Amanda Peretich: A Community Afloat, June 30, 2012

NOAA Teacher at Sea
Amanda Peretich
Aboard Oscar Dyson
June 30, 2012 – July 18, 2012

Mission: Pollock Survey
Geographical area of cruise: Bering Sea
Date: June 30, 2012

Location Data
Latitude: 54ºN
Longitude: 166ºW
Ship speed: 11.5 knots (13.2 mph)

Weather Data from the Bridge
Air temperature: 6.5ºC (43.7ºF)
Surface water temperature: 6.9ºC (44.42ºF)
Wind speed: 7 knots (8.05 mph)
Wind direction: 265ºT
Barometric pressure: 1011 millibar (0.998 atm, 758 mmHg)

Science and Technology Log
Not much science to discuss yet since we just left port at 0900 and I won’t be working in the fish lab until my 0400-1600 shift tomorrow (that’s 4am-4pm for anyone unfamiliar with military time). More to come on the pollock survey in a later post.

However, I did have the opportunity to spend a few hours up in the bridge today and I learned A TON thanks to NOAA Corps Officers ENS (ensign) Libby Chase and LT (lieutenant) Matt Davis! The chemistry teacher in me was amazed by all of the conversions used. Just a few of the things I learned today on the bridge:

Bridge

Main control panel on the bridge

* During the majority of transiting time, the Beier Radio Dynamic Positioning System is used. This is like an auto-pilot that controls the rudder to keep the Oscar Dyson on course using a gyro compass. They have nicknamed her “Betty” because she talks to you in a female voice, kinda like Siri on the new iPhone.

* A gyro compass is different from the magnetic compass that I am more familiar with using. The wind direction is measured in degrees true, which is based on true north being at 0º. Magnetic compasses have about a 9º variation, but things on the ship can also influence the deviation in the magnetic compass reading, so it is much better to use the gyro compass.

* You can drive the ship from multiple locations on the bridge. The main location looks to the bow/forward (front) of the ship. The starboard (right) location is used when the CTD is deployed (more on this later) and also whenever the boat is docked. The aft/stern (back of the ship) location is used when setting and recovering nets during a trawl. And the port (left) location is a ghost town that is rarely used.

* I learned the distance equation used in determining something called DR, or dead reckoning. This allows you to notice any set and drift while going along your course and tells where the current may or may not be pushing you to allow you to correct the course. The equation is as follows:

D = S x T
D is distance (in nautical miles)
S is speed (in knots)
T is time (in hours)

For example, if we were traveling at 11.35 knots, after 30 mins (or 0.5 hours), we should travel a distance of 5.7 nautical miles (D = 11.35 x 0.5). The bridge officers will plot this and see after half an hour if the ship has stayed on course based on the DR and the new coordinates after 30 minutes. Also, in case you didn’t know, 1 nautical mile = 1.15 miles.

* There is no common set of units for any given measurement, so everyone has to be familiar with how to do conversions. For example, when determining barometric pressure, you can use millibar, atmospheres, millimeters of mercury, torr, etc. (1 atm = 1013.25 mbar = 760 mmHg = 760 torr). For speed, you can use knots or miles per hour (1 knot = 1.15 mph).

Personal Log
What an adventure this has already been. Long story short, it took an extra day to get to Dutch Harbor due to weather conditions, giving me an overnight stay in Anchorage. I have come to discover that this is not an uncommon occurrence. It did give me a chance to meet plenty of people from the ship at the airport before we even arrived since we were all sitting around the terminal waiting on standby for flights. But I finally made it, had an exit row seat (see photo) and all of my luggage arrived with me!

Exit Row

On my second flight to Dutch Harbor, lucky enough to get in off standby AND get an exit row seat!

I had the entire day yesterday in Dutch Harbor to explore, so I ran the 3ish miles back to town, checked out the Museum of the Aleutians (history lesson!), did some shopping, and headed back to the Oscar Dyson.

DYK? (Did You Know?): Dutch Harbor was bombed by Japanese naval aircraft on June 3 & 4, 1942 during WWII (about six months after the attack on Pearl Harbor).

