Gail Tang: The Bitter End, September 1, 2023

NOAA Teacher at Sea

Gail Tang

Aboard NOAA Ship Oscar Elton Sette

August 4, 2023 – September 1, 2023

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS)

Geographic Area of Cruise: Hawaiian archipelago

Date: September 1, 2023

When referring to sailing knots, the bitter end signifies the end of the line (i.e. rope to non-seafarers). I thought this fitting, considering the conclusion of my rich time at sea! From interacting with the different deck crew, I learned different ways to tie knots—sometimes the same type of knot. For example, though I knew the bowline before I set sail, I didn’t have a process that stuck in my memory. With the aid of the crew, I solidified a process for myself. Exposure to different ways to tie a knot (or in the case of the mathematics classroom, different ways to approach a problem) gives the learner autonomy to choose a method that suits their learning. I also learned how to splice. See pictures below!

Science and Technology Log

stunning close-up photo of a bird in flight, must have been taken with a powerful telephoto lens
Adult Brown Morph Red-footed Booby. Photo Credit: NOAA Fisheries/Michael Force (Permit #MB03330)

In the final week, all science teams (birders, marine mammal observers, acousticians, plankton team) wrapped up and prepared to disembark the ship. Traveling a total distance of 4,819.2 km, Leg 2 spanned 28 glorious days at sea. The cetacean team tallied 90 visual sightings (visually identified 15 species) and 122 acoustic detections. The seabird side saw 37 species and 4,124 individuals. The plankton team completed 39 net tows on Leg 2 and totals 44 tows overall. The images below from the HICEAS Map Tour page detail the specific cetaceans sighted and heard. I also include some cetacean photos taken by the marine mammal observers (MMOs).

a whale bursts vertically out of the ocean with a mahi mahi fish grasped in its mouth. confusingly, in front of the whale is a dark round object, also mid-air; this must be the trash bucket lid
False killer whale (a priority species) catches a Mahi-mahi from under sea trash (bucket lid). Photo Credit: NOAA Fisheries/Ernesto Vasquez
beautiful view of a dolphin leaping mostly out of the bright blue water
Bottlenose Dolphin. Photo Credit: NOAA Fisheries/Gail Tang (Permit #25754)
a map of the Hawaiian Islands, including both the main islands and the outer islands in the Papahanaumokuakea Marine National Monument, with straight line segments showing the survey tracklines and a variety of symbols marking the locations of sightings of 17 identified species and 5 more unidentified species
Cetacean Sightings and their Locations. Photo Credit: NOAA Fisheries Map Tour
a map of the Hawaiian Islands, including both the main islands and the outer islands in the Papahanaumokuakea Marine National Monument, with straight line segments showing the survey tracklines and a variety of symbols marking the locations of acoustic recordings of 14 identified species and 3 more unidentified species
Acoustic Detections and their Locations. Photo Credit: NOAA Fisheries Map Tour
top down view of a cardboard box containing glass vials separated by cardboard dividers. most of the bottles are capped; the top row contains uncapped empty extras. the capped vials are grouped with lines of labeled colored masking tape, reading "Tow 6," "Tow 8," "Tow 31," etc. Two larger vials are stored among the small ones; the cardboard divider had to be opened to make them fit.
The plankton team completed 39 tows in leg 2! Photo Credit: NOAA Fisheries/Gail Tang

It was an incredible experience to witness science in action. I often referred to my time at sea as “Science Camp!” Cruise leader-in-training, Yvonne Barkley (featured in this previous blog post), briefly interviewed me for the HICEAS 2023 Map Tour. Aside from the science, she asked me what I’ll bring back home with me from this experience. I had to incubate on this question and after some reflection, realized that what I’ve gained are all the connections I made with my ship mates.

Gigantic mahalo to Fionna Matheson (Commanding Officer). We had many conversations during the Conductivity Temperature Depth operations and over meals. We bonded over being women in leadership positions, as well as sharing family stories. Thank you for a smooth cruise!

Gail and Fionna pose for a photo together seated in the galley
Gail Tang (Teacher at Sea) and Fionna Matheson (Commanding Officer) sharing a meal in the mess. Photo Credit: NOAA Fisheries/Suzanne Yin

Personal Log

My true purpose on the ship was to create crossword addicts. I love collaborating on crosswords, so I brought a book of Monday-Friday New York Times (NYT) crosswords on the ship. The book mostly stayed up on the flying bridge where someone “off effort” (someone not currently observing) would read clues for the marine mammal observers on effort. In many of our jobs, listening to music, audiobooks, podcasts, etc, help us focus on the work at hand; similarly, pondering crossword clues helped the MMOs concentrate on searching for mammals. By the end of the leg, Andrea Bendlin (MMO) printed out a clipboard full of more NYT crosswords, and both Suzanne Yin and Paul Nagelkirk (MMOs) made their own crosswords that incorporated both the science and the science team members. I’d say I left my legacy!

Marie sits in a swivel chair on the flying bridge holding a spiral bound book of crossword puzzles. at her left, Alexa kneels or crouches as she looks on get a closer view at the puzzle. Gail stands off to Marie's right, hands gripping the canvas shade covering above their heads, looking on as well. Gail has a radio hooked on her shorts.
Gail Tang (Teacher at Sea), Marie Hill (Cruise Leader) and Alexa Gonzalez (Acoustician) crosswording on the Flying Bridge. Photo Credit: NOAA Fisheries/Andrea Bendlin

Alexa Gonzalez (Acoustician) was one of my roommates! A Bachelor of Science in Marine Biology at University of Hawaii, Manoa initially brought Alexa from sunny California (Santa Clarita! We’re practically neighbors.) to sunny Hawaii. During her time at school, she volunteered for the Pacific Islands Fisheries Science Center (PIFSC) doing data entry and some monk seal responses for the Hawaiian Monk Seal Research Program. She also participated in outreach and marine mammal response for the Protected Resources Division of NOAA Fisheries Pacific Islands Regional Office. After graduation in 2018, Alexa had a fun job working on a tour boat wearing many hats as a deckhand, snorkel guide, and bartender. In 2019, she worked on monk seal population assessment efforts at the Hawaiian monk seal field camp at Holoikauaua/Manawai (Pearl and Hermes Atoll). Right after, she was recruited by the Science Operations Division to fill the role she’s in now, Biological Science Technician. She participates on different research projects at PIFSC as a diver, small boat operator, acoustician and lab tech. Below, you can see a photo of Alexa as a small boat operator on Malia.

Gail takes a selfie with Erik and Alexa visible over her left and right shoulders. Alexa stands at the helm of the fast rescue boat. The water churns with the boat's wake, and the sky is blue with only a few clouds low on the horizon. Gail, Alexa, and Erik wear hard hats and life vests.
Alexa Gonzalez (Acoustician) driving fast-boat, Malia, with Erik Norris (Acoustician), and Gail Tang (Teacher at Sea). Photo Credit: NOAA Fisheries/Gail Tang

Pizza and Mexican food top Alexa’s favorite food list, so what’s better than the fusion of the two at one of her favorite restaurants Asada Pizza in Sylmar, California. She loves to get the nopales pizza, topped with jalapeños and cilantro. Yum!! In my time with Alexa, I’ve come to learn the meaning of a quiet sort of connection. We didn’t have to converse much to enjoy each other’s company whether we were decorating Styrofoam cups to crush, playing guessing games in the acoustics lab, or doing crosswords! The lengthy down times made me very thankful for Andrea’s nail polish. Alexa and I had a spa night in the forward mess with Jason Dlugos (3rd Assistant Engineer) and Paul Nagelkirk (MMO).

close-up of Jason looking toward the ceiling as he holds up his hands to show off sparkly blue nails (on his right) and sparkly purple nails (left). He is wearing a brightly colored Hawaiian shirt.
3rd Assistant Engineer Jason Dlugos shows off the sparkles in his eyes and nails. Photo Credit: NOAA Fisheries/Yvonne Barkley

While most of us keep aurally busy while we work with our hands, the acousticians keep their hands busy while listening for cetaceans! Jennifer McCullough (Lead Acoustician) brought a never-ending supply of pipe cleaners to build objects. See some of the creations below!

Food and Career Blog

I will really miss the meals aboard the Sette as well as all the conversations shared. Mahalo to all the stewards and friends who made sure I was fed, especially during teaching hours!

As mentioned before, I tried to do one small thing that I did not do the day before to break up the routine. This week’s major routine-break involved Hawaiian shave ice, put on by Verne Murakami (1st Assistant Engineer)!! Though I recognize that sweets can taste good, I generally prefer savory, sour, or spicy foods. Regardless, I had a blast making shave ice for others. In particular, Zack High (General Vessel Assistant–GVA) and Paul Nagelkirk (MMO) allowed me to make their shave ices. First, a scoop of ice cream, then some ube. Shaved ice fills the cup, coming to a mound above the lip. Flavored syrups like mango or blueberry color the ice. Finally, a sprinkle of ling hing mui accents.

