conveyor belt where we separate pollock from all the other types of animals. The pollock are placed into baskets where they are then weighed. A sample of pollock is taken to examine further. Data on everything that we catch goes into a computer system called CLAMS, which is an acronym for Catch Logger for Acoustic Midwater Survey. I will further explain the sorting and data collection processes, and the CLAMS program on a future blog.

This slideshow requires JavaScript.

Personal Log: 

I’m happy to report that all of my flights went great and my luggage didn’t get lost on my way to Kodiak, Alaska. I spent Friday and Saturday nights in Kodiak waiting to rendezvous with the NOAA ship Oscar Dyson Sunday morning.

This slideshow requires JavaScript.

Kodiak is a beautiful, scenic fishing community. I love that Kodiak is able to use clean, alternative-renewable energy resources to make their energy for the island. Notice the wind turbines in the picture below, however Kodiak also uses hydroelectric dams to make most of their power.

Wind Powered Turbines

Wind Powered Turbines

The Oscar Dyson anchored up outside of the Kodiak harbor in efforts to save time by not having to completely dock up in the harbor. The Dyson sent out its small boat called “The Peggy D” to take people to and from the ship. We put really warm jackets that also served as life jackets(float coats).

The "Peggy"

I loved this boat ride because it gave me a view of the harbor I hadn’t been able to see yet!

Beautiful Mountains from the Harbor in Kodiak, Alaska

Beautiful Mountains from the Harbor in Kodiak, Alaska

My first view of the Oscar Dyson was spectacular. I saw it as we rounded a very small island outside of the harbor. With the mountains in the background, the ship made a pretty picture.

NOAA Ship Oscar Dyson

NOAA Ship Oscar Dyson

This is only the beginning of the trip and I am so looking forward to experience the rest of it.

This slideshow requires JavaScript.

 

Andrea Schmuttermair, Anchors Away from Kodiak, July 7, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oscar Dyson
July 5 – 25, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 7, 2015

Weather Data from the Bridge:

Latitude: 56 36.1N
Longitude: 156 04.1W

Visibility: 10nm
Speed: 12 knots
Wind Speed: 4 knots
Wind Direction: 202 degrees
Surface Water Salinity:35.31
Air Temperature: 12.6 C
Barometric Pressure: 1004.6 mbar
Sky: SCT (scattered clouds)

TASAK15 (12)

One of the signs from my walk along the docks in Kodiak. I learned a lot about Kodiak and the fishing industry by reading these signs.

Science and Technology Log:

The walleye pollock fishing industry is the largest commercial fishing industry in the country, and one of the largest fishing industries in the world. Have you eaten fish sticks? Filet-O-Fish from McDonald’s? Imitation crab? If your answer is yes to any of these questions, then you have eaten walleye pollock. Since pollock supports such a large industry, scientists need to carefully monitor its abundance each year. Bring on the scientists and crew on board the Oscar Dyson to make this mission possible.

TIn summer, and in a few locations in winter, scientists head out to assess the walleye pollock population in both the Bering Sea and in the Gulf of Alaska. The summer survey alternates between the two areas, and this summer we are traveling in the Gulf of Alaska for our survey. This second leg (out of 3 legs total) will head counterclockwise around the island of Kodiak. This survey, conducted by the Midwater Assessment and Conservation Engineering Program at the Alaska Fisheries Science Center in Seattle, uses acoustic technology to gather data on the distribution and abundance of fish, which provides researchers with pertinent information about the walleye pollock population.

The Oscar Dyson at Pier 2 before departure from Kodiak.

The Oscar Dyson at Pier 2 before departure from Kodiak.

The Oscar Dyson is a relatively new ship, equipped with noise quieting technology in order to create as little acoustic disturbance as possible when out at sea. Another neat feature crucial to the work of the Dyson is the acoustic transducers located on the bottom of the ship. There are several of these transducers, which are composed of small ceramic disks, and they help scientists detect ocean life and map the seafloor. If you are like me, you are probably wondering what a transducer is, right? It took me a couple of explanations and analogies in order to understand what was happening in these tiny devices. Remember, sound waves are pressure waves that move through a medium, in this case water. The transducer converts electrical energy to mechanical energy, expanding and contracting with electrical signal it receives. This expansion and contraction creates sound waves that move through the water away from the transducers. After sending the pressure waves the transducer switches modes to “listen” to the incoming waves. When the sound waves hit something in the water they are reflected back to the transducer. These reflected waves that are received by the transducers indicate the presence of obstacles in the water. An analogy for this process is that the transducer first acts as a speaker and then as a microphone.