I was fortunate to be in the right place at the right time eating a late lunch when the opportunity to kayak in Captains Bay came up. Four of us unloaded the ocean kayaks from the ship into the water, made our way down to the kayaks, and enjoyed breathtaking views while paddling against the current (doing it this way made our return trip much easier). This was a once-in-a-lifetime experience for me and the people I was with were amazing. I plan to introduce everyone on board in a later blog so you can get to know them a little as well. I can also now say that I have swum in the freezing Alaskan waters because at the end three of us jumped in!

Kayaking in Captains Bay

Kayaking in Captains Bay in Dutch Harbor, Alaska

I was able to watch as we left port from the flying bridge (the highest bridge on the ship). Since there isn’t much to do until we are farther out to sea, today I have just done a lot of exploring and talking to people. Basically this is a little community afloat for the next 17 days. There are two things you really need to successfully live on board in such close quarters: you need to be flexible and able to work with others and you need to do your part around the ship, both on and off your shift. Our staterooms are nice (the mattress is actually extremely comfy), the bathrooms are good, we can keep our clothes clean in the laundry room, read books in the library/conference room, watch movies in the theater/lounge (we already have the Hunger Games and other new movies), the galley (where we have food access 24/7 but meals are served at 0700, 1100, and 1700) is amazing thanks to our incredible chief steward, and there are two gym areas on board to work off all the delicious calories! Check out the photos of these areas below:

Ship Spaces

Ship spaces (clockwise from top left): stateroom, bathroom, conference room, laundry room

Ship Spaces

Ship spaces (clockwise from top left): theater, galley, gym 1, gym 2

Animal Love
Before I arrived in Alaska, I thought of the bald eagle as a majestic creature that you rarely see in the wild and mostly see in zoos. Here, they have been fondly called “sky rats” by some people – they are EVERYWHERE: in the sky and on the ship. They are still gorgeous and I can’t help but take multiple photos every time I see them. Make sure to check out the link for the bald eagle and the root of its scientific name; it really makes a lot of sense! I’ve seen more eagles in the past two days than in my entire lifetime.

Bald Eagle

Bald Eagles: the “sky rats” of Dutch Harbor

Kristin Joivell, June 22, 2009

NOAA Teacher at Sea
Kristin Joivell
Onboard NOAA Ship Fairweather
June 15 – July 1, 2009 

Mission: Hydrographic Survey
Geographical area of cruise: Shumagin Islands, Alaska
Date: June 21-22, 2009

The Fairweatherrests at anchor in Northwest Harbor.

The Fairweatherrests at anchor in Northwest Harbor.

Weather Data from the Bridge   
Position: Northwest Harbor
Clouds: Mostly Clear
Visibility: 10+ miles
Wind: 13 knots
Waves: less than 1 foot
Temperature: 8.2 dry bulb
Temperature: 7.2 wet bulb
Barometer: 1007.0

Science and Technology Log 

Launches are excellent for collecting data near the shoreline, but the Fairweather is better at open water data collection. The polygons are larger, but the ship must still be traveling at approximately 6 knots for optimum results.  The ship also uses the multibeam to sweep the ocean floor, just like the launches.  Of course, multiple computer screens are again necessary to monitor data collection on the ship. Also similar to the launches and their CTD’s, the ship uses a device called a Moving Vessel Profile (MVP) that collects information about sound velocity as it is dropped through the water. It is commonly called the “fish” since it is dropped into the water and manipulated to “swim” at different depths for data collection.

Here I am dislplaying the MVP or “fish” that will be deployed periodically throughout data collection to measure sound velocity, temperature, and pressure of the water.

Here I am dislplaying the MVP or “fish” that will be deployed periodically throughout data collection to measure sound velocity, temperature, and pressure of the water.

A definite advantage of the MVP is that the fish can be deployed while the ship is moving; however, the launch must be stopped to use the CTD.  Additionally, the MVP measures sound velocity directly where as the CTD collects data that must be plugged into a formula to calculate the measurement for sound velocity. Data collected from both the launches and the ship must be processed and converted.  Much of the data processing involves moving data uploaded from launches into networked folders.  At times while I watched data processing, there were too many folders open on multiple computer screens for me to personally keep track of.  Also, I noticed certain data sets being converted from one form to another.  Sometimes, the data conversion takes a long time so computers must be marked so nobody interrupts the conversion process.  Patience, computer literacy, and organization skills are a must for working on data processing!