Gail smiles at the camera as she pours blue flavored syrup onto a cup of shave ice. In front her we see open containers of vanilla ice cream, bottles of other flavored syrups.
Gail Tang (Teacher at Sea) prepares shave ice for friends. Photo Credit: NOAA Fisheries/Suzanne Yin

Zack went to maritime school at Mid-Atlantic School in Norfolk, Virginia. Afterwards, he completed an internship on a vessel with the U.S. Navy’s Military Sealift Command. He learned basic CPR, safety and training, completed his Standards of Training, Certification and Watchkeeping. One of his professors sent his resume to NOAA and a year later, Zack started working in Nov 2021 on the Sette! Though he started in the deck department under Chris Kaanaana (Chief Boatswain/Bosun), two months later, he transferred to the engineering department for a different career opportunity. As part of his role as a GVA, he goes on watch, does rounds, goes down to the main control room to take readings, goes up to the main deck to record temperatures of freezers, look for leaks or other signs of disrepair.  He hopes to become a licensed engineer with aspirations to go into private industry or another federal branch. Zack is a big fan of weight lifting and loves fishing with Verne, catching big tuna and mahi mahi. He calls himself a gearhead because he likes working on cars and going to car shows. He also enjoys going to see live music; his last show was an underground punk concert in Seattle. He would like to start hiking. Zack likes boxing and he even gave me a little lesson on the ship!

Paul went to Michigan State University and majored in environmental biology and zoology. He became a fisheries observer in the Bering Sea and then later worked in oil and gas mitigation in the Gulf of Mexico to reduce environmental impacts due to noise pollution. In 2013, he started both ship and aerial surveys with NOAA. In the aerial surveys, the plane follows transect lines 600ft over the water.

Paul has also conducted aerial surveys of the North Atlantic Right Whale through the New England Aquarium. The New England Aquarium is the pioneer and premier research institution for the Right Whale. They run the individual ID catalog for the North Atlantic Right Whales (see https://rwcatalog.neaq.org/#/). They know the whales’ relationships to each other since they perform year to year tracking for conservation efforts. Climate change alters the whales’ prey locations, causing them to move farther north towards Canada. Further, they are susceptible to entanglements from the lobster and crab industry as well as collisions from ship traffic because they tend towards the coast. The number of North Atlantic Right Whales left is disturbingly low, about 350, landing them on the endangered species list.

Paul and I became fast friends. I affectionately call him my “worstie”, but he really is a “bestie”. We shared his favorite food (Detroit-style pizza) at Pizza Mamo in Honolulu–I highly recommend! His other hobbies (some of which we share) include Wordle, biking, hiking, and disc golf.

Paul smiles for the camera and holds up his cup of shave ice in his upturned palm. We can see his sparkly blue nail polish.
Paul Nagelkirk (MMO) is pleased with his shave ice.

Many Mahalos

A very special mahalo to Cruise Leader 💞Marie Hill💞. Marie’s charm brought much energy to the science team. Her vibrant character will be missed!

Gail, Marie, Suzanne, wearing hard hats and life vests, post for a close-up photo.
Gail Tang (Teacher at Sea), Marie Hill (Cruise Leader), and Suzanne Yin (MMO) during HARP retrieval. Photo Credit: NOAA Fisheries/Suzanne Yin

Regrettably, my career highlights lack comprehensiveness. Give me another month, Teacher at Sea Program 😉, and I could feature everyone. I include some visual shout-outs in the images below!

Logan, wearing a hard hat and life vest, stands at the control panel (facing away from the camera) near the rail at sunset. Left hand on the panel, he leans his right arm over the railing, and looks over his right shoulder, gazing intently over the water.
Logan Gary (Able-bodied Seaman) deploying the CTD during sunset. Mahalo for all the fun, especially singing Part of Your World on the boat deck! Photo Credit: NOAA Fisheries/Gail Tang
Chris stands under a davit on the ship's deck. The ship appears to be docked, as we can see land in the background.
Mahalo, Chris Kaanaana (Chief Boatswain/Bosun), for all your years of service aboard the Sette!
Kym and Gail, arms around each other, pose for a photo in front of NOAA Ship Oscar Elton Sette in port.
A myriad of mahalos to Kym Yano (Cruise Leader-in-Training) for answering my many questions before going underway and welcoming me ashore with an Ilima and Tuberose lei. I’ll miss you!
16 people pose for a photo on the deck of NOAA Ship Oscar Elton Sette with a whiteboard sign reading "HICEAS 2023 Leg 2!" In the background, we see the water of the harbor and mountains beyond. Everyone in the photo is arranged according to the color of their shirt in rainbow order.
Mahalo to all the scientists that cared for me, showed me the ropes, and involved me in all aspects of the science. Every rainbow I see will forever be a reminder of you. Photo Credit: NOAA Fisheries/Nich Sucher

Did you know?

You may be familiar with the duality of the word “aloha”, embodying both a greeting and a farewell. My exposure to new meanings of “aloha” through Chef Chris’s Aloha Kitchen: Recipes from Hawai’i cookbook by Alana Kysar inspired me to learn more. According to the Hawai’i Law of the Aloha Spirit,

“‘Aloha’ is the essence of relationships in which each person is important to every other person for collective existence. ‘Aloha’ means to hear what is not said, to see what cannot be seen and to know the unknowable.” 

To all my community aboard the Sette, aloha.

view of a pen-and-ink drawing of NOAA Ship Oscar Elton Sette across the spread of a moleskin notebook, placed on a desk, surrounded by pens and other little desk objects
NOAA Ship Oscar Elton Sette through the eyes of Gail Tang (Teacher at Sea). Photo Credit: NOAA Fisheries/Gail Tang

Gail Tang: HARPs and Hearts, August 25, 2023

NOAA Teacher at Sea

Gail Tang

Aboard NOAA Ship Oscar Elton Sette

August 4, 2023 – September 1, 2023

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS)

Geographic Area of Cruise: Hawaiian archipelago

Date: Aug 25, 2023

Science and Technology Log

Visually surveying for marine mammals has its limitations because they spend so much time underwater. To account for these limitations, a number of acoustic techniques are used to study cetaceans (whales and dolphins). There are four main passive acoustic instruments used by the Pacific Islands Fisheries Science Center’s Cetacean Research Program during ship surveys: towed arrays, drifting acoustic spar buoy recorders (DASBR), high-frequency acoustic recording packages (HARP), and sonobouys. Each instrument has its pros and cons so the data from each instrument provide a fuller picture of what’s under the sea.

On board the ship, every morning just before sunrise the acousticians deploy the towed array of hydrophones, which streams 300 m behind the ship. ​​The towed array provides real-time information on calls and clicks of the whales and dolphins. Each section of the towed array has three hydrophones and a depth sensor (see picture below). The design comes from the National Marine Fisheries Service and are all built by Lead Acoustician Jennifer McCullough (to read more about Jennifer, see my previous post). While the towed array can pick up sounds from the cetaceans around the ship in real-time, it also picks up the sounds of the ship, thus obfuscating other calls. As such, autonomous recorders (DASBRs, HARPs, and sonobouys) are used to collect more data, as well as match species data collected from the towed arrays.

view of the array resting on deck - it looks like curled up plastic tubing (with some purple sections) connected to a cable
A section of the towed array with three hydrophones (seen in purple). Photo credit: NOAA Fisheries/Gail Tang
on deck, Jennifer stands at a large spool in the center while Alexa leans over a coiled pile of cable attached to the plastic tubing that contains the hydrophones. Erik stands near the railing to help guide the array to the water.
Acoustician team Jennifer McCullough, Alexa Gonzalez, and Erik Norris deploy the towed array. Photo Credit: NOAA Fisheries/Gail Tang
illustration of the ship at the surface of the water (depicted by a horizontal line) with the array towed behind at a depth of about 10 meters. an inset box shows a larger illustration of the two arrays - one "end array" and one "inline array" with 20 m baseline cable in between. the three hydrophones in each array are spaced 1  m apart from each other.
A depiction of array towed behind a ship. Photo Credit: Barkley et al. (2021 p. 1122)

The HARP is a long-term acoustic recorder that sits on the seafloor at depths of 650-900 m depending on the site. Developed by the Whale Acoustics Lab at Scripps Institute of Oceanography, they are site-specific and sit out for one to two years. The one we retrieved during Leg 2 was deployed August 2022. The HARPs provide 1) time-series data that help with understanding seasonal occurrence of cetaceans and other marine life, 2) periodic data on the presence of animals that pass through the site, and 3) ocean noise reference points. The latter is important in measuring the potential impact of ship and construction noise on marine mammal behavior. For example, slowly over time, blue whales are shifting their call types to a lower frequency to compensate for the rise of ocean noise in their natural call range (Rice at al., 2022).