The transducers on the bottom of the ship sending out a signal to the ocean floor.

The transducers on the bottom of the ship sending out a signal to the ocean floor.

Five of these transducers are being used for the pollock survey in order to detect pollock and other ocean life. The information the transducer receives back is automatically graphed on the computer. Scientists and other crew members can view and analyze this graph, and will use this information to determine when it is appropriate to send out a trawl to collect fish. There are also several transducers located around the bottom of the ship that are gathering information about the ocean floor. Hydrographic surveys use this technology as they map the sea floor. I am amazed at where we have come with technology, especially out at sea. Stay tuned for my next post to learn about more amazing technology we are using on board!

Personal Log:

TASAK2015 (30)

Ready to fly on this little plane from Anchorage to Kodiak.

Lucky. That is how I would describe myself when I landed at the Kodiak airport on my flight from Anchorage. First, I was lucky that the flight I was scheduled on made it to Kodiak on its first attempt, as flights are often cancelled for poor weather or low visibility. Planes have been known to turn around and fly back to Anchorage if they can’t make a safe landing in Kodiak. I am also feeling very lucky to have the opportunity to partake in yet another assignment as a NOAA Teacher at Sea, in another area of the country I haven’t yet explored.

I arrived in Kodiak on the 4th of July, and was swept up from the airport by one of the NOAA Corps officers, ENS Justin Boeck. We weren’t scheduled to depart on the Oscar Dyson until Monday, July 6th, so Justin gave me a quick tour of the ship. I wasn’t sure what to expect of the Oscar Dyson, but when my first thoughts climbing on board were that it would take me a week to find my way around! It is much larger than the last ship I was on, the Oregon II, down in the Gulf of Mexico.

Trying to take advantage of the nice weather, I decided to explore the area before we left. The town of Kodiak is quaint, and in walking through the downtown area, it is clear that fishing has been and will continue to be integral to the way of life here.

The science crew came in on the 4th as well from Seattle. I met them all when we went out to dinner Saturday evening. Even though we are going to be sleeping on the ship for next 2 nights before we depart, meals won’t be served until we are underway. I did manage to track down some good sushi and seafood places here in town, and am quite satisfied!

This sculpture was made entirely of trash found in the ocean.

This sculpture was made entirely of trash found in the ocean.

On Sunday, the weather turned for the worse, which made the walk into town for coffee a wet one. If you think weather changes quickly in Colorado, try coming to Alaska. My favorite image of the weather status was at a little shop in Homer, Alaska, which outlined a box with a marker on the window and wrote, “If you want to know the weather, look here.”

That afternoon, I was given a little orientation on what some of my tasks would be on the ship, as there is quite a bit going on in addition to the pollock survey. I will be spending most of my time in the acoustics lab analyzing data, the wet lab processing our catches, and chem lab for some of the special projects.

In the evening, the weather cleared just long enough for me to convince ENS Gilman (ok, he didn’t really need any convincing- he was just as excited as I was) to head down to the pier to test out the Waverunner, the ROV made by the students in my class. While the visibility was not the best, we were able to see plenty of moon jellies, sea anemones and some kelp beds. The ROV handled pretty well in the ocean, although we did have some difficulties bringing it back up when it went down too deep. Students, do you have any suggestions for how we could account for this? Any suggestions or modifications we need to make?

We were supposed to be leaving early afternoon on Monday, however due to the bad weather, several of our crew members had not yet made it in to Kodiak. They finally made it over later that afternoon and we left port at 11pm. I stayed up to watch the sun set as we were leaving port (yes, it does actually set in parts of Alaska), and pushed myself to stay awake for a few more hours. I’ll be working the night shift for the next few weeks, which means I’m on duty from 4pm-4am. The faster I can get myself used to this schedule, the better off I’ll be. The first days in Kodiak have been a blast, and I am excited to begin conducting our survey!