In this picture I’m attempting to clean “dirty” data.  The screen on the left shows a 3D image of the ocean floor.  The screen on the right shows a 2D image of the ocean floor that is color coded based on depth. As you can see, dirty dishes also tend to collect when cleaning dirty data!

In this picture I’m attempting to clean “dirty” data. The screen on the left shows a 3D image of the ocean floor. The screen on the right shows a 2D image of the ocean floor that is color coded based on depth. As you can see, dirty dishes also tend to collect when cleaning dirty data!

Another part of working with data collected from the launches and the ship involves cleaning “dirty” data.  Even through the best efforts to collect data, pings are sometimes lost or interference occurs. Perhaps the speed of the vessel exceeded 6 knots or maybe there was a section of the water with an unusual density. So, a software program called Caris is used to work with the data on a dual screen computer. The ocean floor that is color coded by depth can be viewed on one screen. Then, the person working with the data selects small segments of the ocean floor to view on the other screen.  The plane of the ocean floor and all of the pings are shown in a variety of color scales. Data that is very accurate at a high confidence level can be shown in violet, but the lower the confidence level gets, the further up the spectrum the colors are shown.  Many people choose to show different lines of pings in different colors to make it easier to see how many times the same section of the ocean floor was swept.

The person working on the computer can choose to delete certain pings, especially if they were located at the far end of the multibeam.  These pings are more likely to be lost or misrepresent the depth. Additionally, a measurement can be taken on the screen with a ruler tool to determine if a group of pings are within specification limits.  If they are not, a segment of data can be designated for further investigation.  The person working on this must make many decisions, so it is important to be able to infer information from data as you work.

Personal Log 

Paddling my kayak in the ocean through Northwest Harbor in the Shumagin Islands

Paddling my kayak in the ocean through Northwest Harbor in the Shumagin Islands

I went sea kayaking a few years ago in Mexico, but sea kayaking in Alaska is by far more dangerous. Even though the kayaks are paddled the same way and I could keep the boat balanced relatively easily, the danger of flipping over and freezing to death in the sea water is a constant thought. The beauty of the islands as I paddled near them was mesmerizing.  The Shumagin Islands look like something out of a prehistoric world.  I keep expecting to see a dinosaur walking up one of the rocky hillsides. I didn’t see any prehistoric creatures on the kayak, but I did see some puffins, a seal, and a wide variety of other seabirds too far away for identification.  Kelp was also floating around in abundance. I should mention that I was sea kayaking from about 8:30 to 11:00pm, but it was still daylight the whole time.  It is near the summer solstice, so daylight lasts for about 18 hours or so each day. Right now, the sun is rising at about 6:00am each morning and setting at about 11:30 each night. It is really unusual to be out on a sea kayak in bright daylight in the middle of the night!

Create Your Own NOAA Experiment at Home 
You can use simple items from your kitchen to see how cold the water in Alaska feels. You will need some ice water, a thermometer, and a bowl. First, put the ice in the bowl and pour the water over it. Next, place the thermometer in the bowl with the ice water.  Wait until the temperature goes down to about 45 degrees Fahrenheit.  Now, place your bare hand in the ice water. How does it feel? Try it with a glove on.  Do you feel a difference?  Remember, your body temperature is about 98 degrees Fahrenheit, so you are putting your hand into water that is about half your body temperature. Can you imagine how it would feel to fall into this water?

Barney Peterson, August 30, 2006

NOAA Teacher at Sea
Barney Peterson
Onboard NOAA Ship Rainier
August 12 – September 1, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 30, 2006

Weather Data from Bridge 
Visibility:  10 nm
Wind :  light airs
Seawater temperature: 10.5°C
Sea level pressure:  1002.2 mb
Cloud cover: Cloudy

Nagai Island cliffs rising steeply from the water

Nagai Island cliffs rising steeply from the water

Science and Technology Log 

The Aleutian Range is a chain of mountains extending 1600 miles west from Mt Spurr, opposite Anchorage on Cook Inlet, to Attu Island at the northern edge of the Pacific Ocean. There is something like 80 active volcanoes in the range which forms the northern part of the Pacific Ring of Fire. That would be exciting enough if it was the whole story of the land here, but there is even more.  Earthquake activity in the last 100 years has proven that movement along the tectonic plates of the earth’s crust continues to shape the land. As we sailed out of Seward on Resurrection Bay for a brief stop near the entrance to Prince William Sound, islands rose steeply out of the ocean, covered with thick evergreen trees from shoreline to summit.  The exposed shoreline was mainly cliffs and the beaches were slim and rocky.  The landscape looked like little chunks of the Pacific Northwest that I am used to seeing.