Matt, wearing a blue hard hat, a life vest, and gloves, stands on deck, tethered to something on deck by a yellow strap hooked into the back of his life vest. We are looking down at him as he faces away from the camera, hands raised in the air to guide a large yellow piece of equipment as a crane lifts it back on deck. Matt grasps a line (rope) connected to the crane's hook with his left and uses the right to steady the equipment.
Matt Benes (Able-bodied Seaman) retrieves HARP. Photo Credit: NOAA Fisheries/Suzanne Yin

DASBRs are floating acoustic recorders deployed from the ship and retrieved sometime between 1-30 days later depending on their location from the ship. The DASBR collects acoustic data away from the ship and at a depth deeper in the water column than the towed array (about 150 m from the surface). This means there’s no noise from the ship that may disturb the animals and no surface noise from crashing waves or rain. A clear advantage of the DASBR is its ability to record beaked whale vocalizations, super high-frequency echolocation clicks.  Beaked whales are only vocal during the lower portions of their foraging dives, which last for about 60-90 mins. On the ship with the towed array, we don’t spend enough time to capture their vocalizations. The DASBR on the other hand has time to capture an entire dive cycle of a beaked whale. Depending on the frequency and amplitude of the animal, the distance at which the DASBR can detect animals (or detection range) varies by species. For example, Kogia (pygmy and dwarf sperm whales) need to be near the sensor and facing it to pick up their calls, while the baleen whales have a larger detection range. To give you an idea of the overall advantages of the DASBR, it can pick up about 10 times more cetaceans than the towed array and help us learn more about their vocalizations and study their habitat range.

Matt, wearing a hard hat, life vest, gloves, and a harness, tethered by a yellow strap to something on deck for safety, looks away from the camera, into the dark of the ocean at night. a spotlight extending from an upper deck highlights the location of the DASBR in glowing blue light.
With grapple hook in hand and eyes on the DASBR, Matt Benes (Able-bodied Seaman) prepares for retrieval. Photo Credit: NOAA Fisheries/Marie Hill
screenshot from Google Earth of the Hawaiian Islands showing segmented lines outlining a path north of the islands. some segments are labeled with dates from Aug 26 to Sept 1 (back at Honolulu). a short yellow arrow and a green parabola show the locations of DASBR 4 and 3 respectively.
This map shows the tracklines where we surveyed, as well as the DASBR paths. Photo Credit: NOAA Fisheries/Marie Hill

There are many recorded calls for which there is no visual match, so sonobouys are deployed after the visual team identifies a particular baleen whale species. Because the ship masks the very low frequency sounds made by most baleen whales, sonobouys are deployed to evaluate their call types. The hydrophones in the sonobouys are set at 90 ft from the ocean’s surface and they collect data for up to 8 hours.

I like the idea that these four instruments work in concert towards a shared goal, each with its strengths and weaknesses.

Career Log

The information above was provided by the acoustics team. I will focus on a couple in particular, Yvonne Barkley (Cruise Lead in Training) and Erik Norris (Acoustician), who met on NOAA Ship Oscar Elton Sette 13 years ago!

Eirk and Yvonne on deck; Yvonne is seated in an observation chair and Erik is holding his right arm out to take the selfie
Erik Norris (Acoustician) and Yvonne Barkley (Cruise Lead-in-Training)

Yvonne Barkley first went to University of California, San Diego and then transferred to Santa Barbara City College for a pipeline into University of California, Santa Barbara (UCSB). At UCSB, she studied aquatic biology.  A friend told her about a temporary job as an acoustic analyst for a local research firm invested in mitigating the impact of oil companies on the bowhead whale migration through the Beaufort Sea. It is at that job that she received her first acoustic training. On a path towards marine mammals, Yvonne’s cousin alerted her to an internship at the US Navy’s Marine Mammal Program in Pt. Loma, California prepping dolphin food, cleaning, etc. The program itself trained bottlenose dolphins to be swimmer detectors and California sea lions to be sea mine detectors! For example, bottlenose dolphins are used at different naval bases and combat zones to detect anomalous scuba divers. Yvonne was accepted into the internship where a seminar given by a NOAA Fisheries representative piqued her interest about marine mammal research. She found an acoustic analyst internship at the Southwest Fisheries Science Center (one of NOAA’s six science centers). There, she learned about field projects to collect cetacean data at sea for months at a time. In contact with Erin Oleson (HICEAS 2023 Chief Scientist), she embarked on her first mission from Hawaii to Guam in 2010 on the very ship we are currently on! That cruise brought Yvonne and Erik together, but more on that later.

After collecting data that weren’t intended to be used in stock assessments, like a true scientist, Yvonne began to wonder, “How can we use these data?” This curiosity, the advancement of acoustic data collection methods, and the drive to uncover data gaps in the literature converged into a puzzle for Yvonne to solve. I listened in awe as Yvonne described the three main chapters of her doctoral thesis. The first one involved species classification for false killer whales (a priority species for HICEAS). Her research used whistle data to distinguish the whales acoustically at the population level. She found that the classification machine learning model yielded low accuracy rates. Access the paper here: https://www.frontiersin.org/articles/10.3389/fmars.2019.00645/full

The next chapter focused on improving localizing methods for deep diving whales using sperm whale acoustic data. I was drawn to the research of this chapter because of the modeling components.  Probabilistic models are used to estimate the location of cetaceans. An ambiguity volume is an example of such a probabilistic indicator.  It is computed from source location estimates that are most accurate to the actual measured locations. As the number of different detections for the same whale at different positions from the ship increases, the ambiguity volume decreases, thereby narrowing down the possible location of the whale. The increased location accuracy is depicted in the figure below through the progression of subfigures a) – f); subfigure a) has fewer detections for the same whale than subfigure f). As we move to subfigure f), we can see that the margins of location estimates are much smaller, giving us a more accurate location estimate for the whale.  https://pubs.aip.org/asa/jasa/article-pdf/150/2/1120/15349527/1120_1_online.pdf

Six subfigures showing three dimensionsal plots. the Y axis shows depth, from zero to -3000 m below sea surface. the x and z axes are West-East km and North-South km. caption reads: "Fig 2. Cumulative ambiguity volumes [(a)-(f)] for detections of simulated echolocation clicks from a stationary whale located 1.2 km directly below the transect line (denoted by a white asterisk.) The product of all volumes results in a volume representing all possible location estimates for the whale (f). The color scale represents the ambiguity volume values ranging from 0 (white) as low probability to 1 (black) as high probability. The dotted lines (white or black) indicate the trackline traveling in the direction of the arrow."
Progression of ambiguity volumes as detection data points increase. Photo Credit: Barkley et al. (2022, p. 1122)

The final chapter used the ambiguity volumes for location estimates from the previous chapter and available environmental data from remotely sensed satellite data sets that lined up with those locations to learn about the habitat preferences of sperm whales. Check out the paper: https://www.frontiersin.org/articles/10.3389/frsen.2022.940186/full

Erik Norris got his Bachelor’s degree at James Madison University in integrated science and technology. He was initially working with energy production and city planning, dredging company shipping channels up and down the east coast.  He left and traveled for a while. When I asked him to share one of his fondest memories, he mentioned his time in a small fishing village called Nomozaki, Japan. What struck him most about this village was the community-oriented nature of the villagers. At the end of the day, local fishermen took a portion of their catch of the day and shared it with the entire village. The whole community came out to have a big party together, enjoying the catch and the company. The expression of an economy focused on people rather than on profits really speaks to me. I am reminded of a couple of quotes from Braiding Sweetgrass by Robin Kimmerer:

“A gift comes to you through no action of your own…the more something is shared, the greater its value becomes. This is hard to grasp for society is steeped in notions of private property, where others are by definition excluded from sharing.”

(Kimmerer, 2013, p. 23 and 27, respectively)

While Erik worked on a boatyard, he saw people working on the escort vessel for the Hōkūle’a, a wa’a (voyaging canoe) that uses traditional Polynesian wayfinding techniques (no technology, not even a watch) to navigate the ocean. (The Hōkūle’a is currently on its 15th voyage. Follow along here: https://hokulea.com/moananuiakea/). He approached the crew and volunteered to work on the escort vessel in-port. When the vessels were ready to commence their voyage, Erik had become so familiar with that vessel that they asked him to join, which turned into a 6-month journey. When I inquired about Erik’s attraction to the maritime industry, he quipped that he’s Moana from the Disney movie. For the sake of research, I had the ship’s movie DJ, Octavio De Menas (General Vessel Assistant), put on the movie. From what I gathered, this quote from Moana’s song “How Far I’ll Go” must represent his draw to the ocean:

“See the line where the sky meets the sea, it calls me.”

Moana

Through conversations with others on the ship, it seems like the ocean has a similar allure for many. Having been out here for three weeks, I get it. We first saw land last week and it felt like an intrusion. Enough about me, back to Erik!