Checking out the ship before we set sail.

Checking out the ship before we set sail.

Did you know? Acoustic transducer technology has been in use since World War II.

Where on the ship is Wilson?

IMG_6055

Wilson, our ring tail camo shark (so aptly named by our awesome science crew) , has been enjoying his time on the ship as much as I have. He has traveled all over the place, and is having fun with the crew on board. Can you guess where he is in the picture above?

Andrea Schmuttermair, Wander-lusting for Alaska, June 24, 2015

NOAA Teacher at Sea
Andrea Schmuttermair
Soon to be Aboard NOAA Ship Oscar Dyson
July 6 – 24, 2015

Mission: Walleye Pollock Survey
Geographical area of cruise: Kodiak, AK
Date: June 24, 2015

TAS2012

Ms. Schmuttermair on the Oregon II, 2012

Wanderlust (n): a strong desire or urge to wander or travel and explore the world.

As I sit writing this initial blog post on the beach here in San Diego, California, I find myself reminiscent of the summer of 2012, the “summer of ships”, as I referred to it. In June of 2012, I was preparing for adventures of a lifetime, for I would be on board not one but two ships throughout that summer. The first, the mighty Oregon II, one of NOAA’s fishery vessels, conducting research in the Gulf of Mexico. The second, a luxurious cruise ship, sailing the waters of Alaska. Little did I know I would be sitting here, 3 years later, eagerly anticipating my voyage back to Alaska yet again on board one of NOAA’s fishery vessels, again as a Teacher at Sea.

Andrea and Wesson

Ms. Schmuttermair and Wesson

My name is Andrea Schmuttermair, and I am currently an elementary teacher at the Colorado STEM Academy just north of Denver, Colorado. I just finished my 11th year teaching, and I have had the privilege to teach some amazing students in Germany, California, and Colorado. I have a lot of fun with my students (like 3D printing sharks and coding our own reaction timer), and strive to give them as many engaging science experiences as I can. Outside of the classroom, you can find me creating opportunities for new adventures and experiences through travel and the outdoors. I love to hike and backpack the trails in Colorado with my faithful companion, Wesson. Traveling to new, uncharted territory is also a frequent occurrence.

I first learned about the Teacher at Sea program back in 2008, and it immediately went on my bucket list. After a couple years of applying, I was accepted as a TAS in 2012 and helped scientists conduct the SEAMAP Summer Groundfish Survey in the Gulf of Mexico. To say I enjoyed it would be an understatement. It was by far one of the best experiences I have had, so much so, that when given the option to reapply, I knew I just had to. I am thrilled to be heading back to Alaska, this time wearing a different hat, to help scientists conduct the walleye pollock survey. The Walleye pollock is a key species in one of the largest fishing industries in the world. I am looking forward to helping scientists with this important research.

My students spent the last several months of school immersed in the fascinating world of the ocean. Being in a landlocked state, the ocean was still relatively undiscovered for them, yet it drew my students in with a desire and passion I couldn’t feed quick enough. From engaging in problem/project based learning to studying ocean animals and their adaptations to skyping with our favorite shark scientist, Dr. Mikki, to creating 3D printed models of new ocean discoveries, I knew my students had found a niche and a passion for learning. They weren’t done yet though. After some brainstorming, we decided to spend the last month of school on an in-depth project learning about and building our very own underwater ROVs. Inspired by NOAA and James Cameron’s recent film, our class learned about how ROVs are built and how they are used in research in the ocean. Very fascinating! We ended our year building 5 ROVs, which culminated in a competition running them through various challenges. The winning ROV, the Waverunner, is coming with me on this trip to swim through the Alaskan waters off the shore in Kodiak. How cool is that?!

This slideshow requires JavaScript.

 I am counting down the days until I head out to sea. Stay tuned for my next entry on board the mighty Oscar Dyson!

Did you know…that the scientific name for the Walleye Pollock was recently changed? After extensive genetic studies, researchers decided to change the scientific name from Theragra chalcogramma to Gadus chalcogrammus. Read more about it here.

Do you…have any questions about the research being done on Walleye pollock? Leave your questions in the comments below!

*Photos courtesy of Caine Delacey and Andrea Schmuttermair