White sand beach and dunes on Nagai Island.

White sand beach and dunes on Nagai Island.

That all changed as we turned west and moved out through the Shelikov Straight on our way to our survey site at Nagai Island. Suddenly the only familiar feature was the color of the rocks! The islands pointed straight up from the water’s edge.  Most cliffs were rocky and broken with folds and bends in the bands of color. Some rocks were cross-hatched with breaks and gouges that showed how hard the sea and the weather have worked to break them down.  The crowns of these islands looked smooth and green with no tall evergreen trees in sight. Just when I had adjusted to seeing cobbled beaches and abrupt cliffs, we discovered a beautiful white sand beach backed by wind-formed dunes and covered with driftwood. At this point the weather cleared, the skies turned blue, and the beach was reflected in clear aquamarine blue waters that reminded me of the Caribbean.

We worked our way around Nagai Island, surveying water depths and noting how the cliffs that rose above the water seemed to plunge downward below the surface at the same angles we saw above it.  When there were rocks on the bottom, they were big, chunks that had broken off from the cliffs above and tumbled out as far as their weight could carry them.  Our bottom surveys showed areas of thick black mud and shell, made from weathering and erosion of the cliffs at the water’s edge.

Olga Island rising abruptly from the sea.

Olga Island rising abruptly from the sea.

Farther out the chain we stopped at Dolgoi Island in the Pavlof Islands group. Here the islands were even more barren looking.  Not even scrub alder shrubs seemed able to survive on the slopes and few flowers bloomed in the thick mat of mosses and heath that covered the crowns of the peaks.  These islands were more rounded at the tops with some softer contours, but just as abrupt as they poked above the sea.  The beaches at Dolgoi and Olga Islands were mostly large boulders covering just a few meters before sea grasses and then thick low brush took over. We sailed east again, back to Mitrofania Island; a place that looks like it hasn’t changed since dinosaurs roamed the earth!  Here the cliffs were abrupt, high, and split by deep cuts.  Every possible surface was covered by bright green brush.  The waters around the island were full of shoals and the cliff bases were laced with caves and cracks. Sudden breaks in the sharp cliffs showed where larger streams have worn away softer rocks to form valleys as they plunged to the sea. These gentler slopes allow pools and drops in the stream that are perfect for spawning salmon and developing juveniles before they head into the ocean. Small bays at the mouths of streams have captured coarse black sand to form narrow beaches.  Beaches that didn’t have the protection of bays were long strips of rounded rock, driftwood, and sea grasses.

TAS Peterson exploring the shoreline of Mitrofania Island by kayak.

TAS Peterson exploring the shoreline of Mitrofania Island by kayak.

So what have I learned about the geologic processes that formed this area?  Well I know that we saw fossils in some of the rocks.  Fossils are not something one would expect to find in volcanic rock. Much of the rock in the exposed cliffs shows thick bands of color in strange folds and twists.  The soil on the islands is not deep and rich.  Excepting for the one white sand beach that we saw, most sand was course and black echoing the color of the rocks around it. I did a little research in the ship’s library to clarify the geology for my own understanding. According to Introductory Geography & Geology of Alaska, a textbook published in 1976 and written by L.M. Anthony and A.T. Tunley, this is the scoop:*

Flanking the igneous cones of the Aleutian Range are uplifted sediments, mostly marine, dating back to Paleozoic time…rich in fossils and petroleum bearing shale….the Aleutian Range area consists of many high and active volcanoes of Cenozoic age that have uplifted adjacent sedimentary rock of relatively older age. 