Later, while talking to his friend’s dad who was a NOAA Corps Officer about his passion for the ocean, he joined the NOAA Corps himself. He met Yvonne as an Ensign on the Sette. He went on to become Lieutenant Junior Grade, and then “retired” from NOAA Corps as a Lieutenant because he was about to rotate from his land billet at Pacific Islands Fisheries Science Center (PIFSC) to another land billet which would have taken him away from Hawaii. He found a civilian job in Hawaii with PIFSC as a vessel operations coordinator in charge of small boats, fabrication and design, field logistics, and HARPs. He attributes his entry into the world of acoustics to Yvonne and HARPs. His current interests include using autonomous vehicles (e.g. sea glider) for a range of oceanographic environment missions.

I asked Yvonne and Erik the same questions separately and we laughed about the different approaches they took in their answers. Erik first noticed Yvonne because she was moving equipment and he was in charge of the equipment on the ship. Yvonne first noticed Erik’s sense of humor juxtaposed with her expectations from someone in the uniformed services. On their time at sea, they shared conversations over meals. Erik was captivated by the way Yvonne talked about her oma’s (grandmother’s) Indo-Dutch cooking. For more on Erik and Yvonne’s food connection, visit the Food Log below. Once in Guam, Yvonne was struck by Erik’s thoughtfulness in preceding her on a hike in the jungle so he could clear off all the spider webs; his distaste for spiders elevated Yvonne’s appreciation for his sacrifice. This is not the only time Erik put Yvonne before himself. Yvonne was really sick in Bali and ended up in a hospital in Malaysia. Erik took leave from work and (according to him) flew to comfort her and accompany her home. According to others, he rescued her. With a ring attached to the keyring on his swimming trunks, under a rainbow and surrounded by sea turtles, Erik proposed to Yvonne while surfing. They have been married since 2016. They currently live in their house, Gertrude, with their dog Sweetpea.

Personal Log with Career Highlight

I started teaching this week. Classes are going well! Shout out to my Abstract Algebra students who never cease to amaze me with their curiosity and courage. Brave Space–IYKYK! I told them our picture below looks like the Brady Bunch, which they did not understand so they have additional homework to watch the opening credits.

a screenshot of a zoom meeting between Gail (on the ship) and 9 students (two sharing a window), creating a 3 x 3 collage
University of La Verne’s Fall 2023 Abstract Algebra class!

Everyday, I try to do one thing I didn’t do the day before. I had two memorable events from this week. The first was during drills. We have weekly fire and abandon ship drills, so this week a few of us practiced the fire hose off the bow. Below you can see Yvonne assisting me as I cycled through the different spraying options.

view from an upper deck over the bow as Gail sprays the firehose over the railing and Yvonne help steady the hose
Gail Tang (Teacher at Sea) and Yvonne Barkley (Cruise Lead-in-Training) test out the fire hose during weekly drills. Photo Credit: NOAA Fisheries/Ernesto Vásquez

The second non-routine thing I enjoyed was helping Joe Roessler (Electronic Technician–ET) install a cable to the outdoor wifi antenna. Our work is the reason I can compose this blog post on the boat deck in my outdoor office, wind whipping my hair to the sounds of the ships’ wake. We worked in the trawl house to solder connector pins to cable ends. Joe’s approach to teaching is familiar. In my classrooms, I provide the tools for students to solve problems with very little instruction. If they need some, I am there to help answer questions. Joe set up the soldering station, provided the leatherman, rubber tape, the connectors, the cable and we went to work. There were many parallels in his methods and mine. We first attempted a connection to the cable, but the pins were not sitting right. Joe evaluated the situation and quickly thought of a different approach to connect the cables. Trying a solution and then pivoting when it doesn’t work out is a skill we try to develop in my classes!

Joe got his amateur radio license at 13! At that time, kids were particularly into shortwave radio because of the US human moon landing. As a young adult he went to the Navy for naval aviation aircraft maintenance. After he was discharged from active duty, Joe continued working in the Naval Reserve and also at private sector companies where he tested robotic equipment. Later, he joined the Civil Service as an aircraft electrician at a naval air rework facility in San Diego. He then transferred to the Army at Dugway Proving Ground in Utah where he returned to the position of an ET. Joe worked with a biological integrated detection system for weapons of mass destruction, in biological warfare defense, with instrumentation and testing equipment and research development. He took a short 4-year detour a businessman and realized it was not what he wanted to do. NOAA had openings in Seattle so he applied and was hired! His first season was on NOAA Ship Rainier in Alaska. Having had enough of the cold weather, he asked for a relocation to Hawaii. He worked on our very ship, the Sette, installing equipment before its very first mission! He met his wife in Samoa and has been working for NOAA 22 years! 

Joe, wearing a hard hat and sunglasses, stands for a photo in the middle of his office, surrounded by electrical boxes and wires. He is wearing a t-shirt that reads: Don't fear the beard. He has a beard.
Joe Roessler (Electronic Technician) in his office! Photo Credit: Gail Tang

Food Log

This week Chef Chris Williams [see previous blog post for more about Chris] made some yummy meals, my favorite pictured below!

When Erik first mentioned Yvonne’s Oma’s Dutch-Indo cooking, I was intrigued because I haven’t had much of either, let alone their fusion. Though Erik insisted that all of Yvonne’s dishes are his favorite dish, after much encouragement he narrowed it down to Oma’s croquette recipe. It’s a fried potato dish with meat inside, best when served with Chinese or Dijon mustard. Yvonne’s favorite dish is her oma’s lemper ayam. The moment she mentioned that it’s sticky rice stuffed with chicken inside I asked if it’s wrapped in any type of leaf. After researching some recipes, I found that it’s traditionally wrapped with banana leaves. 

photo of sticky rice stuffed with chicken wrapped in banana leaves
Lemper. Photo Credit: Wikipedia

I am going to search for lemper when I get home because I have a certain fondness for food wrapped in leaves. I am particularly tickled by the similarities in leaf-wrapped food across different cultures. For example, there’s law mai gai (wrapped in lotus leaf with Chinese origins), zong (wrapped in bamboo leaf also with Chinese origins), dolmas (wrapped in grape leaves with origins in the Levant), tamale (wrapped in corn husk with Aztec origins), and cochinita pibil (wrapped in banana leaves with Mayan origins). This may be a stretch, but I also like onigirazu/handrolls/onigiri (wrapped in seaweed with Japanese origins) and gimbap (wrapped in seaweed with Korean origins).

There is even a Hawaiian version of a leaf-wrapped food called lau lau! It was the second thing I tried when I landed in Honolulu. Usually lau lau consists of pork and salted butterfish first wrapped in kalo (taro) leaves, which are edible, and then in ki (ti) leaves, which are not edible. Finally, traditionally it is steamed in an imu pit (underground pit). It can be found in restaurants and served at luaus. Though it was new to me, it felt so wonderfully familiar.

While searching for the history of lau lau, I found a beautifully written memory that describes lau lau as an embodiment of the beach, the valleys, and the mountains through the ingredients of butterfish, kalo/ki, and pig. Not only does the final product connect these landscapes, but the preparation connects families and friends.

“Early Hawaiians lived in valleys that provided them protection and food. Villages were organized by families and by land divisions, which, in old Hawaii, were divided from the beach to the mountains. That meant that each village and family had complete accessibility to the beach and the mountains and all their offerings. Lau Lau represents these familial land divisions because its ingredients come from the beach, the valleys, and the mountains. The preparation was always my favorite part, because we’d be together for hours sharing stories, laughing, and having fun. Wrapping Lau Laus was where we all became familiar with who we were.”

 Chad Schumacher, https://www.familysearch.org/en/blog/family-recipes-lau-lau

Did you know?

The Big Dipper points to the North Star and the angle of elevation from the horizon to the North star is your latitude! This tip was brought to you by Erik Norris, himself.

Gail Tang:  One Day Older in an Instant, August 21, 2023

NOAA Teacher at Sea

Gail Tang

Aboard NOAA Ship Oscar Elton Sette

August 4, 2023 – September 1, 2023

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS)

Geographic Area of Cruise: Hawaiian archipelago

Date: Aug 21, 2023

Ship Layout

It’s hard to capture the feeling of the ship with pictures or words, but alas, here is an attempt! The ship essentially has 5 levels. The lowest is mostly the engine room plus a small space for the gym and laundry. The next level (my favorite) is the Main Deck, which has some staterooms but more importantly, the Mess, the Galley (kitchen), and the Forward Mess. The next level is the 01 Deck which houses Acoustics, the E-lab, the survey technician’s office (where I teach), and many of the staterooms (including mine!). Above the 01 deck is the 02 deck where most of the NOAA Corps Officers and some engineers sleep. Then there’s the Bridge where the officers drive the ship in the company of a deck crew member on watch. Finally, the Flying Bridge is the cherry on top! The birders and marine mammal observers do all their sightings from up there.

Science and Technology Log with Career Highlights

striking photo of a bird in flight, seen from underneath: mostly white, with a sharp orange bill, little webbed black feet tucked backward, and a very skinny red tail
Red-tailed Tropicbird. Photo Credit: NOAA Fisheries/Ernesto Vasquez

Michael Force (birder) and Ernesto Vázquez (marine mammal observer – MMO) are two amazing photographers on board. They helped me with the settings on my camera to capture the wildlife (shutter priority, auto ISO, center focus, continuous shots, fine detail). The first photo is a photo of a tropicbird taken by Ernesto. 

Ernesto started with one semester at Universidad Nacional Autónoma de México (UNAM) where he was an honors student in his math classes, but failed in other classes. Drawn by his love of diving and the sea, he left to go to La Paz, and started at Universidad Autónoma de Baja California Sur, located next to the waters of the Gulf of California. He majored in marine biology, and took ecology applied statistics, general physics, Calculus 1 and Calculus 2. By his 3rd semester, he started doing community engagement at the university at an AMNIOTS lab, where his interest in cetaceans began.

While he joined multiple projects, the humpback whale ecology was his favorite. It is there in Cabo San Lucas where he learned photography for species identification and how to use the crossbow for sampling. He also became acquainted with specialized software to interpret data, which became a very useful skill for his future.

After graduation, Ernesto went to Ensenada to start his Master’s program. However, the scholarship and program in which he was enrolled disappeared, so he started looking for jobs. His first NOAA project was focused on the vaquita (a porpoise on the brink of extinction). It was a binational expedition in the Gulf of California for 2 months. In 2000, he joined a 3-year project on the eastern tropical Pacific, which was basically surveying a water mass the size of the African continent. On board, he estimated dolphin group sizes associated with tuna fishing operations. Since then he’s been joining similar expeditions that take him to places like the Galapagos and Alaska as part of the biopsy team.

I have such fondness for Ernesto because we shared many meals and many conversations during our leg 1 in-port. He has a calming and reassuring nature to his leadership style. In a subsequent leg of the HICEAS, he’ll be moving to NOAA SHIP Reuben Lasker to be a senior observer! Well-deserved, Ernesto!

photo, mostly in silhouette at sunrise, of  Ernesto working at a computer station on the deck; the big eyes binoculars are mounted to the right  the photo; the sky is dark blue with light just beginning to enter from the horizon
Ernesto Vásquez (MMO) setting up WinCruz as the sun rises. Photo Credit: NOAA Fisheries/Gail Tang

I sat with Michael Force to learn more about the Red-tailed Tropicbird. I found out that the mariner’s name for tropicbirds is bosun bird, because their whistle resembles the call of the bosun’s whistle, formerly used to muster the deck crew. The Red-tailed Tropicbird is the largest of the three tropicbird species and is most common in the Papahānaumokuākea Marine National Monument. It’s a ground nester, placing its nest under bushes to help shade them from the intense tropical sun. They love to eat flying fish and will travel far for food to bring back to their chicks. They dive from great heights with a spectacular vertical plunge. They are commonly attracted to ships and often fly around the highest point of the vessel; a goose-like croak will announce that one has snuck up behind us. Adult survival is very high because predation pressure at sea is very low. Rats, mice, and cats are predators ashore, especially for the young since they are unprotected in their ground nests. 

Their two elongated red tail feathers were highly valued by native Hawaiians, especially in crafting kāhili. These intricate feather posts accompanied royalty during events like battles, or large ceremonies. Dawn Breese (birder) gave me an extensive tour of the different kāhili at the Bishop Museum while we were in-port awaiting Leg 1. To learn more, visit the links in the reference list below.

view of elaborate feathered posts (10-15 feet tall?) mounted in a glass case in a museum
Kāhili Room at the Bishop Museum. Photo Credit: https://casabouquet.com/bishop-museum-oahu/

Michael’s interest in birding started at the young age of 7 or 8! Completely self-taught, he boarded his first commercial vessel at 16 for a pelagic seabird trip out of Westport, Washington, organized by the late Terry Wahl, a professor and esteemed seabird biologist at Western Washington University, Bellingham. The Westport pelagic trips were famous in the birding community. Using sport fishing charters to take landlubbers to Grays Canyon, an area rich in marine diversity, these trips were always well-attended.  As a native of Vancouver, British Columbia, Westport, only five hours south, was a convenient location to reach the open sea and Michael was hooked.

Through Terry, he heard that Southwest Fisheries Science Center (one of six NOAA’s science centers) was looking for a volunteer observer for a 4-month voyage of the Eastern Tropical Pacific, thus began his NOAA journey. He interspersed seabird and NOAA trips with his studies at the University of British Columbia, where he majored in geography. The Snow Petrel is Michael’s favorite bird because it’s a unique Antarctic seabird, closely associated with ice, and is the world’s only pure white petrel.

Michael Force (Birder) using an improvised rangefinder (device to estimate distances to objects). Photo Credit: NOAA Fisheries/Suzanne Yin.

I appreciate Michael’s quirkiness. I once told him that because of my eyesight, I only want to see the cetaceans if they are really close to the ship. He teased, “close enough you can poke them with a stick!” Thanks for the laughs, Michael!

amazing photo of a bird, seen from above flying away from the camera, as it  catches a flying fish in its bill. the bird is mostly white with black tipped wings and a gray bill.
Red-footed Booby catching a flying fish. Photo Credit: NOAA Fisheries/Michael Force
a bird, photographed from above flying low over the ocean surface and away from the camera, closely pursues a flying fish in "flight" entirely out of the water, its pectoral fins extended outward like an airplane
Brown Red-footed Booby polymorph pursuing a flying fish. Photo Credit: NOAA Fisheries/Michael Force

The Red-footed Booby is the only polymorphic (having different color morphs) booby. The brown polymorph dominates the eastern Pacific. Their red feet are a breeding adaptation; the redder the feet, the more likely they’ll find a mate—ooo la la. Unlike other birds, Red-footed Boobies do not use their breasts to incubate their chicks; they use their webbed feet! They also have a secondary set of nostrils to keep water out when they’re fishing and a clear membrane over their eyes that act like goggles. I personally enjoy watching them attempt to land on the jackstaff on the ship because sometimes they put out their landing gear and can’t quite bring it to fruition, so their little red webbed feet just dangle around in the wind, splayed open.

Juan Carlos (marine mammal observer-MMO) likes to see Fraser’s dolphins because they are a rare sight. On the shy side, they tend to run from the boat. Though Juan Carlos has not often seen Fraser’s dolphins with other groups (he’s seen them with melon-headed whales), according to whalefacts.org, they are fairly social and will often hang with false killer whales (a HICEAS priority species), melon-headed whales, Risso’s dolphins and short-finned pilot whales. The other MMOs like to tease the Fraser’s dolphins for their T-rex-like pectoral fins.

a Fraser's dolphin on the down-arc of a leap out of the water. its rostrum is at the ocean's surface. with effort we can see its small (supposedly t-rex like) pectoral fins. its tail is obscured in ocean spray.
Fraser’s dolphin. Photo Credit: NOAA Fisheries/Gail Tang (Permit #25754)

Coincidentally, Juan Carlos (JC) went to the same college as Ernesto in La Paz! He started observing marine mammals while still in school at a tourist company running dolphin tours. His boats would take tourists out to see the sea lion colony at the north end of Isla Partida, and to snorkel in the Bay of La Paz where there is an abundance of sea life. He got involved with a US program that takes students to La Paz to learn about marine science, specifically marine mammals and sea lions.

JC first learned about NOAA through a UNAM professor and started working on the same Gulf project Ernesto would work on later. JC shared the process of calibrating the marine mammal observers’ counts. In the past, helicopters took photos from above and counted all the individuals in the pods. These actual counts were compared to each MMO’s estimated counts providing a margin of error for each MMO. For example, JC may be consistently 8% below the actual count. These margins of error are considered during abundance estimates. Since calibrations don’t happen with helicopters anymore, there are very few MMOs with their margins of error recorded, making JC a very valuable MMO.

JC has a quiet sense of care. At lunch recently, I put my mug of tea down at his table before grabbing lunch. When I returned, he put a napkin under my mug. When I lifted the mug to drink, I held down the napkin with my free hand to stop the fan from blowing it away. JC gently picked up the napkin and flipped it over so the open side did not catch the wind. I am going to miss my new family!

Juan Carlos, on deck, holds up a plastic ziploc bag containing about seven flying fish, examining it intently
Juan Carlos Salinas (MMO) packs up flying fish that have landed on the ship. Photo Credit: NOAA Fisheries/Suzanne Yin

Reference list:

Personal Log

I’ve grown accustomed to ship life. I can now tell when there is a sighting without being informed because the ship’s movement feels different and the lighting/shadows often change. To break out of routine, I try to do something different everyday that I didn’t do the day before. This week’s excitement was crossing the international date line (aka 180°E/W) from east to west!