And as for the soil and vegetation, Anthony and Tunley write: Lithosolic soil is characterized by recent and imperfect weathering…rocky soils with thin, irregular coverings of soil material. Some support only lichens and mosses.  Better-developed lithosols have heath shrubs and dwarf trees growing on them…These soils are also common to fresh moraines, beach sands, windblown dunes, and volcanic ash deposits.  In Alaska, lithosols are found in the Alaska Range, Brooks Range, Coastal Range, and on Kodiak Island and the Aleutian Islands. Elsewhere they are found in the Andes, Alps, and in the mountains of Asia. 

To me, all of that means that the volcanoes in the Aleutian Range represent relatively young features on the surface that have forced their way up through the older layers of rock. Those older layers can be seen clearly in the folded and bent sides of the island cliffs. Earthquakes continue as the tectonic plates slip over and under each other and the volcanoes that rumble to life along the edges of those active plates release pent-up heat and pressure from deep within the earth.

Credits: Introductory Geography and Geology of Alaska, Anthony, Leo Mark, and Tunley, Arthur “Tom”, Polar Publishing, Anchorage, 1976 

Kim Wolke, August 10, 2006

NOAA Teacher at Sea
Kim Wolke
Onboard NOAA Ship Rainier
July 23 – August 11, 2006

Mission: Hydrographic Survey of the Shumagin Islands
Geographical Area: Alaska
Date: August 10, 2006

Seal Rocks are a group of islets.  The largest stands at 287 feet and has an arch through it.

Seal Rocks are a group of islets. The largest stands at 287 feet and has an arch through it.

Final Log 

We’re about three hours from arriving in Seward. I’m looking forward to being on land again. Although I’ve enjoyed my time on the RAINIER, I can say that ship life is not a way of life for me. ☺  As we make our approach to Resurrection Bay, there’s some beautiful scenery and lots of little islets are popping up. It’s as if we’re being greeted by them.  It also serves as a sign for me that land is near.

I’ve been quite impressed at how well things run aboard the ship.  Everyone is very hard working—the deckhands, the engineers, the electrician, the cooks, the hydrographic technicians, and the officers. People are where they need to be when they need to be there. Many of the people have crazy schedules, even when we’re anchored. There are always people awake and working in some capacity 24/7 on the ship. Engineers need to be on watch in the engine room food preparation for the day and don’t finish until about 7pm!  Even when we dock in Seward in a few days, people will still be working to maintain and secure the ship.

Deckhands aboard NOAA ship RAINIER prepare the lines for our arrival in Seward, AK

Deckhands aboard NOAA ship RAINIER prepare the lines for our arrival in Seward, AK

I’d like to thank NOAA for providing me the opportunity to be a Teacher at Sea.  It has been a wonderful experience that I will be taking back to my classroom and my colleagues. I am especially thankful to the officers and crew of the RAINIER for being so open, friendly, welcoming, accommodating, and helpful. They all made the time on board a pleasure. I learned a tremendous amount from them.  They were all very giving of their time, even when they were busy and tired.

I’ve met great people these past few weeks.  I’ve had many laughs and excellent conversations along the way. Everyone I’ve had the opportunity to talk with and get to know has such interesting stories to tell about themselves, their travels, and life in general. Some of them are very good storytellers and instigators (no names mentioned Dennis Brooks). There is such a variety of walks of life on the ship.  I feel lucky to have gotten to be a part of their world for this short time.  When we get to Seward, some of the crew will be leaving the RAINIER for new jobs and life endeavors.  I wish them the best.  To all aboard the RAINIER, I wish safe travels.

Kim Wolke, August 8, 2006

NOAA Teacher at Sea
Kim Wolke
Onboard NOAA Ship Rainier
July 23 – August 11, 2006

Mission: Hydrographic Survey of the Shumagin Islands
Geographical Area: Alaska
Date: August 8, 2006

TAS Kim Wolke raising the American flag on the fantail of NOAA ship RAINIER

Kim Wolke raising the American flag on the fantail of NOAA ship RAINIER

Weather from the Bridge
Skies:
Cloudy (CL)
Visibility:
  10 nautical miles (nm)
Wind Direction:
West (W)
Wind Speed:
10 knots
Waves:
0-1 foot
Sea Water Temp. (
°C): 11.1
Sea Level Pressure:
1010.0 millibars (mb)
Temp. (
°C): 12.2 (air temperature)

Winding Down 

I’ve been keeping a running list of the Alaskan wildlife that I’m seeing along this excursion.  Some of the animals I’ve mentioned already are the puffins, bald eagles, Orcas, and Dall’s porpoise.  Occasionally while out in a kayak or survey boat or on a beach along the coastline I’ve also spotted harbor seals.  Their adorable little faces will emerge from the beneath the water and bob around, almost appearing at first to be kelp floating in the water.  While kayaking I’ve also seen two hauled out on rocks where they were almost mistaken for pieces of logs washed ashore.  They are very quiet and easily disturbed if you get too close.