Apparently new crew members who cross the date line for the first time by way of sea are initiated into the domain of the golden dragon. I couldn’t find much on the inception of this sailor tradition, but it seems like it’s rooted in China’s reverence for dragons. As such, some of us got to crafting dragon-themed costumes for the occasion! The pipe cleaners Jennifer McCullough (Lead Acoustician) brought onboard have been crucial for not only keeping our hands busy, but also provided a means to make dragons, dragon wings, and dragon scales. 

Group photo of 16 people, including Gail, on deck with a whiteboard reading: HICEAS 2023 Leg 2, August 18, Dateline Crossing 180 degrees, 30 degrees 27.36', into the realm of the Golden Dragon
Science team crossing into the realm of the golden dragon. Photo Credit: NOAA Fisheries/Gail Tang
Jessie, Gail, Dre stand in a line on deck, hands on hips, wearing pipe cleaner decorations, posing for a glamour shot
Plankton Team Sandwich! Jessie Perelman (Plankton Researcher), Gail Tang (Teacher at Sea), Dre Schmidt (Plankton Researcher). Photo Credit: NOAA Fisheries/Jennifer McCullough
Five scientists (Gail included, all the way to the right) with their pipe cleaner decorations and star garlands pose for a photo against a rail of NOAA Ship Oscar Elton Sette
Scientists crossing the International Date line by sea for the first time. Left to right: Paul Nagelkirk (MMO), Dre Schmidt (Plankton Researcher), Jessie Perelman (Plankton Researcher), Alexa Gonzalez (Acoustician), Gail Tang (Teacher at Sea). Photo Credit: NOAA Fisheries/Yvonne Barkley

Food Log

Well, it’s happening. The fresh vegetables are starting to diminish! When I talked with my mom, she reminded me to eat more fruit! Though there is no fruit featured in the images below, I have indeed increased my fruit consumption. Thanks, mom!

view down into a chest freezer filled with individually wrapped ice cream treats of all kinds
Can you believe it? An ice cream fridge!

In the Forward Mess, there is an ice cream fridge! I’m more fascinated by the ice cream fridge conceptually rather than gastronomically. I usually sit in the Forward Mess on the counter just next to the fridge so I’ve become acquainted with the ice cream habits of those on board. Some like to just pay a visual visit to the fridge while others are daily indulgers. Fat Boys and Greek Yogurt popsicles (those went FAST) are the most popular. Ben and Jerry’s is also well-liked, but there usually is an abundance so everyone can have what they want. I personally only tried Octavio De Mena’s (General Vessel Assistant) Li Hing Miu popsicle. Though the li hing miu is what made the popsicle good, it was still too sweet for me.

Did you know?

During lunch with Fionna Matheson (Commanding Officer), I learned that the mother-calf pair swim in what’s called the echelon formation. As seen in the photo below, the calf is swimming in close proximity to the mother, between the dorsal fin and tail. This formation is crucial to infant survival as it provides the calf with hydrodynamic benefits and energy conservation during periods of travel (Noren et al., 2007). Now, isn’t that the sweetest?

two pilot whales, a mother and calf, swim very close to one another, cresting above the surface in this view; the calf's head is about even with the start of the mother's dorsal fin
Calf and adult pilot whales swimming in echelon formation. Photo Credit: NOAA Fisheries/Andrea Bendlin (Permit #25754)

Reference:

Noren, S.R., Biedenbach, G., Redfern, J.V. and Edwards, E.F. (2008), Hitching a ride: the formation locomotion strategy of dolphin calves. Functional Ecology, 22: 278-283. https://doi.org/10.1111/j.1365-2435.2007.01353.x

Gail Tang: Contemplating the Enormity of the Minuscule, August 14, 2023

NOAA Teacher at Sea

Gail Tang

Aboard NOAA Ship Oscar Elton Sette

August 4, 2023 – September 1, 2023

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS)

Geographic Area of Cruise: Hawaiian archipelago

Date: Tuesday August 8, 2023 

Weather Data from the Bridge

Temperature: 27.06° C

Latitude: 29°53’0” N 

Longitude; 174°24’0”W

Science and Technology Log with Career Highlights

Previously, I wrote about the day-time operations focused on surveying whales, dolphins, and birds. Through the 25-powered binoculars (big eyes), the large mammals in the distance look microscopic. Now, the sun has set and I take us underwater to learn about the tiny world of ichthyoplankton, magnified to reveal intricate details of their exquisite structures.   

Weather permitting, Nich Sucher (Survey Technician) works with the deck crew to deploy the CTD, which measures conductivity, temperature, and depth. This information is used to help scientists understand the physical, chemical, and biological changes of the ocean to help inform them of environmental changes. For example, Nich explained that data from CTDs are used to better understand why tuna were migrating away from Hawaii and towards California. The data can help answer whether the tuna are moving north for access to more oxygen in the water or for cooler temperatures. On our project, we deploy the CTD down to 1000m because that is where some of our deep diving cetacean species feed. Also, the temperature & pressure affects how sound travels through the water. This information can be used to calculate the speed of sound at different depths.

a view down the starboard rail of NOAA Ship Oscar Elton Sette. We see Logan, wearing a hard hat and life vest and facing away from us, lean his right arm over the rail. He looks down at the water as the CTD apparatus descends below the purple-blue surface of the water. In the distance, the sun has just set over the horizon, leaving orange, yellow, pink, purple skies dotted with a few scattered clouds.
Logan Gary (Able-bodied Seaman) deploys the CTD at sunset. Photo Credit: Gail Tang

Nich wanted to work for NOAA since he was in middle school! In high school he fell in love with fish. Initially he went to college in Iowa for soccer and then transferred to Carthage College, in Kenosha, Wisconsin to study environmental science, conservation and ecology. Nich did an independent study with his aquatic ecology professor on a coral reef project in Roatan, Hondurus. His senior thesis investigated the feasibility of releasing captive-bred axolotl (an adorable salamander that’s critically endangered and possibly extinct in nature) into the wild. After college, he had a job at an aquarium, and while he temped at US Fish and Wildlife studying chub and salmon, NOAA reached out about his job application. He started in January 2022 on the NOAA Ship Oscar Elton Sette!

Nich, wearing a hard hat, life vest, and an illuminated flashlight attached to his vest, looks straight at the camera as he holds up with both hands a styrofoam head decorated with marker designs and compressed (by water pressure) from its original size.
Nich Sucher (Survey Technician) with recently pressure-shrunken styrofoam head. Photo Credit: Fionna Matheson (Commanding Officer)

Since the CTD is deployed to 1000m, a common extracurricular activity is to attach styrofoam objects to the instrument because they shrink as a result of the pressure! On a previous leg, Commanding Officer Fionna Matheson shrunk a styrofoam head, which can be seen in the picture of Nich above. A few of us shrunk decorated styrofoam cups.

a hand holds up a stack of four upside-down compressed styrofoam  cups, decorated, top to bottom, as purple design, smiley face, triangles, orca with hearts.
Artist of the cup from top to bottom: Jennifer McCullough (Lead Acoustician), Erik Norris (Acoustician), Gail Tang (Teacher at Sea), Alexa Gonzalez (Acoustician). Photo Credit: Gail Tang

The whole process of the CTD deployment and retrieval takes about an hour to an hour and a half. The Isaacs-Kidd Midwater Trawl (IKMT) net tow usually follows. Jessie Perelman and Dre Schmidt are the plankton researchers on board this leg of HICEAS. Most nights, we do 2-3 tows of the net. (They are affectionately called a “tow-yo” because the net gets towed in and out several times.) They use an inclinometer, a.k.a. angled angle, to measure the angle of the line (see picture below) and then confer with a chart to determine the length of the line needed to reach the desired depth. The chart is a good way to avoid on-the-spot trigonometric calculations. But it’s a good exercise to ask yourself anyway: if you know the desired depth and the angle, how would you calculate the length of the line needed?

Dre stands on deck at night, facing away from the camera, over the rail. She wears a jacket, a life vest, and a hard hat. Beyond her, we see a davit arm leaning over the water and a cable (attached to the net) extending at an angle off to the right. With her right arm, Dre holds out an angled angle - it's a metal semicircle, like a protractor, with a swinging arm attached at the center point of the straight edge. Dre holds it by a handle, lining the straight edge parallel to the extended cable. The swinging arm hangs straight down to the ship. Dre can read the resulting angle in the markings on the semicircle.
Dre Schmidt measuring with the angled angle. Photo Credit: Gail Tang

After the tows, we bring the larvae into the wet lab and the fun begins. The goal is to sort out the fish larvae from the other larvae. Truthfully, I am not very good at sorting the fish and I just like to look at the organisms under the microscope. The most awe-inspiring creatures I saw under the scope were the shelled pteropods (sea butterflies) and a juvenile sea star that, according to Dre, may have recently morphed from the larval stage. With the naked eye, they look like marks made with a sharp pencil, but under the scope, the enormity of their existence is profoundly moving. While I could not capture these beauties in a photograph, I was able to capture other creatures.

view through a microscope of a tiny squid surrounded by other, unidentified organisms. the squid's large purple eyes stand out.
Squid

Personal/Food Log with Career Highlights

As I fall into a daily routine, I periodically need small bits of irregularity for stimulation. This week, I was privileged enough to work with Chef Chris. Chef Chris is originally from north Philadelphia. In the absence of cable during childhood, he watched cooking shows like Yan Can Cook, Frugal Gourmet, and Julia Child on PBS. He started off cooking on NOAA Ship Rainier and now is the Chief Steward on NOAA Ship Oscar Elton Sette. We collaborated to make some pork dumplings and vegetable spring rolls for everyone. I cook at home often, but not for so many people, so Chris was essential in helping me scale up the dishes. We bonded over not measuring out ingredients so here is approximately the two recipes we used.

Chris, wearing a black chef's cap, stands at a large fryer in the galley. he's cooking three foods - eggs, pork, onions in large piles - and he reaches toward them with a spatula or perhaps a large knife.
Chief Steward Christopher Williams cooking the eggroll fillings. Photo Credit: Gail Tang

Pork Dumpling Filling

  • 5 lbs of ground pork (when my mom makes these, we use a mix of lean ground pork and fatty ground pork)
  • Mirin (I use Shaioxing wine, but mirin is a good substitute!)
  • Soy sauce (we used Kikkoman; I like to use Pearl River Bridge Light Soy)
  • Green onions
  • Sugar

Egg Roll Filling

  • Green cabbage
  • Red Cabbage
  • Carrots
  • Mushrooms
  • Soy sauce
  • Hoisin

Several of us worked together to help fold the dumplings and egg rolls. I delighted in the number of different hands that contributed to feeding our community. Chef Chris expertly cooked everything and it was all gobbled up!

four people around a table wrapping egg rolls; there's a large bowl of filling, a tray of completed rolls, and two rolls in progress.
Gail Tang, Octavio De Mena, Jamie Delgado, Jessie Perelman rolling eggrolls

At night, I assist Jessie Perelman and Dre Schimdt with their plankton research. They were the first to come by to help fold dumplings. Jessie did her undergraduate work in biological science at University of Southern California (USC) with a plan to go to veterinary school. She worked in a marine science lab at USC, and then studied abroad in Australia to take more marine biology classes not available at USC. After she graduated, she got a job as research assistant at Wood’s Hole Oceanographic Institution, where she solidified her passion for research. She applied for graduate school and ended up at the University of Hawaii studying biological oceanography. Her dissertation focused on oceanographic influences on mesopelagic communities across eastern Pacific Ocean using insights from active acoustics, nets, and other sampling techniques. An interesting interdisciplinary part of her background includes learning about international policy on issues like deep sea mining. The international meetings with delegates were very informative for her. She’s also worked on science communication writing, such as science blogging. In Fall 2022, Jessie started as a Marine Ecosystem Research Analyst at NOAA!

Dre Schmidt received her bachelors in biology at Florida State University. She took Calculus, Mathematical Modeling for Biology, Analysis and Statistical Design, and Physics to supplement her biology degree. She volunteered at a research lab on campus and after college, took a couple of years off to work in marine science education for 5th grade to college level students. She went for her master’s degree in Kiel, Germany to study physiological effects of low-level warming on coral and their larvae. She has been at NOAA for 2 years, first as a research associate and now as an essential fish habitat coordinator. What she loves about her job is the variety of responsibilities. She keeps busy by sorting plankton, doing genetics lab work, analyzing data in R, writing up results, and going to sea! Engaging in these different tasks help to activate different parts of the brain, which I can totally relate to! Her advice to students is to know your worth and ask for what you deserve. Her favorite fish larva is the very ugly Centrobranchus andreae simply because her name is found within the name of the organism. I can’t blame her because my favorite flower is the Gaillardia for the same reason.

Andrea, wearing a mask, stands for a photo in front of a screen displaying a larval fish
Andrea with Andrea

Matt Benes (Able-bodied Seaman and Deck Boss) took a break in his duties to fold some dumplings with us. Though Matt declined to be interviewed, I can tell you we share a deep appreciation for food as a mechanism for cultural, historical, and political understanding.

Jamie Delgado (Medical Officer) joined in on the egg roll wrapping. Jamie received her bachelor’s in science and nursing at Rutgers University. She joined the Public Health Service (PHS), and worked at the Indian Health Service (IHS) in northern Arizona. Later, she worked at the National Institutes of Health (NIH) as a research nurse specialist.  Jamie earned her Doctor of Nursing at University of Maryland before coming to NOAA as ship medical officer. Jamie has so much good financial advice about scholarships and loan repayments programs. Check out these links to learn more:

She also shared that you can retire in a total of 20 years with uniformed services, you get a pension, healthcare benefits, a housing allowance, a food allowance, 30 days paid leave, and unlimited sick leave. Jamie has been in service for 10 years, and with NOAA for 1 year and 5 months.

Jamie also helped me out during our in-port during Leg 1. Snorkeling had dislodged some ear wax and clogged my ear for a couple of days making daily life really uncomfortable. Jason Dlugos’s (3rd Assistant Engineer) “ear beer” helped, but I was still off balance. Jamie had to endure the task of flushing my ear out over the course of two days. Eventually, I did have to go to urgent care to get the rest out. Now I’m 100%!

Last but never least, Octavio De Mena, a.k.a OC, (General Vessel Assistant in the Deck Department) came by to roll some egg rolls. He is originally from the Republic of Panama and loves classic rock music. While we have no intersection in our movie tastes, we share some similarities in the food we ate growing up due to the large Chinese population in Panama. According to the Harvard Review of Latin America, the first Chinese immigrants arrived in Panama in 1854 to build the Trans-Isthmian Railroad. The inhumane treatment and disregard for the workers’ welfare is reminiscent of the situation a decade later with the Transcontinental Railway in the United States. This convergence of cultures led to haw flakes and dried plums in both our childhoods!

OC was an aircraft mechanic in the military reserves, and a security contractor in Latin America. He decided to come back to the U.S. to fulfill his dream job as a professional mariner. On his journey in pursuing his dream, he volunteered for the civil air patrol, and served as an auxiliary for search and rescue flying small Cessnas. He saw a NOAA ship at this job which prompted a search for a position within NOAA. He has been on the NOAA Ship Oscar Elton Sette since February 2023. On the ship, OC and I are regulars in the forward mess. Sometimes having opposite tastes works out in your f(l)avor, as I get to eat OC’s tomatoes and watermelon jolly ranchers.

Did you know?

You can track us! Visit this site to see where we currently are: https://www.windy.com/station/ship-wtee?26.549,-172.551,5

Gail Tang: And We’re Off! Aug 8, 2023

NOAA Teacher at Sea

Gail Tang

Aboard NOAA Ship Oscar Elton Sette

August 4, 2023 – September 1, 2023

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS)

Geographic Area of Cruise: Hawaiian archipelago

Date: Tuesday August 8, 2023 

Weather Data from the Bridge

Temperature: 26.97°C

Latitude: 27.428517 N

Longitude: -167.325400 W

Science and Technology Log

Scientific results reach the general public as a nice package of carefully curated nuggets designed to attract the average reader. It’s not unlike watching a production (movie, play, etc) in its final form. The audience is glamoured by the show or results; we aren’t usually privy to the behind-the-scenes efforts in putting together these massive operations. With this view, there is an illusion of perfection that can hide the true nature of knowledge production. This is often the case in a traditional mathematics classroom that utilizes lecture-based teaching; the instructor works out a problem beforehand and presents the solution to the students. The students do not witness the creative process of trial and error, idea generation, incubation, evaluation of each step, decision-making, or any possible collaboration involved. In brief, the beauty of doing science or math is largely hidden for the general public. I believe that the opportunity for growth lies in the process of discovery just as much as the discovery itself. My access to the data collection process of this project is one of the main reasons I am so thoroughly enjoying myself on this HICEAS (Hawaiian Islands Cetacean Ecosystem Assessment Survey) mission. 

Today is our fifth day at sea. Every moment is invigorating. During our first two days underway, we searched for the elusive Cross Seamount beaked whales (BWC). These whales have been identified acoustically, but not visually or genetically. The acoustics team heard them throughout the night on our first night, and the visual team had a sighting of a suspicious unidentified beaked whale during the third day but we didn’t get close enough for any species or individual identification. There was a lot of excitement on the ship. To learn more about beaked whales check out my roommate and lead acoustician, Jennifer McCullough’s, newest paper: https://onlinelibrary.wiley.com/doi/full/10.1111/mms.13061 

Though I missed it, there was an important bird sighting of the Hawaiian bird, the nēnē. This is a notable sighting because it was formerly endangered (now listed as threatened). After conservation efforts, the population increased from 30 in 1950 to 3,862 in 2022. To read more about the nēnē, visit: https://www.fws.gov/story/2022-12/plight-nene 

The most exciting sightings for me were the rough-toothed dolphins and the bottlenose dolphins. They came by to ride the ship’s bow waves. It was utterly magical. In a conversation with Marine Mammal Observers Andrea Bendlin and Suzanne Yin, I learned a little bit about these two species that I’ll share here.