A harbor seal (Phoca vitulina) on a rock.

A harbor seal (Phoca vitulina) on a rock.

Harbor seals (Phoca vitulina) are marine mammals most often associated with coastal waters. They periodically haul out of the water on sand and gravel beaches, reefs, sand bars, and glacial and sea ice to rest, give birth, and nurse their pups. Unlike many marine mammals, harbor seals do not make long annual migrations, however, they do move around considerably in a more localized area. At birth harbor seals weigh about 24 pounds. They gain weight rapidly during a month long suckling period. Average adults weigh 180 pounds.  Until about 5 years of age, there are approximately equal numbers of male and female harbor seals in a population. After that, mortality rates are much higher for the males, therefore female harbor seals becomes much more abundant.  Adapted to life in the sea, they can dive up to 600 feet (183 meters) and remain submerged for 20 minutes!  Some adaptations that allow for oxygen conservation in harbor seal are reduced peripheral circulation, reduced heart rate, and high levels of myoglobin (an oxygen binder). Harbor seals move under water by using their hind flippers for propulsion and their fore flippers as rudders. In Alaska harbor seals commonly eat walleye, pollock, Pacific cod, capelin, eulachon, Pacific herring, salmon, octopus, and squid.

The NOAA ship RAINIER in the distance in East Bight, Nagai Island, AK

The NOAA ship RAINIER in the distance in East Bight, Nagai Island, AK

Personal Log 

Today after all of the survey boats return we will begin our journey back to Seward, AK.  This leg of the RAINIER’S travels, as well as mine, are winding down.  All of the surveying is complete until the RAINIER leaves Seward, AK for its next leg early next week. I’ve already taken some meclizine to hopefully ward off any potential seasickness, as we will be underway for about 2 days once we take up the anchor.  It appears that with this end of surveying and the turning back of the ship there has also been a rather symbolic turn in the weather.  It has gone from incredible weather yesterday to a falling barometer, heavily cloudy skies, and a forecast calling for higher winds and waves.   I’m glad I went kayaking the past 2 days!

Kim Wolke, August 7, 2006

NOAA Teacher at Sea
Kim Wolke
Onboard NOAA Ship Rainier
July 23 – August 11, 2006

Mission: Hydrographic Survey of the Shumagin Islands
Geographical Area: Alaska
Date: August 7, 2006

Weather from the Bridge
Skies:
Cloudy (CL)
Visibility:
  10 nautical miles (nm)
Wind Direction:
West (W)
Wind Speed:
10 knots
Waves:
0-1 foot
Sea Water Temp. (
°C): 11.1
Sea Level Pressure:
1010.0 millibars (mb)
Temp. (
°C): 12.2 (air temperature)

Moonrise in Porpoise Harbor, Nagai Island, AK…. after 11pm!

Moonrise in Porpoise Harbor, Nagai Island, after 11pm!

Science & Technology 

Today has been the absolute best weather we’ve had since we left Kodiak.  The skies were clear, the water was calm, and the temperature was perfect!  This is after having a beautiful moonrise last night.  At 0700 I joined three other crewmembers for a few hours of shoreline surveying in the Porpoise Harbor area.  Shoreline surveys are different from the work we were doing previously. We needed to go out an hour earlier during the low low tide since rocks, ledges, and other shoreline features are more exposed at this time.  The purpose of our survey today was to confirm or disprove the existence of certain shoreline features that could not be verified by the LIDAR, such as the existence of rocks or islets.  Prior to the RAINIER doing their survey work, planes flew over the area using a technology called LIDAR, which stands for LIght Detection and Ranging. The distance to an object or surface is determined by the time delay between the transmission of a laser pulse and the detection of a reflected signal. This information helps in forming a model of the area.  The laser uses shorter wavelengths than radar would, therefore, a higher resolution image is produced.