You might recognize the bottlenose dolphin from Flipper, a popular TV show from the 60s or the movie version in the 90s. You may have also seen these dolphins at the aquarium as they can survive in captivity better than other dolphin species. They are described as the golden retrievers of the ocean. In the wild, they are regularly observed hanging out with other species.

An interesting observation of an interaction between a mother humpback whale and a bottlenose dolphin was captured by scientists and written up in a paper. They hypothesize three reasons for this interaction 1) aggressive whale response towards the dolphin 2) epimeletic (altruistic behavior towards a sick or injured individual) whale response towards the dolphin 3) they were playing!

To read the paper check out: https://www.researchgate.net/publication/228684912_Two_Unusual_Interactions_Between_a_Bottlenose_Dolphin_Tursiops_truncatus_and_a_Humpback_Whale_Megaptera_novaeangliae_in_Hawaiian_Waters

Three bottlenose dolphins swim through bright blue water. Two have breached the water's surface, giving us a clear view of their dorsal sides. A third is visible swimming underwater, underneath the two breaching.
Bottlenose dolphins came to say hi! (Permit #25754) Photo Credit: NOAA Fisheries Gail Tang

Rough-toothed dolphins are named for their rough teeth. They have a more reptilian sloped head. These animals communicate via whistles and clicks. Echolocation clicks are primarily used for sensing surroundings and searching for prey vs. communication. According to roomie and Lead Acoustician Jennifer McCullough, usually whistles look like a smooth increasing and then decreasing function, however, their whistles look like “steps” and are named stair step whistles (see the pictures below).

A graph of frequencies (measured in kilohertz) over time (measured in seconds). It is titled: Figure 1. Spectrogram of whistles produced by Steno bredanensis (44.1 kHz sample rate, 1,024 FFT, Hann window.) The background of the graph is gray with white speckles - looks like 'fuzz' - but distinct black lines trace the stair-shaped patterns of rough toothed dolphins' whistle frequencies.
Figure from Rankin et al. (2015, p.5)

Rough-toothed dolphins can take a while to identify because their echolocation signals (clicks) are outside the general frequencies for dolphins (e.g. bottlenose, striped, spinner, spotted) and “blackfish” (e.g. killer whale, false killer whales, pygmy whales, melon-headed whales). Blackfish signals go from 15-25kHz, dolphins go from 30-50kHz, while rough-toothed dolphins bridge these two ranges at 20-35kHz. For reference, the frequency range of adult humans is 0.500 kHz and 2 kHz.

Rough-toothed dolphins playfully riding the ship’s bow waves. Permit #25754.

Reference:

Rankin, S., Oswald, J., Simonis, A., & Barlow, J. (2015) Vocalizations of the rough-toothed dolphin, Steno bredanensis, in the Pacific Ocean. Marine Mammal Science. 31 (4), p. 1538-1648. https://doi.org/10.1111/mms.12226

Career Highlights

As I mentioned earlier, the information I’m receiving about the animals are from the scientists on board. In this particular post, Marine Mammal Observers Andrea Bendlin and Suzanne Yin (who goes by Yin), and Lead Acoustician Jennifer McCullough gave me insight to the dolphins. I’d like to share some of their background to give students an idea of their career trajectories. 

Andrea Bendlin double majored in zoology and psychology at University of Wisconsin, Madison, with a focus on animal behavior. For the first 4 years after college, she worked on several different field projects including, 4 winters of humpback whale research, one summer study on bottlenose dolphins, and several summers in Quebec studying large whales. Then she started working on boats doing snorkel trips and whale watches. I can attest to Andrea’s snorkeling expertise as I had my favorite snorkeling experience in Hawaii when I was following her around. She pointed out my favorite snorkeling sighting which was an egg sack of a Spanish dancer nudibranch! As you can see in the picture below, it looks like a ribbon wound around itself. For math folks, it is a hyperbolic surface! Since then, Andrea has collected data for many cruises with cetacean research programs.

this egg sack, perched on a rock underwater, consists of elegant reddish-pink folds - from a distance it looks like a flower, like a carnation
Spanish Dancer Egg Sack. Photo Credit: Alamy Stock Photo

Yin studied biology at Brown University. After school, she worked at Earth Watch, and also did field work on humpback whales, spinner dolphins, and bowhead whales. These projects were conducted on what they call “small boats” (less than 50 ft long) as opposed to a ship like the one we’re currently on, which is is 224 ft long. On these small boats, Yin drove, took photos for species and individual identification, collected acoustic data, and used theodolites to measure angles.  Later, she attended graduate school at Texas A & M University for her Masters degree. She studied wildlife and fisheries science with a focus on acoustics of dusky dolphins and tourist impact on them.  

Gail, in front, takes a selfie with Andrea (to her right) and Yin (to her left) inside a stateroom. We can see bunk beds, luggage, a fan, metal lockers.
Andrea Bendlin, Gail Tang, Suzanne Yin in my Leg 1 stateroom

Jennifer McCullough is the Lead Acoustician on HICEAS 2023. She first started at Hubbs Sea World Research on killer whales where she learned acoustics. She participated in a joint polar bear project with the San Diego Zoo. She then completed a Master’s thesis on the giant panda breeding vocalizations through the San Diego Zoo and China Wolong Panda Reserve. She spent 6 months over 2 years in the Sichuan region. We talked about the Sichuan peppercorn for a bit since I love them so much. She prefers them whole, while I prefer them ground up. After that she worked at Southwest Fisheries Science Center in La Jolla, California and later moved to the Pacific Islands Fisheries Science Center in Honolulu, Hawaii and was the Acoustics Lead during HICEAS 2017. With the exception of a HICEAS project year, she is at sea for 30-60 days a year and the rest of the time she is ashore analyzing data from previous missions and constructing equipment for future ones! She loves the balance between the equipment work (technical side), field work (data collection), and lab work (data analysis). As a side note: she makes amazing quilts!

Jennifer holds up a quilt with both hands to show off the design: an abstract, feathery shape made from a fabric of many blue shades, sown onto a white background.
Jennifer McCullough with the quilt she just finished!

Personal Log

Life at sea reminds me a bit of my college dorming-days; you’re sharing a room and you leave your door open to invite others in! I share my room with really great roommates. Dawn Breese is a seabird observer and creates a nice vibe in the room with flowers she picked ashore and some sweet feathers taped to the wall. Alexa Gonzalez is an acoustician with whom I do crosswords and play “road-trip”-type games. Jennifer McCullough, highlighted above, is going to teach me how to watercolor!

All in all, I am fairly comfortable on the ship. I spend time bouncing between the acoustics lab, the flying bridge (where the visual team observes), the local coffeeshop—The Forward Mess—(where I do most of my work), and the grated deck, stern, and wet lab (where the plankton team works). The acousticians and visual observers work from dawn to dusk, while the plankton team works from dusk until a few hours before dawn. This means I have very long days and have succumbed to the napping culture aboard the ship!

When not checking in on the scientists, I have been spending my free time getting know the people on board, learning knots, riding the stationary bike on the boat deck, and attempting pull ups. It’s a wonderful life!

Oh and please enjoy this photo of me in my “gumby” suit (a protective suit in case of abandon ship).

Gail in a red survival suit, thumbs up. She's in an interior room of the ship.
Gail Tang in gumby suit. Photo Credit: Suzanne Yin.

Food Log

To be honest, due to limited physical activity on board, I stopped eating breakfast or even going down to the mess at that time because I have no self-control when it comes to food! The oxtail udon is the highlight so far. It was incredible! Third assistant engineer, Jason Dlugos, requested it and even brought his own rice cooker with his own rice down to dinner.

Jamie and Jason sit at a table. Jamie rests her chin on crossed arms above empty plates. Jason sips from a travel cup in his left hand, and with his right, holds a spoon over his bowl of udon and rice. The rice cooker is on the table in front of him.
Jamie Delgado (Medical Officer), Jason Dlugos (3rd Assistant Engineer) and his personal rice cooker.

Catch of the Day!

Ichthyoplankton researchers Jessie Perelman and Andrea Schmidt caught two squaretail fish (Tetragonuridae), one live fish and one in its larval stage. Not much is known about this fish. One thing we do know is that these fish live inside (!) the body of an invertebrate called salp. Below is a picture of some fish living in a salp.

three small, likely juvenile, fish swim inside a gelatinous blog called a salp. the fish in front is rounder, while the two fish flanking it are narrower.
Fish inside salp. Photo credit: Rich Carey/Shutterstock.com