TAS Kim Wolke operating the echosounder on a hydrographic survey of the Shumagin Islands in Alaska

TAS Kim Wolke operating the echosounder on a hydrographic survey of the Shumagin Islands in Alaska

The survey boat we were using today was equipped with a single-beam sonar system since we were in very shallow water.  The deeper water we were surveying on the other boats used a multi-beam system.  The boat went to designated areas and slowly moved in a series of figure 8s to get readings from the transducer mounted on the hull (bottom).  In addition to the readings being recorded on the computer system, an echosounder created a visual image of the soundings being received, called a “paper trace”.  My job was to operate the echosounder when we were logging data. Once we returned back to the ship, the data needed to be processed, similar to the processing of the data taken from the line surveys to eliminate any “noise”.

An immature Bald Eagle (Haliaeetus leucocephalus) taking flight

An immature Bald Eagle taking flight

While we were out on the survey boat, we saw an immature Bald Eagle (Haliaeetus leucocephalus) perched on a log on the coastline. The distinctive white head and tail of the adult Bald Eagle are not seen for 4-5 years on the immature eagles.  Bald Eagles, which are the symbol of our nation, are the second largest raptor (bird of prey) in the state of Alaska, with a wingspan of up to 7 ••• feet (2.3 m) and weights of 8 to 14 pounds (3.6-6.4 kg).  The Stellar Sea Eagle is the largest. The Bald Eagle is more abundant in Alaska than anywhere else in the United States. Their largest nesting densities occur along the islands of Southeast Alaska.  Bald Eagle nests are usually built close to water.  They will often use and rebuild the same next each year.  The male and female eagle work together to build their nest in early April and two to three eggs are usually laid by late April.  Once the chicks hatch after 35 days of incubation, they stay in the nest for another 75 days to grow and develop. The main diet of Bald Eagles is fish such as herring, flounder, pollock, and salmon as well as waterfowl, small mammals, sea urchins, clams, crabs, and carrion.

TAS Kim Wolke hoisting up the anchor ball as NOAA ship RAINIER anchors in East Bight of Nagai Island, AK

Kim Wolke hoisting up the anchor ball as the ship anchors in East Bight of Nagai Island, AK

Personal Log 

We moved the ship to the other side of Nagai Island again, this time to East Bight.  Each time we anchor, we need to hang out an anchor ball over the bow of the ship as a signal to other ships that we are anchored.  I had the opportunity to be the person to hoist up the anchor ball today. Like other things on the ship, there are certain traditions.  I had to actually wait for the anchor to begin being dropped before I could hoist up the anchor ball.

What amazing scenery surrounds us!  In mid-afternoon I went kayaking again with the acting CO, CDR Julia Neander. We were able to get close to the shoreline and discovered that there were little caves that went under the rocks in front of us.  It was tempting to explore further, but my better judgment restrained me from doing so.   There are such incredible geological formations in these rocks! As we paddled, many puffins circled around us and floated in the water. Not only did we see the horned puffin (Fratercula corniculata) today but there were also tufted puffins (Fratercula cirrhata). One easily recognizable difference in the two birds is the yellow tuft of feathers on each side of the tufted puffins head. Every time I tried to get a photo they’d all fly away!

CDR Julia Neander, acting Commanding Officer of RAINIER, kayaking in East Bight of Nagai Island

CDR Julia Neander, acting Commanding Officer of RAINIER, kayaking in East Bight of Nagai Island

Kim Wolke, August 6, 2006

NOAA Teacher at Sea
Kim Wolke
Onboard NOAA Ship Rainier
July 23 – August 11, 2006

Mission: Hydrographic Survey of the Shumagin Islands
Geographical Area: Alaska
Date: August 6, 2006

Weather from the bridge
Skies:
Cloudy (CL)
Visibility:
  10 nautical miles (nm)
Wind Direction:
West (W)
Wind Speed:
10 knots
Waves:
0-1 foot
Sea Water Temp. (
°C): 11.1
Sea Level Pressure:
1010.0 millibars (mb)
Temp. (
°C): 12.2 (air temperature)

TAS Kim Wolke kayaking in Porpoise Harbor in the Shumagin Islands in Alaska

TAS Kim Wolke kayaking in Porpoise Harbor in the Shumagin Islands in Alaska

Today was an absolutely beautiful day here in the Shumagin Islands.  By afternoon the clouds cleared out and the blue skies and sunshine took over. The acting Commanding Officer (CO) Julia Neander invited me to go kayaking with her, which I eagerly said yes to. We paddled along the coastline right into seagull territory.  Although the sounds of the ship’s engines were fading, the screeching seagulls filled our ears.

We also encountered many horned puffins (Fratercula corniculata), which are the cutest and silliest looking birds. They appeared to have some nesting areas on the rocky cliffs which they were trying to distract us from locating since they kept circling above us and flying away from the cliffs.  Puffins typically stay out on the open sea through the winter but come to the land in late spring to breed.  They are better built for swimming than flying which is evident when you see them fly.  Under water their wings are used to propel them while their webbed feet are for maneuvering.  To get airborne, they must run along the water surface before taking off.  From land, they dive off cliffs to gain enough speed for flight, using their feet to help change direction.  Puffins feed in flocks, eating mainly fish and zooplankton.  They will dive straight into the water and continue their motion as they swim to get their next meal.

Seagulls perched on a rock in Porpoise Harbor

Seagulls perched on a rock in Porpoise Harbor

LT Ben Evans, the acting Executive Officer (XO), invited the other TAS, Jackie Hams, and me to dinner in the Wardroom this evening.  Traditionally, the Wardroom is where the officers eat. Upholding tradition, the officers on the RAINIER have their meals there.  There’s even a seating arrangement, also based on tradition.  I felt honored to be asked to eat with the officers since the rest of the crew eats in the Crew Mess, which is where I’ve had all of my meals as well. After dinner this evening, I joined three of the NOAA divers and AB Leslie Abramson, who was snorkeling, as they did a recreational dive close to the ship. Since I am not a NOAA diver I was only able to stay on the skiff as they went under water. The water temperature was relatively warm at 52 degrees Fahrenheit. The divers all wore dry suits while Leslie wore a rather thick wet suit (7mm).  Everyone wore a hood, booties, and gloves, all as protection from the cold water temperatures.

SST Erin Campbell and SS Corey Muzzey check each other’s dive equipment before a dive.

SST Erin Campbell and SS Corey Muzzey check each other’s dive equipment before a dive.

A horned puffin (Fratercula corniculata) sitting on a cliff on St. Paul Island, AK.  Picture taken by Mike Danzenbaker.

A horned puffin (Fratercula corniculata) sitting on a cliff on St. Paul Island, AK.

Who’s Who on the NOAA ship RAINIER? 

What I’ve recently learned and find very interesting is that there are several NOAA scuba divers onboard.  Being a recreational diver, I was curious to learn about the NOAA divers.  To become a NOAA diver, you need to complete the NOAA diver-training program through the NOAA Diving Program (NDP).  Most of the training takes place at the facility in Seattle, Washington, however, in January there is also a class held in Key West, Florida.

Currently, there are six NOAA divers aboard the ship. They are: LT Ben Evans, ENS Sam Greenaway, Seaman Surveyor (SS) Carl VerPlank, SS Corey Muzzey, Senior Survey Technician (SST) Erin Campbell, and Able Seaman (AB) Jonathan Anderson.  Another NOAA diver not on this leg is the 3rd Assistant Engineer Mike Riley. In the fall, ENS Nathan Eldridge, SS Eric Davis, and AB Leslie Abramson are going for their NOAA diver training, which takes place over a three-week period.  SST Campbell and ENS Greenaway will also complete their Dive Master training in the fall.

AS Leslie Abramson putting on her hood in preparation for snorkeling.

AS Leslie Abramson putting on her hood in preparation for snorkeling.

NOAA divers have various jobs depending upon their locations.  Divers can deploy and retrieve scientific instruments, document fish and marine animal behavior, perform emergency and routine ship repair and maintenance, and investigate submerged objects such as shipwrecks for nautical charting. Aboard the RAINIER, one of the common jobs of the divers is to install tide gauges 10-15 feet below water.